affs: be*_add_cpu conversion
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blobd3ad54677f9c0257fa0a373f8ce1b4774e947722
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 static void exit_mm(struct task_struct * tsk);
55 static inline int task_detached(struct task_struct *p)
57 return p->exit_signal == -1;
60 static void __unhash_process(struct task_struct *p)
62 nr_threads--;
63 detach_pid(p, PIDTYPE_PID);
64 if (thread_group_leader(p)) {
65 detach_pid(p, PIDTYPE_PGID);
66 detach_pid(p, PIDTYPE_SID);
68 list_del_rcu(&p->tasks);
69 __get_cpu_var(process_counts)--;
71 list_del_rcu(&p->thread_group);
72 remove_parent(p);
76 * This function expects the tasklist_lock write-locked.
78 static void __exit_signal(struct task_struct *tsk)
80 struct signal_struct *sig = tsk->signal;
81 struct sighand_struct *sighand;
83 BUG_ON(!sig);
84 BUG_ON(!atomic_read(&sig->count));
86 rcu_read_lock();
87 sighand = rcu_dereference(tsk->sighand);
88 spin_lock(&sighand->siglock);
90 posix_cpu_timers_exit(tsk);
91 if (atomic_dec_and_test(&sig->count))
92 posix_cpu_timers_exit_group(tsk);
93 else {
95 * If there is any task waiting for the group exit
96 * then notify it:
98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99 wake_up_process(sig->group_exit_task);
101 if (tsk == sig->curr_target)
102 sig->curr_target = next_thread(tsk);
104 * Accumulate here the counters for all threads but the
105 * group leader as they die, so they can be added into
106 * the process-wide totals when those are taken.
107 * The group leader stays around as a zombie as long
108 * as there are other threads. When it gets reaped,
109 * the exit.c code will add its counts into these totals.
110 * We won't ever get here for the group leader, since it
111 * will have been the last reference on the signal_struct.
113 sig->utime = cputime_add(sig->utime, tsk->utime);
114 sig->stime = cputime_add(sig->stime, tsk->stime);
115 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
116 sig->min_flt += tsk->min_flt;
117 sig->maj_flt += tsk->maj_flt;
118 sig->nvcsw += tsk->nvcsw;
119 sig->nivcsw += tsk->nivcsw;
120 sig->inblock += task_io_get_inblock(tsk);
121 sig->oublock += task_io_get_oublock(tsk);
122 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
123 sig = NULL; /* Marker for below. */
126 __unhash_process(tsk);
128 tsk->signal = NULL;
129 tsk->sighand = NULL;
130 spin_unlock(&sighand->siglock);
131 rcu_read_unlock();
133 __cleanup_sighand(sighand);
134 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
135 flush_sigqueue(&tsk->pending);
136 if (sig) {
137 flush_sigqueue(&sig->shared_pending);
138 taskstats_tgid_free(sig);
139 __cleanup_signal(sig);
143 static void delayed_put_task_struct(struct rcu_head *rhp)
145 put_task_struct(container_of(rhp, struct task_struct, rcu));
148 void release_task(struct task_struct * p)
150 struct task_struct *leader;
151 int zap_leader;
152 repeat:
153 atomic_dec(&p->user->processes);
154 proc_flush_task(p);
155 write_lock_irq(&tasklist_lock);
156 ptrace_unlink(p);
157 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
158 __exit_signal(p);
161 * If we are the last non-leader member of the thread
162 * group, and the leader is zombie, then notify the
163 * group leader's parent process. (if it wants notification.)
165 zap_leader = 0;
166 leader = p->group_leader;
167 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
168 BUG_ON(task_detached(leader));
169 do_notify_parent(leader, leader->exit_signal);
171 * If we were the last child thread and the leader has
172 * exited already, and the leader's parent ignores SIGCHLD,
173 * then we are the one who should release the leader.
175 * do_notify_parent() will have marked it self-reaping in
176 * that case.
178 zap_leader = task_detached(leader);
181 write_unlock_irq(&tasklist_lock);
182 release_thread(p);
183 call_rcu(&p->rcu, delayed_put_task_struct);
185 p = leader;
186 if (unlikely(zap_leader))
187 goto repeat;
191 * This checks not only the pgrp, but falls back on the pid if no
192 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
193 * without this...
195 * The caller must hold rcu lock or the tasklist lock.
197 struct pid *session_of_pgrp(struct pid *pgrp)
199 struct task_struct *p;
200 struct pid *sid = NULL;
202 p = pid_task(pgrp, PIDTYPE_PGID);
203 if (p == NULL)
204 p = pid_task(pgrp, PIDTYPE_PID);
205 if (p != NULL)
206 sid = task_session(p);
208 return sid;
212 * Determine if a process group is "orphaned", according to the POSIX
213 * definition in 2.2.2.52. Orphaned process groups are not to be affected
214 * by terminal-generated stop signals. Newly orphaned process groups are
215 * to receive a SIGHUP and a SIGCONT.
217 * "I ask you, have you ever known what it is to be an orphan?"
219 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
221 struct task_struct *p;
223 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
224 if ((p == ignored_task) ||
225 (p->exit_state && thread_group_empty(p)) ||
226 is_global_init(p->real_parent))
227 continue;
229 if (task_pgrp(p->real_parent) != pgrp &&
230 task_session(p->real_parent) == task_session(p))
231 return 0;
232 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
234 return 1;
237 int is_current_pgrp_orphaned(void)
239 int retval;
241 read_lock(&tasklist_lock);
242 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
243 read_unlock(&tasklist_lock);
245 return retval;
248 static int has_stopped_jobs(struct pid *pgrp)
250 int retval = 0;
251 struct task_struct *p;
253 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
254 if (!task_is_stopped(p))
255 continue;
256 retval = 1;
257 break;
258 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259 return retval;
263 * Check to see if any process groups have become orphaned as
264 * a result of our exiting, and if they have any stopped jobs,
265 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
267 static void
268 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
270 struct pid *pgrp = task_pgrp(tsk);
271 struct task_struct *ignored_task = tsk;
273 if (!parent)
274 /* exit: our father is in a different pgrp than
275 * we are and we were the only connection outside.
