sched: domain sysctl fixes: unregister the sysctl table before domains
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / ll_rw_blk.c
blobd875673e76cda569f008a6828e7d52b50d87e3d8
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
35 * for max sense size
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 static void blk_recalc_rq_segments(struct request *rq);
46 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
47 struct bio *bio);
50 * For the allocated request tables
52 static struct kmem_cache *request_cachep;
55 * For queue allocation
57 static struct kmem_cache *requestq_cachep;
60 * For io context allocations
62 static struct kmem_cache *iocontext_cachep;
65 * Controlling structure to kblockd
67 static struct workqueue_struct *kblockd_workqueue;
69 unsigned long blk_max_low_pfn, blk_max_pfn;
71 EXPORT_SYMBOL(blk_max_low_pfn);
72 EXPORT_SYMBOL(blk_max_pfn);
74 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76 /* Amount of time in which a process may batch requests */
77 #define BLK_BATCH_TIME (HZ/50UL)
79 /* Number of requests a "batching" process may submit */
80 #define BLK_BATCH_REQ 32
83 * Return the threshold (number of used requests) at which the queue is
84 * considered to be congested. It include a little hysteresis to keep the
85 * context switch rate down.
87 static inline int queue_congestion_on_threshold(struct request_queue *q)
89 return q->nr_congestion_on;
93 * The threshold at which a queue is considered to be uncongested
95 static inline int queue_congestion_off_threshold(struct request_queue *q)
97 return q->nr_congestion_off;
100 static void blk_queue_congestion_threshold(struct request_queue *q)
102 int nr;
104 nr = q->nr_requests - (q->nr_requests / 8) + 1;
105 if (nr > q->nr_requests)
106 nr = q->nr_requests;
107 q->nr_congestion_on = nr;
109 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
110 if (nr < 1)
111 nr = 1;
112 q->nr_congestion_off = nr;
116 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * @bdev: device
119 * Locates the passed device's request queue and returns the address of its
120 * backing_dev_info
122 * Will return NULL if the request queue cannot be located.
124 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126 struct backing_dev_info *ret = NULL;
127 struct request_queue *q = bdev_get_queue(bdev);
129 if (q)
130 ret = &q->backing_dev_info;
131 return ret;
133 EXPORT_SYMBOL(blk_get_backing_dev_info);
136 * blk_queue_prep_rq - set a prepare_request function for queue
137 * @q: queue
138 * @pfn: prepare_request function
140 * It's possible for a queue to register a prepare_request callback which
141 * is invoked before the request is handed to the request_fn. The goal of
142 * the function is to prepare a request for I/O, it can be used to build a
143 * cdb from the request data for instance.
146 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
148 q->prep_rq_fn = pfn;
151 EXPORT_SYMBOL(blk_queue_prep_rq);
154 * blk_queue_merge_bvec - set a merge_bvec function for queue
155 * @q: queue
156 * @mbfn: merge_bvec_fn
158 * Usually queues have static limitations on the max sectors or segments that
159 * we can put in a request. Stacking drivers may have some settings that
160 * are dynamic, and thus we have to query the queue whether it is ok to
161 * add a new bio_vec to a bio at a given offset or not. If the block device
162 * has such limitations, it needs to register a merge_bvec_fn to control
163 * the size of bio's sent to it. Note that a block device *must* allow a
164 * single page to be added to an empty bio. The block device driver may want
165 * to use the bio_split() function to deal with these bio's. By default
166 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 * honored.
169 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
171 q->merge_bvec_fn = mbfn;
174 EXPORT_SYMBOL(blk_queue_merge_bvec);
176 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
178 q->softirq_done_fn = fn;
181 EXPORT_SYMBOL(blk_queue_softirq_done);
184 * blk_queue_make_request - define an alternate make_request function for a device
185 * @q: the request queue for the device to be affected
186 * @mfn: the alternate make_request function
188 * Description:
189 * The normal way for &struct bios to be passed to a device
190 * driver is for them to be collected into requests on a request
191 * queue, and then to allow the device driver to select requests
192 * off that queue when it is ready. This works well for many block
193 * devices. However some block devices (typically virtual devices
194 * such as md or lvm) do not benefit from the processing on the
195 * request queue, and are served best by having the requests passed
196 * directly to them. This can be achieved by providing a function
197 * to blk_queue_make_request().
199 * Caveat:
200 * The driver that does this *must* be able to deal appropriately
201 * with buffers in "highmemory". This can be accomplished by either calling
202 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
203 * blk_queue_bounce() to create a buffer in normal memory.
205 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
208 * set defaults
210 q->nr_requests = BLKDEV_MAX_RQ;
211 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
212 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
213 q->make_request_fn = mfn;
214 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
215 q->backing_dev_info.state = 0;
216 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
217 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
218 blk_queue_hardsect_size(q, 512);
219 blk_queue_dma_alignment(q, 511);
220 blk_queue_congestion_threshold(q);
221 q->nr_batching = BLK_BATCH_REQ;
223 q->unplug_thresh = 4; /* hmm */
224 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
225 if (q->unplug_delay == 0)
226 q->unplug_delay = 1;
228 INIT_WORK(&q->unplug_work, blk_unplug_work);
230 q->unplug_timer.function = blk_unplug_timeout;
231 q->unplug_timer.data = (unsigned long)q;
234 * by default assume old behaviour and bounce for any highmem page
236 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
239 EXPORT_SYMBOL(blk_queue_make_request);
241 static void rq_init(struct request_queue *q, struct request *rq)
243 INIT_LIST_HEAD(&rq->queuelist);
244 INIT_LIST_HEAD(&rq->donelist);
246 rq->errors = 0;
247 rq->bio = rq->biotail = NULL;
248 INIT_HLIST_NODE(&rq->hash);
249 RB_CLEAR_NODE(&rq->rb_node);
250 rq->ioprio = 0;
251 rq->buffer = NULL;
252 rq->ref_count = 1;
253 rq->q = q;
254 rq->special = NULL;
255 rq->data_len = 0;
256 rq->data = NULL;
257 rq->nr_phys_segments = 0;
258 rq->sense = NULL;
259 rq->end_io = NULL;
260 rq->end_io_data = NULL;
261 rq->completion_data = NULL;
262 rq->next_rq = NULL;
266 * blk_queue_ordered - does this queue support ordered writes
267 * @q: the request queue
268 * @ordered: one of QUEUE_ORDERED_*
269 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
271 * Description:
272 * For journalled file systems, doing ordered writes on a commit
273 * block instead of explicitly doing wait_on_buffer (which is bad
274 * for performance) can be a big win. Block drivers supporting this
275 * feature should call this function and indicate so.
278 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
279 prepare_flush_fn *prepare_flush_fn)
281 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
282 prepare_flush_fn == NULL) {
283 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
284 return -EINVAL;
287 if (ordered != QUEUE_ORDERED_NONE &&
288 ordered != QUEUE_ORDERED_DRAIN &&
289 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
290 ordered != QUEUE_ORDERED_DRAIN_FUA &&
291 ordered != QUEUE_ORDERED_TAG &&
292 ordered != QUEUE_ORDERED_TAG_FLUSH &&
293 ordered != QUEUE_ORDERED_TAG_FUA) {
294 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
295 return -EINVAL;
298 q->ordered = ordered;
299 q->next_ordered = ordered;
300 q->prepare_flush_fn = prepare_flush_fn;
302 return 0;
305 EXPORT_SYMBOL(blk_queue_ordered);
308 * blk_queue_issue_flush_fn - set function for issuing a flush
309 * @q: the request queue
310 * @iff: the function to be called issuing the flush
312 * Description:
313 * If a driver supports issuing a flush command, the support is notified
314 * to the block layer by defining it through this call.
317 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
319 q->issue_flush_fn = iff;
322 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
325 * Cache flushing for ordered writes handling
327 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
329 if (!q->ordseq)
330 return 0;
331 return 1 << ffz(q->ordseq);
334 unsigned blk_ordered_req_seq(struct request *rq)
336 struct request_queue *q = rq->q;
338 BUG_ON(q->ordseq == 0);
340 if (rq == &q->pre_flush_rq)
341 return QUEUE_ORDSEQ_PREFLUSH;
342 if (rq == &q->bar_rq)
343 return QUEUE_ORDSEQ_BAR;
344 if (rq == &q->post_flush_rq)
345 return QUEUE_ORDSEQ_POSTFLUSH;
348 * !fs requests don't need to follow barrier ordering. Always
349 * put them at the front. This fixes the following deadlock.
351 * http://thread.gmane.org/gmane.linux.kernel/537473
353 if (!blk_fs_request(rq))
354 return QUEUE_ORDSEQ_DRAIN;
356 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
357 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
358 return QUEUE_ORDSEQ_DRAIN;
359 else
360 return QUEUE_ORDSEQ_DONE;
363 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
365 struct request *rq;
366 int uptodate;
368 if (error && !q->orderr)
369 q->orderr = error;
371 BUG_ON(q->ordseq & seq);
372 q->ordseq |= seq;
374 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
375 return;
378 * Okay, sequence complete.
380 rq = q->orig_bar_rq;
381 uptodate = q->orderr ? q->orderr : 1;
383 q->ordseq = 0;
385 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
386 end_that_request_last(rq, uptodate);
389 static void pre_flush_end_io(struct request *rq, int error)
391 elv_completed_request(rq->q, rq);
392 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
395 static void bar_end_io(struct request *rq, int error)
397 elv_completed_request(rq->q, rq);
398 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
401 static void post_flush_end_io(struct request *rq, int error)
403 elv_completed_request(rq->q, rq);
404 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
407 static void queue_flush(struct request_queue *q, unsigned which)
409 struct request *rq;
410 rq_end_io_fn *end_io;
412 if (which == QUEUE_ORDERED_PREFLUSH) {
413 rq = &q->pre_flush_rq;
414 end_io = pre_flush_end_io;
415 } else {
416 rq = &q->post_flush_rq;
417 end_io = post_flush_end_io;
420 rq->cmd_flags = REQ_HARDBARRIER;
421 rq_init(q, rq);
422 rq->elevator_private = NULL;
423 rq->elevator_private2 = NULL;
424 rq->rq_disk = q->bar_rq.rq_disk;
425 rq->end_io = end_io;
426 q->prepare_flush_fn(q, rq);
428 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
431 static inline struct request *start_ordered(struct request_queue *q,
432 struct request *rq)
434 q->orderr = 0;
435 q->ordered = q->next_ordered;
436 q->ordseq |= QUEUE_ORDSEQ_STARTED;
439 * Prep proxy barrier request.
441 blkdev_dequeue_request(rq);
442 q->orig_bar_rq = rq;
443 rq = &q->bar_rq;
444 rq->cmd_flags = 0;
445 rq_init(q, rq);
446 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
447 rq->cmd_flags |= REQ_RW;
448 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
449 rq->elevator_private = NULL;
450 rq->elevator_private2 = NULL;
451 init_request_from_bio(rq, q->orig_bar_rq->bio);
452 rq->end_io = bar_end_io;
455 * Queue ordered sequence. As we stack them at the head, we
456 * need to queue in reverse order. Note that we rely on that
457 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
458 * request gets inbetween ordered sequence.
460 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
461 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
462 else
463 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
465 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
467 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
468 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
469 rq = &q->pre_flush_rq;
470 } else
471 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
473 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
474 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
475 else
476 rq = NULL;
478 return rq;
481 int blk_do_ordered(struct request_queue *q, struct request **rqp)
483 struct request *rq = *rqp;
484 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
486 if (!q->ordseq) {
487 if (!is_barrier)
488 return 1;
490 if (q->next_ordered != QUEUE_ORDERED_NONE) {
491 *rqp = start_ordered(q, rq);
492 return 1;
493 } else {
495 * This can happen when the queue switches to
496 * ORDERED_NONE while this request is on it.
498 blkdev_dequeue_request(rq);
499 end_that_request_first(rq, -EOPNOTSUPP,
500 rq->hard_nr_sectors);
501 end_that_request_last(rq, -EOPNOTSUPP);
502 *rqp = NULL;
503 return 0;
508 * Ordered sequence in progress
511 /* Special requests are not subject to ordering rules. */
512 if (!blk_fs_request(rq) &&
513 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
514 return 1;
516 if (q->ordered & QUEUE_ORDERED_TAG) {
517 /* Ordered by tag. Blocking the next barrier is enough. */
518 if (is_barrier && rq != &q->bar_rq)
519 *rqp = NULL;
520 } else {
521 /* Ordered by draining. Wait for turn. */
522 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
523 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
524 *rqp = NULL;
527 return 1;
530 static void req_bio_endio(struct request *rq, struct bio *bio,
531 unsigned int nbytes, int error)
533 struct request_queue *q = rq->q;
535 if (&q->bar_rq != rq) {
536 if (error)
537 clear_bit(BIO_UPTODATE, &bio->bi_flags);
538 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
539 error = -EIO;
541 if (unlikely(nbytes > bio->bi_size)) {
542 printk("%s: want %u bytes done, only %u left\n",
543 __FUNCTION__, nbytes, bio->bi_size);
544 nbytes = bio->bi_size;
547 bio->bi_size -= nbytes;
548 bio->bi_sector += (nbytes >> 9);
549 if (bio->bi_size == 0)
550 bio_endio(bio, error);
551 } else {
554 * Okay, this is the barrier request in progress, just
555 * record the error;
557 if (error && !q->orderr)
558 q->orderr = error;
563 * blk_queue_bounce_limit - set bounce buffer limit for queue
564 * @q: the request queue for the device
565 * @dma_addr: bus address limit
567 * Description:
568 * Different hardware can have different requirements as to what pages
569 * it can do I/O directly to. A low level driver can call
570 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
571 * buffers for doing I/O to pages residing above @page.
