HPFS: Make HPFS compile on preempt and SMP
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / auditsc.c
blobb33513a08beb9e48bdfeb5ec3037a8acd9b6a7c1
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
71 #include "audit.h"
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
83 /* number of audit rules */
84 int audit_n_rules;
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
89 struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103 struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
118 struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
123 #define AUDIT_AUX_IPCPERM 0
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS 16
128 struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
135 struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
146 struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
154 struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
160 struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
165 /* The per-task audit context. */
166 struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
244 struct {
245 int fd;
246 int flags;
247 } mmap;
249 int fds[2];
251 #if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254 #endif
257 static inline int open_arg(int flags, int mask)
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
265 static int audit_match_perm(struct audit_context *ctx, int mask)
267 unsigned n;
268 if (unlikely(!ctx))
269 return 0;
270 n = ctx->major;
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
308 static int audit_match_filetype(struct audit_context *ctx, int which)
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
313 if (unlikely(!ctx))
314 return 0;
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
335 #ifdef CONFIG_AUDIT_TREE
336 static void audit_set_auditable(struct audit_context *ctx)
338 if (!ctx->prio) {
339 ctx->prio = 1;
340 ctx->current_state = AUDIT_RECORD_CONTEXT;
344 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
346 struct audit_tree_refs *p = ctx->trees;
347 int left = ctx->tree_count;
348 if (likely(left)) {
349 p->c[--left] = chunk;
350 ctx->tree_count = left;
351 return 1;
353 if (!p)
354 return 0;
355 p = p->next;
356 if (p) {
357 p->c[30] = chunk;
358 ctx->trees = p;
359 ctx->tree_count = 30;
360 return 1;
362 return 0;
365 static int grow_tree_refs(struct audit_context *ctx)
367 struct audit_tree_refs *p = ctx->trees;
368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 if (!ctx->trees) {
370 ctx->trees = p;
371 return 0;
373 if (p)
374 p->next = ctx->trees;
375 else
376 ctx->first_trees = ctx->trees;
377 ctx->tree_count = 31;
378 return 1;
380 #endif
382 static void unroll_tree_refs(struct audit_context *ctx,
383 struct audit_tree_refs *p, int count)
385 #ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs *q;
387 int n;
388 if (!p) {
389 /* we started with empty chain */
390 p = ctx->first_trees;
391 count = 31;
392 /* if the very first allocation has failed, nothing to do */
393 if (!p)
394 return;
396 n = count;
397 for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 while (n--) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
403 while (n-- > ctx->tree_count) {
404 audit_put_chunk(q->c[n]);
405 q->c[n] = NULL;
407 ctx->trees = p;
408 ctx->tree_count = count;
409 #endif
412 static void free_tree_refs(struct audit_context *ctx)
414 struct audit_tree_refs *p, *q;
415 for (p = ctx->first_trees; p; p = q) {
416 q = p->next;
417 kfree(p);
421 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
423 #ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs *p;
425 int n;
426 if (!tree)
427 return 0;
428 /* full ones */
429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 for (n = 0; n < 31; n++)
431 if (audit_tree_match(p->c[n], tree))
432 return 1;
434 /* partial */
435 if (p) {
436 for (n = ctx->tree_count; n < 31; n++)
437 if (audit_tree_match(p->c[n], tree))
438 return 1;
440 #endif
441 return 0;
444 /* Determine if any context name data matches a rule's watch data */
445 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise. */
447 static int audit_filter_rules(struct task_struct *tsk,
448 struct audit_krule *rule,
449 struct audit_context *ctx,
450 struct audit_names *name,
451 enum audit_state *state)
453 const struct cred *cred = get_task_cred(tsk);
454 int i, j, need_sid = 1;
455 u32 sid;
457 for (i = 0; i < rule->field_count; i++) {
458 struct audit_field *f = &rule->fields[i];
459 int result = 0;
461 switch (f->type) {
462 case AUDIT_PID:
463 result = audit_comparator(tsk->pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = sys_getppid();
469 result = audit_comparator(ctx->ppid, f->op, f->val);
471 break;
472 case AUDIT_UID:
473 result = audit_comparator(cred->uid, f->op, f->val);
474 break;
475 case AUDIT_EUID:
476 result = audit_comparator(cred->euid, f->op, f->val);
477 break;
478 case AUDIT_SUID:
479 result = audit_comparator(cred->suid, f->op, f->val);
480 break;
481 case AUDIT_FSUID:
482 result = audit_comparator(cred->fsuid, f->op, f->val);
483 break;
484 case AUDIT_GID:
485 result = audit_comparator(cred->gid, f->op, f->val);
486 break;
487 case AUDIT_EGID:
488 result = audit_comparator(cred->egid, f->op, f->val);
489 break;
490 case AUDIT_SGID:
491 result = audit_comparator(cred->sgid, f->op, f->val);
492 break;
493 case AUDIT_FSGID:
494 result = audit_comparator(cred->fsgid, f->op, f->val);
495 break;
496 case AUDIT_PERS:
497 result = audit_comparator(tsk->personality, f->op, f->val);
498 break;
499 case AUDIT_ARCH:
500 if (ctx)
501 result = audit_comparator(ctx->arch, f->op, f->val);
502 break;
504 case AUDIT_EXIT:
505 if (ctx && ctx->return_valid)
506 result = audit_comparator(ctx->return_code, f->op, f->val);
507 break;
508 case AUDIT_SUCCESS:
509 if (ctx && ctx->return_valid) {
510 if (f->val)
511 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
512 else
513 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
515 break;
516 case AUDIT_DEVMAJOR:
517 if (name)
518 result = audit_comparator(MAJOR(name->dev),
519 f->op, f->val);
520 else if (ctx) {
521 for (j = 0; j < ctx->name_count; j++) {
522 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
523 ++result;
524 break;
528 break;
529 case AUDIT_DEVMINOR:
530 if (name)
531 result = audit_comparator(MINOR(name->dev),
532 f->op, f->val);
533 else if (ctx) {
534 for (j = 0; j < ctx->name_count; j++) {
535 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
536 ++result;
537 break;
541 break;
542 case AUDIT_INODE:
543 if (name)
544 result = (name->ino == f->val);
545 else if (ctx) {
546 for (j = 0; j < ctx->name_count; j++) {
547 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
548 ++result;
549 break;
553 break;
554 case AUDIT_WATCH:
555 if (name)
556 result = audit_watch_compare(rule->watch, name->ino, name->dev);
557 break;
558 case AUDIT_DIR:
559 if (ctx)
560 result = match_tree_refs(ctx, rule->tree);
561 break;
562 case AUDIT_LOGINUID:
563 result = 0;
564 if (ctx)
565 result = audit_comparator(tsk->loginuid, f->op, f->val);
566 break;
567 case AUDIT_SUBJ_USER:
568 case AUDIT_SUBJ_ROLE:
569 case AUDIT_SUBJ_TYPE:
570 case AUDIT_SUBJ_SEN:
571 case AUDIT_SUBJ_CLR:
572 /* NOTE: this may return negative values indicating
573 a temporary error. We simply treat this as a
574 match for now to avoid losing information that
575 may be wanted. An error message will also be
576 logged upon error */
577 if (f->lsm_rule) {
578 if (need_sid) {
579 security_task_getsecid(tsk, &sid);
580 need_sid = 0;
582 result = security_audit_rule_match(sid, f->type,
583 f->op,
584 f->lsm_rule,
585 ctx);
587 break;
588 case AUDIT_OBJ_USER:
589 case AUDIT_OBJ_ROLE:
590 case AUDIT_OBJ_TYPE:
591 case AUDIT_OBJ_LEV_LOW:
592 case AUDIT_OBJ_LEV_HIGH:
593 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
594 also applies here */
595 if (f->lsm_rule) {
596 /* Find files that match */
597 if (name) {
598 result = security_audit_rule_match(
599 name->osid, f->type, f->op,
600 f->lsm_rule, ctx);
601 } else if (ctx) {
602 for (j = 0; j < ctx->name_count; j++) {
603 if (security_audit_rule_match(
604 ctx->names[j].osid,
605 f->type, f->op,
606 f->lsm_rule, ctx)) {
607 ++result;
608 break;
612 /* Find ipc objects that match */
613 if (!ctx || ctx->type != AUDIT_IPC)
614 break;
615 if (security_audit_rule_match(ctx->ipc.osid,
616 f->type, f->op,
617 f->lsm_rule, ctx))
618 ++result;
620 break;
621 case AUDIT_ARG0:
622 case AUDIT_ARG1:
623 case AUDIT_ARG2:
624 case AUDIT_ARG3:
625 if (ctx)
626 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
627 break;
628 case AUDIT_FILTERKEY:
629 /* ignore this field for filtering */
630 result = 1;
631 break;
632 case AUDIT_PERM:
633 result = audit_match_perm(ctx, f->val);
634 break;
635 case AUDIT_FILETYPE:
636 result = audit_match_filetype(ctx, f->val);
637 break;
640 if (!result) {
641 put_cred(cred);
642 return 0;
646 if (ctx) {
647 if (rule->prio <= ctx->prio)
648 return 0;
649 if (rule->filterkey) {
650 kfree(ctx->filterkey);
651 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
653 ctx->prio = rule->prio;
655 switch (rule->action) {
656 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
657 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
659 put_cred(cred);
660 return 1;
663 /* At process creation time, we can determine if system-call auditing is
664 * completely disabled for this task. Since we only have the task
665 * structure at this point, we can only check uid and gid.
