4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 static void exit_mm(struct task_struct
* tsk
);
55 static inline int task_detached(struct task_struct
*p
)
57 return p
->exit_signal
== -1;
60 static void __unhash_process(struct task_struct
*p
)
63 detach_pid(p
, PIDTYPE_PID
);
64 if (thread_group_leader(p
)) {
65 detach_pid(p
, PIDTYPE_PGID
);
66 detach_pid(p
, PIDTYPE_SID
);
68 list_del_rcu(&p
->tasks
);
69 __get_cpu_var(process_counts
)--;
71 list_del_rcu(&p
->thread_group
);
76 * This function expects the tasklist_lock write-locked.
78 static void __exit_signal(struct task_struct
*tsk
)
80 struct signal_struct
*sig
= tsk
->signal
;
81 struct sighand_struct
*sighand
;
84 BUG_ON(!atomic_read(&sig
->count
));
87 sighand
= rcu_dereference(tsk
->sighand
);
88 spin_lock(&sighand
->siglock
);
90 posix_cpu_timers_exit(tsk
);
91 if (atomic_dec_and_test(&sig
->count
))
92 posix_cpu_timers_exit_group(tsk
);
95 * If there is any task waiting for the group exit
98 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
99 wake_up_process(sig
->group_exit_task
);
101 if (tsk
== sig
->curr_target
)
102 sig
->curr_target
= next_thread(tsk
);
104 * Accumulate here the counters for all threads but the
105 * group leader as they die, so they can be added into
106 * the process-wide totals when those are taken.
107 * The group leader stays around as a zombie as long
108 * as there are other threads. When it gets reaped,
109 * the exit.c code will add its counts into these totals.
110 * We won't ever get here for the group leader, since it
111 * will have been the last reference on the signal_struct.
113 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
114 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
115 sig
->gtime
= cputime_add(sig
->gtime
, tsk
->gtime
);
116 sig
->min_flt
+= tsk
->min_flt
;
117 sig
->maj_flt
+= tsk
->maj_flt
;
118 sig
->nvcsw
+= tsk
->nvcsw
;
119 sig
->nivcsw
+= tsk
->nivcsw
;
120 sig
->inblock
+= task_io_get_inblock(tsk
);
121 sig
->oublock
+= task_io_get_oublock(tsk
);
122 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
123 sig
= NULL
; /* Marker for below. */
126 __unhash_process(tsk
);
130 spin_unlock(&sighand
->siglock
);
133 __cleanup_sighand(sighand
);
134 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
135 flush_sigqueue(&tsk
->pending
);
137 flush_sigqueue(&sig
->shared_pending
);
138 taskstats_tgid_free(sig
);
139 __cleanup_signal(sig
);
143 static void delayed_put_task_struct(struct rcu_head
*rhp
)
145 put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
148 void release_task(struct task_struct
* p
)
150 struct task_struct
*leader
;
153 atomic_dec(&p
->user
->processes
);
155 write_lock_irq(&tasklist_lock
);
157 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
161 * If we are the last non-leader member of the thread
162 * group, and the leader is zombie, then notify the
163 * group leader's parent process. (if it wants notification.)
166 leader
= p
->group_leader
;
167 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
168 BUG_ON(task_detached(leader
));
169 do_notify_parent(leader
, leader
->exit_signal
);
171 * If we were the last child thread and the leader has
172 * exited already, and the leader's parent ignores SIGCHLD,
173 * then we are the one who should release the leader.
175 * do_notify_parent() will have marked it self-reaping in
178 zap_leader
= task_detached(leader
);
181 write_unlock_irq(&tasklist_lock
);
183 call_rcu(&p
->rcu
, delayed_put_task_struct
);
186 if (unlikely(zap_leader
))
191 * This checks not only the pgrp, but falls back on the pid if no
192 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
195 * The caller must hold rcu lock or the tasklist lock.
197 struct pid
*session_of_pgrp(struct pid
*pgrp
)
199 struct task_struct
*p
;
200 struct pid
*sid
= NULL
;
202 p
= pid_task(pgrp
, PIDTYPE_PGID
);
204 p
= pid_task(pgrp
, PIDTYPE_PID
);
206 sid
= task_session(p
);
212 * Determine if a process group is "orphaned", according to the POSIX
213 * definition in 2.2.2.52. Orphaned process groups are not to be affected
214 * by terminal-generated stop signals. Newly orphaned process groups are
215 * to receive a SIGHUP and a SIGCONT.
217 * "I ask you, have you ever known what it is to be an orphan?"
219 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
221 struct task_struct
*p
;
223 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
224 if ((p
== ignored_task
) ||
225 (p
->exit_state
&& thread_group_empty(p
)) ||
226 is_global_init(p
->real_parent
))
229 if (task_pgrp(p
->real_parent
) != pgrp
&&
230 task_session(p
->real_parent
) == task_session(p
))
232 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
237 int is_current_pgrp_orphaned(void)
241 read_lock(&tasklist_lock
);
242 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
243 read_unlock(&tasklist_lock
);
248 static int has_stopped_jobs(struct pid
*pgrp
)
251 struct task_struct
*p
;
253 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
254 if (!task_is_stopped(p
))
258 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
263 * Check to see if any process groups have become orphaned as
264 * a result of our exiting, and if they have any stopped jobs,
265 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
268 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
270 struct pid
*pgrp
= task_pgrp(tsk
);
271 struct task_struct
*ignored_task
= tsk
;
274 /* exit: our father is in a different pgrp than
275 * we are and we were the only connection outside.