573 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
575 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
576 int dma = 0;
578 q->bounce_gfp = GFP_NOIO;
579 #if BITS_PER_LONG == 64
580 /* Assume anything <= 4GB can be handled by IOMMU.
581 Actually some IOMMUs can handle everything, but I don't
582 know of a way to test this here. */
583 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
584 dma = 1;
585 q->bounce_pfn = max_low_pfn;
586 #else
587 if (bounce_pfn < blk_max_low_pfn)
588 dma = 1;
589 q->bounce_pfn = bounce_pfn;
590 #endif
591 if (dma) {
592 init_emergency_isa_pool();
593 q->bounce_gfp = GFP_NOIO | GFP_DMA;
594 q->bounce_pfn = bounce_pfn;
598 EXPORT_SYMBOL(blk_queue_bounce_limit);
601 * blk_queue_max_sectors - set max sectors for a request for this queue
602 * @q: the request queue for the device
603 * @max_sectors: max sectors in the usual 512b unit
605 * Description:
606 * Enables a low level driver to set an upper limit on the size of
607 * received requests.
609 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
611 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
612 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
613 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
616 if (BLK_DEF_MAX_SECTORS > max_sectors)
617 q->max_hw_sectors = q->max_sectors = max_sectors;
618 else {
619 q->max_sectors = BLK_DEF_MAX_SECTORS;
620 q->max_hw_sectors = max_sectors;
624 EXPORT_SYMBOL(blk_queue_max_sectors);
627 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
628 * @q: the request queue for the device
629 * @max_segments: max number of segments
631 * Description:
632 * Enables a low level driver to set an upper limit on the number of
633 * physical data segments in a request. This would be the largest sized
634 * scatter list the driver could handle.
636 void blk_queue_max_phys_segments(struct request_queue *q,
637 unsigned short max_segments)
639 if (!max_segments) {
640 max_segments = 1;
641 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
644 q->max_phys_segments = max_segments;
647 EXPORT_SYMBOL(blk_queue_max_phys_segments);
650 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
651 * @q: the request queue for the device
652 * @max_segments: max number of segments
654 * Description:
655 * Enables a low level driver to set an upper limit on the number of
656 * hw data segments in a request. This would be the largest number of
657 * address/length pairs the host adapter can actually give as once
658 * to the device.
660 void blk_queue_max_hw_segments(struct request_queue *q,
661 unsigned short max_segments)
663 if (!max_segments) {
664 max_segments = 1;
665 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
668 q->max_hw_segments = max_segments;
671 EXPORT_SYMBOL(blk_queue_max_hw_segments);
674 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
675 * @q: the request queue for the device
676 * @max_size: max size of segment in bytes
678 * Description:
679 * Enables a low level driver to set an upper limit on the size of a
680 * coalesced segment
682 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
684 if (max_size < PAGE_CACHE_SIZE) {
685 max_size = PAGE_CACHE_SIZE;
686 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
689 q->max_segment_size = max_size;
692 EXPORT_SYMBOL(blk_queue_max_segment_size);
695 * blk_queue_hardsect_size - set hardware sector size for the queue
696 * @q: the request queue for the device
697 * @size: the hardware sector size, in bytes
699 * Description:
700 * This should typically be set to the lowest possible sector size
701 * that the hardware can operate on (possible without reverting to
702 * even internal read-modify-write operations). Usually the default
703 * of 512 covers most hardware.
705 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
707 q->hardsect_size = size;
710 EXPORT_SYMBOL(blk_queue_hardsect_size);
713 * Returns the minimum that is _not_ zero, unless both are zero.
715 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
718 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
719 * @t: the stacking driver (top)
720 * @b: the underlying device (bottom)
722 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
724 /* zero is "infinity" */
725 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
726 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
728 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
729 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
730 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
731 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
732 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
733 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
736 EXPORT_SYMBOL(blk_queue_stack_limits);
739 * blk_queue_segment_boundary - set boundary rules for segment merging
740 * @q: the request queue for the device
741 * @mask: the memory boundary mask
743 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
745 if (mask < PAGE_CACHE_SIZE - 1) {
746 mask = PAGE_CACHE_SIZE - 1;
747 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
750 q->seg_boundary_mask = mask;
753 EXPORT_SYMBOL(blk_queue_segment_boundary);
756 * blk_queue_dma_alignment - set dma length and memory alignment
757 * @q: the request queue for the device
758 * @mask: alignment mask
760 * description:
761 * set required memory and length aligment for direct dma transactions.
762 * this is used when buiding direct io requests for the queue.
765 void blk_queue_dma_alignment(struct request_queue *q, int mask)
767 q->dma_alignment = mask;
770 EXPORT_SYMBOL(blk_queue_dma_alignment);
773 * blk_queue_find_tag - find a request by its tag and queue
774 * @q: The request queue for the device
775 * @tag: The tag of the request
777 * Notes:
778 * Should be used when a device returns a tag and you want to match
779 * it with a request.
781 * no locks need be held.
783 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
785 return blk_map_queue_find_tag(q->queue_tags, tag);
788 EXPORT_SYMBOL(blk_queue_find_tag);
791 * __blk_free_tags - release a given set of tag maintenance info
792 * @bqt: the tag map to free
794 * Tries to free the specified @bqt@. Returns true if it was
795 * actually freed and false if there are still references using it
797 static int __blk_free_tags(struct blk_queue_tag *bqt)
799 int retval;
801 retval = atomic_dec_and_test(&bqt->refcnt);
802 if (retval) {
803 BUG_ON(bqt->busy);
804 BUG_ON(!list_empty(&bqt->busy_list));
806 kfree(bqt->tag_index);
807 bqt->tag_index = NULL;
809 kfree(bqt->tag_map);
810 bqt->tag_map = NULL;
812 kfree(bqt);
816 return retval;
820 * __blk_queue_free_tags - release tag maintenance info
821 * @q: the request queue for the device
823 * Notes:
824 * blk_cleanup_queue() will take care of calling this function, if tagging
825 * has been used. So there's no need to call this directly.
827 static void __blk_queue_free_tags(struct request_queue *q)
829 struct blk_queue_tag *bqt = q->queue_tags;
831 if (!bqt)
832 return;
834 __blk_free_tags(bqt);
836 q->queue_tags = NULL;
837 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
842 * blk_free_tags - release a given set of tag maintenance info
843 * @bqt: the tag map to free
845 * For externally managed @bqt@ frees the map. Callers of this
846 * function must guarantee to have released all the queues that
847 * might have been using this tag map.
849 void blk_free_tags(struct blk_queue_tag *bqt)
851 if (unlikely(!__blk_free_tags(bqt)))
852 BUG();
854 EXPORT_SYMBOL(blk_free_tags);
857 * blk_queue_free_tags - release tag maintenance info
858 * @q: the request queue for the device
860 * Notes:
861 * This is used to disabled tagged queuing to a device, yet leave
862 * queue in function.
864 void blk_queue_free_tags(struct request_queue *q)
866 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
869 EXPORT_SYMBOL(blk_queue_free_tags);
871 static int
872 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
874 struct request **tag_index;
875 unsigned long *tag_map;
876 int nr_ulongs;
878 if (q && depth > q->nr_requests * 2) {
879 depth = q->nr_requests * 2;
880 printk(KERN_ERR "%s: adjusted depth to %d\n",
881 __FUNCTION__, depth);
884 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
885 if (!tag_index)
886 goto fail;
888 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
889 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
890 if (!tag_map)
891 goto fail;
893 tags->real_max_depth = depth;
894 tags->max_depth = depth;
895 tags->tag_index = tag_index;
896 tags->tag_map = tag_map;
898 return 0;
899 fail:
900 kfree(tag_index);
901 return -ENOMEM;
904 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
905 int depth)
907 struct blk_queue_tag *tags;
909 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
910 if (!tags)
911 goto fail;
913 if (init_tag_map(q, tags, depth))
914 goto fail;
916 INIT_LIST_HEAD(&tags->busy_list);
917 tags->busy = 0;
918 atomic_set(&tags->refcnt, 1);
919 return tags;
920 fail:
921 kfree(tags);
922 return NULL;
926 * blk_init_tags - initialize the tag info for an external tag map
927 * @depth: the maximum queue depth supported
928 * @tags: the tag to use
930 struct blk_queue_tag *blk_init_tags(int depth)
932 return __blk_queue_init_tags(NULL, depth);
934 EXPORT_SYMBOL(blk_init_tags);
937 * blk_queue_init_tags - initialize the queue tag info
938 * @q: the request queue for the device
939 * @depth: the maximum queue depth supported
940 * @tags: the tag to use
942 int blk_queue_init_tags(struct request_queue *q, int depth,
943 struct blk_queue_tag *tags)
945 int rc;
947 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
949 if (!tags && !q->queue_tags) {
950 tags = __blk_queue_init_tags(q, depth);
952 if (!tags)
953 goto fail;
954 } else if (q->queue_tags) {
955 if ((rc = blk_queue_resize_tags(q, depth)))
956 return rc;
957 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
958 return 0;
959 } else
960 atomic_inc(&tags->refcnt);
963 * assign it, all done
965 q->queue_tags = tags;
966 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
967 return 0;
968 fail:
969 kfree(tags);
970 return -ENOMEM;
973 EXPORT_SYMBOL(blk_queue_init_tags);
976 * blk_queue_resize_tags - change the queueing depth
977 * @q: the request queue for the device
978 * @new_depth: the new max command queueing depth
980 * Notes:
981 * Must be called with the queue lock held.
983 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
985 struct blk_queue_tag *bqt = q->queue_tags;
986 struct request **tag_index;
987 unsigned long *tag_map;
988 int max_depth, nr_ulongs;
990 if (!bqt)
991 return -ENXIO;
994 * if we already have large enough real_max_depth. just
995 * adjust max_depth. *NOTE* as requests with tag value
996 * between new_depth and real_max_depth can be in-flight, tag
997 * map can not be shrunk blindly here.
999 if (new_depth <= bqt->real_max_depth) {
1000 bqt->max_depth = new_depth;
1001 return 0;
1005 * Currently cannot replace a shared tag map with a new
1006 * one, so error out if this is the case
1008 if (atomic_read(&bqt->refcnt) != 1)
1009 return -EBUSY;
1012 * save the old state info, so we can copy it back
1014 tag_index = bqt->tag_index;
1015 tag_map = bqt->tag_map;
1016 max_depth = bqt->real_max_depth;
1018 if (init_tag_map(q, bqt, new_depth))
1019 return -ENOMEM;
1021 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1022 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1023 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1025 kfree(tag_index);
1026 kfree(tag_map);
1027 return 0;
1030 EXPORT_SYMBOL(blk_queue_resize_tags);
1033 * blk_queue_end_tag - end tag operations for a request
1034 * @q: the request queue for the device
1035 * @rq: the request that has completed
1037 * Description:
1038 * Typically called when end_that_request_first() returns 0, meaning
1039 * all transfers have been done for a request. It's important to call
1040 * this function before end_that_request_last(), as that will put the
1041 * request back on the free list thus corrupting the internal tag list.
1043 * Notes:
1044 * queue lock must be held.
1046 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1048 struct blk_queue_tag *bqt = q->queue_tags;
1049 int tag = rq->tag;
1051 BUG_ON(tag == -1);
1053 if (unlikely(tag >= bqt->real_max_depth))
1055 * This can happen after tag depth has been reduced.
1056 * FIXME: how about a warning or info message here?
1058 return;
1060 list_del_init(&rq->queuelist);
1061 rq->cmd_flags &= ~REQ_QUEUED;
1062 rq->tag = -1;
1064 if (unlikely(bqt->tag_index[tag] == NULL))
1065 printk(KERN_ERR "%s: tag %d is missing\n",
1066 __FUNCTION__, tag);
1068 bqt->tag_index[tag] = NULL;
1071 * We use test_and_clear_bit's memory ordering properties here.
1072 * The tag_map bit acts as a lock for tag_index[bit], so we need
1073 * a barrer before clearing the bit (precisely: release semantics).
1074 * Could use clear_bit_unlock when it is merged.
1076 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1077 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1078 __FUNCTION__, tag);
1079 return;
1082 bqt->busy--;
1085 EXPORT_SYMBOL(blk_queue_end_tag);
1088 * blk_queue_start_tag - find a free tag and assign it
1089 * @q: the request queue for the device
1090 * @rq: the block request that needs tagging
1092 * Description:
1093 * This can either be used as a stand-alone helper, or possibly be
1094 * assigned as the queue &prep_rq_fn (in which case &struct request
1095 * automagically gets a tag assigned). Note that this function
1096 * assumes that any type of request can be queued! if this is not
1097 * true for your device, you must check the request type before
1098 * calling this function. The request will also be removed from
1099 * the request queue, so it's the drivers responsibility to readd
1100 * it if it should need to be restarted for some reason.