667 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
669 struct audit_entry *e;
670 enum audit_state state;
672 rcu_read_lock();
673 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
674 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
675 if (state == AUDIT_RECORD_CONTEXT)
676 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
677 rcu_read_unlock();
678 return state;
681 rcu_read_unlock();
682 return AUDIT_BUILD_CONTEXT;
685 /* At syscall entry and exit time, this filter is called if the
686 * audit_state is not low enough that auditing cannot take place, but is
687 * also not high enough that we already know we have to write an audit
688 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
690 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
691 struct audit_context *ctx,
692 struct list_head *list)
694 struct audit_entry *e;
695 enum audit_state state;
697 if (audit_pid && tsk->tgid == audit_pid)
698 return AUDIT_DISABLED;
700 rcu_read_lock();
701 if (!list_empty(list)) {
702 int word = AUDIT_WORD(ctx->major);
703 int bit = AUDIT_BIT(ctx->major);
705 list_for_each_entry_rcu(e, list, list) {
706 if ((e->rule.mask[word] & bit) == bit &&
707 audit_filter_rules(tsk, &e->rule, ctx, NULL,
708 &state)) {
709 rcu_read_unlock();
710 ctx->current_state = state;
711 return state;
715 rcu_read_unlock();
716 return AUDIT_BUILD_CONTEXT;
719 /* At syscall exit time, this filter is called if any audit_names[] have been
720 * collected during syscall processing. We only check rules in sublists at hash
721 * buckets applicable to the inode numbers in audit_names[].
722 * Regarding audit_state, same rules apply as for audit_filter_syscall().
724 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
726 int i;
727 struct audit_entry *e;
728 enum audit_state state;
730 if (audit_pid && tsk->tgid == audit_pid)
731 return;
733 rcu_read_lock();
734 for (i = 0; i < ctx->name_count; i++) {
735 int word = AUDIT_WORD(ctx->major);
736 int bit = AUDIT_BIT(ctx->major);
737 struct audit_names *n = &ctx->names[i];
738 int h = audit_hash_ino((u32)n->ino);
739 struct list_head *list = &audit_inode_hash[h];
741 if (list_empty(list))
742 continue;
744 list_for_each_entry_rcu(e, list, list) {
745 if ((e->rule.mask[word] & bit) == bit &&
746 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
747 rcu_read_unlock();
748 ctx->current_state = state;
749 return;
753 rcu_read_unlock();
756 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
757 int return_valid,
758 long return_code)
760 struct audit_context *context = tsk->audit_context;
762 if (likely(!context))
763 return NULL;
764 context->return_valid = return_valid;
767 * we need to fix up the return code in the audit logs if the actual
768 * return codes are later going to be fixed up by the arch specific
769 * signal handlers
771 * This is actually a test for:
772 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
773 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
775 * but is faster than a bunch of ||
777 if (unlikely(return_code <= -ERESTARTSYS) &&
778 (return_code >= -ERESTART_RESTARTBLOCK) &&
779 (return_code != -ENOIOCTLCMD))
780 context->return_code = -EINTR;
781 else
782 context->return_code = return_code;
784 if (context->in_syscall && !context->dummy) {
785 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
786 audit_filter_inodes(tsk, context);
789 tsk->audit_context = NULL;
790 return context;
793 static inline void audit_free_names(struct audit_context *context)
795 int i;
797 #if AUDIT_DEBUG == 2
798 if (context->put_count + context->ino_count != context->name_count) {
799 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
800 " name_count=%d put_count=%d"
801 " ino_count=%d [NOT freeing]\n",
802 __FILE__, __LINE__,
803 context->serial, context->major, context->in_syscall,
804 context->name_count, context->put_count,
805 context->ino_count);
806 for (i = 0; i < context->name_count; i++) {
807 printk(KERN_ERR "names[%d] = %p = %s\n", i,
808 context->names[i].name,
809 context->names[i].name ?: "(null)");
811 dump_stack();
812 return;
814 #endif
815 #if AUDIT_DEBUG
816 context->put_count = 0;
817 context->ino_count = 0;
818 #endif
820 for (i = 0; i < context->name_count; i++) {
821 if (context->names[i].name && context->names[i].name_put)
822 __putname(context->names[i].name);
824 context->name_count = 0;
825 path_put(&context->pwd);
826 context->pwd.dentry = NULL;
827 context->pwd.mnt = NULL;
830 static inline void audit_free_aux(struct audit_context *context)
832 struct audit_aux_data *aux;
834 while ((aux = context->aux)) {
835 context->aux = aux->next;
836 kfree(aux);
838 while ((aux = context->aux_pids)) {
839 context->aux_pids = aux->next;
840 kfree(aux);
844 static inline void audit_zero_context(struct audit_context *context,
845 enum audit_state state)
847 memset(context, 0, sizeof(*context));
848 context->state = state;
849 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
852 static inline struct audit_context *audit_alloc_context(enum audit_state state)
854 struct audit_context *context;
856 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
857 return NULL;
858 audit_zero_context(context, state);
859 INIT_LIST_HEAD(&context->killed_trees);
860 return context;
864 * audit_alloc - allocate an audit context block for a task
865 * @tsk: task
867 * Filter on the task information and allocate a per-task audit context
868 * if necessary. Doing so turns on system call auditing for the
869 * specified task. This is called from copy_process, so no lock is
870 * needed.