277 parent
= tsk
->real_parent
;
279 /* reparent: our child is in a different pgrp than
280 * we are, and it was the only connection outside.
284 if (task_pgrp(parent
) != pgrp
&&
285 task_session(parent
) == task_session(tsk
) &&
286 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
287 has_stopped_jobs(pgrp
)) {
288 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
289 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
294 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
296 * If a kernel thread is launched as a result of a system call, or if
297 * it ever exits, it should generally reparent itself to kthreadd so it
298 * isn't in the way of other processes and is correctly cleaned up on exit.
300 * The various task state such as scheduling policy and priority may have
301 * been inherited from a user process, so we reset them to sane values here.
303 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
305 static void reparent_to_kthreadd(void)
307 write_lock_irq(&tasklist_lock
);
309 ptrace_unlink(current
);
310 /* Reparent to init */
311 remove_parent(current
);
312 current
->real_parent
= current
->parent
= kthreadd_task
;
315 /* Set the exit signal to SIGCHLD so we signal init on exit */
316 current
->exit_signal
= SIGCHLD
;
318 if (task_nice(current
) < 0)
319 set_user_nice(current
, 0);
323 security_task_reparent_to_init(current
);
324 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
325 sizeof(current
->signal
->rlim
));
326 atomic_inc(&(INIT_USER
->__count
));
327 write_unlock_irq(&tasklist_lock
);
328 switch_uid(INIT_USER
);
331 void __set_special_pids(struct pid
*pid
)
333 struct task_struct
*curr
= current
->group_leader
;
334 pid_t nr
= pid_nr(pid
);
336 if (task_session(curr
) != pid
) {
337 change_pid(curr
, PIDTYPE_SID
, pid
);
338 set_task_session(curr
, nr
);
340 if (task_pgrp(curr
) != pid
) {
341 change_pid(curr
, PIDTYPE_PGID
, pid
);
342 set_task_pgrp(curr
, nr
);
346 static void set_special_pids(struct pid
*pid
)
348 write_lock_irq(&tasklist_lock
);
349 __set_special_pids(pid
);
350 write_unlock_irq(&tasklist_lock
);
354 * Let kernel threads use this to say that they
355 * allow a certain signal (since daemonize() will
356 * have disabled all of them by default).
358 int allow_signal(int sig
)
360 if (!valid_signal(sig
) || sig
< 1)
363 spin_lock_irq(¤t
->sighand
->siglock
);
364 sigdelset(¤t
->blocked
, sig
);
366 /* Kernel threads handle their own signals.
367 Let the signal code know it'll be handled, so
368 that they don't get converted to SIGKILL or
369 just silently dropped */
370 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
373 spin_unlock_irq(¤t
->sighand
->siglock
);
377 EXPORT_SYMBOL(allow_signal
);
379 int disallow_signal(int sig
)
381 if (!valid_signal(sig
) || sig
< 1)
384 spin_lock_irq(¤t
->sighand
->siglock
);
385 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
387 spin_unlock_irq(¤t
->sighand
->siglock
);
391 EXPORT_SYMBOL(disallow_signal
);
394 * Put all the gunge required to become a kernel thread without
395 * attached user resources in one place where it belongs.
398 void daemonize(const char *name
, ...)
401 struct fs_struct
*fs
;
404 va_start(args
, name
);
405 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
409 * If we were started as result of loading a module, close all of the
410 * user space pages. We don't need them, and if we didn't close them
411 * they would be locked into memory.
415 * We don't want to have TIF_FREEZE set if the system-wide hibernation
416 * or suspend transition begins right now.
418 current
->flags
|= PF_NOFREEZE
;
420 if (current
->nsproxy
!= &init_nsproxy
) {
421 get_nsproxy(&init_nsproxy
);
422 switch_task_namespaces(current
, &init_nsproxy
);
424 set_special_pids(&init_struct_pid
);
425 proc_clear_tty(current
);
427 /* Block and flush all signals */
428 sigfillset(&blocked
);
429 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
430 flush_signals(current
);
432 /* Become as one with the init task */
434 exit_fs(current
); /* current->fs->count--; */
437 atomic_inc(&fs
->count
);
440 current
->files
= init_task
.files
;
441 atomic_inc(¤t
->files
->count
);
443 reparent_to_kthreadd();
446 EXPORT_SYMBOL(daemonize
);
448 static void close_files(struct files_struct
* files
)
456 * It is safe to dereference the fd table without RCU or
457 * ->file_lock because this is the last reference to the
460 fdt
= files_fdtable(files
);
464 if (i
>= fdt
->max_fds
)
466 set
= fdt
->open_fds
->fds_bits
[j
++];
469 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
471 filp_close(file
, files
);
481 struct files_struct
*get_files_struct(struct task_struct
*task
)
483 struct files_struct
*files
;
488 atomic_inc(&files
->count
);
494 void put_files_struct(struct files_struct
*files
)
498 if (atomic_dec_and_test(&files
->count
)) {
501 * Free the fd and fdset arrays if we expanded them.