1102 * Notes:
1103 * queue lock must be held.
1105 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1107 struct blk_queue_tag *bqt = q->queue_tags;
1108 int tag;
1110 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1111 printk(KERN_ERR
1112 "%s: request %p for device [%s] already tagged %d",
1113 __FUNCTION__, rq,
1114 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1115 BUG();
1119 * Protect against shared tag maps, as we may not have exclusive
1120 * access to the tag map.
1122 do {
1123 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1124 if (tag >= bqt->max_depth)
1125 return 1;
1127 } while (test_and_set_bit(tag, bqt->tag_map));
1129 * We rely on test_and_set_bit providing lock memory ordering semantics
1130 * (could use test_and_set_bit_lock when it is merged).
1133 rq->cmd_flags |= REQ_QUEUED;
1134 rq->tag = tag;
1135 bqt->tag_index[tag] = rq;
1136 blkdev_dequeue_request(rq);
1137 list_add(&rq->queuelist, &bqt->busy_list);
1138 bqt->busy++;
1139 return 0;
1142 EXPORT_SYMBOL(blk_queue_start_tag);
1145 * blk_queue_invalidate_tags - invalidate all pending tags
1146 * @q: the request queue for the device
1148 * Description:
1149 * Hardware conditions may dictate a need to stop all pending requests.
1150 * In this case, we will safely clear the block side of the tag queue and
1151 * readd all requests to the request queue in the right order.
1153 * Notes:
1154 * queue lock must be held.
1156 void blk_queue_invalidate_tags(struct request_queue *q)
1158 struct blk_queue_tag *bqt = q->queue_tags;
1159 struct list_head *tmp, *n;
1160 struct request *rq;
1162 list_for_each_safe(tmp, n, &bqt->busy_list) {
1163 rq = list_entry_rq(tmp);
1165 if (rq->tag == -1) {
1166 printk(KERN_ERR
1167 "%s: bad tag found on list\n", __FUNCTION__);
1168 list_del_init(&rq->queuelist);
1169 rq->cmd_flags &= ~REQ_QUEUED;
1170 } else
1171 blk_queue_end_tag(q, rq);
1173 rq->cmd_flags &= ~REQ_STARTED;
1174 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1178 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1180 void blk_dump_rq_flags(struct request *rq, char *msg)
1182 int bit;
1184 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1186 rq->cmd_flags);
1188 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1189 rq->nr_sectors,
1190 rq->current_nr_sectors);
1191 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1193 if (blk_pc_request(rq)) {
1194 printk("cdb: ");
1195 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1196 printk("%02x ", rq->cmd[bit]);
1197 printk("\n");
1201 EXPORT_SYMBOL(blk_dump_rq_flags);
1203 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1205 struct request rq;
1206 struct bio *nxt = bio->bi_next;
1207 rq.q = q;
1208 rq.bio = rq.biotail = bio;
1209 bio->bi_next = NULL;
1210 blk_recalc_rq_segments(&rq);
1211 bio->bi_next = nxt;
1212 bio->bi_phys_segments = rq.nr_phys_segments;
1213 bio->bi_hw_segments = rq.nr_hw_segments;
1214 bio->bi_flags |= (1 << BIO_SEG_VALID);
1216 EXPORT_SYMBOL(blk_recount_segments);
1218 static void blk_recalc_rq_segments(struct request *rq)
1220 int nr_phys_segs;
1221 int nr_hw_segs;
1222 unsigned int phys_size;
1223 unsigned int hw_size;
1224 struct bio_vec *bv, *bvprv = NULL;
1225 int seg_size;
1226 int hw_seg_size;
1227 int cluster;
1228 struct req_iterator iter;
1229 int high, highprv = 1;
1230 struct request_queue *q = rq->q;
1232 if (!rq->bio)
1233 return;
1235 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1236 hw_seg_size = seg_size = 0;
1237 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
1238 rq_for_each_segment(bv, rq, iter) {
1240 * the trick here is making sure that a high page is never
1241 * considered part of another segment, since that might
1242 * change with the bounce page.
1244 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1245 if (high || highprv)
1246 goto new_hw_segment;
1247 if (cluster) {
1248 if (seg_size + bv->bv_len > q->max_segment_size)
1249 goto new_segment;
1250 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1251 goto new_segment;
1252 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1253 goto new_segment;
1254 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1255 goto new_hw_segment;
1257 seg_size += bv->bv_len;
1258 hw_seg_size += bv->bv_len;
1259 bvprv = bv;
1260 continue;
1262 new_segment:
1263 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1264 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1265 hw_seg_size += bv->bv_len;
1266 else {
1267 new_hw_segment:
1268 if (nr_hw_segs == 1 &&
1269 hw_seg_size > rq->bio->bi_hw_front_size)
1270 rq->bio->bi_hw_front_size = hw_seg_size;
1271 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1272 nr_hw_segs++;
1275 nr_phys_segs++;
1276 bvprv = bv;
1277 seg_size = bv->bv_len;
1278 highprv = high;
1281 if (nr_hw_segs == 1 &&
1282 hw_seg_size > rq->bio->bi_hw_front_size)
1283 rq->bio->bi_hw_front_size = hw_seg_size;
1284 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1285 rq->biotail->bi_hw_back_size = hw_seg_size;
1286 rq->nr_phys_segments = nr_phys_segs;
1287 rq->nr_hw_segments = nr_hw_segs;
1290 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1291 struct bio *nxt)
1293 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1294 return 0;
1296 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1297 return 0;
1298 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1299 return 0;
1302 * bio and nxt are contigous in memory, check if the queue allows
1303 * these two to be merged into one
1305 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1306 return 1;
1308 return 0;
1311 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1312 struct bio *nxt)
1314 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1315 blk_recount_segments(q, bio);
1316 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1317 blk_recount_segments(q, nxt);
1318 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1319 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1320 return 0;
1321 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1322 return 0;
1324 return 1;
1328 * map a request to scatterlist, return number of sg entries setup. Caller
1329 * must make sure sg can hold rq->nr_phys_segments entries
1331 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1332 struct scatterlist *sg)
1334 struct bio_vec *bvec, *bvprv;
1335 struct req_iterator iter;
1336 int nsegs, cluster;
1338 nsegs = 0;
1339 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1342 * for each bio in rq
1344 bvprv = NULL;
1345 rq_for_each_segment(bvec, rq, iter) {
1346 int nbytes = bvec->bv_len;
1348 if (bvprv && cluster) {
1349 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1350 goto new_segment;
1352 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1353 goto new_segment;
1354 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1355 goto new_segment;
1357 sg[nsegs - 1].length += nbytes;
1358 } else {
1359 new_segment:
1360 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1361 sg[nsegs].page = bvec->bv_page;
1362 sg[nsegs].length = nbytes;
1363 sg[nsegs].offset = bvec->bv_offset;
1365 nsegs++;
1367 bvprv = bvec;
1368 } /* segments in rq */
1370 return nsegs;
1373 EXPORT_SYMBOL(blk_rq_map_sg);
1376 * the standard queue merge functions, can be overridden with device
1377 * specific ones if so desired
1380 static inline int ll_new_mergeable(struct request_queue *q,
1381 struct request *req,
1382 struct bio *bio)
1384 int nr_phys_segs = bio_phys_segments(q, bio);
1386 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1387 req->cmd_flags |= REQ_NOMERGE;
1388 if (req == q->last_merge)
1389 q->last_merge = NULL;
1390 return 0;
1394 * A hw segment is just getting larger, bump just the phys
1395 * counter.
1397 req->nr_phys_segments += nr_phys_segs;
1398 return 1;
1401 static inline int ll_new_hw_segment(struct request_queue *q,
1402 struct request *req,
1403 struct bio *bio)
1405 int nr_hw_segs = bio_hw_segments(q, bio);
1406 int nr_phys_segs = bio_phys_segments(q, bio);
1408 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1409 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1410 req->cmd_flags |= REQ_NOMERGE;
1411 if (req == q->last_merge)
1412 q->last_merge = NULL;
1413 return 0;
1417 * This will form the start of a new hw segment. Bump both
1418 * counters.
1420 req->nr_hw_segments += nr_hw_segs;
1421 req->nr_phys_segments += nr_phys_segs;
1422 return 1;
1425 static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1426 struct bio *bio)
1428 unsigned short max_sectors;
1429 int len;
1431 if (unlikely(blk_pc_request(req)))
1432 max_sectors = q->max_hw_sectors;
1433 else
1434 max_sectors = q->max_sectors;
1436 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1437 req->cmd_flags |= REQ_NOMERGE;
1438 if (req == q->last_merge)
1439 q->last_merge = NULL;
1440 return 0;
1442 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1443 blk_recount_segments(q, req->biotail);
1444 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1445 blk_recount_segments(q, bio);
1446 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1447 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1448 !BIOVEC_VIRT_OVERSIZE(len)) {
1449 int mergeable = ll_new_mergeable(q, req, bio);
1451 if (mergeable) {
1452 if (req->nr_hw_segments == 1)
1453 req->bio->bi_hw_front_size = len;
1454 if (bio->bi_hw_segments == 1)
1455 bio->bi_hw_back_size = len;
1457 return mergeable;
1460 return ll_new_hw_segment(q, req, bio);
1463 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1464 struct bio *bio)
1466 unsigned short max_sectors;
1467 int len;
1469 if (unlikely(blk_pc_request(req)))
1470 max_sectors = q->max_hw_sectors;
1471 else
1472 max_sectors = q->max_sectors;
1475 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1476 req->cmd_flags |= REQ_NOMERGE;
1477 if (req == q->last_merge)
1478 q->last_merge = NULL;
1479 return 0;
1481 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1482 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1483 blk_recount_segments(q, bio);
1484 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1485 blk_recount_segments(q, req->bio);
1486 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1487 !BIOVEC_VIRT_OVERSIZE(len)) {
1488 int mergeable = ll_new_mergeable(q, req, bio);
1490 if (mergeable) {
1491 if (bio->bi_hw_segments == 1)
1492 bio->bi_hw_front_size = len;
1493 if (req->nr_hw_segments == 1)
1494 req->biotail->bi_hw_back_size = len;
1496 return mergeable;
1499 return ll_new_hw_segment(q, req, bio);
1502 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1503 struct request *next)
1505 int total_phys_segments;
1506 int total_hw_segments;
1509 * First check if the either of the requests are re-queued
1510 * requests. Can't merge them if they are.
1512 if (req->special || next->special)
1513 return 0;
1516 * Will it become too large?
1518 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1519 return 0;
1521 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1522 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1523 total_phys_segments--;
1525 if (total_phys_segments > q->max_phys_segments)
1526 return 0;
1528 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1529 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1530 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1532 * propagate the combined length to the end of the requests
1534 if (req->nr_hw_segments == 1)
1535 req->bio->bi_hw_front_size = len;
1536 if (next->nr_hw_segments == 1)
1537 next->biotail->bi_hw_back_size = len;
1538 total_hw_segments--;
1541 if (total_hw_segments > q->max_hw_segments)
1542 return 0;
1544 /* Merge is OK... */
1545 req->nr_phys_segments = total_phys_segments;
1546 req->nr_hw_segments = total_hw_segments;
1547 return 1;
1551 * "plug" the device if there are no outstanding requests: this will
1552 * force the transfer to start only after we have put all the requests
1553 * on the list.
1555 * This is called with interrupts off and no requests on the queue and
1556 * with the queue lock held.
1558 void blk_plug_device(struct request_queue *q)
1560 WARN_ON(!irqs_disabled());
1563 * don't plug a stopped queue, it must be paired with blk_start_queue()
1564 * which will restart the queueing
1566 if (blk_queue_stopped(q))
1567 return;
1569 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1570 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1571 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1575 EXPORT_SYMBOL(blk_plug_device);
1578 * remove the queue from the plugged list, if present. called with
1579 * queue lock held and interrupts disabled.
1581 int blk_remove_plug(struct request_queue *q)
1583 WARN_ON(!irqs_disabled());
1585 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1586 return 0;
1588 del_timer(&q->unplug_timer);
1589 return 1;
1592 EXPORT_SYMBOL(blk_remove_plug);
1595 * remove the plug and let it rip..
1597 void __generic_unplug_device(struct request_queue *q)
1599 if (unlikely(blk_queue_stopped(q)))
1600 return;
1602 if (!blk_remove_plug(q))
1603 return;
1605 q->request_fn(q);
1607 EXPORT_SYMBOL(__generic_unplug_device);
1610 * generic_unplug_device - fire a request queue
1611 * @q: The &struct request_queue in question
1613 * Description:
1614 * Linux uses plugging to build bigger requests queues before letting
1615 * the device have at them. If a queue is plugged, the I/O scheduler
1616 * is still adding and merging requests on the queue. Once the queue
1617 * gets unplugged, the request_fn defined for the queue is invoked and
1618 * transfers started.