277 parent = tsk->real_parent;
278 else
279 /* reparent: our child is in a different pgrp than
280 * we are, and it was the only connection outside.
282 ignored_task = NULL;
284 if (task_pgrp(parent) != pgrp &&
285 task_session(parent) == task_session(tsk) &&
286 will_become_orphaned_pgrp(pgrp, ignored_task) &&
287 has_stopped_jobs(pgrp)) {
288 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
289 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
294 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
296 * If a kernel thread is launched as a result of a system call, or if
297 * it ever exits, it should generally reparent itself to kthreadd so it
298 * isn't in the way of other processes and is correctly cleaned up on exit.
300 * The various task state such as scheduling policy and priority may have
301 * been inherited from a user process, so we reset them to sane values here.
303 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
305 static void reparent_to_kthreadd(void)
307 write_lock_irq(&tasklist_lock);
309 ptrace_unlink(current);
310 /* Reparent to init */
311 remove_parent(current);
312 current->real_parent = current->parent = kthreadd_task;
313 add_parent(current);
315 /* Set the exit signal to SIGCHLD so we signal init on exit */
316 current->exit_signal = SIGCHLD;
318 if (task_nice(current) < 0)
319 set_user_nice(current, 0);
320 /* cpus_allowed? */
321 /* rt_priority? */
322 /* signals? */
323 security_task_reparent_to_init(current);
324 memcpy(current->signal->rlim, init_task.signal->rlim,
325 sizeof(current->signal->rlim));
326 atomic_inc(&(INIT_USER->__count));
327 write_unlock_irq(&tasklist_lock);
328 switch_uid(INIT_USER);
331 void __set_special_pids(struct pid *pid)
333 struct task_struct *curr = current->group_leader;
334 pid_t nr = pid_nr(pid);
336 if (task_session(curr) != pid) {
337 change_pid(curr, PIDTYPE_SID, pid);
338 set_task_session(curr, nr);
340 if (task_pgrp(curr) != pid) {
341 change_pid(curr, PIDTYPE_PGID, pid);
342 set_task_pgrp(curr, nr);
346 static void set_special_pids(struct pid *pid)
348 write_lock_irq(&tasklist_lock);
349 __set_special_pids(pid);
350 write_unlock_irq(&tasklist_lock);
354 * Let kernel threads use this to say that they
355 * allow a certain signal (since daemonize() will
356 * have disabled all of them by default).
358 int allow_signal(int sig)
360 if (!valid_signal(sig) || sig < 1)
361 return -EINVAL;
363 spin_lock_irq(&current->sighand->siglock);
364 sigdelset(&current->blocked, sig);
365 if (!current->mm) {
366 /* Kernel threads handle their own signals.
367 Let the signal code know it'll be handled, so
368 that they don't get converted to SIGKILL or
369 just silently dropped */
370 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
372 recalc_sigpending();
373 spin_unlock_irq(&current->sighand->siglock);
374 return 0;
377 EXPORT_SYMBOL(allow_signal);
379 int disallow_signal(int sig)
381 if (!valid_signal(sig) || sig < 1)
382 return -EINVAL;
384 spin_lock_irq(&current->sighand->siglock);
385 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
386 recalc_sigpending();
387 spin_unlock_irq(&current->sighand->siglock);
388 return 0;
391 EXPORT_SYMBOL(disallow_signal);
394 * Put all the gunge required to become a kernel thread without
395 * attached user resources in one place where it belongs.
398 void daemonize(const char *name, ...)
400 va_list args;
401 struct fs_struct *fs;
402 sigset_t blocked;
404 va_start(args, name);
405 vsnprintf(current->comm, sizeof(current->comm), name, args);
406 va_end(args);
409 * If we were started as result of loading a module, close all of the
410 * user space pages. We don't need them, and if we didn't close them
411 * they would be locked into memory.
413 exit_mm(current);
415 * We don't want to have TIF_FREEZE set if the system-wide hibernation
416 * or suspend transition begins right now.
418 current->flags |= PF_NOFREEZE;
420 if (current->nsproxy != &init_nsproxy) {
421 get_nsproxy(&init_nsproxy);
422 switch_task_namespaces(current, &init_nsproxy);
424 set_special_pids(&init_struct_pid);
425 proc_clear_tty(current);
427 /* Block and flush all signals */
428 sigfillset(&blocked);
429 sigprocmask(SIG_BLOCK, &blocked, NULL);
430 flush_signals(current);
432 /* Become as one with the init task */
434 exit_fs(current); /* current->fs->count--; */
435 fs = init_task.fs;
436 current->fs = fs;
437 atomic_inc(&fs->count);
439 exit_files(current);
440 current->files = init_task.files;
441 atomic_inc(&current->files->count);
443 reparent_to_kthreadd();
446 EXPORT_SYMBOL(daemonize);
448 static void close_files(struct files_struct * files)
450 int i, j;
451 struct fdtable *fdt;
453 j = 0;
456 * It is safe to dereference the fd table without RCU or
457 * ->file_lock because this is the last reference to the
458 * files structure.