502 * If the fdtable was embedded, pass files for freeing
503 * at the end of the RCU grace period. Otherwise,
504 * you can free files immediately.
506 fdt
= files_fdtable(files
);
507 if (fdt
!= &files
->fdtab
)
508 kmem_cache_free(files_cachep
, files
);
513 void reset_files_struct(struct files_struct
*files
)
515 struct task_struct
*tsk
= current
;
516 struct files_struct
*old
;
522 put_files_struct(old
);
525 void exit_files(struct task_struct
*tsk
)
527 struct files_struct
* files
= tsk
->files
;
533 put_files_struct(files
);
537 void put_fs_struct(struct fs_struct
*fs
)
539 /* No need to hold fs->lock if we are killing it */
540 if (atomic_dec_and_test(&fs
->count
)) {
543 if (fs
->altroot
.dentry
)
544 path_put(&fs
->altroot
);
545 kmem_cache_free(fs_cachep
, fs
);
549 void exit_fs(struct task_struct
*tsk
)
551 struct fs_struct
* fs
= tsk
->fs
;
561 EXPORT_SYMBOL_GPL(exit_fs
);
563 #ifdef CONFIG_MM_OWNER
565 * Task p is exiting and it owned mm, lets find a new owner for it
568 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
576 if (atomic_read(&mm
->mm_users
) <= 1)
583 void mm_update_next_owner(struct mm_struct
*mm
)
585 struct task_struct
*c
, *g
, *p
= current
;
588 if (!mm_need_new_owner(mm
, p
))
591 read_lock(&tasklist_lock
);
593 * Search in the children
595 list_for_each_entry(c
, &p
->children
, sibling
) {
597 goto assign_new_owner
;
601 * Search in the siblings
603 list_for_each_entry(c
, &p
->parent
->children
, sibling
) {
605 goto assign_new_owner
;
609 * Search through everything else. We should not get
612 do_each_thread(g
, c
) {
614 goto assign_new_owner
;
615 } while_each_thread(g
, c
);
617 read_unlock(&tasklist_lock
);
624 * The task_lock protects c->mm from changing.
625 * We always want mm->owner->mm == mm
629 * Delay read_unlock() till we have the task_lock()
630 * to ensure that c does not slip away underneath us
632 read_unlock(&tasklist_lock
);
638 cgroup_mm_owner_callbacks(mm
->owner
, c
);
643 #endif /* CONFIG_MM_OWNER */
646 * Turn us into a lazy TLB process if we
649 static void exit_mm(struct task_struct
* tsk
)
651 struct mm_struct
*mm
= tsk
->mm
;
657 * Serialize with any possible pending coredump.
658 * We must hold mmap_sem around checking core_waiters
659 * and clearing tsk->mm. The core-inducing thread
660 * will increment core_waiters for each thread in the
661 * group with ->mm != NULL.
663 down_read(&mm
->mmap_sem
);
664 if (mm
->core_waiters
) {
665 up_read(&mm
->mmap_sem
);
666 down_write(&mm
->mmap_sem
);
667 if (!--mm
->core_waiters
)
668 complete(mm
->core_startup_done
);
669 up_write(&mm
->mmap_sem
);
671 wait_for_completion(&mm
->core_done
);
672 down_read(&mm
->mmap_sem
);
674 atomic_inc(&mm
->mm_count
);
675 BUG_ON(mm
!= tsk
->active_mm
);
676 /* more a memory barrier than a real lock */
679 up_read(&mm
->mmap_sem
);
680 enter_lazy_tlb(mm
, current
);
681 /* We don't want this task to be frozen prematurely */
682 clear_freeze_flag(tsk
);
684 mm_update_next_owner(mm
);
689 reparent_thread(struct task_struct
*p
, struct task_struct
*father
, int traced
)
691 if (p
->pdeath_signal
)
692 /* We already hold the tasklist_lock here. */
693 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
695 /* Move the child from its dying parent to the new one. */
696 if (unlikely(traced
)) {
697 /* Preserve ptrace links if someone else is tracing this child. */
698 list_del_init(&p
->ptrace_list
);
699 if (ptrace_reparented(p
))
700 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
702 /* If this child is being traced, then we're the one tracing it
703 * anyway, so let go of it.
707 p
->parent
= p
->real_parent
;
710 if (task_is_traced(p
)) {
712 * If it was at a trace stop, turn it into
713 * a normal stop since it's no longer being
720 /* If this is a threaded reparent there is no need to
721 * notify anyone anything has happened.
723 if (same_thread_group(p
->real_parent
, father
))
726 /* We don't want people slaying init. */
727 if (!task_detached(p
))
728 p
->exit_signal
= SIGCHLD
;
730 /* If we'd notified the old parent about this child's death,
731 * also notify the new parent.