1620 void generic_unplug_device(struct request_queue *q)
1622 spin_lock_irq(q->queue_lock);
1623 __generic_unplug_device(q);
1624 spin_unlock_irq(q->queue_lock);
1626 EXPORT_SYMBOL(generic_unplug_device);
1628 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1629 struct page *page)
1631 struct request_queue *q = bdi->unplug_io_data;
1634 * devices don't necessarily have an ->unplug_fn defined
1636 if (q->unplug_fn) {
1637 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1638 q->rq.count[READ] + q->rq.count[WRITE]);
1640 q->unplug_fn(q);
1644 static void blk_unplug_work(struct work_struct *work)
1646 struct request_queue *q =
1647 container_of(work, struct request_queue, unplug_work);
1649 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1650 q->rq.count[READ] + q->rq.count[WRITE]);
1652 q->unplug_fn(q);
1655 static void blk_unplug_timeout(unsigned long data)
1657 struct request_queue *q = (struct request_queue *)data;
1659 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1660 q->rq.count[READ] + q->rq.count[WRITE]);
1662 kblockd_schedule_work(&q->unplug_work);
1666 * blk_start_queue - restart a previously stopped queue
1667 * @q: The &struct request_queue in question
1669 * Description:
1670 * blk_start_queue() will clear the stop flag on the queue, and call
1671 * the request_fn for the queue if it was in a stopped state when
1672 * entered. Also see blk_stop_queue(). Queue lock must be held.
1674 void blk_start_queue(struct request_queue *q)
1676 WARN_ON(!irqs_disabled());
1678 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1681 * one level of recursion is ok and is much faster than kicking
1682 * the unplug handling
1684 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1685 q->request_fn(q);
1686 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1687 } else {
1688 blk_plug_device(q);
1689 kblockd_schedule_work(&q->unplug_work);
1693 EXPORT_SYMBOL(blk_start_queue);
1696 * blk_stop_queue - stop a queue
1697 * @q: The &struct request_queue in question
1699 * Description:
1700 * The Linux block layer assumes that a block driver will consume all
1701 * entries on the request queue when the request_fn strategy is called.
1702 * Often this will not happen, because of hardware limitations (queue
1703 * depth settings). If a device driver gets a 'queue full' response,
1704 * or if it simply chooses not to queue more I/O at one point, it can
1705 * call this function to prevent the request_fn from being called until
1706 * the driver has signalled it's ready to go again. This happens by calling
1707 * blk_start_queue() to restart queue operations. Queue lock must be held.
1709 void blk_stop_queue(struct request_queue *q)
1711 blk_remove_plug(q);
1712 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1714 EXPORT_SYMBOL(blk_stop_queue);
1717 * blk_sync_queue - cancel any pending callbacks on a queue
1718 * @q: the queue
1720 * Description:
1721 * The block layer may perform asynchronous callback activity
1722 * on a queue, such as calling the unplug function after a timeout.
1723 * A block device may call blk_sync_queue to ensure that any
1724 * such activity is cancelled, thus allowing it to release resources
1725 * that the callbacks might use. The caller must already have made sure
1726 * that its ->make_request_fn will not re-add plugging prior to calling
1727 * this function.
1730 void blk_sync_queue(struct request_queue *q)
1732 del_timer_sync(&q->unplug_timer);
1734 EXPORT_SYMBOL(blk_sync_queue);
1737 * blk_run_queue - run a single device queue
1738 * @q: The queue to run
1740 void blk_run_queue(struct request_queue *q)
1742 unsigned long flags;
1744 spin_lock_irqsave(q->queue_lock, flags);
1745 blk_remove_plug(q);
1748 * Only recurse once to avoid overrunning the stack, let the unplug
1749 * handling reinvoke the handler shortly if we already got there.
1751 if (!elv_queue_empty(q)) {
1752 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1753 q->request_fn(q);
1754 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1755 } else {
1756 blk_plug_device(q);
1757 kblockd_schedule_work(&q->unplug_work);
1761 spin_unlock_irqrestore(q->queue_lock, flags);
1763 EXPORT_SYMBOL(blk_run_queue);
1766 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1767 * @kobj: the kobj belonging of the request queue to be released
1769 * Description:
1770 * blk_cleanup_queue is the pair to blk_init_queue() or
1771 * blk_queue_make_request(). It should be called when a request queue is
1772 * being released; typically when a block device is being de-registered.
1773 * Currently, its primary task it to free all the &struct request
1774 * structures that were allocated to the queue and the queue itself.
1776 * Caveat:
1777 * Hopefully the low level driver will have finished any
1778 * outstanding requests first...
1780 static void blk_release_queue(struct kobject *kobj)
1782 struct request_queue *q =
1783 container_of(kobj, struct request_queue, kobj);
1784 struct request_list *rl = &q->rq;
1786 blk_sync_queue(q);
1788 if (rl->rq_pool)
1789 mempool_destroy(rl->rq_pool);
1791 if (q->queue_tags)
1792 __blk_queue_free_tags(q);
1794 blk_trace_shutdown(q);
1796 kmem_cache_free(requestq_cachep, q);
1799 void blk_put_queue(struct request_queue *q)
1801 kobject_put(&q->kobj);
1803 EXPORT_SYMBOL(blk_put_queue);
1805 void blk_cleanup_queue(struct request_queue * q)
1807 mutex_lock(&q->sysfs_lock);
1808 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1809 mutex_unlock(&q->sysfs_lock);
1811 if (q->elevator)
1812 elevator_exit(q->elevator);
1814 blk_put_queue(q);
1817 EXPORT_SYMBOL(blk_cleanup_queue);
1819 static int blk_init_free_list(struct request_queue *q)
1821 struct request_list *rl = &q->rq;
1823 rl->count[READ] = rl->count[WRITE] = 0;
1824 rl->starved[READ] = rl->starved[WRITE] = 0;
1825 rl->elvpriv = 0;
1826 init_waitqueue_head(&rl->wait[READ]);
1827 init_waitqueue_head(&rl->wait[WRITE]);
1829 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1830 mempool_free_slab, request_cachep, q->node);
1832 if (!rl->rq_pool)
1833 return -ENOMEM;
1835 return 0;
1838 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1840 return blk_alloc_queue_node(gfp_mask, -1);
1842 EXPORT_SYMBOL(blk_alloc_queue);
1844 static struct kobj_type queue_ktype;
1846 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1848 struct request_queue *q;
1850 q = kmem_cache_alloc_node(requestq_cachep,
1851 gfp_mask | __GFP_ZERO, node_id);
1852 if (!q)
1853 return NULL;
1855 init_timer(&q->unplug_timer);
1857 kobject_set_name(&q->kobj, "%s", "queue");
1858 q->kobj.ktype = &queue_ktype;
1859 kobject_init(&q->kobj);
1861 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1862 q->backing_dev_info.unplug_io_data = q;
1864 mutex_init(&q->sysfs_lock);
1866 return q;
1868 EXPORT_SYMBOL(blk_alloc_queue_node);
1871 * blk_init_queue - prepare a request queue for use with a block device
1872 * @rfn: The function to be called to process requests that have been
1873 * placed on the queue.
1874 * @lock: Request queue spin lock
1876 * Description:
1877 * If a block device wishes to use the standard request handling procedures,
1878 * which sorts requests and coalesces adjacent requests, then it must
1879 * call blk_init_queue(). The function @rfn will be called when there
1880 * are requests on the queue that need to be processed. If the device
1881 * supports plugging, then @rfn may not be called immediately when requests
1882 * are available on the queue, but may be called at some time later instead.
1883 * Plugged queues are generally unplugged when a buffer belonging to one
1884 * of the requests on the queue is needed, or due to memory pressure.
1886 * @rfn is not required, or even expected, to remove all requests off the
1887 * queue, but only as many as it can handle at a time. If it does leave
1888 * requests on the queue, it is responsible for arranging that the requests
1889 * get dealt with eventually.
1891 * The queue spin lock must be held while manipulating the requests on the
1892 * request queue; this lock will be taken also from interrupt context, so irq
1893 * disabling is needed for it.
1895 * Function returns a pointer to the initialized request queue, or NULL if
1896 * it didn't succeed.
1898 * Note:
1899 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1900 * when the block device is deactivated (such as at module unload).
1903 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1905 return blk_init_queue_node(rfn, lock, -1);
1907 EXPORT_SYMBOL(blk_init_queue);
1909 struct request_queue *
1910 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1912 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1914 if (!q)
1915 return NULL;
1917 q->node = node_id;
1918 if (blk_init_free_list(q)) {
1919 kmem_cache_free(requestq_cachep, q);
1920 return NULL;
1924 * if caller didn't supply a lock, they get per-queue locking with
1925 * our embedded lock
1927 if (!lock) {
1928 spin_lock_init(&q->__queue_lock);
1929 lock = &q->__queue_lock;
1932 q->request_fn = rfn;
1933 q->prep_rq_fn = NULL;
1934 q->unplug_fn = generic_unplug_device;
1935 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1936 q->queue_lock = lock;
1938 blk_queue_segment_boundary(q, 0xffffffff);
1940 blk_queue_make_request(q, __make_request);
1941 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1943 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1944 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1946 q->sg_reserved_size = INT_MAX;
1949 * all done
1951 if (!elevator_init(q, NULL)) {
1952 blk_queue_congestion_threshold(q);
1953 return q;
1956 blk_put_queue(q);
1957 return NULL;
1959 EXPORT_SYMBOL(blk_init_queue_node);
1961 int blk_get_queue(struct request_queue *q)
1963 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1964 kobject_get(&q->kobj);
1965 return 0;
1968 return 1;
1971 EXPORT_SYMBOL(blk_get_queue);
1973 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1975 if (rq->cmd_flags & REQ_ELVPRIV)
1976 elv_put_request(q, rq);
1977 mempool_free(rq, q->rq.rq_pool);
1980 static struct request *
1981 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1983 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1985 if (!rq)
1986 return NULL;
1989 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1990 * see bio.h and blkdev.h
1992 rq->cmd_flags = rw | REQ_ALLOCED;
1994 if (priv) {
1995 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1996 mempool_free(rq, q->rq.rq_pool);
1997 return NULL;
1999 rq->cmd_flags |= REQ_ELVPRIV;
2002 return rq;
2006 * ioc_batching returns true if the ioc is a valid batching request and
2007 * should be given priority access to a request.
2009 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2011 if (!ioc)
2012 return 0;
2015 * Make sure the process is able to allocate at least 1 request
2016 * even if the batch times out, otherwise we could theoretically
2017 * lose wakeups.
2019 return ioc->nr_batch_requests == q->nr_batching ||
2020 (ioc->nr_batch_requests > 0
2021 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2025 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2026 * will cause the process to be a "batcher" on all queues in the system. This
2027 * is the behaviour we want though - once it gets a wakeup it should be given
2028 * a nice run.
2030 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2032 if (!ioc || ioc_batching(q, ioc))
2033 return;
2035 ioc->nr_batch_requests = q->nr_batching;
2036 ioc->last_waited = jiffies;
2039 static void __freed_request(struct request_queue *q, int rw)
2041 struct request_list *rl = &q->rq;
2043 if (rl->count[rw] < queue_congestion_off_threshold(q))
2044 blk_clear_queue_congested(q, rw);
2046 if (rl->count[rw] + 1 <= q->nr_requests) {
2047 if (waitqueue_active(&rl->wait[rw]))
2048 wake_up(&rl->wait[rw]);
2050 blk_clear_queue_full(q, rw);
2055 * A request has just been released. Account for it, update the full and
2056 * congestion status, wake up any waiters. Called under q->queue_lock.
2058 static void freed_request(struct request_queue *q, int rw, int priv)
2060 struct request_list *rl = &q->rq;
2062 rl->count[rw]--;
2063 if (priv)
2064 rl->elvpriv--;
2066 __freed_request(q, rw);
2068 if (unlikely(rl->starved[rw ^ 1]))
2069 __freed_request(q, rw ^ 1);
2072 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2074 * Get a free request, queue_lock must be held.
2075 * Returns NULL on failure, with queue_lock held.
2076 * Returns !NULL on success, with queue_lock *not held*.
2078 static struct request *get_request(struct request_queue *q, int rw_flags,
2079 struct bio *bio, gfp_t gfp_mask)
2081 struct request *rq = NULL;
2082 struct request_list *rl = &q->rq;
2083 struct io_context *ioc = NULL;
2084 const int rw = rw_flags & 0x01;
2085 int may_queue, priv;
2087 may_queue = elv_may_queue(q, rw_flags);
2088 if (may_queue == ELV_MQUEUE_NO)
2089 goto rq_starved;
2091 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2092 if (rl->count[rw]+1 >= q->nr_requests) {
2093 ioc = current_io_context(GFP_ATOMIC, q->node);
2095 * The queue will fill after this allocation, so set
2096 * it as full, and mark this process as "batching".
2097 * This process will be allowed to complete a batch of
2098 * requests, others will be blocked.
2100 if (!blk_queue_full(q, rw)) {
2101 ioc_set_batching(q, ioc);
2102 blk_set_queue_full(q, rw);
2103 } else {
2104 if (may_queue != ELV_MQUEUE_MUST
2105 && !ioc_batching(q, ioc)) {
2107 * The queue is full and the allocating
2108 * process is not a "batcher", and not
2109 * exempted by the IO scheduler
2111 goto out;
2115 blk_set_queue_congested(q, rw);
2119 * Only allow batching queuers to allocate up to 50% over the defined
2120 * limit of requests, otherwise we could have thousands of requests
2121 * allocated with any setting of ->nr_requests
2123 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2124 goto out;
2126 rl->count[rw]++;
2127 rl->starved[rw] = 0;
2129 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2130 if (priv)
2131 rl->elvpriv++;
2133 spin_unlock_irq(q->queue_lock);
2135 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2136 if (unlikely(!rq)) {
2138 * Allocation failed presumably due to memory. Undo anything
2139 * we might have messed up.