872 int audit_alloc(struct task_struct *tsk)
874 struct audit_context *context;
875 enum audit_state state;
876 char *key = NULL;
878 if (likely(!audit_ever_enabled))
879 return 0; /* Return if not auditing. */
881 state = audit_filter_task(tsk, &key);
882 if (likely(state == AUDIT_DISABLED))
883 return 0;
885 if (!(context = audit_alloc_context(state))) {
886 kfree(key);
887 audit_log_lost("out of memory in audit_alloc");
888 return -ENOMEM;
890 context->filterkey = key;
892 tsk->audit_context = context;
893 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
894 return 0;
897 static inline void audit_free_context(struct audit_context *context)
899 struct audit_context *previous;
900 int count = 0;
902 do {
903 previous = context->previous;
904 if (previous || (count && count < 10)) {
905 ++count;
906 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
907 " freeing multiple contexts (%d)\n",
908 context->serial, context->major,
909 context->name_count, count);
911 audit_free_names(context);
912 unroll_tree_refs(context, NULL, 0);
913 free_tree_refs(context);
914 audit_free_aux(context);
915 kfree(context->filterkey);
916 kfree(context->sockaddr);
917 kfree(context);
918 context = previous;
919 } while (context);
920 if (count >= 10)
921 printk(KERN_ERR "audit: freed %d contexts\n", count);
924 void audit_log_task_context(struct audit_buffer *ab)
926 char *ctx = NULL;
927 unsigned len;
928 int error;
929 u32 sid;
931 security_task_getsecid(current, &sid);
932 if (!sid)
933 return;
935 error = security_secid_to_secctx(sid, &ctx, &len);
936 if (error) {
937 if (error != -EINVAL)
938 goto error_path;
939 return;
942 audit_log_format(ab, " subj=%s", ctx);
943 security_release_secctx(ctx, len);
944 return;
946 error_path:
947 audit_panic("error in audit_log_task_context");
948 return;
951 EXPORT_SYMBOL(audit_log_task_context);
953 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
955 char name[sizeof(tsk->comm)];
956 struct mm_struct *mm = tsk->mm;
957 struct vm_area_struct *vma;
959 /* tsk == current */
961 get_task_comm(name, tsk);
962 audit_log_format(ab, " comm=");
963 audit_log_untrustedstring(ab, name);
965 if (mm) {
966 down_read(&mm->mmap_sem);
967 vma = mm->mmap;
968 while (vma) {
969 if ((vma->vm_flags & VM_EXECUTABLE) &&
970 vma->vm_file) {
971 audit_log_d_path(ab, "exe=",
972 &vma->vm_file->f_path);
973 break;
975 vma = vma->vm_next;
977 up_read(&mm->mmap_sem);
979 audit_log_task_context(ab);
982 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
983 uid_t auid, uid_t uid, unsigned int sessionid,
984 u32 sid, char *comm)
986 struct audit_buffer *ab;
987 char *ctx = NULL;
988 u32 len;
989 int rc = 0;
991 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
992 if (!ab)
993 return rc;
995 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
996 uid, sessionid);
997 if (security_secid_to_secctx(sid, &ctx, &len)) {
998 audit_log_format(ab, " obj=(none)");
999 rc = 1;
1000 } else {
1001 audit_log_format(ab, " obj=%s", ctx);
1002 security_release_secctx(ctx, len);
1004 audit_log_format(ab, " ocomm=");
1005 audit_log_untrustedstring(ab, comm);
1006 audit_log_end(ab);
1008 return rc;
1012 * to_send and len_sent accounting are very loose estimates. We aren't
1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014 * within about 500 bytes (next page boundary)
1016 * why snprintf? an int is up to 12 digits long. if we just assumed when
1017 * logging that a[%d]= was going to be 16 characters long we would be wasting
1018 * space in every audit message. In one 7500 byte message we can log up to
1019 * about 1000 min size arguments. That comes down to about 50% waste of space
1020 * if we didn't do the snprintf to find out how long arg_num_len was.
1022 static int audit_log_single_execve_arg(struct audit_context *context,
1023 struct audit_buffer **ab,
1024 int arg_num,
1025 size_t *len_sent,
1026 const char __user *p,
1027 char *buf)
1029 char arg_num_len_buf[12];
1030 const char __user *tmp_p = p;
1031 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1032 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1033 size_t len, len_left, to_send;
1034 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035 unsigned int i, has_cntl = 0, too_long = 0;
1036 int ret;
1038 /* strnlen_user includes the null we don't want to send */
1039 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1042 * We just created this mm, if we can't find the strings
1043 * we just copied into it something is _very_ wrong. Similar
1044 * for strings that are too long, we should not have created
1045 * any.
1047 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1048 WARN_ON(1);
1049 send_sig(SIGKILL, current, 0);
1050 return -1;
1053 /* walk the whole argument looking for non-ascii chars */
1054 do {
1055 if (len_left > MAX_EXECVE_AUDIT_LEN)
1056 to_send = MAX_EXECVE_AUDIT_LEN;
1057 else
1058 to_send = len_left;
1059 ret = copy_from_user(buf, tmp_p, to_send);
1061 * There is no reason for this copy to be short. We just
1062 * copied them here, and the mm hasn't been exposed to user-
1063 * space yet.
1065 if (ret) {
1066 WARN_ON(1);
1067 send_sig(SIGKILL, current, 0);
1068 return -1;
1070 buf[to_send] = '\0';
1071 has_cntl = audit_string_contains_control(buf, to_send);
1072 if (has_cntl) {
1074 * hex messages get logged as 2 bytes, so we can only
1075 * send half as much in each message
1077 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1078 break;
1080 len_left -= to_send;
1081 tmp_p += to_send;
1082 } while (len_left > 0);
1084 len_left = len;
1086 if (len > max_execve_audit_len)
1087 too_long = 1;
1089 /* rewalk the argument actually logging the message */
1090 for (i = 0; len_left > 0; i++) {
1091 int room_left;
1093 if (len_left > max_execve_audit_len)
1094 to_send = max_execve_audit_len;
1095 else
1096 to_send = len_left;
1098 /* do we have space left to send this argument in this ab? */
1099 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1100 if (has_cntl)
1101 room_left -= (to_send * 2);
1102 else
1103 room_left -= to_send;
1104 if (room_left < 0) {
1105 *len_sent = 0;
1106 audit_log_end(*ab);
1107 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108 if (!*ab)
1109 return 0;
1113 * first record needs to say how long the original string was
1114 * so we can be sure nothing was lost.
1116 if ((i == 0) && (too_long))
1117 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1118 has_cntl ? 2*len : len);
1121 * normally arguments are small enough to fit and we already
1122 * filled buf above when we checked for control characters
1123 * so don't bother with another copy_from_user
1125 if (len >= max_execve_audit_len)
1126 ret = copy_from_user(buf, p, to_send);
1127 else
1128 ret = 0;
1129 if (ret) {
1130 WARN_ON(1);
1131 send_sig(SIGKILL, current, 0);
1132 return -1;
1134 buf[to_send] = '\0';
1136 /* actually log it */
1137 audit_log_format(*ab, " a%d", arg_num);
1138 if (too_long)
1139 audit_log_format(*ab, "[%d]", i);
1140 audit_log_format(*ab, "=");
1141 if (has_cntl)
1142 audit_log_n_hex(*ab, buf, to_send);
1143 else
1144 audit_log_string(*ab, buf);
1146 p += to_send;
1147 len_left -= to_send;
1148 *len_sent += arg_num_len;
1149 if (has_cntl)
1150 *len_sent += to_send * 2;
1151 else
1152 *len_sent += to_send;
1154 /* include the null we didn't log */
1155 return len + 1;
1158 static void audit_log_execve_info(struct audit_context *context,
1159 struct audit_buffer **ab,
1160 struct audit_aux_data_execve *axi)
1162 int i;
1163 size_t len, len_sent = 0;
1164 const char __user *p;
1165 char *buf;
1167 if (axi->mm != current->mm)
1168 return; /* execve failed, no additional info */
1170 p = (const char __user *)axi->mm->arg_start;
1172 audit_log_format(*ab, "argc=%d", axi->argc);
1175 * we need some kernel buffer to hold the userspace args. Just
1176 * allocate one big one rather than allocating one of the right size
1177 * for every single argument inside audit_log_single_execve_arg()
1178 * should be <8k allocation so should be pretty safe.