733 if (!traced
&& p
->exit_state
== EXIT_ZOMBIE
&&
734 !task_detached(p
) && thread_group_empty(p
))
735 do_notify_parent(p
, p
->exit_signal
);
737 kill_orphaned_pgrp(p
, father
);
741 * When we die, we re-parent all our children.
742 * Try to give them to another thread in our thread
743 * group, and if no such member exists, give it to
744 * the child reaper process (ie "init") in our pid
747 static void forget_original_parent(struct task_struct
*father
)
749 struct task_struct
*p
, *n
, *reaper
= father
;
750 struct list_head ptrace_dead
;
752 INIT_LIST_HEAD(&ptrace_dead
);
754 write_lock_irq(&tasklist_lock
);
757 reaper
= next_thread(reaper
);
758 if (reaper
== father
) {
759 reaper
= task_child_reaper(father
);
762 } while (reaper
->flags
& PF_EXITING
);
765 * There are only two places where our children can be:
767 * - in our child list
768 * - in our ptraced child list
770 * Search them and reparent children.
772 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
777 /* if father isn't the real parent, then ptrace must be enabled */
778 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
780 if (father
== p
->real_parent
) {
781 /* reparent with a reaper, real father it's us */
782 p
->real_parent
= reaper
;
783 reparent_thread(p
, father
, 0);
785 /* reparent ptraced task to its real parent */
787 if (p
->exit_state
== EXIT_ZOMBIE
&& !task_detached(p
) &&
788 thread_group_empty(p
))
789 do_notify_parent(p
, p
->exit_signal
);
793 * if the ptraced child is a detached zombie we must collect
794 * it before we exit, or it will remain zombie forever since
795 * we prevented it from self-reap itself while it was being
796 * traced by us, to be able to see it in wait4.
798 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& task_detached(p
)))
799 list_add(&p
->ptrace_list
, &ptrace_dead
);
802 list_for_each_entry_safe(p
, n
, &father
->ptrace_children
, ptrace_list
) {
803 p
->real_parent
= reaper
;
804 reparent_thread(p
, father
, 1);
807 write_unlock_irq(&tasklist_lock
);
808 BUG_ON(!list_empty(&father
->children
));
809 BUG_ON(!list_empty(&father
->ptrace_children
));
811 list_for_each_entry_safe(p
, n
, &ptrace_dead
, ptrace_list
) {
812 list_del_init(&p
->ptrace_list
);
819 * Send signals to all our closest relatives so that they know
820 * to properly mourn us..
822 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
827 * This does two things:
829 * A. Make init inherit all the child processes
830 * B. Check to see if any process groups have become orphaned
831 * as a result of our exiting, and if they have any stopped
832 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
834 forget_original_parent(tsk
);
835 exit_task_namespaces(tsk
);
837 write_lock_irq(&tasklist_lock
);
839 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
841 /* Let father know we died
843 * Thread signals are configurable, but you aren't going to use
844 * that to send signals to arbitary processes.
845 * That stops right now.
847 * If the parent exec id doesn't match the exec id we saved
848 * when we started then we know the parent has changed security
851 * If our self_exec id doesn't match our parent_exec_id then
852 * we have changed execution domain as these two values started
853 * the same after a fork.
855 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
856 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
857 tsk
->self_exec_id
!= tsk
->parent_exec_id
) &&
859 tsk
->exit_signal
= SIGCHLD
;
861 /* If something other than our normal parent is ptracing us, then
862 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
863 * only has special meaning to our real parent.
865 if (!task_detached(tsk
) && thread_group_empty(tsk
)) {
866 int signal
= ptrace_reparented(tsk
) ?
867 SIGCHLD
: tsk
->exit_signal
;
868 do_notify_parent(tsk
, signal
);
869 } else if (tsk
->ptrace
) {
870 do_notify_parent(tsk
, SIGCHLD
);
874 if (task_detached(tsk
) && likely(!tsk
->ptrace
))
876 tsk
->exit_state
= state
;
878 /* mt-exec, de_thread() is waiting for us */
879 if (thread_group_leader(tsk
) &&
880 tsk
->signal
->notify_count
< 0 &&
881 tsk
->signal
->group_exit_task
)
882 wake_up_process(tsk
->signal
->group_exit_task
);
884 write_unlock_irq(&tasklist_lock
);
886 /* If the process is dead, release it - nobody will wait for it */
887 if (state
== EXIT_DEAD
)
891 #ifdef CONFIG_DEBUG_STACK_USAGE
892 static void check_stack_usage(void)
894 static DEFINE_SPINLOCK(low_water_lock
);
895 static int lowest_to_date
= THREAD_SIZE
;
896 unsigned long *n
= end_of_stack(current
);
901 free
= (unsigned long)n
- (unsigned long)end_of_stack(current
);
903 if (free
>= lowest_to_date
)
906 spin_lock(&low_water_lock
);
907 if (free
< lowest_to_date
) {
908 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
910 current
->comm
, free
);
911 lowest_to_date
= free
;
913 spin_unlock(&low_water_lock
);
916 static inline void check_stack_usage(void) {}
919 static inline void exit_child_reaper(struct task_struct
*tsk
)
921 if (likely(tsk
->group_leader
!= task_child_reaper(tsk
)))
924 if (tsk
->nsproxy
->pid_ns
== &init_pid_ns
)
925 panic("Attempted to kill init!");
928 * @tsk is the last thread in the 'cgroup-init' and is exiting.