460 fdt = files_fdtable(files);
461 for (;;) {
462 unsigned long set;
463 i = j * __NFDBITS;
464 if (i >= fdt->max_fds)
465 break;
466 set = fdt->open_fds->fds_bits[j++];
467 while (set) {
468 if (set & 1) {
469 struct file * file = xchg(&fdt->fd[i], NULL);
470 if (file) {
471 filp_close(file, files);
472 cond_resched();
475 i++;
476 set >>= 1;
481 struct files_struct *get_files_struct(struct task_struct *task)
483 struct files_struct *files;
485 task_lock(task);
486 files = task->files;
487 if (files)
488 atomic_inc(&files->count);
489 task_unlock(task);
491 return files;
494 void put_files_struct(struct files_struct *files)
496 struct fdtable *fdt;
498 if (atomic_dec_and_test(&files->count)) {
499 close_files(files);
501 * Free the fd and fdset arrays if we expanded them.
502 * If the fdtable was embedded, pass files for freeing
503 * at the end of the RCU grace period. Otherwise,
504 * you can free files immediately.
506 fdt = files_fdtable(files);
507 if (fdt != &files->fdtab)
508 kmem_cache_free(files_cachep, files);
509 free_fdtable(fdt);
513 void reset_files_struct(struct files_struct *files)
515 struct task_struct *tsk = current;
516 struct files_struct *old;
518 old = tsk->files;
519 task_lock(tsk);
520 tsk->files = files;
521 task_unlock(tsk);
522 put_files_struct(old);
525 void exit_files(struct task_struct *tsk)
527 struct files_struct * files = tsk->files;
529 if (files) {
530 task_lock(tsk);
531 tsk->files = NULL;
532 task_unlock(tsk);
533 put_files_struct(files);
537 void put_fs_struct(struct fs_struct *fs)
539 /* No need to hold fs->lock if we are killing it */
540 if (atomic_dec_and_test(&fs->count)) {
541 path_put(&fs->root);
542 path_put(&fs->pwd);
543 if (fs->altroot.dentry)
544 path_put(&fs->altroot);
545 kmem_cache_free(fs_cachep, fs);
549 void exit_fs(struct task_struct *tsk)
551 struct fs_struct * fs = tsk->fs;
553 if (fs) {
554 task_lock(tsk);
555 tsk->fs = NULL;
556 task_unlock(tsk);
557 put_fs_struct(fs);
561 EXPORT_SYMBOL_GPL(exit_fs);
563 #ifdef CONFIG_MM_OWNER
565 * Task p is exiting and it owned mm, lets find a new owner for it
567 static inline int
568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
574 if (!mm)
575 return 0;
576 if (atomic_read(&mm->mm_users) <= 1)
577 return 0;
578 if (mm->owner != p)
579 return 0;
580 return 1;
583 void mm_update_next_owner(struct mm_struct *mm)
585 struct task_struct *c, *g, *p = current;
587 retry:
588 if (!mm_need_new_owner(mm, p))
589 return;
591 read_lock(&tasklist_lock);
593 * Search in the children
595 list_for_each_entry(c, &p->children, sibling) {
596 if (c->mm == mm)
597 goto assign_new_owner;
601 * Search in the siblings
603 list_for_each_entry(c, &p->parent->children, sibling) {
604 if (c->mm == mm)
605 goto assign_new_owner;
609 * Search through everything else. We should not get
610 * here often
612 do_each_thread(g, c) {
613 if (c->mm == mm)
614 goto assign_new_owner;
615 } while_each_thread(g, c);
617 read_unlock(&tasklist_lock);
618 return;
620 assign_new_owner:
621 BUG_ON(c == p);
622 get_task_struct(c);
624 * The task_lock protects c->mm from changing.
625 * We always want mm->owner->mm == mm
627 task_lock(c);
629 * Delay read_unlock() till we have the task_lock()
630 * to ensure that c does not slip away underneath us
632 read_unlock(&tasklist_lock);
633 if (c->mm != mm) {
634 task_unlock(c);
635 put_task_struct(c);
636 goto retry;
638 cgroup_mm_owner_callbacks(mm->owner, c);
639 mm->owner = c;
640 task_unlock(c);
641 put_task_struct(c);
643 #endif /* CONFIG_MM_OWNER */
646 * Turn us into a lazy TLB process if we
647 * aren't already..
649 static void exit_mm(struct task_struct * tsk)
651 struct mm_struct *mm = tsk->mm;
653 mm_release(tsk, mm);
654 if (!mm)
655 return;
657 * Serialize with any possible pending coredump.
658 * We must hold mmap_sem around checking core_waiters
659 * and clearing tsk->mm. The core-inducing thread
660 * will increment core_waiters for each thread in the
661 * group with ->mm != NULL.
663 down_read(&mm->mmap_sem);
664 if (mm->core_waiters) {
665 up_read(&mm->mmap_sem);
666 down_write(&mm->mmap_sem);
667 if (!--mm->core_waiters)
668 complete(mm->core_startup_done);
669 up_write(&mm->mmap_sem);
671 wait_for_completion(&mm->core_done);
672 down_read(&mm->mmap_sem);
674 atomic_inc(&mm->mm_count);
675 BUG_ON(mm != tsk->active_mm);
676 /* more a memory barrier than a real lock */
677 task_lock(tsk);
678 tsk->mm = NULL;
679 up_read(&mm->mmap_sem);
680 enter_lazy_tlb(mm, current);
681 /* We don't want this task to be frozen prematurely */
682 clear_freeze_flag(tsk);
683 task_unlock(tsk);
684 mm_update_next_owner(mm);
685 mmput(mm);
688 static void
689 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
691 if (p->pdeath_signal)
692 /* We already hold the tasklist_lock here. */
693 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
695 /* Move the child from its dying parent to the new one. */
696 if (unlikely(traced)) {
697 /* Preserve ptrace links if someone else is tracing this child. */
698 list_del_init(&p->ptrace_list);
699 if (ptrace_reparented(p))
700 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
701 } else {
702 /* If this child is being traced, then we're the one tracing it
703 * anyway, so let go of it.