1180 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1181 if (!buf) {
1182 audit_panic("out of memory for argv string\n");
1183 return;
1186 for (i = 0; i < axi->argc; i++) {
1187 len = audit_log_single_execve_arg(context, ab, i,
1188 &len_sent, p, buf);
1189 if (len <= 0)
1190 break;
1191 p += len;
1193 kfree(buf);
1196 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1198 int i;
1200 audit_log_format(ab, " %s=", prefix);
1201 CAP_FOR_EACH_U32(i) {
1202 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1206 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1208 kernel_cap_t *perm = &name->fcap.permitted;
1209 kernel_cap_t *inh = &name->fcap.inheritable;
1210 int log = 0;
1212 if (!cap_isclear(*perm)) {
1213 audit_log_cap(ab, "cap_fp", perm);
1214 log = 1;
1216 if (!cap_isclear(*inh)) {
1217 audit_log_cap(ab, "cap_fi", inh);
1218 log = 1;
1221 if (log)
1222 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1225 static void show_special(struct audit_context *context, int *call_panic)
1227 struct audit_buffer *ab;
1228 int i;
1230 ab = audit_log_start(context, GFP_KERNEL, context->type);
1231 if (!ab)
1232 return;
1234 switch (context->type) {
1235 case AUDIT_SOCKETCALL: {
1236 int nargs = context->socketcall.nargs;
1237 audit_log_format(ab, "nargs=%d", nargs);
1238 for (i = 0; i < nargs; i++)
1239 audit_log_format(ab, " a%d=%lx", i,
1240 context->socketcall.args[i]);
1241 break; }
1242 case AUDIT_IPC: {
1243 u32 osid = context->ipc.osid;
1245 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1246 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1247 if (osid) {
1248 char *ctx = NULL;
1249 u32 len;
1250 if (security_secid_to_secctx(osid, &ctx, &len)) {
1251 audit_log_format(ab, " osid=%u", osid);
1252 *call_panic = 1;
1253 } else {
1254 audit_log_format(ab, " obj=%s", ctx);
1255 security_release_secctx(ctx, len);
1258 if (context->ipc.has_perm) {
1259 audit_log_end(ab);
1260 ab = audit_log_start(context, GFP_KERNEL,
1261 AUDIT_IPC_SET_PERM);
1262 audit_log_format(ab,
1263 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1264 context->ipc.qbytes,
1265 context->ipc.perm_uid,
1266 context->ipc.perm_gid,
1267 context->ipc.perm_mode);
1268 if (!ab)
1269 return;
1271 break; }
1272 case AUDIT_MQ_OPEN: {
1273 audit_log_format(ab,
1274 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1275 "mq_msgsize=%ld mq_curmsgs=%ld",
1276 context->mq_open.oflag, context->mq_open.mode,
1277 context->mq_open.attr.mq_flags,
1278 context->mq_open.attr.mq_maxmsg,
1279 context->mq_open.attr.mq_msgsize,
1280 context->mq_open.attr.mq_curmsgs);
1281 break; }
1282 case AUDIT_MQ_SENDRECV: {
1283 audit_log_format(ab,
1284 "mqdes=%d msg_len=%zd msg_prio=%u "
1285 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1286 context->mq_sendrecv.mqdes,
1287 context->mq_sendrecv.msg_len,
1288 context->mq_sendrecv.msg_prio,
1289 context->mq_sendrecv.abs_timeout.tv_sec,
1290 context->mq_sendrecv.abs_timeout.tv_nsec);
1291 break; }
1292 case AUDIT_MQ_NOTIFY: {
1293 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1294 context->mq_notify.mqdes,
1295 context->mq_notify.sigev_signo);
1296 break; }
1297 case AUDIT_MQ_GETSETATTR: {
1298 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1299 audit_log_format(ab,
1300 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1301 "mq_curmsgs=%ld ",
1302 context->mq_getsetattr.mqdes,
1303 attr->mq_flags, attr->mq_maxmsg,
1304 attr->mq_msgsize, attr->mq_curmsgs);
1305 break; }
1306 case AUDIT_CAPSET: {
1307 audit_log_format(ab, "pid=%d", context->capset.pid);
1308 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1309 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1310 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1311 break; }
1312 case AUDIT_MMAP: {
1313 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1314 context->mmap.flags);
1315 break; }
1317 audit_log_end(ab);
1320 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1322 const struct cred *cred;
1323 int i, call_panic = 0;
1324 struct audit_buffer *ab;
1325 struct audit_aux_data *aux;
1326 const char *tty;
1328 /* tsk == current */
1329 context->pid = tsk->pid;
1330 if (!context->ppid)
1331 context->ppid = sys_getppid();
1332 cred = current_cred();
1333 context->uid = cred->uid;
1334 context->gid = cred->gid;
1335 context->euid = cred->euid;
1336 context->suid = cred->suid;
1337 context->fsuid = cred->fsuid;
1338 context->egid = cred->egid;
1339 context->sgid = cred->sgid;
1340 context->fsgid = cred->fsgid;
1341 context->personality = tsk->personality;
1343 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1344 if (!ab)
1345 return; /* audit_panic has been called */
1346 audit_log_format(ab, "arch=%x syscall=%d",
1347 context->arch, context->major);
1348 if (context->personality != PER_LINUX)
1349 audit_log_format(ab, " per=%lx", context->personality);
1350 if (context->return_valid)
1351 audit_log_format(ab, " success=%s exit=%ld",
1352 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1353 context->return_code);
1355 spin_lock_irq(&tsk->sighand->siglock);
1356 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1357 tty = tsk->signal->tty->name;
1358 else
1359 tty = "(none)";
1360 spin_unlock_irq(&tsk->sighand->siglock);
1362 audit_log_format(ab,
1363 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1364 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1365 " euid=%u suid=%u fsuid=%u"
1366 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1367 context->argv[0],
1368 context->argv[1],
1369 context->argv[2],
1370 context->argv[3],
1371 context->name_count,
1372 context->ppid,
1373 context->pid,
1374 tsk->loginuid,
1375 context->uid,
1376 context->gid,
1377 context->euid, context->suid, context->fsuid,
1378 context->egid, context->sgid, context->fsgid, tty,
1379 tsk->sessionid);
1382 audit_log_task_info(ab, tsk);
1383 audit_log_key(ab, context->filterkey);
1384 audit_log_end(ab);
1386 for (aux = context->aux; aux; aux = aux->next) {
1388 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1389 if (!ab)
1390 continue; /* audit_panic has been called */
1392 switch (aux->type) {
1394 case AUDIT_EXECVE: {
1395 struct audit_aux_data_execve *axi = (void *)aux;
1396 audit_log_execve_info(context, &ab, axi);
1397 break; }
1399 case AUDIT_BPRM_FCAPS: {
1400 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1401 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1402 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1403 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1404 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1405 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1406 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1407 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1408 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1409 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1410 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1411 break; }
1414 audit_log_end(ab);
1417 if (context->type)
1418 show_special(context, &call_panic);
1420 if (context->fds[0] >= 0) {
1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1422 if (ab) {
1423 audit_log_format(ab, "fd0=%d fd1=%d",
1424 context->fds[0], context->fds[1]);
1425 audit_log_end(ab);
1429 if (context->sockaddr_len) {
1430 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1431 if (ab) {
1432 audit_log_format(ab, "saddr=");
1433 audit_log_n_hex(ab, (void *)context->sockaddr,