929 * Terminate all remaining processes in the namespace and reap them
930 * before exiting @tsk.
932 * Note that @tsk (last thread of cgroup-init) may not necessarily
933 * be the child-reaper (i.e main thread of cgroup-init) of the
934 * namespace i.e the child_reaper may have already exited.
936 * Even after a child_reaper exits, we let it inherit orphaned children,
937 * because, pid_ns->child_reaper remains valid as long as there is
938 * at least one living sub-thread in the cgroup init.
940 * This living sub-thread of the cgroup-init will be notified when
941 * a child inherited by the 'child-reaper' exits (do_notify_parent()
942 * uses __group_send_sig_info()). Further, when reaping child processes,
943 * do_wait() iterates over children of all living sub threads.
945 * i.e even though 'child_reaper' thread is listed as the parent of the
946 * orphaned children, any living sub-thread in the cgroup-init can
947 * perform the role of the child_reaper.
949 zap_pid_ns_processes(tsk
->nsproxy
->pid_ns
);
952 NORET_TYPE
void do_exit(long code
)
954 struct task_struct
*tsk
= current
;
957 profile_task_exit(tsk
);
959 WARN_ON(atomic_read(&tsk
->fs_excl
));
961 if (unlikely(in_interrupt()))
962 panic("Aiee, killing interrupt handler!");
963 if (unlikely(!tsk
->pid
))
964 panic("Attempted to kill the idle task!");
966 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
967 current
->ptrace_message
= code
;
968 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
972 * We're taking recursive faults here in do_exit. Safest is to just
973 * leave this task alone and wait for reboot.
975 if (unlikely(tsk
->flags
& PF_EXITING
)) {
977 "Fixing recursive fault but reboot is needed!\n");
979 * We can do this unlocked here. The futex code uses
980 * this flag just to verify whether the pi state
981 * cleanup has been done or not. In the worst case it
982 * loops once more. We pretend that the cleanup was
983 * done as there is no way to return. Either the
984 * OWNER_DIED bit is set by now or we push the blocked
985 * task into the wait for ever nirwana as well.
987 tsk
->flags
|= PF_EXITPIDONE
;
990 set_current_state(TASK_UNINTERRUPTIBLE
);
994 exit_signals(tsk
); /* sets PF_EXITING */
996 * tsk->flags are checked in the futex code to protect against
997 * an exiting task cleaning up the robust pi futexes.
1000 spin_unlock_wait(&tsk
->pi_lock
);
1002 if (unlikely(in_atomic()))
1003 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
1004 current
->comm
, task_pid_nr(current
),
1007 acct_update_integrals(tsk
);
1009 update_hiwater_rss(tsk
->mm
);
1010 update_hiwater_vm(tsk
->mm
);
1012 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
1014 exit_child_reaper(tsk
);
1015 hrtimer_cancel(&tsk
->signal
->real_timer
);
1016 exit_itimers(tsk
->signal
);
1018 acct_collect(code
, group_dead
);
1020 if (unlikely(tsk
->robust_list
))
1021 exit_robust_list(tsk
);
1022 #ifdef CONFIG_COMPAT
1023 if (unlikely(tsk
->compat_robust_list
))
1024 compat_exit_robust_list(tsk
);
1029 if (unlikely(tsk
->audit_context
))
1032 tsk
->exit_code
= code
;
1033 taskstats_exit(tsk
, group_dead
);
1042 check_stack_usage();
1044 cgroup_exit(tsk
, 1);
1047 if (group_dead
&& tsk
->signal
->leader
)
1048 disassociate_ctty(1);
1050 module_put(task_thread_info(tsk
)->exec_domain
->module
);
1052 module_put(tsk
->binfmt
->module
);
1054 proc_exit_connector(tsk
);
1055 exit_notify(tsk
, group_dead
);
1057 mpol_put(tsk
->mempolicy
);
1058 tsk
->mempolicy
= NULL
;
1062 * This must happen late, after the PID is not
1065 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1066 exit_pi_state_list(tsk
);
1067 if (unlikely(current
->pi_state_cache
))
1068 kfree(current
->pi_state_cache
);
1071 * Make sure we are holding no locks:
1073 debug_check_no_locks_held(tsk
);
1075 * We can do this unlocked here. The futex code uses this flag
1076 * just to verify whether the pi state cleanup has been done
1077 * or not. In the worst case it loops once more.