705 p->ptrace = 0;
706 remove_parent(p);
707 p->parent = p->real_parent;
708 add_parent(p);
710 if (task_is_traced(p)) {
712 * If it was at a trace stop, turn it into
713 * a normal stop since it's no longer being
714 * traced.
716 ptrace_untrace(p);
720 /* If this is a threaded reparent there is no need to
721 * notify anyone anything has happened.
723 if (same_thread_group(p->real_parent, father))
724 return;
726 /* We don't want people slaying init. */
727 if (!task_detached(p))
728 p->exit_signal = SIGCHLD;
730 /* If we'd notified the old parent about this child's death,
731 * also notify the new parent.
733 if (!traced && p->exit_state == EXIT_ZOMBIE &&
734 !task_detached(p) && thread_group_empty(p))
735 do_notify_parent(p, p->exit_signal);
737 kill_orphaned_pgrp(p, father);
741 * When we die, we re-parent all our children.
742 * Try to give them to another thread in our thread
743 * group, and if no such member exists, give it to
744 * the child reaper process (ie "init") in our pid
745 * space.
747 static void forget_original_parent(struct task_struct *father)
749 struct task_struct *p, *n, *reaper = father;
750 struct list_head ptrace_dead;
752 INIT_LIST_HEAD(&ptrace_dead);
754 write_lock_irq(&tasklist_lock);
756 do {
757 reaper = next_thread(reaper);
758 if (reaper == father) {
759 reaper = task_child_reaper(father);
760 break;
762 } while (reaper->flags & PF_EXITING);
765 * There are only two places where our children can be:
767 * - in our child list
768 * - in our ptraced child list
770 * Search them and reparent children.
772 list_for_each_entry_safe(p, n, &father->children, sibling) {
773 int ptrace;
775 ptrace = p->ptrace;
777 /* if father isn't the real parent, then ptrace must be enabled */
778 BUG_ON(father != p->real_parent && !ptrace);
780 if (father == p->real_parent) {
781 /* reparent with a reaper, real father it's us */
782 p->real_parent = reaper;
783 reparent_thread(p, father, 0);
784 } else {
785 /* reparent ptraced task to its real parent */
786 __ptrace_unlink (p);
787 if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
788 thread_group_empty(p))
789 do_notify_parent(p, p->exit_signal);
793 * if the ptraced child is a detached zombie we must collect
794 * it before we exit, or it will remain zombie forever since
795 * we prevented it from self-reap itself while it was being
796 * traced by us, to be able to see it in wait4.
798 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
799 list_add(&p->ptrace_list, &ptrace_dead);
802 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
803 p->real_parent = reaper;
804 reparent_thread(p, father, 1);
807 write_unlock_irq(&tasklist_lock);
808 BUG_ON(!list_empty(&father->children));
809 BUG_ON(!list_empty(&father->ptrace_children));
811 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
812 list_del_init(&p->ptrace_list);
813 release_task(p);
819 * Send signals to all our closest relatives so that they know
820 * to properly mourn us..
822 static void exit_notify(struct task_struct *tsk, int group_dead)
824 int state;
827 * This does two things:
829 * A. Make init inherit all the child processes
830 * B. Check to see if any process groups have become orphaned
831 * as a result of our exiting, and if they have any stopped
832 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
834 forget_original_parent(tsk);
835 exit_task_namespaces(tsk);
837 write_lock_irq(&tasklist_lock);
838 if (group_dead)
839 kill_orphaned_pgrp(tsk->group_leader, NULL);
841 /* Let father know we died
843 * Thread signals are configurable, but you aren't going to use
844 * that to send signals to arbitary processes.
845 * That stops right now.
847 * If the parent exec id doesn't match the exec id we saved
848 * when we started then we know the parent has changed security
849 * domain.
851 * If our self_exec id doesn't match our parent_exec_id then
852 * we have changed execution domain as these two values started
853 * the same after a fork.
855 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
856 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
857 tsk->self_exec_id != tsk->parent_exec_id) &&
858 !capable(CAP_KILL))
859 tsk->exit_signal = SIGCHLD;
861 /* If something other than our normal parent is ptracing us, then
862 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
863 * only has special meaning to our real parent.
865 if (!task_detached(tsk) && thread_group_empty(tsk)) {
866 int signal = ptrace_reparented(tsk) ?