1434 context->sockaddr_len);
1435 audit_log_end(ab);
1439 for (aux = context->aux_pids; aux; aux = aux->next) {
1440 struct audit_aux_data_pids *axs = (void *)aux;
1442 for (i = 0; i < axs->pid_count; i++)
1443 if (audit_log_pid_context(context, axs->target_pid[i],
1444 axs->target_auid[i],
1445 axs->target_uid[i],
1446 axs->target_sessionid[i],
1447 axs->target_sid[i],
1448 axs->target_comm[i]))
1449 call_panic = 1;
1452 if (context->target_pid &&
1453 audit_log_pid_context(context, context->target_pid,
1454 context->target_auid, context->target_uid,
1455 context->target_sessionid,
1456 context->target_sid, context->target_comm))
1457 call_panic = 1;
1459 if (context->pwd.dentry && context->pwd.mnt) {
1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1461 if (ab) {
1462 audit_log_d_path(ab, "cwd=", &context->pwd);
1463 audit_log_end(ab);
1466 for (i = 0; i < context->name_count; i++) {
1467 struct audit_names *n = &context->names[i];
1469 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1470 if (!ab)
1471 continue; /* audit_panic has been called */
1473 audit_log_format(ab, "item=%d", i);
1475 if (n->name) {
1476 switch(n->name_len) {
1477 case AUDIT_NAME_FULL:
1478 /* log the full path */
1479 audit_log_format(ab, " name=");
1480 audit_log_untrustedstring(ab, n->name);
1481 break;
1482 case 0:
1483 /* name was specified as a relative path and the
1484 * directory component is the cwd */
1485 audit_log_d_path(ab, "name=", &context->pwd);
1486 break;
1487 default:
1488 /* log the name's directory component */
1489 audit_log_format(ab, " name=");
1490 audit_log_n_untrustedstring(ab, n->name,
1491 n->name_len);
1493 } else
1494 audit_log_format(ab, " name=(null)");
1496 if (n->ino != (unsigned long)-1) {
1497 audit_log_format(ab, " inode=%lu"
1498 " dev=%02x:%02x mode=%#o"
1499 " ouid=%u ogid=%u rdev=%02x:%02x",
1500 n->ino,
1501 MAJOR(n->dev),
1502 MINOR(n->dev),
1503 n->mode,
1504 n->uid,
1505 n->gid,
1506 MAJOR(n->rdev),
1507 MINOR(n->rdev));
1509 if (n->osid != 0) {
1510 char *ctx = NULL;
1511 u32 len;
1512 if (security_secid_to_secctx(
1513 n->osid, &ctx, &len)) {
1514 audit_log_format(ab, " osid=%u", n->osid);
1515 call_panic = 2;
1516 } else {
1517 audit_log_format(ab, " obj=%s", ctx);
1518 security_release_secctx(ctx, len);
1522 audit_log_fcaps(ab, n);
1524 audit_log_end(ab);
1527 /* Send end of event record to help user space know we are finished */
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1529 if (ab)
1530 audit_log_end(ab);
1531 if (call_panic)
1532 audit_panic("error converting sid to string");
1536 * audit_free - free a per-task audit context
1537 * @tsk: task whose audit context block to free
1539 * Called from copy_process and do_exit
1541 void audit_free(struct task_struct *tsk)
1543 struct audit_context *context;
1545 context = audit_get_context(tsk, 0, 0);
1546 if (likely(!context))
1547 return;
1549 /* Check for system calls that do not go through the exit
1550 * function (e.g., exit_group), then free context block.
1551 * We use GFP_ATOMIC here because we might be doing this
1552 * in the context of the idle thread */
1553 /* that can happen only if we are called from do_exit() */
1554 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1555 audit_log_exit(context, tsk);
1556 if (!list_empty(&context->killed_trees))
1557 audit_kill_trees(&context->killed_trees);
1559 audit_free_context(context);
1563 * audit_syscall_entry - fill in an audit record at syscall entry
1564 * @arch: architecture type
1565 * @major: major syscall type (function)
1566 * @a1: additional syscall register 1
1567 * @a2: additional syscall register 2
1568 * @a3: additional syscall register 3
1569 * @a4: additional syscall register 4
1571 * Fill in audit context at syscall entry. This only happens if the
1572 * audit context was created when the task was created and the state or
1573 * filters demand the audit context be built. If the state from the
1574 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1575 * then the record will be written at syscall exit time (otherwise, it
1576 * will only be written if another part of the kernel requests that it
1577 * be written).
1579 void audit_syscall_entry(int arch, int major,
1580 unsigned long a1, unsigned long a2,
1581 unsigned long a3, unsigned long a4)
1583 struct task_struct *tsk = current;
1584 struct audit_context *context = tsk->audit_context;
1585 enum audit_state state;
1587 if (unlikely(!context))
1588 return;
1591 * This happens only on certain architectures that make system
1592 * calls in kernel_thread via the entry.S interface, instead of
1593 * with direct calls. (If you are porting to a new
1594 * architecture, hitting this condition can indicate that you
1595 * got the _exit/_leave calls backward in entry.S.)
1597 * i386 no
1598 * x86_64 no
1599 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1601 * This also happens with vm86 emulation in a non-nested manner
1602 * (entries without exits), so this case must be caught.
1604 if (context->in_syscall) {
1605 struct audit_context *newctx;
1607 #if AUDIT_DEBUG
1608 printk(KERN_ERR
1609 "audit(:%d) pid=%d in syscall=%d;"
1610 " entering syscall=%d\n",
1611 context->serial, tsk->pid, context->major, major);
1612 #endif
1613 newctx = audit_alloc_context(context->state);
1614 if (newctx) {
1615 newctx->previous = context;
1616 context = newctx;
1617 tsk->audit_context = newctx;
1618 } else {
1619 /* If we can't alloc a new context, the best we
1620 * can do is to leak memory (any pending putname
1621 * will be lost). The only other alternative is
1622 * to abandon auditing. */
1623 audit_zero_context(context, context->state);
1626 BUG_ON(context->in_syscall || context->name_count);
1628 if (!audit_enabled)
1629 return;
1631 context->arch = arch;
1632 context->major = major;
1633 context->argv[0] = a1;
1634 context->argv[1] = a2;
1635 context->argv[2] = a3;
1636 context->argv[3] = a4;
1638 state = context->state;
1639 context->dummy = !audit_n_rules;
1640 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1641 context->prio = 0;
1642 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1644 if (likely(state == AUDIT_DISABLED))
1645 return;
1647 context->serial = 0;
1648 context->ctime = CURRENT_TIME;
1649 context->in_syscall = 1;
1650 context->current_state = state;
1651 context->ppid = 0;
1654 void audit_finish_fork(struct task_struct *child)
1656 struct audit_context *ctx = current->audit_context;
1657 struct audit_context *p = child->audit_context;
1658 if (!p || !ctx)
1659 return;
1660 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1661 return;
1662 p->arch = ctx->arch;
1663 p->major = ctx->major;
1664 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1665 p->ctime = ctx->ctime;
1666 p->dummy = ctx->dummy;
1667 p->in_syscall = ctx->in_syscall;
1668 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1669 p->ppid = current->pid;
1670 p->prio = ctx->prio;
1671 p->current_state = ctx->current_state;
1675 * audit_syscall_exit - deallocate audit context after a system call
1676 * @valid: success/failure flag
1677 * @return_code: syscall return value
1679 * Tear down after system call. If the audit context has been marked as
1680 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1681 * filtering, or because some other part of the kernel write an audit
1682 * message), then write out the syscall information. In call cases,
1683 * free the names stored from getname().