1079 tsk
->flags
|= PF_EXITPIDONE
;
1081 if (tsk
->io_context
)
1084 if (tsk
->splice_pipe
)
1085 __free_pipe_info(tsk
->splice_pipe
);
1088 /* causes final put_task_struct in finish_task_switch(). */
1089 tsk
->state
= TASK_DEAD
;
1093 /* Avoid "noreturn function does return". */
1095 cpu_relax(); /* For when BUG is null */
1098 EXPORT_SYMBOL_GPL(do_exit
);
1100 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1108 EXPORT_SYMBOL(complete_and_exit
);
1110 asmlinkage
long sys_exit(int error_code
)
1112 do_exit((error_code
&0xff)<<8);
1116 * Take down every thread in the group. This is called by fatal signals
1117 * as well as by sys_exit_group (below).
1120 do_group_exit(int exit_code
)
1122 struct signal_struct
*sig
= current
->signal
;
1124 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1126 if (signal_group_exit(sig
))
1127 exit_code
= sig
->group_exit_code
;
1128 else if (!thread_group_empty(current
)) {
1129 struct sighand_struct
*const sighand
= current
->sighand
;
1130 spin_lock_irq(&sighand
->siglock
);
1131 if (signal_group_exit(sig
))
1132 /* Another thread got here before we took the lock. */
1133 exit_code
= sig
->group_exit_code
;
1135 sig
->group_exit_code
= exit_code
;
1136 sig
->flags
= SIGNAL_GROUP_EXIT
;
1137 zap_other_threads(current
);
1139 spin_unlock_irq(&sighand
->siglock
);
1147 * this kills every thread in the thread group. Note that any externally
1148 * wait4()-ing process will get the correct exit code - even if this
1149 * thread is not the thread group leader.
1151 asmlinkage
void sys_exit_group(int error_code
)
1153 do_group_exit((error_code
& 0xff) << 8);
1156 static struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1158 struct pid
*pid
= NULL
;
1159 if (type
== PIDTYPE_PID
)
1160 pid
= task
->pids
[type
].pid
;
1161 else if (type
< PIDTYPE_MAX
)
1162 pid
= task
->group_leader
->pids
[type
].pid
;
1166 static int eligible_child(enum pid_type type
, struct pid
*pid
, int options
,
1167 struct task_struct
*p
)
1171 if (type
< PIDTYPE_MAX
) {
1172 if (task_pid_type(p
, type
) != pid
)
1177 * Do not consider detached threads that are
1180 if (task_detached(p
) && !p
->ptrace
)
1183 /* Wait for all children (clone and not) if __WALL is set;
1184 * otherwise, wait for clone children *only* if __WCLONE is
1185 * set; otherwise, wait for non-clone children *only*. (Note:
1186 * A "clone" child here is one that reports to its parent
1187 * using a signal other than SIGCHLD.) */
1188 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1189 && !(options
& __WALL
))
1192 err
= security_task_wait(p
);
1196 if (type
!= PIDTYPE_PID
)
1198 /* This child was explicitly requested, abort */
1199 read_unlock(&tasklist_lock
);
1203 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1204 int why
, int status
,
1205 struct siginfo __user
*infop
,
1206 struct rusage __user
*rusagep
)
1208 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1212 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1214 retval
= put_user(0, &infop
->si_errno
);
1216 retval
= put_user((short)why
, &infop
->si_code
);
1218 retval
= put_user(pid
, &infop
->si_pid
);
1220 retval
= put_user(uid
, &infop
->si_uid
);
1222 retval
= put_user(status
, &infop
->si_status
);
1229 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1230 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1231 * the lock and this task is uninteresting. If we return nonzero, we have
1232 * released the lock and the system call should return.
1234 static int wait_task_zombie(struct task_struct
*p
, int noreap
,
1235 struct siginfo __user
*infop
,
1236 int __user
*stat_addr
, struct rusage __user
*ru
)
1238 unsigned long state
;
1239 int retval
, status
, traced
;
1240 pid_t pid
= task_pid_vnr(p
);
1242 if (unlikely(noreap
)) {
1244 int exit_code
= p
->exit_code
;
1248 read_unlock(&tasklist_lock
);
1249 if ((exit_code
& 0x7f) == 0) {
1251 status
= exit_code
>> 8;
1253 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1254 status
= exit_code
& 0x7f;
1256 return wait_noreap_copyout(p
, pid
, uid
, why
,
1261 * Try to move the task's state to DEAD
1262 * only one thread is allowed to do this:
1264 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1265 if (state
!= EXIT_ZOMBIE
) {
1266 BUG_ON(state
!= EXIT_DEAD
);
1270 traced
= ptrace_reparented(p
);
1272 if (likely(!traced
)) {
1273 struct signal_struct
*psig
;
1274 struct signal_struct
*sig
;
1277 * The resource counters for the group leader are in its
1278 * own task_struct. Those for dead threads in the group
1279 * are in its signal_struct, as are those for the child
1280 * processes it has previously reaped. All these
1281 * accumulate in the parent's signal_struct c* fields.
1283 * We don't bother to take a lock here to protect these
1284 * p->signal fields, because they are only touched by
1285 * __exit_signal, which runs with tasklist_lock
1286 * write-locked anyway, and so is excluded here. We do
1287 * need to protect the access to p->parent->signal fields,
1288 * as other threads in the parent group can be right
1289 * here reaping other children at the same time.