867 SIGCHLD : tsk->exit_signal;
868 do_notify_parent(tsk, signal);
869 } else if (tsk->ptrace) {
870 do_notify_parent(tsk, SIGCHLD);
873 state = EXIT_ZOMBIE;
874 if (task_detached(tsk) && likely(!tsk->ptrace))
875 state = EXIT_DEAD;
876 tsk->exit_state = state;
878 /* mt-exec, de_thread() is waiting for us */
879 if (thread_group_leader(tsk) &&
880 tsk->signal->notify_count < 0 &&
881 tsk->signal->group_exit_task)
882 wake_up_process(tsk->signal->group_exit_task);
884 write_unlock_irq(&tasklist_lock);
886 /* If the process is dead, release it - nobody will wait for it */
887 if (state == EXIT_DEAD)
888 release_task(tsk);
891 #ifdef CONFIG_DEBUG_STACK_USAGE
892 static void check_stack_usage(void)
894 static DEFINE_SPINLOCK(low_water_lock);
895 static int lowest_to_date = THREAD_SIZE;
896 unsigned long *n = end_of_stack(current);
897 unsigned long free;
899 while (*n == 0)
900 n++;
901 free = (unsigned long)n - (unsigned long)end_of_stack(current);
903 if (free >= lowest_to_date)
904 return;
906 spin_lock(&low_water_lock);
907 if (free < lowest_to_date) {
908 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
909 "left\n",
910 current->comm, free);
911 lowest_to_date = free;
913 spin_unlock(&low_water_lock);
915 #else
916 static inline void check_stack_usage(void) {}
917 #endif
919 static inline void exit_child_reaper(struct task_struct *tsk)
921 if (likely(tsk->group_leader != task_child_reaper(tsk)))
922 return;
924 if (tsk->nsproxy->pid_ns == &init_pid_ns)
925 panic("Attempted to kill init!");
928 * @tsk is the last thread in the 'cgroup-init' and is exiting.
929 * Terminate all remaining processes in the namespace and reap them
930 * before exiting @tsk.
932 * Note that @tsk (last thread of cgroup-init) may not necessarily
933 * be the child-reaper (i.e main thread of cgroup-init) of the
934 * namespace i.e the child_reaper may have already exited.
936 * Even after a child_reaper exits, we let it inherit orphaned children,
937 * because, pid_ns->child_reaper remains valid as long as there is
938 * at least one living sub-thread in the cgroup init.
940 * This living sub-thread of the cgroup-init will be notified when
941 * a child inherited by the 'child-reaper' exits (do_notify_parent()
942 * uses __group_send_sig_info()). Further, when reaping child processes,
943 * do_wait() iterates over children of all living sub threads.
945 * i.e even though 'child_reaper' thread is listed as the parent of the
946 * orphaned children, any living sub-thread in the cgroup-init can
947 * perform the role of the child_reaper.
949 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
952 NORET_TYPE void do_exit(long code)
954 struct task_struct *tsk = current;
955 int group_dead;
957 profile_task_exit(tsk);
959 WARN_ON(atomic_read(&tsk->fs_excl));
961 if (unlikely(in_interrupt()))
962 panic("Aiee, killing interrupt handler!");
963 if (unlikely(!tsk->pid))
964 panic("Attempted to kill the idle task!");
966 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
967 current->ptrace_message = code;
968 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
972 * We're taking recursive faults here in do_exit. Safest is to just
973 * leave this task alone and wait for reboot.
975 if (unlikely(tsk->flags & PF_EXITING)) {
976 printk(KERN_ALERT
977 "Fixing recursive fault but reboot is needed!\n");
979 * We can do this unlocked here. The futex code uses
980 * this flag just to verify whether the pi state
981 * cleanup has been done or not. In the worst case it
982 * loops once more. We pretend that the cleanup was
983 * done as there is no way to return. Either the
984 * OWNER_DIED bit is set by now or we push the blocked
985 * task into the wait for ever nirwana as well.
987 tsk->flags |= PF_EXITPIDONE;
988 if (tsk->io_context)
989 exit_io_context();
990 set_current_state(TASK_UNINTERRUPTIBLE);
991 schedule();
994 exit_signals(tsk); /* sets PF_EXITING */
996 * tsk->flags are checked in the futex code to protect against
997 * an exiting task cleaning up the robust pi futexes.
999 smp_mb();
1000 spin_unlock_wait(&tsk->pi_lock);
1002 if (unlikely(in_atomic()))
1003 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1004 current->comm, task_pid_nr(current),
1005 preempt_count());
1007 acct_update_integrals(tsk);
1008 if (tsk->mm) {
1009 update_hiwater_rss(tsk->mm);
1010 update_hiwater_vm(tsk->mm);
1012 group_dead = atomic_dec_and_test(&tsk->signal->live);
1013 if (group_dead) {
1014 exit_child_reaper(tsk);
1015 hrtimer_cancel(&tsk->signal->real_timer);
1016 exit_itimers(tsk->signal);
1018 acct_collect(code, group_dead);
1019 #ifdef CONFIG_FUTEX
1020 if (unlikely(tsk->robust_list))
1021 exit_robust_list(tsk);
1022 #ifdef CONFIG_COMPAT
1023 if (unlikely(tsk->compat_robust_list))
1024 compat_exit_robust_list(tsk);
1025 #endif
1026 #endif
1027 if (group_dead)
1028 tty_audit_exit();
1029 if (unlikely(tsk->audit_context))
1030 audit_free(tsk);
1032 tsk->exit_code = code;
1033 taskstats_exit(tsk, group_dead);
1035 exit_mm(tsk);
1037 if (group_dead)
1038 acct_process();
1039 exit_sem(tsk);
1040 exit_files(tsk);
1041 exit_fs(tsk);
1042 check_stack_usage();
1043 exit_thread();
1044 cgroup_exit(tsk, 1);
1045 exit_keys(tsk);
1047 if (group_dead && tsk->signal->leader)
1048 disassociate_ctty(1);
1050 module_put(task_thread_info(tsk)->exec_domain->module);
1051 if (tsk->binfmt)
1052 module_put(tsk->binfmt->module);
1054 proc_exit_connector(tsk);
1055 exit_notify(tsk, group_dead);
1056 #ifdef CONFIG_NUMA
1057 mpol_put(tsk->mempolicy);
1058 tsk->mempolicy = NULL;
1059 #endif
1060 #ifdef CONFIG_FUTEX
1062 * This must happen late, after the PID is not
1063 * hashed anymore:
1065 if (unlikely(!list_empty(&tsk->pi_state_list)))
1066 exit_pi_state_list(tsk);
1067 if (unlikely(current->pi_state_cache))
1068 kfree(current->pi_state_cache);
1069 #endif
1071 * Make sure we are holding no locks:
1073 debug_check_no_locks_held(tsk);
1075 * We can do this unlocked here. The futex code uses this flag
1076 * just to verify whether the pi state cleanup has been done
1077 * or not. In the worst case it loops once more.