1685 void audit_syscall_exit(int valid, long return_code)
1687 struct task_struct *tsk = current;
1688 struct audit_context *context;
1690 context = audit_get_context(tsk, valid, return_code);
1692 if (likely(!context))
1693 return;
1695 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1696 audit_log_exit(context, tsk);
1698 context->in_syscall = 0;
1699 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1701 if (!list_empty(&context->killed_trees))
1702 audit_kill_trees(&context->killed_trees);
1704 if (context->previous) {
1705 struct audit_context *new_context = context->previous;
1706 context->previous = NULL;
1707 audit_free_context(context);
1708 tsk->audit_context = new_context;
1709 } else {
1710 audit_free_names(context);
1711 unroll_tree_refs(context, NULL, 0);
1712 audit_free_aux(context);
1713 context->aux = NULL;
1714 context->aux_pids = NULL;
1715 context->target_pid = 0;
1716 context->target_sid = 0;
1717 context->sockaddr_len = 0;
1718 context->type = 0;
1719 context->fds[0] = -1;
1720 if (context->state != AUDIT_RECORD_CONTEXT) {
1721 kfree(context->filterkey);
1722 context->filterkey = NULL;
1724 tsk->audit_context = context;
1728 static inline void handle_one(const struct inode *inode)
1730 #ifdef CONFIG_AUDIT_TREE
1731 struct audit_context *context;
1732 struct audit_tree_refs *p;
1733 struct audit_chunk *chunk;
1734 int count;
1735 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1736 return;
1737 context = current->audit_context;
1738 p = context->trees;
1739 count = context->tree_count;
1740 rcu_read_lock();
1741 chunk = audit_tree_lookup(inode);
1742 rcu_read_unlock();
1743 if (!chunk)
1744 return;
1745 if (likely(put_tree_ref(context, chunk)))
1746 return;
1747 if (unlikely(!grow_tree_refs(context))) {
1748 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1749 audit_set_auditable(context);
1750 audit_put_chunk(chunk);
1751 unroll_tree_refs(context, p, count);
1752 return;
1754 put_tree_ref(context, chunk);
1755 #endif
1758 static void handle_path(const struct dentry *dentry)
1760 #ifdef CONFIG_AUDIT_TREE
1761 struct audit_context *context;
1762 struct audit_tree_refs *p;
1763 const struct dentry *d, *parent;
1764 struct audit_chunk *drop;
1765 unsigned long seq;
1766 int count;
1768 context = current->audit_context;
1769 p = context->trees;
1770 count = context->tree_count;
1771 retry:
1772 drop = NULL;
1773 d = dentry;
1774 rcu_read_lock();
1775 seq = read_seqbegin(&rename_lock);
1776 for(;;) {
1777 struct inode *inode = d->d_inode;
1778 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1779 struct audit_chunk *chunk;
1780 chunk = audit_tree_lookup(inode);
1781 if (chunk) {
1782 if (unlikely(!put_tree_ref(context, chunk))) {
1783 drop = chunk;
1784 break;
1788 parent = d->d_parent;
1789 if (parent == d)
1790 break;
1791 d = parent;
1793 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1794 rcu_read_unlock();
1795 if (!drop) {
1796 /* just a race with rename */
1797 unroll_tree_refs(context, p, count);
1798 goto retry;
1800 audit_put_chunk(drop);
1801 if (grow_tree_refs(context)) {
1802 /* OK, got more space */
1803 unroll_tree_refs(context, p, count);
1804 goto retry;
1806 /* too bad */
1807 printk(KERN_WARNING
1808 "out of memory, audit has lost a tree reference\n");
1809 unroll_tree_refs(context, p, count);
1810 audit_set_auditable(context);
1811 return;
1813 rcu_read_unlock();
1814 #endif
1818 * audit_getname - add a name to the list
1819 * @name: name to add
1821 * Add a name to the list of audit names for this context.
1822 * Called from fs/namei.c:getname().
1824 void __audit_getname(const char *name)
1826 struct audit_context *context = current->audit_context;
1828 if (IS_ERR(name) || !name)
1829 return;
1831 if (!context->in_syscall) {
1832 #if AUDIT_DEBUG == 2
1833 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1834 __FILE__, __LINE__, context->serial, name);
1835 dump_stack();
1836 #endif
1837 return;
1839 BUG_ON(context->name_count >= AUDIT_NAMES);
1840 context->names[context->name_count].name = name;
1841 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1842 context->names[context->name_count].name_put = 1;
1843 context->names[context->name_count].ino = (unsigned long)-1;
1844 context->names[context->name_count].osid = 0;
1845 ++context->name_count;
1846 if (!context->pwd.dentry)
1847 get_fs_pwd(current->fs, &context->pwd);
1850 /* audit_putname - intercept a putname request
1851 * @name: name to intercept and delay for putname
1853 * If we have stored the name from getname in the audit context,
1854 * then we delay the putname until syscall exit.
1855 * Called from include/linux/fs.h:putname().
1857 void audit_putname(const char *name)
1859 struct audit_context *context = current->audit_context;
1861 BUG_ON(!context);
1862 if (!context->in_syscall) {
1863 #if AUDIT_DEBUG == 2
1864 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1865 __FILE__, __LINE__, context->serial, name);
1866 if (context->name_count) {
1867 int i;
1868 for (i = 0; i < context->name_count; i++)
1869 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1870 context->names[i].name,
1871 context->names[i].name ?: "(null)");
1873 #endif
1874 __putname(name);
1876 #if AUDIT_DEBUG
1877 else {
1878 ++context->put_count;
1879 if (context->put_count > context->name_count) {
1880 printk(KERN_ERR "%s:%d(:%d): major=%d"
1881 " in_syscall=%d putname(%p) name_count=%d"
1882 " put_count=%d\n",
1883 __FILE__, __LINE__,
1884 context->serial, context->major,
1885 context->in_syscall, name, context->name_count,
1886 context->put_count);
1887 dump_stack();
1890 #endif
1893 static int audit_inc_name_count(struct audit_context *context,
1894 const struct inode *inode)
1896 if (context->name_count >= AUDIT_NAMES) {
1897 if (inode)
1898 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1899 "dev=%02x:%02x, inode=%lu\n",
1900 MAJOR(inode->i_sb->s_dev),
1901 MINOR(inode->i_sb->s_dev),
1902 inode->i_ino);
1904 else
1905 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1906 return 1;
1908 context->name_count++;
1909 #if AUDIT_DEBUG
1910 context->ino_count++;
1911 #endif
1912 return 0;
1916 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1918 struct cpu_vfs_cap_data caps;
1919 int rc;
1921 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1922 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1923 name->fcap.fE = 0;
1924 name->fcap_ver = 0;
1926 if (!dentry)
1927 return 0;
1929 rc = get_vfs_caps_from_disk(dentry, &caps);
1930 if (rc)
1931 return rc;
1933 name->fcap.permitted = caps.permitted;
1934 name->fcap.inheritable = caps.inheritable;
1935 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1936 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1938 return 0;
1942 /* Copy inode data into an audit_names. */
1943 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1944 const struct inode *inode)
1946 name->ino = inode->i_ino;
1947 name->dev = inode->i_sb->s_dev;
1948 name->mode = inode->i_mode;
1949 name->uid = inode->i_uid;
1950 name->gid = inode->i_gid;
1951 name->rdev = inode->i_rdev;
1952 security_inode_getsecid(inode, &name->osid);
1953 audit_copy_fcaps(name, dentry);
1957 * audit_inode - store the inode and device from a lookup
1958 * @name: name being audited
1959 * @dentry: dentry being audited
1961 * Called from fs/namei.c:path_lookup().
1963 void __audit_inode(const char *name, const struct dentry *dentry)
1965 int idx;
1966 struct audit_context *context = current->audit_context;
1967 const struct inode *inode = dentry->d_inode;
1969 if (!context->in_syscall)
1970 return;
1971 if (context->name_count
1972 && context->names[context->name_count-1].name
1973 && context->names[context->name_count-1].name == name)
1974 idx = context->name_count - 1;
1975 else if (context->name_count > 1
1976 && context->names[context->name_count-2].name
1977 && context->names[context->name_count-2].name == name)
1978 idx = context->name_count - 2;
1979 else {
1980 /* FIXME: how much do we care about inodes that have no
1981 * associated name? */
1982 if (audit_inc_name_count(context, inode))
1983 return;
1984 idx = context->name_count - 1;
1985 context->names[idx].name = NULL;
1987 handle_path(dentry);
1988 audit_copy_inode(&context->names[idx], dentry, inode);
1992 * audit_inode_child - collect inode info for created/removed objects
1993 * @dentry: dentry being audited
1994 * @parent: inode of dentry parent
1996 * For syscalls that create or remove filesystem objects, audit_inode
1997 * can only collect information for the filesystem object's parent.