1291 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1292 psig
= p
->parent
->signal
;
1295 cputime_add(psig
->cutime
,
1296 cputime_add(p
->utime
,
1297 cputime_add(sig
->utime
,
1300 cputime_add(psig
->cstime
,
1301 cputime_add(p
->stime
,
1302 cputime_add(sig
->stime
,
1305 cputime_add(psig
->cgtime
,
1306 cputime_add(p
->gtime
,
1307 cputime_add(sig
->gtime
,
1310 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1312 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1314 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1316 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1318 task_io_get_inblock(p
) +
1319 sig
->inblock
+ sig
->cinblock
;
1321 task_io_get_oublock(p
) +
1322 sig
->oublock
+ sig
->coublock
;
1323 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1327 * Now we are sure this task is interesting, and no other
1328 * thread can reap it because we set its state to EXIT_DEAD.
1330 read_unlock(&tasklist_lock
);
1332 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1333 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1334 ? p
->signal
->group_exit_code
: p
->exit_code
;
1335 if (!retval
&& stat_addr
)
1336 retval
= put_user(status
, stat_addr
);
1337 if (!retval
&& infop
)
1338 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1339 if (!retval
&& infop
)
1340 retval
= put_user(0, &infop
->si_errno
);
1341 if (!retval
&& infop
) {
1344 if ((status
& 0x7f) == 0) {
1348 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1351 retval
= put_user((short)why
, &infop
->si_code
);
1353 retval
= put_user(status
, &infop
->si_status
);
1355 if (!retval
&& infop
)
1356 retval
= put_user(pid
, &infop
->si_pid
);
1357 if (!retval
&& infop
)
1358 retval
= put_user(p
->uid
, &infop
->si_uid
);
1363 write_lock_irq(&tasklist_lock
);
1364 /* We dropped tasklist, ptracer could die and untrace */
1367 * If this is not a detached task, notify the parent.
1368 * If it's still not detached after that, don't release
1371 if (!task_detached(p
)) {
1372 do_notify_parent(p
, p
->exit_signal
);
1373 if (!task_detached(p
)) {
1374 p
->exit_state
= EXIT_ZOMBIE
;
1378 write_unlock_irq(&tasklist_lock
);
1387 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1388 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1389 * the lock and this task is uninteresting. If we return nonzero, we have
1390 * released the lock and the system call should return.
1392 static int wait_task_stopped(struct task_struct
*p
,
1393 int noreap
, struct siginfo __user
*infop
,
1394 int __user
*stat_addr
, struct rusage __user
*ru
)
1396 int retval
, exit_code
, why
;
1397 uid_t uid
= 0; /* unneeded, required by compiler */
1401 spin_lock_irq(&p
->sighand
->siglock
);
1403 if (unlikely(!task_is_stopped_or_traced(p
)))
1406 if (!(p
->ptrace
& PT_PTRACED
) && p
->signal
->group_stop_count
> 0)
1408 * A group stop is in progress and this is the group leader.
1409 * We won't report until all threads have stopped.
1413 exit_code
= p
->exit_code
;
1422 spin_unlock_irq(&p
->sighand
->siglock
);
1427 * Now we are pretty sure this task is interesting.
1428 * Make sure it doesn't get reaped out from under us while we
1429 * give up the lock and then examine it below. We don't want to
1430 * keep holding onto the tasklist_lock while we call getrusage and
1431 * possibly take page faults for user memory.
1434 pid
= task_pid_vnr(p
);
1435 why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1436 read_unlock(&tasklist_lock
);
1438 if (unlikely(noreap
))
1439 return wait_noreap_copyout(p
, pid
, uid
,
1443 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1444 if (!retval
&& stat_addr
)
1445 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1446 if (!retval
&& infop
)
1447 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1448 if (!retval
&& infop
)
1449 retval
= put_user(0, &infop
->si_errno
);
1450 if (!retval
&& infop
)
1451 retval
= put_user((short)why
, &infop
->si_code
);
1452 if (!retval
&& infop
)
1453 retval
= put_user(exit_code
, &infop
->si_status
);
1454 if (!retval
&& infop
)
1455 retval
= put_user(pid
, &infop
->si_pid
);
1456 if (!retval
&& infop
)
1457 retval
= put_user(uid
, &infop
->si_uid
);
1467 * Handle do_wait work for one task in a live, non-stopped state.
1468 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1469 * the lock and this task is uninteresting. If we return nonzero, we have
1470 * released the lock and the system call should return.