2141 * Allocating task should really be put onto the front of the
2142 * wait queue, but this is pretty rare.
2144 spin_lock_irq(q->queue_lock);
2145 freed_request(q, rw, priv);
2148 * in the very unlikely event that allocation failed and no
2149 * requests for this direction was pending, mark us starved
2150 * so that freeing of a request in the other direction will
2151 * notice us. another possible fix would be to split the
2152 * rq mempool into READ and WRITE
2154 rq_starved:
2155 if (unlikely(rl->count[rw] == 0))
2156 rl->starved[rw] = 1;
2158 goto out;
2162 * ioc may be NULL here, and ioc_batching will be false. That's
2163 * OK, if the queue is under the request limit then requests need
2164 * not count toward the nr_batch_requests limit. There will always
2165 * be some limit enforced by BLK_BATCH_TIME.
2167 if (ioc_batching(q, ioc))
2168 ioc->nr_batch_requests--;
2170 rq_init(q, rq);
2172 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2173 out:
2174 return rq;
2178 * No available requests for this queue, unplug the device and wait for some
2179 * requests to become available.
2181 * Called with q->queue_lock held, and returns with it unlocked.
2183 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2184 struct bio *bio)
2186 const int rw = rw_flags & 0x01;
2187 struct request *rq;
2189 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2190 while (!rq) {
2191 DEFINE_WAIT(wait);
2192 struct request_list *rl = &q->rq;
2194 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2195 TASK_UNINTERRUPTIBLE);
2197 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2199 if (!rq) {
2200 struct io_context *ioc;
2202 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2204 __generic_unplug_device(q);
2205 spin_unlock_irq(q->queue_lock);
2206 io_schedule();
2209 * After sleeping, we become a "batching" process and
2210 * will be able to allocate at least one request, and
2211 * up to a big batch of them for a small period time.
2212 * See ioc_batching, ioc_set_batching
2214 ioc = current_io_context(GFP_NOIO, q->node);
2215 ioc_set_batching(q, ioc);
2217 spin_lock_irq(q->queue_lock);
2219 finish_wait(&rl->wait[rw], &wait);
2222 return rq;
2225 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2227 struct request *rq;
2229 BUG_ON(rw != READ && rw != WRITE);
2231 spin_lock_irq(q->queue_lock);
2232 if (gfp_mask & __GFP_WAIT) {
2233 rq = get_request_wait(q, rw, NULL);
2234 } else {
2235 rq = get_request(q, rw, NULL, gfp_mask);
2236 if (!rq)
2237 spin_unlock_irq(q->queue_lock);
2239 /* q->queue_lock is unlocked at this point */
2241 return rq;
2243 EXPORT_SYMBOL(blk_get_request);
2246 * blk_start_queueing - initiate dispatch of requests to device
2247 * @q: request queue to kick into gear
2249 * This is basically a helper to remove the need to know whether a queue
2250 * is plugged or not if someone just wants to initiate dispatch of requests
2251 * for this queue.
2253 * The queue lock must be held with interrupts disabled.
2255 void blk_start_queueing(struct request_queue *q)
2257 if (!blk_queue_plugged(q))
2258 q->request_fn(q);
2259 else
2260 __generic_unplug_device(q);
2262 EXPORT_SYMBOL(blk_start_queueing);
2265 * blk_requeue_request - put a request back on queue
2266 * @q: request queue where request should be inserted
2267 * @rq: request to be inserted
2269 * Description:
2270 * Drivers often keep queueing requests until the hardware cannot accept
2271 * more, when that condition happens we need to put the request back
2272 * on the queue. Must be called with queue lock held.
2274 void blk_requeue_request(struct request_queue *q, struct request *rq)
2276 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2278 if (blk_rq_tagged(rq))
2279 blk_queue_end_tag(q, rq);
2281 elv_requeue_request(q, rq);
2284 EXPORT_SYMBOL(blk_requeue_request);
2287 * blk_insert_request - insert a special request in to a request queue
2288 * @q: request queue where request should be inserted
2289 * @rq: request to be inserted
2290 * @at_head: insert request at head or tail of queue
2291 * @data: private data
2293 * Description:
2294 * Many block devices need to execute commands asynchronously, so they don't
2295 * block the whole kernel from preemption during request execution. This is
2296 * accomplished normally by inserting aritficial requests tagged as
2297 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2298 * scheduled for actual execution by the request queue.
2300 * We have the option of inserting the head or the tail of the queue.
2301 * Typically we use the tail for new ioctls and so forth. We use the head
2302 * of the queue for things like a QUEUE_FULL message from a device, or a
2303 * host that is unable to accept a particular command.
2305 void blk_insert_request(struct request_queue *q, struct request *rq,
2306 int at_head, void *data)
2308 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2309 unsigned long flags;
2312 * tell I/O scheduler that this isn't a regular read/write (ie it
2313 * must not attempt merges on this) and that it acts as a soft
2314 * barrier
2316 rq->cmd_type = REQ_TYPE_SPECIAL;
2317 rq->cmd_flags |= REQ_SOFTBARRIER;
2319 rq->special = data;
2321 spin_lock_irqsave(q->queue_lock, flags);
2324 * If command is tagged, release the tag
2326 if (blk_rq_tagged(rq))
2327 blk_queue_end_tag(q, rq);
2329 drive_stat_acct(rq, rq->nr_sectors, 1);
2330 __elv_add_request(q, rq, where, 0);
2331 blk_start_queueing(q);
2332 spin_unlock_irqrestore(q->queue_lock, flags);
2335 EXPORT_SYMBOL(blk_insert_request);
2337 static int __blk_rq_unmap_user(struct bio *bio)
2339 int ret = 0;
2341 if (bio) {
2342 if (bio_flagged(bio, BIO_USER_MAPPED))
2343 bio_unmap_user(bio);
2344 else
2345 ret = bio_uncopy_user(bio);
2348 return ret;
2351 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2352 struct bio *bio)
2354 if (!rq->bio)
2355 blk_rq_bio_prep(q, rq, bio);
2356 else if (!ll_back_merge_fn(q, rq, bio))
2357 return -EINVAL;
2358 else {
2359 rq->biotail->bi_next = bio;
2360 rq->biotail = bio;
2362 rq->data_len += bio->bi_size;
2364 return 0;
2366 EXPORT_SYMBOL(blk_rq_append_bio);
2368 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2369 void __user *ubuf, unsigned int len)
2371 unsigned long uaddr;
2372 struct bio *bio, *orig_bio;
2373 int reading, ret;
2375 reading = rq_data_dir(rq) == READ;
2378 * if alignment requirement is satisfied, map in user pages for
2379 * direct dma. else, set up kernel bounce buffers
2381 uaddr = (unsigned long) ubuf;
2382 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2383 bio = bio_map_user(q, NULL, uaddr, len, reading);
2384 else
2385 bio = bio_copy_user(q, uaddr, len, reading);
2387 if (IS_ERR(bio))
2388 return PTR_ERR(bio);
2390 orig_bio = bio;
2391 blk_queue_bounce(q, &bio);
2394 * We link the bounce buffer in and could have to traverse it
2395 * later so we have to get a ref to prevent it from being freed
2397 bio_get(bio);
2399 ret = blk_rq_append_bio(q, rq, bio);
2400 if (!ret)
2401 return bio->bi_size;
2403 /* if it was boucned we must call the end io function */
2404 bio_endio(bio, 0);
2405 __blk_rq_unmap_user(orig_bio);
2406 bio_put(bio);
2407 return ret;
2411 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2412 * @q: request queue where request should be inserted
2413 * @rq: request structure to fill
2414 * @ubuf: the user buffer
2415 * @len: length of user data
2417 * Description:
2418 * Data will be mapped directly for zero copy io, if possible. Otherwise
2419 * a kernel bounce buffer is used.
2421 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2422 * still in process context.
2424 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2425 * before being submitted to the device, as pages mapped may be out of
2426 * reach. It's the callers responsibility to make sure this happens. The
2427 * original bio must be passed back in to blk_rq_unmap_user() for proper
2428 * unmapping.
2430 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2431 void __user *ubuf, unsigned long len)
2433 unsigned long bytes_read = 0;
2434 struct bio *bio = NULL;
2435 int ret;
2437 if (len > (q->max_hw_sectors << 9))
2438 return -EINVAL;
2439 if (!len || !ubuf)
2440 return -EINVAL;
2442 while (bytes_read != len) {
2443 unsigned long map_len, end, start;
2445 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2446 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2447 >> PAGE_SHIFT;
2448 start = (unsigned long)ubuf >> PAGE_SHIFT;
2451 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2452 * pages. If this happens we just lower the requested
2453 * mapping len by a page so that we can fit
2455 if (end - start > BIO_MAX_PAGES)
2456 map_len -= PAGE_SIZE;
2458 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2459 if (ret < 0)
2460 goto unmap_rq;
2461 if (!bio)
2462 bio = rq->bio;
2463 bytes_read += ret;
2464 ubuf += ret;
2467 rq->buffer = rq->data = NULL;
2468 return 0;
2469 unmap_rq:
2470 blk_rq_unmap_user(bio);
2471 return ret;
2474 EXPORT_SYMBOL(blk_rq_map_user);
2477 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2478 * @q: request queue where request should be inserted
2479 * @rq: request to map data to
2480 * @iov: pointer to the iovec
2481 * @iov_count: number of elements in the iovec
2482 * @len: I/O byte count
2484 * Description:
2485 * Data will be mapped directly for zero copy io, if possible. Otherwise
2486 * a kernel bounce buffer is used.
2488 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2489 * still in process context.
2491 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2492 * before being submitted to the device, as pages mapped may be out of
2493 * reach. It's the callers responsibility to make sure this happens. The
2494 * original bio must be passed back in to blk_rq_unmap_user() for proper
2495 * unmapping.
2497 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2498 struct sg_iovec *iov, int iov_count, unsigned int len)
2500 struct bio *bio;
2502 if (!iov || iov_count <= 0)
2503 return -EINVAL;
2505 /* we don't allow misaligned data like bio_map_user() does. If the
2506 * user is using sg, they're expected to know the alignment constraints
2507 * and respect them accordingly */
2508 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2509 if (IS_ERR(bio))
2510 return PTR_ERR(bio);
2512 if (bio->bi_size != len) {
2513 bio_endio(bio, 0);
2514 bio_unmap_user(bio);
2515 return -EINVAL;
2518 bio_get(bio);
2519 blk_rq_bio_prep(q, rq, bio);
2520 rq->buffer = rq->data = NULL;
2521 return 0;
2524 EXPORT_SYMBOL(blk_rq_map_user_iov);
2527 * blk_rq_unmap_user - unmap a request with user data
2528 * @bio: start of bio list
2530 * Description:
2531 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2532 * supply the original rq->bio from the blk_rq_map_user() return, since
2533 * the io completion may have changed rq->bio.
2535 int blk_rq_unmap_user(struct bio *bio)
2537 struct bio *mapped_bio;
2538 int ret = 0, ret2;
2540 while (bio) {
2541 mapped_bio = bio;
2542 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2543 mapped_bio = bio->bi_private;
2545 ret2 = __blk_rq_unmap_user(mapped_bio);
2546 if (ret2 && !ret)
2547 ret = ret2;
2549 mapped_bio = bio;
2550 bio = bio->bi_next;
2551 bio_put(mapped_bio);
2554 return ret;
2557 EXPORT_SYMBOL(blk_rq_unmap_user);
2560 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2561 * @q: request queue where request should be inserted
2562 * @rq: request to fill
2563 * @kbuf: the kernel buffer
2564 * @len: length of user data
2565 * @gfp_mask: memory allocation flags
2567 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2568 unsigned int len, gfp_t gfp_mask)
2570 struct bio *bio;
2572 if (len > (q->max_hw_sectors << 9))
2573 return -EINVAL;
2574 if (!len || !kbuf)
2575 return -EINVAL;
2577 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2578 if (IS_ERR(bio))
2579 return PTR_ERR(bio);
2581 if (rq_data_dir(rq) == WRITE)
2582 bio->bi_rw |= (1 << BIO_RW);
2584 blk_rq_bio_prep(q, rq, bio);
2585 blk_queue_bounce(q, &rq->bio);
2586 rq->buffer = rq->data = NULL;
2587 return 0;
2590 EXPORT_SYMBOL(blk_rq_map_kern);
2593 * blk_execute_rq_nowait - insert a request into queue for execution
2594 * @q: queue to insert the request in
2595 * @bd_disk: matching gendisk
2596 * @rq: request to insert
2597 * @at_head: insert request at head or tail of queue
2598 * @done: I/O completion handler
2600 * Description:
2601 * Insert a fully prepared request at the back of the io scheduler queue
2602 * for execution. Don't wait for completion.