1079 tsk->flags |= PF_EXITPIDONE;
1081 if (tsk->io_context)
1082 exit_io_context();
1084 if (tsk->splice_pipe)
1085 __free_pipe_info(tsk->splice_pipe);
1087 preempt_disable();
1088 /* causes final put_task_struct in finish_task_switch(). */
1089 tsk->state = TASK_DEAD;
1091 schedule();
1092 BUG();
1093 /* Avoid "noreturn function does return". */
1094 for (;;)
1095 cpu_relax(); /* For when BUG is null */
1098 EXPORT_SYMBOL_GPL(do_exit);
1100 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1102 if (comp)
1103 complete(comp);
1105 do_exit(code);
1108 EXPORT_SYMBOL(complete_and_exit);
1110 asmlinkage long sys_exit(int error_code)
1112 do_exit((error_code&0xff)<<8);
1116 * Take down every thread in the group. This is called by fatal signals
1117 * as well as by sys_exit_group (below).
1119 NORET_TYPE void
1120 do_group_exit(int exit_code)
1122 struct signal_struct *sig = current->signal;
1124 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1126 if (signal_group_exit(sig))
1127 exit_code = sig->group_exit_code;
1128 else if (!thread_group_empty(current)) {
1129 struct sighand_struct *const sighand = current->sighand;
1130 spin_lock_irq(&sighand->siglock);
1131 if (signal_group_exit(sig))
1132 /* Another thread got here before we took the lock. */
1133 exit_code = sig->group_exit_code;
1134 else {
1135 sig->group_exit_code = exit_code;
1136 sig->flags = SIGNAL_GROUP_EXIT;
1137 zap_other_threads(current);
1139 spin_unlock_irq(&sighand->siglock);
1142 do_exit(exit_code);
1143 /* NOTREACHED */
1147 * this kills every thread in the thread group. Note that any externally
1148 * wait4()-ing process will get the correct exit code - even if this
1149 * thread is not the thread group leader.
1151 asmlinkage void sys_exit_group(int error_code)
1153 do_group_exit((error_code & 0xff) << 8);
1156 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1158 struct pid *pid = NULL;
1159 if (type == PIDTYPE_PID)
1160 pid = task->pids[type].pid;
1161 else if (type < PIDTYPE_MAX)
1162 pid = task->group_leader->pids[type].pid;
1163 return pid;
1166 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1167 struct task_struct *p)
1169 int err;
1171 if (type < PIDTYPE_MAX) {
1172 if (task_pid_type(p, type) != pid)
1173 return 0;
1177 * Do not consider detached threads that are
1178 * not ptraced:
1180 if (task_detached(p) && !p->ptrace)
1181 return 0;
1183 /* Wait for all children (clone and not) if __WALL is set;
1184 * otherwise, wait for clone children *only* if __WCLONE is
1185 * set; otherwise, wait for non-clone children *only*. (Note:
1186 * A "clone" child here is one that reports to its parent
1187 * using a signal other than SIGCHLD.) */
1188 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1189 && !(options & __WALL))
1190 return 0;
1192 err = security_task_wait(p);
1193 if (likely(!err))
1194 return 1;
1196 if (type != PIDTYPE_PID)
1197 return 0;
1198 /* This child was explicitly requested, abort */
1199 read_unlock(&tasklist_lock);
1200 return err;
1203 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1204 int why, int status,
1205 struct siginfo __user *infop,
1206 struct rusage __user *rusagep)
1208 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1210 put_task_struct(p);
1211 if (!retval)
1212 retval = put_user(SIGCHLD, &infop->si_signo);
1213 if (!retval)
1214 retval = put_user(0, &infop->si_errno);
1215 if (!retval)
1216 retval = put_user((short)why, &infop->si_code);
1217 if (!retval)
1218 retval = put_user(pid, &infop->si_pid);
1219 if (!retval)
1220 retval = put_user(uid, &infop->si_uid);
1221 if (!retval)
1222 retval = put_user(status, &infop->si_status);
1223 if (!retval)
1224 retval = pid;
1225 return retval;
1229 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1230 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1231 * the lock and this task is uninteresting. If we return nonzero, we have
1232 * released the lock and the system call should return.
1234 static int wait_task_zombie(struct task_struct *p, int noreap,
1235 struct siginfo __user *infop,
1236 int __user *stat_addr, struct rusage __user *ru)
1238 unsigned long state;
1239 int retval, status, traced;
1240 pid_t pid = task_pid_vnr(p);
1242 if (unlikely(noreap)) {
1243 uid_t uid = p->uid;
1244 int exit_code = p->exit_code;
1245 int why, status;
1247 get_task_struct(p);
1248 read_unlock(&tasklist_lock);
1249 if ((exit_code & 0x7f) == 0) {
1250 why = CLD_EXITED;
1251 status = exit_code >> 8;
1252 } else {
1253 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1254 status = exit_code & 0x7f;
1256 return wait_noreap_copyout(p, pid, uid, why,
1257 status, infop, ru);
1261 * Try to move the task's state to DEAD
1262 * only one thread is allowed to do this:
1264 state = xchg(&p->exit_state, EXIT_DEAD);
1265 if (state != EXIT_ZOMBIE) {
1266 BUG_ON(state != EXIT_DEAD);
1267 return 0;
1270 traced = ptrace_reparented(p);
1272 if (likely(!traced)) {
1273 struct signal_struct *psig;
1274 struct signal_struct *sig;
1277 * The resource counters for the group leader are in its
1278 * own task_struct. Those for dead threads in the group
1279 * are in its signal_struct, as are those for the child
1280 * processes it has previously reaped. All these
1281 * accumulate in the parent's signal_struct c* fields.