1472 static int wait_task_continued(struct task_struct
*p
, int noreap
,
1473 struct siginfo __user
*infop
,
1474 int __user
*stat_addr
, struct rusage __user
*ru
)
1480 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1483 spin_lock_irq(&p
->sighand
->siglock
);
1484 /* Re-check with the lock held. */
1485 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1486 spin_unlock_irq(&p
->sighand
->siglock
);
1490 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1491 spin_unlock_irq(&p
->sighand
->siglock
);
1493 pid
= task_pid_vnr(p
);
1496 read_unlock(&tasklist_lock
);
1499 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1501 if (!retval
&& stat_addr
)
1502 retval
= put_user(0xffff, stat_addr
);
1506 retval
= wait_noreap_copyout(p
, pid
, uid
,
1507 CLD_CONTINUED
, SIGCONT
,
1509 BUG_ON(retval
== 0);
1515 static long do_wait(enum pid_type type
, struct pid
*pid
, int options
,
1516 struct siginfo __user
*infop
, int __user
*stat_addr
,
1517 struct rusage __user
*ru
)
1519 DECLARE_WAITQUEUE(wait
, current
);
1520 struct task_struct
*tsk
;
1523 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1525 /* If there is nothing that can match our critier just get out */
1527 if ((type
< PIDTYPE_MAX
) && (!pid
|| hlist_empty(&pid
->tasks
[type
])))
1531 * We will set this flag if we see any child that might later
1532 * match our criteria, even if we are not able to reap it yet.
1535 current
->state
= TASK_INTERRUPTIBLE
;
1536 read_lock(&tasklist_lock
);
1539 struct task_struct
*p
;
1541 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1542 int ret
= eligible_child(type
, pid
, options
, p
);
1546 if (unlikely(ret
< 0)) {
1548 } else if (task_is_stopped_or_traced(p
)) {
1550 * It's stopped now, so it might later
1551 * continue, exit, or stop again.
1554 if (!(p
->ptrace
& PT_PTRACED
) &&
1555 !(options
& WUNTRACED
))
1558 retval
= wait_task_stopped(p
,
1559 (options
& WNOWAIT
), infop
,
1561 } else if (p
->exit_state
== EXIT_ZOMBIE
&&
1562 !delay_group_leader(p
)) {
1564 * We don't reap group leaders with subthreads.
1566 if (!likely(options
& WEXITED
))
1568 retval
= wait_task_zombie(p
,
1569 (options
& WNOWAIT
), infop
,
1571 } else if (p
->exit_state
!= EXIT_DEAD
) {
1573 * It's running now, so it might later
1574 * exit, stop, or stop and then continue.
1577 if (!unlikely(options
& WCONTINUED
))
1579 retval
= wait_task_continued(p
,
1580 (options
& WNOWAIT
), infop
,
1583 if (retval
!= 0) /* tasklist_lock released */
1587 list_for_each_entry(p
, &tsk
->ptrace_children
,
1589 flag
= eligible_child(type
, pid
, options
, p
);
1592 if (likely(flag
> 0))
1598 if (options
& __WNOTHREAD
)
1600 tsk
= next_thread(tsk
);
1601 BUG_ON(tsk
->signal
!= current
->signal
);
1602 } while (tsk
!= current
);
1603 read_unlock(&tasklist_lock
);
1606 if (options
& WNOHANG
)
1608 retval
= -ERESTARTSYS
;
1609 if (signal_pending(current
))
1616 current
->state
= TASK_RUNNING
;
1617 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1623 * For a WNOHANG return, clear out all the fields
1624 * we would set so the user can easily tell the
1628 retval
= put_user(0, &infop
->si_signo
);
1630 retval
= put_user(0, &infop
->si_errno
);
1632 retval
= put_user(0, &infop
->si_code
);
1634 retval
= put_user(0, &infop
->si_pid
);
1636 retval
= put_user(0, &infop
->si_uid
);
1638 retval
= put_user(0, &infop
->si_status
);
1644 asmlinkage
long sys_waitid(int which
, pid_t upid
,
1645 struct siginfo __user
*infop
, int options
,
1646 struct rusage __user
*ru
)
1648 struct pid
*pid
= NULL
;
1652 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1654 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1667 type
= PIDTYPE_PGID
;
1675 if (type
< PIDTYPE_MAX
)
1676 pid
= find_get_pid(upid
);
1677 ret
= do_wait(type
, pid
, options
, infop
, NULL
, ru
);
1680 /* avoid REGPARM breakage on x86: */
1681 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1685 asmlinkage
long sys_wait4(pid_t upid
, int __user
*stat_addr
,
1686 int options
, struct rusage __user
*ru
)
1688 struct pid
*pid
= NULL
;
1692 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1693 __WNOTHREAD
|__WCLONE
|__WALL
))
1698 else if (upid
< 0) {
1699 type
= PIDTYPE_PGID
;
1700 pid
= find_get_pid(-upid
);
1701 } else if (upid
== 0) {
1702 type
= PIDTYPE_PGID
;
1703 pid
= get_pid(task_pgrp(current
));
1704 } else /* upid > 0 */ {
1706 pid
= find_get_pid(upid
);
1709 ret
= do_wait(type
, pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1712 /* avoid REGPARM breakage on x86: */
1713 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1717 #ifdef __ARCH_WANT_SYS_WAITPID
1720 * sys_waitpid() remains for compatibility. waitpid() should be
1721 * implemented by calling sys_wait4() from libc.a.
1723 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1725 return sys_wait4(pid
, stat_addr
, options
, NULL
);