2604 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2605 struct request *rq, int at_head,
2606 rq_end_io_fn *done)
2608 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2610 rq->rq_disk = bd_disk;
2611 rq->cmd_flags |= REQ_NOMERGE;
2612 rq->end_io = done;
2613 WARN_ON(irqs_disabled());
2614 spin_lock_irq(q->queue_lock);
2615 __elv_add_request(q, rq, where, 1);
2616 __generic_unplug_device(q);
2617 spin_unlock_irq(q->queue_lock);
2619 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2622 * blk_execute_rq - insert a request into queue for execution
2623 * @q: queue to insert the request in
2624 * @bd_disk: matching gendisk
2625 * @rq: request to insert
2626 * @at_head: insert request at head or tail of queue
2628 * Description:
2629 * Insert a fully prepared request at the back of the io scheduler queue
2630 * for execution and wait for completion.
2632 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2633 struct request *rq, int at_head)
2635 DECLARE_COMPLETION_ONSTACK(wait);
2636 char sense[SCSI_SENSE_BUFFERSIZE];
2637 int err = 0;
2640 * we need an extra reference to the request, so we can look at
2641 * it after io completion
2643 rq->ref_count++;
2645 if (!rq->sense) {
2646 memset(sense, 0, sizeof(sense));
2647 rq->sense = sense;
2648 rq->sense_len = 0;
2651 rq->end_io_data = &wait;
2652 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2653 wait_for_completion(&wait);
2655 if (rq->errors)
2656 err = -EIO;
2658 return err;
2661 EXPORT_SYMBOL(blk_execute_rq);
2664 * blkdev_issue_flush - queue a flush
2665 * @bdev: blockdev to issue flush for
2666 * @error_sector: error sector
2668 * Description:
2669 * Issue a flush for the block device in question. Caller can supply
2670 * room for storing the error offset in case of a flush error, if they
2671 * wish to. Caller must run wait_for_completion() on its own.
2673 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2675 struct request_queue *q;
2677 if (bdev->bd_disk == NULL)
2678 return -ENXIO;
2680 q = bdev_get_queue(bdev);
2681 if (!q)
2682 return -ENXIO;
2683 if (!q->issue_flush_fn)
2684 return -EOPNOTSUPP;
2686 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2689 EXPORT_SYMBOL(blkdev_issue_flush);
2691 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2693 int rw = rq_data_dir(rq);
2695 if (!blk_fs_request(rq) || !rq->rq_disk)
2696 return;
2698 if (!new_io) {
2699 __disk_stat_inc(rq->rq_disk, merges[rw]);
2700 } else {
2701 disk_round_stats(rq->rq_disk);
2702 rq->rq_disk->in_flight++;
2707 * add-request adds a request to the linked list.
2708 * queue lock is held and interrupts disabled, as we muck with the
2709 * request queue list.
2711 static inline void add_request(struct request_queue * q, struct request * req)
2713 drive_stat_acct(req, req->nr_sectors, 1);
2716 * elevator indicated where it wants this request to be
2717 * inserted at elevator_merge time
2719 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2723 * disk_round_stats() - Round off the performance stats on a struct
2724 * disk_stats.
2726 * The average IO queue length and utilisation statistics are maintained
2727 * by observing the current state of the queue length and the amount of
2728 * time it has been in this state for.
2730 * Normally, that accounting is done on IO completion, but that can result
2731 * in more than a second's worth of IO being accounted for within any one
2732 * second, leading to >100% utilisation. To deal with that, we call this
2733 * function to do a round-off before returning the results when reading
2734 * /proc/diskstats. This accounts immediately for all queue usage up to
2735 * the current jiffies and restarts the counters again.
2737 void disk_round_stats(struct gendisk *disk)
2739 unsigned long now = jiffies;
2741 if (now == disk->stamp)
2742 return;
2744 if (disk->in_flight) {
2745 __disk_stat_add(disk, time_in_queue,
2746 disk->in_flight * (now - disk->stamp));
2747 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2749 disk->stamp = now;
2752 EXPORT_SYMBOL_GPL(disk_round_stats);
2755 * queue lock must be held
2757 void __blk_put_request(struct request_queue *q, struct request *req)
2759 if (unlikely(!q))
2760 return;
2761 if (unlikely(--req->ref_count))
2762 return;
2764 elv_completed_request(q, req);
2767 * Request may not have originated from ll_rw_blk. if not,
2768 * it didn't come out of our reserved rq pools
2770 if (req->cmd_flags & REQ_ALLOCED) {
2771 int rw = rq_data_dir(req);
2772 int priv = req->cmd_flags & REQ_ELVPRIV;
2774 BUG_ON(!list_empty(&req->queuelist));
2775 BUG_ON(!hlist_unhashed(&req->hash));
2777 blk_free_request(q, req);
2778 freed_request(q, rw, priv);
2782 EXPORT_SYMBOL_GPL(__blk_put_request);
2784 void blk_put_request(struct request *req)
2786 unsigned long flags;
2787 struct request_queue *q = req->q;
2790 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2791 * following if (q) test.
2793 if (q) {
2794 spin_lock_irqsave(q->queue_lock, flags);
2795 __blk_put_request(q, req);
2796 spin_unlock_irqrestore(q->queue_lock, flags);
2800 EXPORT_SYMBOL(blk_put_request);
2803 * blk_end_sync_rq - executes a completion event on a request
2804 * @rq: request to complete
2805 * @error: end io status of the request
2807 void blk_end_sync_rq(struct request *rq, int error)
2809 struct completion *waiting = rq->end_io_data;
2811 rq->end_io_data = NULL;
2812 __blk_put_request(rq->q, rq);
2815 * complete last, if this is a stack request the process (and thus
2816 * the rq pointer) could be invalid right after this complete()
2818 complete(waiting);
2820 EXPORT_SYMBOL(blk_end_sync_rq);
2823 * Has to be called with the request spinlock acquired
2825 static int attempt_merge(struct request_queue *q, struct request *req,
2826 struct request *next)
2828 if (!rq_mergeable(req) || !rq_mergeable(next))
2829 return 0;
2832 * not contiguous
2834 if (req->sector + req->nr_sectors != next->sector)
2835 return 0;
2837 if (rq_data_dir(req) != rq_data_dir(next)
2838 || req->rq_disk != next->rq_disk
2839 || next->special)
2840 return 0;
2843 * If we are allowed to merge, then append bio list
2844 * from next to rq and release next. merge_requests_fn
2845 * will have updated segment counts, update sector
2846 * counts here.
2848 if (!ll_merge_requests_fn(q, req, next))
2849 return 0;
2852 * At this point we have either done a back merge
2853 * or front merge. We need the smaller start_time of
2854 * the merged requests to be the current request
2855 * for accounting purposes.
2857 if (time_after(req->start_time, next->start_time))
2858 req->start_time = next->start_time;
2860 req->biotail->bi_next = next->bio;
2861 req->biotail = next->biotail;
2863 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2865 elv_merge_requests(q, req, next);
2867 if (req->rq_disk) {
2868 disk_round_stats(req->rq_disk);
2869 req->rq_disk->in_flight--;
2872 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2874 __blk_put_request(q, next);
2875 return 1;
2878 static inline int attempt_back_merge(struct request_queue *q,
2879 struct request *rq)
2881 struct request *next = elv_latter_request(q, rq);
2883 if (next)
2884 return attempt_merge(q, rq, next);
2886 return 0;
2889 static inline int attempt_front_merge(struct request_queue *q,
2890 struct request *rq)
2892 struct request *prev = elv_former_request(q, rq);
2894 if (prev)
2895 return attempt_merge(q, prev, rq);
2897 return 0;
2900 static void init_request_from_bio(struct request *req, struct bio *bio)
2902 req->cmd_type = REQ_TYPE_FS;
2905 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2907 if (bio_rw_ahead(bio) || bio_failfast(bio))
2908 req->cmd_flags |= REQ_FAILFAST;
2911 * REQ_BARRIER implies no merging, but lets make it explicit
2913 if (unlikely(bio_barrier(bio)))
2914 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2916 if (bio_sync(bio))
2917 req->cmd_flags |= REQ_RW_SYNC;
2918 if (bio_rw_meta(bio))
2919 req->cmd_flags |= REQ_RW_META;
2921 req->errors = 0;
2922 req->hard_sector = req->sector = bio->bi_sector;
2923 req->ioprio = bio_prio(bio);
2924 req->start_time = jiffies;
2925 blk_rq_bio_prep(req->q, req, bio);
2928 static int __make_request(struct request_queue *q, struct bio *bio)
2930 struct request *req;
2931 int el_ret, nr_sectors, barrier, err;
2932 const unsigned short prio = bio_prio(bio);
2933 const int sync = bio_sync(bio);
2934 int rw_flags;
2936 nr_sectors = bio_sectors(bio);
2939 * low level driver can indicate that it wants pages above a
2940 * certain limit bounced to low memory (ie for highmem, or even
2941 * ISA dma in theory)
2943 blk_queue_bounce(q, &bio);
2945 barrier = bio_barrier(bio);
2946 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2947 err = -EOPNOTSUPP;
2948 goto end_io;
2951 spin_lock_irq(q->queue_lock);
2953 if (unlikely(barrier) || elv_queue_empty(q))
2954 goto get_rq;
2956 el_ret = elv_merge(q, &req, bio);
2957 switch (el_ret) {
2958 case ELEVATOR_BACK_MERGE:
2959 BUG_ON(!rq_mergeable(req));
2961 if (!ll_back_merge_fn(q, req, bio))
2962 break;
2964 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2966 req->biotail->bi_next = bio;
2967 req->biotail = bio;
2968 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2969 req->ioprio = ioprio_best(req->ioprio, prio);
2970 drive_stat_acct(req, nr_sectors, 0);
2971 if (!attempt_back_merge(q, req))
2972 elv_merged_request(q, req, el_ret);
2973 goto out;
2975 case ELEVATOR_FRONT_MERGE:
2976 BUG_ON(!rq_mergeable(req));
2978 if (!ll_front_merge_fn(q, req, bio))
2979 break;
2981 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2983 bio->bi_next = req->bio;
2984 req->bio = bio;
2987 * may not be valid. if the low level driver said
2988 * it didn't need a bounce buffer then it better
2989 * not touch req->buffer either...
2991 req->buffer = bio_data(bio);
2992 req->current_nr_sectors = bio_cur_sectors(bio);
2993 req->hard_cur_sectors = req->current_nr_sectors;
2994 req->sector = req->hard_sector = bio->bi_sector;
2995 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2996 req->ioprio = ioprio_best(req->ioprio, prio);
2997 drive_stat_acct(req, nr_sectors, 0);
2998 if (!attempt_front_merge(q, req))
2999 elv_merged_request(q, req, el_ret);
3000 goto out;
3002 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3003 default:
3007 get_rq:
3009 * This sync check and mask will be re-done in init_request_from_bio(),
3010 * but we need to set it earlier to expose the sync flag to the
3011 * rq allocator and io schedulers.
3013 rw_flags = bio_data_dir(bio);
3014 if (sync)
3015 rw_flags |= REQ_RW_SYNC;
3018 * Grab a free request. This is might sleep but can not fail.
3019 * Returns with the queue unlocked.
3021 req = get_request_wait(q, rw_flags, bio);
3024 * After dropping the lock and possibly sleeping here, our request
3025 * may now be mergeable after it had proven unmergeable (above).
3026 * We don't worry about that case for efficiency. It won't happen
3027 * often, and the elevators are able to handle it.
3029 init_request_from_bio(req, bio);
3031 spin_lock_irq(q->queue_lock);
3032 if (elv_queue_empty(q))
3033 blk_plug_device(q);
3034 add_request(q, req);
3035 out:
3036 if (sync)
3037 __generic_unplug_device(q);
3039 spin_unlock_irq(q->queue_lock);
3040 return 0;
3042 end_io:
3043 bio_endio(bio, err);
3044 return 0;
3048 * If bio->bi_dev is a partition, remap the location
3050 static inline void blk_partition_remap(struct bio *bio)
3052 struct block_device *bdev = bio->bi_bdev;
3054 if (bdev != bdev->bd_contains) {
3055 struct hd_struct *p = bdev->bd_part;
3056 const int rw = bio_data_dir(bio);
3058 p->sectors[rw] += bio_sectors(bio);
3059 p->ios[rw]++;
3061 bio->bi_sector += p->start_sect;
3062 bio->bi_bdev = bdev->bd_contains;
3064 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3065 bdev->bd_dev, bio->bi_sector,
3066 bio->bi_sector - p->start_sect);
3070 static void handle_bad_sector(struct bio *bio)
3072 char b[BDEVNAME_SIZE];
3074 printk(KERN_INFO "attempt to access beyond end of device\n");
3075 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3076 bdevname(bio->bi_bdev, b),
3077 bio->bi_rw,
3078 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3079 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3081 set_bit(BIO_EOF, &bio->bi_flags);
3084 #ifdef CONFIG_FAIL_MAKE_REQUEST
3086 static DECLARE_FAULT_ATTR(fail_make_request);
3088 static int __init setup_fail_make_request(char *str)
3090 return setup_fault_attr(&fail_make_request, str);
3092 __setup("fail_make_request=", setup_fail_make_request);
3094 static int should_fail_request(struct bio *bio)
3096 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3097 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3098 return should_fail(&fail_make_request, bio->bi_size);
3100 return 0;
3103 static int __init fail_make_request_debugfs(void)
3105 return init_fault_attr_dentries(&fail_make_request,
3106 "fail_make_request");
3109 late_initcall(fail_make_request_debugfs);
3111 #else /* CONFIG_FAIL_MAKE_REQUEST */
3113 static inline int should_fail_request(struct bio *bio)
3115 return 0;
3118 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3121 * generic_make_request: hand a buffer to its device driver for I/O
3122 * @bio: The bio describing the location in memory and on the device.