1998 * This call updates the audit context with the child's information.
1999 * Syscalls that create a new filesystem object must be hooked after
2000 * the object is created. Syscalls that remove a filesystem object
2001 * must be hooked prior, in order to capture the target inode during
2002 * unsuccessful attempts.
2004 void __audit_inode_child(const struct dentry *dentry,
2005 const struct inode *parent)
2007 int idx;
2008 struct audit_context *context = current->audit_context;
2009 const char *found_parent = NULL, *found_child = NULL;
2010 const struct inode *inode = dentry->d_inode;
2011 const char *dname = dentry->d_name.name;
2012 int dirlen = 0;
2014 if (!context->in_syscall)
2015 return;
2017 if (inode)
2018 handle_one(inode);
2020 /* parent is more likely, look for it first */
2021 for (idx = 0; idx < context->name_count; idx++) {
2022 struct audit_names *n = &context->names[idx];
2024 if (!n->name)
2025 continue;
2027 if (n->ino == parent->i_ino &&
2028 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2029 n->name_len = dirlen; /* update parent data in place */
2030 found_parent = n->name;
2031 goto add_names;
2035 /* no matching parent, look for matching child */
2036 for (idx = 0; idx < context->name_count; idx++) {
2037 struct audit_names *n = &context->names[idx];
2039 if (!n->name)
2040 continue;
2042 /* strcmp() is the more likely scenario */
2043 if (!strcmp(dname, n->name) ||
2044 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2045 if (inode)
2046 audit_copy_inode(n, NULL, inode);
2047 else
2048 n->ino = (unsigned long)-1;
2049 found_child = n->name;
2050 goto add_names;
2054 add_names:
2055 if (!found_parent) {
2056 if (audit_inc_name_count(context, parent))
2057 return;
2058 idx = context->name_count - 1;
2059 context->names[idx].name = NULL;
2060 audit_copy_inode(&context->names[idx], NULL, parent);
2063 if (!found_child) {
2064 if (audit_inc_name_count(context, inode))
2065 return;
2066 idx = context->name_count - 1;
2068 /* Re-use the name belonging to the slot for a matching parent
2069 * directory. All names for this context are relinquished in
2070 * audit_free_names() */
2071 if (found_parent) {
2072 context->names[idx].name = found_parent;
2073 context->names[idx].name_len = AUDIT_NAME_FULL;
2074 /* don't call __putname() */
2075 context->names[idx].name_put = 0;
2076 } else {
2077 context->names[idx].name = NULL;
2080 if (inode)
2081 audit_copy_inode(&context->names[idx], NULL, inode);
2082 else
2083 context->names[idx].ino = (unsigned long)-1;
2086 EXPORT_SYMBOL_GPL(__audit_inode_child);
2089 * auditsc_get_stamp - get local copies of audit_context values
2090 * @ctx: audit_context for the task
2091 * @t: timespec to store time recorded in the audit_context
2092 * @serial: serial value that is recorded in the audit_context
2094 * Also sets the context as auditable.
2096 int auditsc_get_stamp(struct audit_context *ctx,
2097 struct timespec *t, unsigned int *serial)
2099 if (!ctx->in_syscall)
2100 return 0;
2101 if (!ctx->serial)
2102 ctx->serial = audit_serial();
2103 t->tv_sec = ctx->ctime.tv_sec;
2104 t->tv_nsec = ctx->ctime.tv_nsec;
2105 *serial = ctx->serial;
2106 if (!ctx->prio) {
2107 ctx->prio = 1;
2108 ctx->current_state = AUDIT_RECORD_CONTEXT;
2110 return 1;
2113 /* global counter which is incremented every time something logs in */
2114 static atomic_t session_id = ATOMIC_INIT(0);
2117 * audit_set_loginuid - set a task's audit_context loginuid
2118 * @task: task whose audit context is being modified
2119 * @loginuid: loginuid value
2121 * Returns 0.
2123 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2125 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2127 unsigned int sessionid = atomic_inc_return(&session_id);
2128 struct audit_context *context = task->audit_context;
2130 if (context && context->in_syscall) {
2131 struct audit_buffer *ab;
2133 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2134 if (ab) {
2135 audit_log_format(ab, "login pid=%d uid=%u "
2136 "old auid=%u new auid=%u"
2137 " old ses=%u new ses=%u",
2138 task->pid, task_uid(task),
2139 task->loginuid, loginuid,
2140 task->sessionid, sessionid);
2141 audit_log_end(ab);
2144 task->sessionid = sessionid;
2145 task->loginuid = loginuid;
2146 return 0;
2150 * __audit_mq_open - record audit data for a POSIX MQ open
2151 * @oflag: open flag
2152 * @mode: mode bits
2153 * @attr: queue attributes
2156 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2158 struct audit_context *context = current->audit_context;
2160 if (attr)
2161 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2162 else
2163 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2165 context->mq_open.oflag = oflag;
2166 context->mq_open.mode = mode;
2168 context->type = AUDIT_MQ_OPEN;
2172 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2173 * @mqdes: MQ descriptor
2174 * @msg_len: Message length
2175 * @msg_prio: Message priority
2176 * @abs_timeout: Message timeout in absolute time
2179 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2180 const struct timespec *abs_timeout)
2182 struct audit_context *context = current->audit_context;
2183 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2185 if (abs_timeout)
2186 memcpy(p, abs_timeout, sizeof(struct timespec));
2187 else
2188 memset(p, 0, sizeof(struct timespec));
2190 context->mq_sendrecv.mqdes = mqdes;
2191 context->mq_sendrecv.msg_len = msg_len;
2192 context->mq_sendrecv.msg_prio = msg_prio;
2194 context->type = AUDIT_MQ_SENDRECV;
2198 * __audit_mq_notify - record audit data for a POSIX MQ notify
2199 * @mqdes: MQ descriptor
2200 * @notification: Notification event
2204 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2206 struct audit_context *context = current->audit_context;
2208 if (notification)
2209 context->mq_notify.sigev_signo = notification->sigev_signo;
2210 else
2211 context->mq_notify.sigev_signo = 0;
2213 context->mq_notify.mqdes = mqdes;
2214 context->type = AUDIT_MQ_NOTIFY;
2218 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2219 * @mqdes: MQ descriptor
2220 * @mqstat: MQ flags
2223 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2225 struct audit_context *context = current->audit_context;
2226 context->mq_getsetattr.mqdes = mqdes;
2227 context->mq_getsetattr.mqstat = *mqstat;
2228 context->type = AUDIT_MQ_GETSETATTR;
2232 * audit_ipc_obj - record audit data for ipc object
2233 * @ipcp: ipc permissions
2236 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2238 struct audit_context *context = current->audit_context;
2239 context->ipc.uid = ipcp->uid;
2240 context->ipc.gid = ipcp->gid;
2241 context->ipc.mode = ipcp->mode;
2242 context->ipc.has_perm = 0;
2243 security_ipc_getsecid(ipcp, &context->ipc.osid);
2244 context->type = AUDIT_IPC;
2248 * audit_ipc_set_perm - record audit data for new ipc permissions
2249 * @qbytes: msgq bytes
2250 * @uid: msgq user id
2251 * @gid: msgq group id
2252 * @mode: msgq mode (permissions)
2254 * Called only after audit_ipc_obj().