1283 * We don't bother to take a lock here to protect these
1284 * p->signal fields, because they are only touched by
1285 * __exit_signal, which runs with tasklist_lock
1286 * write-locked anyway, and so is excluded here. We do
1287 * need to protect the access to p->parent->signal fields,
1288 * as other threads in the parent group can be right
1289 * here reaping other children at the same time.
1291 spin_lock_irq(&p->parent->sighand->siglock);
1292 psig = p->parent->signal;
1293 sig = p->signal;
1294 psig->cutime =
1295 cputime_add(psig->cutime,
1296 cputime_add(p->utime,
1297 cputime_add(sig->utime,
1298 sig->cutime)));
1299 psig->cstime =
1300 cputime_add(psig->cstime,
1301 cputime_add(p->stime,
1302 cputime_add(sig->stime,
1303 sig->cstime)));
1304 psig->cgtime =
1305 cputime_add(psig->cgtime,
1306 cputime_add(p->gtime,
1307 cputime_add(sig->gtime,
1308 sig->cgtime)));
1309 psig->cmin_flt +=
1310 p->min_flt + sig->min_flt + sig->cmin_flt;
1311 psig->cmaj_flt +=
1312 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1313 psig->cnvcsw +=
1314 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1315 psig->cnivcsw +=
1316 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1317 psig->cinblock +=
1318 task_io_get_inblock(p) +
1319 sig->inblock + sig->cinblock;
1320 psig->coublock +=
1321 task_io_get_oublock(p) +
1322 sig->oublock + sig->coublock;
1323 spin_unlock_irq(&p->parent->sighand->siglock);
1327 * Now we are sure this task is interesting, and no other
1328 * thread can reap it because we set its state to EXIT_DEAD.
1330 read_unlock(&tasklist_lock);
1332 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1333 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1334 ? p->signal->group_exit_code : p->exit_code;
1335 if (!retval && stat_addr)
1336 retval = put_user(status, stat_addr);
1337 if (!retval && infop)
1338 retval = put_user(SIGCHLD, &infop->si_signo);
1339 if (!retval && infop)
1340 retval = put_user(0, &infop->si_errno);
1341 if (!retval && infop) {
1342 int why;
1344 if ((status & 0x7f) == 0) {
1345 why = CLD_EXITED;
1346 status >>= 8;
1347 } else {
1348 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1349 status &= 0x7f;
1351 retval = put_user((short)why, &infop->si_code);
1352 if (!retval)
1353 retval = put_user(status, &infop->si_status);
1355 if (!retval && infop)
1356 retval = put_user(pid, &infop->si_pid);
1357 if (!retval && infop)
1358 retval = put_user(p->uid, &infop->si_uid);
1359 if (!retval)
1360 retval = pid;
1362 if (traced) {
1363 write_lock_irq(&tasklist_lock);
1364 /* We dropped tasklist, ptracer could die and untrace */
1365 ptrace_unlink(p);
1367 * If this is not a detached task, notify the parent.
1368 * If it's still not detached after that, don't release
1369 * it now.
1371 if (!task_detached(p)) {
1372 do_notify_parent(p, p->exit_signal);
1373 if (!task_detached(p)) {
1374 p->exit_state = EXIT_ZOMBIE;
1375 p = NULL;
1378 write_unlock_irq(&tasklist_lock);
1380 if (p != NULL)
1381 release_task(p);
1383 return retval;
1387 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1388 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1389 * the lock and this task is uninteresting. If we return nonzero, we have
1390 * released the lock and the system call should return.
1392 static int wait_task_stopped(struct task_struct *p,
1393 int noreap, struct siginfo __user *infop,
1394 int __user *stat_addr, struct rusage __user *ru)
1396 int retval, exit_code, why;
1397 uid_t uid = 0; /* unneeded, required by compiler */
1398 pid_t pid;
1400 exit_code = 0;
1401 spin_lock_irq(&p->sighand->siglock);
1403 if (unlikely(!task_is_stopped_or_traced(p)))
1404 goto unlock_sig;
1406 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1408 * A group stop is in progress and this is the group leader.
1409 * We won't report until all threads have stopped.
1411 goto unlock_sig;
1413 exit_code = p->exit_code;
1414 if (!exit_code)
1415 goto unlock_sig;
1417 if (!noreap)
1418 p->exit_code = 0;
1420 uid = p->uid;
1421 unlock_sig:
1422 spin_unlock_irq(&p->sighand->siglock);
1423 if (!exit_code)
1424 return 0;
1427 * Now we are pretty sure this task is interesting.
1428 * Make sure it doesn't get reaped out from under us while we
1429 * give up the lock and then examine it below. We don't want to
1430 * keep holding onto the tasklist_lock while we call getrusage and
1431 * possibly take page faults for user memory.