3124 * generic_make_request() is used to make I/O requests of block
3125 * devices. It is passed a &struct bio, which describes the I/O that needs
3126 * to be done.
3128 * generic_make_request() does not return any status. The
3129 * success/failure status of the request, along with notification of
3130 * completion, is delivered asynchronously through the bio->bi_end_io
3131 * function described (one day) else where.
3133 * The caller of generic_make_request must make sure that bi_io_vec
3134 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3135 * set to describe the device address, and the
3136 * bi_end_io and optionally bi_private are set to describe how
3137 * completion notification should be signaled.
3139 * generic_make_request and the drivers it calls may use bi_next if this
3140 * bio happens to be merged with someone else, and may change bi_dev and
3141 * bi_sector for remaps as it sees fit. So the values of these fields
3142 * should NOT be depended on after the call to generic_make_request.
3144 static inline void __generic_make_request(struct bio *bio)
3146 struct request_queue *q;
3147 sector_t maxsector;
3148 sector_t old_sector;
3149 int ret, nr_sectors = bio_sectors(bio);
3150 dev_t old_dev;
3152 might_sleep();
3153 /* Test device or partition size, when known. */
3154 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3155 if (maxsector) {
3156 sector_t sector = bio->bi_sector;
3158 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3160 * This may well happen - the kernel calls bread()
3161 * without checking the size of the device, e.g., when
3162 * mounting a device.
3164 handle_bad_sector(bio);
3165 goto end_io;
3170 * Resolve the mapping until finished. (drivers are
3171 * still free to implement/resolve their own stacking
3172 * by explicitly returning 0)
3174 * NOTE: we don't repeat the blk_size check for each new device.
3175 * Stacking drivers are expected to know what they are doing.
3177 old_sector = -1;
3178 old_dev = 0;
3179 do {
3180 char b[BDEVNAME_SIZE];
3182 q = bdev_get_queue(bio->bi_bdev);
3183 if (!q) {
3184 printk(KERN_ERR
3185 "generic_make_request: Trying to access "
3186 "nonexistent block-device %s (%Lu)\n",
3187 bdevname(bio->bi_bdev, b),
3188 (long long) bio->bi_sector);
3189 end_io:
3190 bio_endio(bio, -EIO);
3191 break;
3194 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3195 printk("bio too big device %s (%u > %u)\n",
3196 bdevname(bio->bi_bdev, b),
3197 bio_sectors(bio),
3198 q->max_hw_sectors);
3199 goto end_io;
3202 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3203 goto end_io;
3205 if (should_fail_request(bio))
3206 goto end_io;
3209 * If this device has partitions, remap block n
3210 * of partition p to block n+start(p) of the disk.
3212 blk_partition_remap(bio);
3214 if (old_sector != -1)
3215 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3216 old_sector);
3218 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3220 old_sector = bio->bi_sector;
3221 old_dev = bio->bi_bdev->bd_dev;
3223 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3224 if (maxsector) {
3225 sector_t sector = bio->bi_sector;
3227 if (maxsector < nr_sectors ||
3228 maxsector - nr_sectors < sector) {
3230 * This may well happen - partitions are not
3231 * checked to make sure they are within the size
3232 * of the whole device.
3234 handle_bad_sector(bio);
3235 goto end_io;
3239 ret = q->make_request_fn(q, bio);
3240 } while (ret);
3244 * We only want one ->make_request_fn to be active at a time,
3245 * else stack usage with stacked devices could be a problem.
3246 * So use current->bio_{list,tail} to keep a list of requests
3247 * submited by a make_request_fn function.
3248 * current->bio_tail is also used as a flag to say if
3249 * generic_make_request is currently active in this task or not.
3250 * If it is NULL, then no make_request is active. If it is non-NULL,
3251 * then a make_request is active, and new requests should be added
3252 * at the tail
3254 void generic_make_request(struct bio *bio)
3256 if (current->bio_tail) {
3257 /* make_request is active */
3258 *(current->bio_tail) = bio;
3259 bio->bi_next = NULL;
3260 current->bio_tail = &bio->bi_next;
3261 return;
3263 /* following loop may be a bit non-obvious, and so deserves some
3264 * explanation.
3265 * Before entering the loop, bio->bi_next is NULL (as all callers
3266 * ensure that) so we have a list with a single bio.
3267 * We pretend that we have just taken it off a longer list, so
3268 * we assign bio_list to the next (which is NULL) and bio_tail
3269 * to &bio_list, thus initialising the bio_list of new bios to be
3270 * added. __generic_make_request may indeed add some more bios
3271 * through a recursive call to generic_make_request. If it
3272 * did, we find a non-NULL value in bio_list and re-enter the loop
3273 * from the top. In this case we really did just take the bio
3274 * of the top of the list (no pretending) and so fixup bio_list and
3275 * bio_tail or bi_next, and call into __generic_make_request again.
3277 * The loop was structured like this to make only one call to
3278 * __generic_make_request (which is important as it is large and
3279 * inlined) and to keep the structure simple.
3281 BUG_ON(bio->bi_next);
3282 do {
3283 current->bio_list = bio->bi_next;
3284 if (bio->bi_next == NULL)
3285 current->bio_tail = &current->bio_list;
3286 else
3287 bio->bi_next = NULL;
3288 __generic_make_request(bio);
3289 bio = current->bio_list;
3290 } while (bio);
3291 current->bio_tail = NULL; /* deactivate */
3294 EXPORT_SYMBOL(generic_make_request);
3297 * submit_bio: submit a bio to the block device layer for I/O
3298 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3299 * @bio: The &struct bio which describes the I/O
3301 * submit_bio() is very similar in purpose to generic_make_request(), and
3302 * uses that function to do most of the work. Both are fairly rough
3303 * interfaces, @bio must be presetup and ready for I/O.
3306 void submit_bio(int rw, struct bio *bio)
3308 int count = bio_sectors(bio);
3310 BIO_BUG_ON(!bio->bi_size);
3311 BIO_BUG_ON(!bio->bi_io_vec);
3312 bio->bi_rw |= rw;
3313 if (rw & WRITE) {
3314 count_vm_events(PGPGOUT, count);
3315 } else {
3316 task_io_account_read(bio->bi_size);
3317 count_vm_events(PGPGIN, count);
3320 if (unlikely(block_dump)) {
3321 char b[BDEVNAME_SIZE];
3322 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3323 current->comm, current->pid,
3324 (rw & WRITE) ? "WRITE" : "READ",
3325 (unsigned long long)bio->bi_sector,
3326 bdevname(bio->bi_bdev,b));
3329 generic_make_request(bio);
3332 EXPORT_SYMBOL(submit_bio);
3334 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3336 if (blk_fs_request(rq)) {
3337 rq->hard_sector += nsect;
3338 rq->hard_nr_sectors -= nsect;
3341 * Move the I/O submission pointers ahead if required.
3343 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3344 (rq->sector <= rq->hard_sector)) {
3345 rq->sector = rq->hard_sector;
3346 rq->nr_sectors = rq->hard_nr_sectors;
3347 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3348 rq->current_nr_sectors = rq->hard_cur_sectors;
3349 rq->buffer = bio_data(rq->bio);
3353 * if total number of sectors is less than the first segment
3354 * size, something has gone terribly wrong
3356 if (rq->nr_sectors < rq->current_nr_sectors) {
3357 printk("blk: request botched\n");
3358 rq->nr_sectors = rq->current_nr_sectors;
3363 static int __end_that_request_first(struct request *req, int uptodate,
3364 int nr_bytes)
3366 int total_bytes, bio_nbytes, error, next_idx = 0;
3367 struct bio *bio;
3369 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3372 * extend uptodate bool to allow < 0 value to be direct io error
3374 error = 0;
3375 if (end_io_error(uptodate))
3376 error = !uptodate ? -EIO : uptodate;
3379 * for a REQ_BLOCK_PC request, we want to carry any eventual
3380 * sense key with us all the way through
3382 if (!blk_pc_request(req))
3383 req->errors = 0;
3385 if (!uptodate) {
3386 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3387 printk("end_request: I/O error, dev %s, sector %llu\n",
3388 req->rq_disk ? req->rq_disk->disk_name : "?",
3389 (unsigned long long)req->sector);
3392 if (blk_fs_request(req) && req->rq_disk) {
3393 const int rw = rq_data_dir(req);
3395 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3398 total_bytes = bio_nbytes = 0;
3399 while ((bio = req->bio) != NULL) {
3400 int nbytes;
3402 if (nr_bytes >= bio->bi_size) {
3403 req->bio = bio->bi_next;
3404 nbytes = bio->bi_size;
3405 req_bio_endio(req, bio, nbytes, error);
3406 next_idx = 0;
3407 bio_nbytes = 0;
3408 } else {
3409 int idx = bio->bi_idx + next_idx;
3411 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3412 blk_dump_rq_flags(req, "__end_that");
3413 printk("%s: bio idx %d >= vcnt %d\n",
3414 __FUNCTION__,
3415 bio->bi_idx, bio->bi_vcnt);
3416 break;
3419 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3420 BIO_BUG_ON(nbytes > bio->bi_size);
3423 * not a complete bvec done
3425 if (unlikely(nbytes > nr_bytes)) {
3426 bio_nbytes += nr_bytes;
3427 total_bytes += nr_bytes;
3428 break;
3432 * advance to the next vector
3434 next_idx++;
3435 bio_nbytes += nbytes;
3438 total_bytes += nbytes;
3439 nr_bytes -= nbytes;
3441 if ((bio = req->bio)) {
3443 * end more in this run, or just return 'not-done'
3445 if (unlikely(nr_bytes <= 0))
3446 break;
3451 * completely done
3453 if (!req->bio)
3454 return 0;
3457 * if the request wasn't completed, update state
3459 if (bio_nbytes) {
3460 req_bio_endio(req, bio, bio_nbytes, error);
3461 bio->bi_idx += next_idx;
3462 bio_iovec(bio)->bv_offset += nr_bytes;
3463 bio_iovec(bio)->bv_len -= nr_bytes;
3466 blk_recalc_rq_sectors(req, total_bytes >> 9);
3467 blk_recalc_rq_segments(req);
3468 return 1;
3472 * end_that_request_first - end I/O on a request
3473 * @req: the request being processed
3474 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3475 * @nr_sectors: number of sectors to end I/O on
3477 * Description:
3478 * Ends I/O on a number of sectors attached to @req, and sets it up
3479 * for the next range of segments (if any) in the cluster.
3481 * Return:
3482 * 0 - we are done with this request, call end_that_request_last()
3483 * 1 - still buffers pending for this request
3485 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3487 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3490 EXPORT_SYMBOL(end_that_request_first);
3493 * end_that_request_chunk - end I/O on a request
3494 * @req: the request being processed
3495 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3496 * @nr_bytes: number of bytes to complete
3498 * Description:
3499 * Ends I/O on a number of bytes attached to @req, and sets it up
3500 * for the next range of segments (if any). Like end_that_request_first(),
3501 * but deals with bytes instead of sectors.
3503 * Return:
3504 * 0 - we are done with this request, call end_that_request_last()
3505 * 1 - still buffers pending for this request
3507 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3509 return __end_that_request_first(req, uptodate, nr_bytes);
3512 EXPORT_SYMBOL(end_that_request_chunk);
3515 * splice the completion data to a local structure and hand off to
3516 * process_completion_queue() to complete the requests
3518 static void blk_done_softirq(struct softirq_action *h)
3520 struct list_head *cpu_list, local_list;
3522 local_irq_disable();
3523 cpu_list = &__get_cpu_var(blk_cpu_done);
3524 list_replace_init(cpu_list, &local_list);
3525 local_irq_enable();
3527 while (!list_empty(&local_list)) {
3528 struct request *rq = list_entry(local_list.next, struct request, donelist);
3530 list_del_init(&rq->donelist);
3531 rq->q->softirq_done_fn(rq);
3535 static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
3536 void *hcpu)
3539 * If a CPU goes away, splice its entries to the current CPU
3540 * and trigger a run of the softirq
3542 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3543 int cpu = (unsigned long) hcpu;
3545 local_irq_disable();
3546 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3547 &__get_cpu_var(blk_cpu_done));
3548 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3549 local_irq_enable();
3552 return NOTIFY_OK;
3556 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
3557 .notifier_call = blk_cpu_notify,
3561 * blk_complete_request - end I/O on a request
3562 * @req: the request being processed
3564 * Description:
3565 * Ends all I/O on a request. It does not handle partial completions,
3566 * unless the driver actually implements this in its completion callback
3567 * through requeueing. Theh actual completion happens out-of-order,
3568 * through a softirq handler. The user must have registered a completion
3569 * callback through blk_queue_softirq_done().