2256 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2258 struct audit_context *context = current->audit_context;
2260 context->ipc.qbytes = qbytes;
2261 context->ipc.perm_uid = uid;
2262 context->ipc.perm_gid = gid;
2263 context->ipc.perm_mode = mode;
2264 context->ipc.has_perm = 1;
2267 int audit_bprm(struct linux_binprm *bprm)
2269 struct audit_aux_data_execve *ax;
2270 struct audit_context *context = current->audit_context;
2272 if (likely(!audit_enabled || !context || context->dummy))
2273 return 0;
2275 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2276 if (!ax)
2277 return -ENOMEM;
2279 ax->argc = bprm->argc;
2280 ax->envc = bprm->envc;
2281 ax->mm = bprm->mm;
2282 ax->d.type = AUDIT_EXECVE;
2283 ax->d.next = context->aux;
2284 context->aux = (void *)ax;
2285 return 0;
2290 * audit_socketcall - record audit data for sys_socketcall
2291 * @nargs: number of args
2292 * @args: args array
2295 void audit_socketcall(int nargs, unsigned long *args)
2297 struct audit_context *context = current->audit_context;
2299 if (likely(!context || context->dummy))
2300 return;
2302 context->type = AUDIT_SOCKETCALL;
2303 context->socketcall.nargs = nargs;
2304 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2308 * __audit_fd_pair - record audit data for pipe and socketpair
2309 * @fd1: the first file descriptor
2310 * @fd2: the second file descriptor
2313 void __audit_fd_pair(int fd1, int fd2)
2315 struct audit_context *context = current->audit_context;
2316 context->fds[0] = fd1;
2317 context->fds[1] = fd2;
2321 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2322 * @len: data length in user space
2323 * @a: data address in kernel space
2325 * Returns 0 for success or NULL context or < 0 on error.
2327 int audit_sockaddr(int len, void *a)
2329 struct audit_context *context = current->audit_context;
2331 if (likely(!context || context->dummy))
2332 return 0;
2334 if (!context->sockaddr) {
2335 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2336 if (!p)
2337 return -ENOMEM;
2338 context->sockaddr = p;
2341 context->sockaddr_len = len;
2342 memcpy(context->sockaddr, a, len);
2343 return 0;
2346 void __audit_ptrace(struct task_struct *t)
2348 struct audit_context *context = current->audit_context;
2350 context->target_pid = t->pid;
2351 context->target_auid = audit_get_loginuid(t);
2352 context->target_uid = task_uid(t);
2353 context->target_sessionid = audit_get_sessionid(t);
2354 security_task_getsecid(t, &context->target_sid);
2355 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2359 * audit_signal_info - record signal info for shutting down audit subsystem
2360 * @sig: signal value
2361 * @t: task being signaled
2363 * If the audit subsystem is being terminated, record the task (pid)
2364 * and uid that is doing that.
2366 int __audit_signal_info(int sig, struct task_struct *t)
2368 struct audit_aux_data_pids *axp;
2369 struct task_struct *tsk = current;
2370 struct audit_context *ctx = tsk->audit_context;
2371 uid_t uid = current_uid(), t_uid = task_uid(t);
2373 if (audit_pid && t->tgid == audit_pid) {
2374 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2375 audit_sig_pid = tsk->pid;
2376 if (tsk->loginuid != -1)
2377 audit_sig_uid = tsk->loginuid;
2378 else
2379 audit_sig_uid = uid;
2380 security_task_getsecid(tsk, &audit_sig_sid);
2382 if (!audit_signals || audit_dummy_context())
2383 return 0;
2386 /* optimize the common case by putting first signal recipient directly
2387 * in audit_context */
2388 if (!ctx->target_pid) {
2389 ctx->target_pid = t->tgid;
2390 ctx->target_auid = audit_get_loginuid(t);
2391 ctx->target_uid = t_uid;
2392 ctx->target_sessionid = audit_get_sessionid(t);
2393 security_task_getsecid(t, &ctx->target_sid);
2394 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2395 return 0;
2398 axp = (void *)ctx->aux_pids;
2399 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2400 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2401 if (!axp)
2402 return -ENOMEM;
2404 axp->d.type = AUDIT_OBJ_PID;
2405 axp->d.next = ctx->aux_pids;
2406 ctx->aux_pids = (void *)axp;
2408 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2410 axp->target_pid[axp->pid_count] = t->tgid;
2411 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2412 axp->target_uid[axp->pid_count] = t_uid;
2413 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2414 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2415 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2416 axp->pid_count++;
2418 return 0;
2422 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2423 * @bprm: pointer to the bprm being processed
2424 * @new: the proposed new credentials
2425 * @old: the old credentials
2427 * Simply check if the proc already has the caps given by the file and if not
2428 * store the priv escalation info for later auditing at the end of the syscall
2430 * -Eric
2432 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2433 const struct cred *new, const struct cred *old)
2435 struct audit_aux_data_bprm_fcaps *ax;
2436 struct audit_context *context = current->audit_context;
2437 struct cpu_vfs_cap_data vcaps;
2438 struct dentry *dentry;
2440 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2441 if (!ax)
2442 return -ENOMEM;
2444 ax->d.type = AUDIT_BPRM_FCAPS;
2445 ax->d.next = context->aux;
2446 context->aux = (void *)ax;
2448 dentry = dget(bprm->file->f_dentry);
2449 get_vfs_caps_from_disk(dentry, &vcaps);
2450 dput(dentry);
2452 ax->fcap.permitted = vcaps.permitted;
2453 ax->fcap.inheritable = vcaps.inheritable;
2454 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2455 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2457 ax->old_pcap.permitted = old->cap_permitted;
2458 ax->old_pcap.inheritable = old->cap_inheritable;
2459 ax->old_pcap.effective = old->cap_effective;
2461 ax->new_pcap.permitted = new->cap_permitted;
2462 ax->new_pcap.inheritable = new->cap_inheritable;
2463 ax->new_pcap.effective = new->cap_effective;
2464 return 0;
2468 * __audit_log_capset - store information about the arguments to the capset syscall
2469 * @pid: target pid of the capset call
2470 * @new: the new credentials
2471 * @old: the old (current) credentials
2473 * Record the aguments userspace sent to sys_capset for later printing by the
2474 * audit system if applicable
2476 void __audit_log_capset(pid_t pid,
2477 const struct cred *new, const struct cred *old)
2479 struct audit_context *context = current->audit_context;
2480 context->capset.pid = pid;
2481 context->capset.cap.effective = new->cap_effective;
2482 context->capset.cap.inheritable = new->cap_effective;
2483 context->capset.cap.permitted = new->cap_permitted;
2484 context->type = AUDIT_CAPSET;
2487 void __audit_mmap_fd(int fd, int flags)
2489 struct audit_context *context = current->audit_context;
2490 context->mmap.fd = fd;
2491 context->mmap.flags = flags;
2492 context->type = AUDIT_MMAP;
2496 * audit_core_dumps - record information about processes that end abnormally
2497 * @signr: signal value
2499 * If a process ends with a core dump, something fishy is going on and we
2500 * should record the event for investigation.
2502 void audit_core_dumps(long signr)
2504 struct audit_buffer *ab;
2505 u32 sid;
2506 uid_t auid = audit_get_loginuid(current), uid;
2507 gid_t gid;
2508 unsigned int sessionid = audit_get_sessionid(current);
2510 if (!audit_enabled)
2511 return;
2513 if (signr == SIGQUIT) /* don't care for those */
2514 return;
2516 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2517 current_uid_gid(&uid, &gid);
2518 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2519 auid, uid, gid, sessionid);
2520 security_task_getsecid(current, &sid);
2521 if (sid) {
2522 char *ctx = NULL;
2523 u32 len;
2525 if (security_secid_to_secctx(sid, &ctx, &len))
2526 audit_log_format(ab, " ssid=%u", sid);
2527 else {
2528 audit_log_format(ab, " subj=%s", ctx);
2529 security_release_secctx(ctx, len);
2532 audit_log_format(ab, " pid=%d comm=", current->pid);
2533 audit_log_untrustedstring(ab, current->comm);
2534 audit_log_format(ab, " sig=%ld", signr);
2535 audit_log_end(ab);
2538 struct list_head *audit_killed_trees(void)
2540 struct audit_context *ctx = current->audit_context;
2541 if (likely(!ctx || !ctx->in_syscall))
2542 return NULL;
2543 return &ctx->killed_trees;