3572 void blk_complete_request(struct request *req)
3574 struct list_head *cpu_list;
3575 unsigned long flags;
3577 BUG_ON(!req->q->softirq_done_fn);
3579 local_irq_save(flags);
3581 cpu_list = &__get_cpu_var(blk_cpu_done);
3582 list_add_tail(&req->donelist, cpu_list);
3583 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3585 local_irq_restore(flags);
3588 EXPORT_SYMBOL(blk_complete_request);
3591 * queue lock must be held
3593 void end_that_request_last(struct request *req, int uptodate)
3595 struct gendisk *disk = req->rq_disk;
3596 int error;
3599 * extend uptodate bool to allow < 0 value to be direct io error
3601 error = 0;
3602 if (end_io_error(uptodate))
3603 error = !uptodate ? -EIO : uptodate;
3605 if (unlikely(laptop_mode) && blk_fs_request(req))
3606 laptop_io_completion();
3609 * Account IO completion. bar_rq isn't accounted as a normal
3610 * IO on queueing nor completion. Accounting the containing
3611 * request is enough.
3613 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3614 unsigned long duration = jiffies - req->start_time;
3615 const int rw = rq_data_dir(req);
3617 __disk_stat_inc(disk, ios[rw]);
3618 __disk_stat_add(disk, ticks[rw], duration);
3619 disk_round_stats(disk);
3620 disk->in_flight--;
3622 if (req->end_io)
3623 req->end_io(req, error);
3624 else
3625 __blk_put_request(req->q, req);
3628 EXPORT_SYMBOL(end_that_request_last);
3630 void end_request(struct request *req, int uptodate)
3632 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3633 add_disk_randomness(req->rq_disk);
3634 blkdev_dequeue_request(req);
3635 end_that_request_last(req, uptodate);
3639 EXPORT_SYMBOL(end_request);
3641 static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3642 struct bio *bio)
3644 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3645 rq->cmd_flags |= (bio->bi_rw & 3);
3647 rq->nr_phys_segments = bio_phys_segments(q, bio);
3648 rq->nr_hw_segments = bio_hw_segments(q, bio);
3649 rq->current_nr_sectors = bio_cur_sectors(bio);
3650 rq->hard_cur_sectors = rq->current_nr_sectors;
3651 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3652 rq->buffer = bio_data(bio);
3653 rq->data_len = bio->bi_size;
3655 rq->bio = rq->biotail = bio;
3657 if (bio->bi_bdev)
3658 rq->rq_disk = bio->bi_bdev->bd_disk;
3661 int kblockd_schedule_work(struct work_struct *work)
3663 return queue_work(kblockd_workqueue, work);
3666 EXPORT_SYMBOL(kblockd_schedule_work);
3668 void kblockd_flush_work(struct work_struct *work)
3670 cancel_work_sync(work);
3672 EXPORT_SYMBOL(kblockd_flush_work);
3674 int __init blk_dev_init(void)
3676 int i;
3678 kblockd_workqueue = create_workqueue("kblockd");
3679 if (!kblockd_workqueue)
3680 panic("Failed to create kblockd\n");
3682 request_cachep = kmem_cache_create("blkdev_requests",
3683 sizeof(struct request), 0, SLAB_PANIC, NULL);
3685 requestq_cachep = kmem_cache_create("blkdev_queue",
3686 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3688 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3689 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3691 for_each_possible_cpu(i)
3692 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3694 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3695 register_hotcpu_notifier(&blk_cpu_notifier);
3697 blk_max_low_pfn = max_low_pfn - 1;
3698 blk_max_pfn = max_pfn - 1;
3700 return 0;
3704 * IO Context helper functions
3706 void put_io_context(struct io_context *ioc)
3708 if (ioc == NULL)
3709 return;
3711 BUG_ON(atomic_read(&ioc->refcount) == 0);
3713 if (atomic_dec_and_test(&ioc->refcount)) {
3714 struct cfq_io_context *cic;
3716 rcu_read_lock();
3717 if (ioc->aic && ioc->aic->dtor)
3718 ioc->aic->dtor(ioc->aic);
3719 if (ioc->cic_root.rb_node != NULL) {
3720 struct rb_node *n = rb_first(&ioc->cic_root);
3722 cic = rb_entry(n, struct cfq_io_context, rb_node);
3723 cic->dtor(ioc);
3725 rcu_read_unlock();
3727 kmem_cache_free(iocontext_cachep, ioc);
3730 EXPORT_SYMBOL(put_io_context);
3732 /* Called by the exitting task */
3733 void exit_io_context(void)
3735 struct io_context *ioc;
3736 struct cfq_io_context *cic;
3738 task_lock(current);
3739 ioc = current->io_context;
3740 current->io_context = NULL;
3741 task_unlock(current);
3743 ioc->task = NULL;
3744 if (ioc->aic && ioc->aic->exit)
3745 ioc->aic->exit(ioc->aic);
3746 if (ioc->cic_root.rb_node != NULL) {
3747 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3748 cic->exit(ioc);
3751 put_io_context(ioc);
3755 * If the current task has no IO context then create one and initialise it.
3756 * Otherwise, return its existing IO context.
3758 * This returned IO context doesn't have a specifically elevated refcount,
3759 * but since the current task itself holds a reference, the context can be
3760 * used in general code, so long as it stays within `current` context.
3762 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3764 struct task_struct *tsk = current;
3765 struct io_context *ret;
3767 ret = tsk->io_context;
3768 if (likely(ret))
3769 return ret;
3771 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3772 if (ret) {
3773 atomic_set(&ret->refcount, 1);
3774 ret->task = current;
3775 ret->ioprio_changed = 0;
3776 ret->last_waited = jiffies; /* doesn't matter... */
3777 ret->nr_batch_requests = 0; /* because this is 0 */
3778 ret->aic = NULL;
3779 ret->cic_root.rb_node = NULL;
3780 ret->ioc_data = NULL;
3781 /* make sure set_task_ioprio() sees the settings above */
3782 smp_wmb();
3783 tsk->io_context = ret;
3786 return ret;
3790 * If the current task has no IO context then create one and initialise it.
3791 * If it does have a context, take a ref on it.
3793 * This is always called in the context of the task which submitted the I/O.
3795 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3797 struct io_context *ret;
3798 ret = current_io_context(gfp_flags, node);
3799 if (likely(ret))
3800 atomic_inc(&ret->refcount);
3801 return ret;
3803 EXPORT_SYMBOL(get_io_context);
3805 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3807 struct io_context *src = *psrc;
3808 struct io_context *dst = *pdst;
3810 if (src) {
3811 BUG_ON(atomic_read(&src->refcount) == 0);
3812 atomic_inc(&src->refcount);
3813 put_io_context(dst);
3814 *pdst = src;
3817 EXPORT_SYMBOL(copy_io_context);
3819 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3821 struct io_context *temp;
3822 temp = *ioc1;
3823 *ioc1 = *ioc2;
3824 *ioc2 = temp;
3826 EXPORT_SYMBOL(swap_io_context);
3829 * sysfs parts below
3831 struct queue_sysfs_entry {
3832 struct attribute attr;
3833 ssize_t (*show)(struct request_queue *, char *);
3834 ssize_t (*store)(struct request_queue *, const char *, size_t);
3837 static ssize_t
3838 queue_var_show(unsigned int var, char *page)
3840 return sprintf(page, "%d\n", var);
3843 static ssize_t
3844 queue_var_store(unsigned long *var, const char *page, size_t count)
3846 char *p = (char *) page;
3848 *var = simple_strtoul(p, &p, 10);
3849 return count;
3852 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3854 return queue_var_show(q->nr_requests, (page));
3857 static ssize_t
3858 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3860 struct request_list *rl = &q->rq;
3861 unsigned long nr;
3862 int ret = queue_var_store(&nr, page, count);
3863 if (nr < BLKDEV_MIN_RQ)
3864 nr = BLKDEV_MIN_RQ;
3866 spin_lock_irq(q->queue_lock);
3867 q->nr_requests = nr;
3868 blk_queue_congestion_threshold(q);
3870 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3871 blk_set_queue_congested(q, READ);
3872 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3873 blk_clear_queue_congested(q, READ);
3875 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3876 blk_set_queue_congested(q, WRITE);
3877 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3878 blk_clear_queue_congested(q, WRITE);
3880 if (rl->count[READ] >= q->nr_requests) {
3881 blk_set_queue_full(q, READ);
3882 } else if (rl->count[READ]+1 <= q->nr_requests) {
3883 blk_clear_queue_full(q, READ);
3884 wake_up(&rl->wait[READ]);
3887 if (rl->count[WRITE] >= q->nr_requests) {
3888 blk_set_queue_full(q, WRITE);
3889 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3890 blk_clear_queue_full(q, WRITE);
3891 wake_up(&rl->wait[WRITE]);
3893 spin_unlock_irq(q->queue_lock);
3894 return ret;
3897 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3899 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3901 return queue_var_show(ra_kb, (page));
3904 static ssize_t
3905 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3907 unsigned long ra_kb;
3908 ssize_t ret = queue_var_store(&ra_kb, page, count);
3910 spin_lock_irq(q->queue_lock);
3911 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3912 spin_unlock_irq(q->queue_lock);
3914 return ret;
3917 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3919 int max_sectors_kb = q->max_sectors >> 1;
3921 return queue_var_show(max_sectors_kb, (page));
3924 static ssize_t
3925 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3927 unsigned long max_sectors_kb,
3928 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3929 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3930 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3931 int ra_kb;
3933 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3934 return -EINVAL;
3936 * Take the queue lock to update the readahead and max_sectors
3937 * values synchronously:
3939 spin_lock_irq(q->queue_lock);
3941 * Trim readahead window as well, if necessary:
3943 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3944 if (ra_kb > max_sectors_kb)
3945 q->backing_dev_info.ra_pages =
3946 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3948 q->max_sectors = max_sectors_kb << 1;
3949 spin_unlock_irq(q->queue_lock);
3951 return ret;
3954 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3956 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3958 return queue_var_show(max_hw_sectors_kb, (page));
3962 static struct queue_sysfs_entry queue_requests_entry = {
3963 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3964 .show = queue_requests_show,
3965 .store = queue_requests_store,
3968 static struct queue_sysfs_entry queue_ra_entry = {
3969 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3970 .show = queue_ra_show,
3971 .store = queue_ra_store,
3974 static struct queue_sysfs_entry queue_max_sectors_entry = {
3975 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3976 .show = queue_max_sectors_show,
3977 .store = queue_max_sectors_store,
3980 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3981 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3982 .show = queue_max_hw_sectors_show,
3985 static struct queue_sysfs_entry queue_iosched_entry = {
3986 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3987 .show = elv_iosched_show,
3988 .store = elv_iosched_store,
3991 static struct attribute *default_attrs[] = {
3992 &queue_requests_entry.attr,
3993 &queue_ra_entry.attr,
3994 &queue_max_hw_sectors_entry.attr,
3995 &queue_max_sectors_entry.attr,
3996 &queue_iosched_entry.attr,
3997 NULL,
4000 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4002 static ssize_t
4003 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4005 struct queue_sysfs_entry *entry = to_queue(attr);
4006 struct request_queue *q =
4007 container_of(kobj, struct request_queue, kobj);
4008 ssize_t res;
4010 if (!entry->show)
4011 return -EIO;
4012 mutex_lock(&q->sysfs_lock);
4013 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4014 mutex_unlock(&q->sysfs_lock);
4015 return -ENOENT;
4017 res = entry->show(q, page);
4018 mutex_unlock(&q->sysfs_lock);
4019 return res;
4022 static ssize_t
4023 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4024 const char *page, size_t length)
4026 struct queue_sysfs_entry *entry = to_queue(attr);
4027 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4029 ssize_t res;
4031 if (!entry->store)
4032 return -EIO;
4033 mutex_lock(&q->sysfs_lock);
4034 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4035 mutex_unlock(&q->sysfs_lock);
4036 return -ENOENT;
4038 res = entry->store(q, page, length);
4039 mutex_unlock(&q->sysfs_lock);
4040 return res;
4043 static struct sysfs_ops queue_sysfs_ops = {
4044 .show = queue_attr_show,
4045 .store = queue_attr_store,
4048 static struct kobj_type queue_ktype = {
4049 .sysfs_ops = &queue_sysfs_ops,
4050 .default_attrs = default_attrs,
4051 .release = blk_release_queue,
4054 int blk_register_queue(struct gendisk *disk)
4056 int ret;
4058 struct request_queue *q = disk->queue;
4060 if (!q || !q->request_fn)
4061 return -ENXIO;
4063 q->kobj.parent = kobject_get(&disk->kobj);
4065 ret = kobject_add(&q->kobj);
4066 if (ret < 0)
4067 return ret;
4069 kobject_uevent(&q->kobj, KOBJ_ADD);
4071 ret = elv_register_queue(q);
4072 if (ret) {
4073 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4074 kobject_del(&q->kobj);
4075 return ret;
4078 return 0;
4081 void blk_unregister_queue(struct gendisk *disk)
4083 struct request_queue *q = disk->queue;
4085 if (q && q->request_fn) {
4086 elv_unregister_queue(q);
4088 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4089 kobject_del(&q->kobj);
4090 kobject_put(&disk->kobj);