1433 get_task_struct(p);
1434 pid = task_pid_vnr(p);
1435 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1436 read_unlock(&tasklist_lock);
1438 if (unlikely(noreap))
1439 return wait_noreap_copyout(p, pid, uid,
1440 why, exit_code,
1441 infop, ru);
1443 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1444 if (!retval && stat_addr)
1445 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1446 if (!retval && infop)
1447 retval = put_user(SIGCHLD, &infop->si_signo);
1448 if (!retval && infop)
1449 retval = put_user(0, &infop->si_errno);
1450 if (!retval && infop)
1451 retval = put_user((short)why, &infop->si_code);
1452 if (!retval && infop)
1453 retval = put_user(exit_code, &infop->si_status);
1454 if (!retval && infop)
1455 retval = put_user(pid, &infop->si_pid);
1456 if (!retval && infop)
1457 retval = put_user(uid, &infop->si_uid);
1458 if (!retval)
1459 retval = pid;
1460 put_task_struct(p);
1462 BUG_ON(!retval);
1463 return retval;
1467 * Handle do_wait work for one task in a live, non-stopped state.
1468 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1469 * the lock and this task is uninteresting. If we return nonzero, we have
1470 * released the lock and the system call should return.
1472 static int wait_task_continued(struct task_struct *p, int noreap,
1473 struct siginfo __user *infop,
1474 int __user *stat_addr, struct rusage __user *ru)
1476 int retval;
1477 pid_t pid;
1478 uid_t uid;
1480 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1481 return 0;
1483 spin_lock_irq(&p->sighand->siglock);
1484 /* Re-check with the lock held. */
1485 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1486 spin_unlock_irq(&p->sighand->siglock);
1487 return 0;
1489 if (!noreap)
1490 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1491 spin_unlock_irq(&p->sighand->siglock);
1493 pid = task_pid_vnr(p);
1494 uid = p->uid;
1495 get_task_struct(p);
1496 read_unlock(&tasklist_lock);
1498 if (!infop) {
1499 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1500 put_task_struct(p);
1501 if (!retval && stat_addr)
1502 retval = put_user(0xffff, stat_addr);
1503 if (!retval)
1504 retval = pid;
1505 } else {
1506 retval = wait_noreap_copyout(p, pid, uid,
1507 CLD_CONTINUED, SIGCONT,
1508 infop, ru);
1509 BUG_ON(retval == 0);
1512 return retval;
1515 static long do_wait(enum pid_type type, struct pid *pid, int options,
1516 struct siginfo __user *infop, int __user *stat_addr,
1517 struct rusage __user *ru)
1519 DECLARE_WAITQUEUE(wait, current);
1520 struct task_struct *tsk;
1521 int flag, retval;
1523 add_wait_queue(&current->signal->wait_chldexit,&wait);
1524 repeat:
1525 /* If there is nothing that can match our critier just get out */
1526 retval = -ECHILD;
1527 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1528 goto end;
1531 * We will set this flag if we see any child that might later
1532 * match our criteria, even if we are not able to reap it yet.
1534 flag = retval = 0;
1535 current->state = TASK_INTERRUPTIBLE;
1536 read_lock(&tasklist_lock);
1537 tsk = current;
1538 do {
1539 struct task_struct *p;
1541 list_for_each_entry(p, &tsk->children, sibling) {
1542 int ret = eligible_child(type, pid, options, p);
1543 if (!ret)
1544 continue;
1546 if (unlikely(ret < 0)) {
1547 retval = ret;
1548 } else if (task_is_stopped_or_traced(p)) {
1550 * It's stopped now, so it might later
1551 * continue, exit, or stop again.
1553 flag = 1;
1554 if (!(p->ptrace & PT_PTRACED) &&
1555 !(options & WUNTRACED))
1556 continue;
1558 retval = wait_task_stopped(p,
1559 (options & WNOWAIT), infop,
1560 stat_addr, ru);
1561 } else if (p->exit_state == EXIT_ZOMBIE &&
1562 !delay_group_leader(p)) {
1564 * We don't reap group leaders with subthreads.
1566 if (!likely(options & WEXITED))
1567 continue;
1568 retval = wait_task_zombie(p,
1569 (options & WNOWAIT), infop,
1570 stat_addr, ru);
1571 } else if (p->exit_state != EXIT_DEAD) {
1573 * It's running now, so it might later
1574 * exit, stop, or stop and then continue.
1576 flag = 1;
1577 if (!unlikely(options & WCONTINUED))
1578 continue;
1579 retval = wait_task_continued(p,
1580 (options & WNOWAIT), infop,
1581 stat_addr, ru);
1583 if (retval != 0) /* tasklist_lock released */
1584 goto end;
1586 if (!flag) {
1587 list_for_each_entry(p, &tsk->ptrace_children,
1588 ptrace_list) {
1589 flag = eligible_child(type, pid, options, p);
1590 if (!flag)
1591 continue;
1592 if (likely(flag > 0))
1593 break;
1594 retval = flag;
1595 goto end;
1598 if (options & __WNOTHREAD)
1599 break;
1600 tsk = next_thread(tsk);
1601 BUG_ON(tsk->signal != current->signal);
1602 } while (tsk != current);
1603 read_unlock(&tasklist_lock);
1605 if (flag) {
1606 if (options & WNOHANG)
1607 goto end;
1608 retval = -ERESTARTSYS;
1609 if (signal_pending(current))
1610 goto end;
1611 schedule();
1612 goto repeat;
1614 retval = -ECHILD;
1615 end:
1616 current->state = TASK_RUNNING;
1617 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1618 if (infop) {
1619 if (retval > 0)
1620 retval = 0;
1621 else {
1623 * For a WNOHANG return, clear out all the fields
1624 * we would set so the user can easily tell the
1625 * difference.
1627 if (!retval)
1628 retval = put_user(0, &infop->si_signo);
1629 if (!retval)
1630 retval = put_user(0, &infop->si_errno);
1631 if (!retval)
1632 retval = put_user(0, &infop->si_code);
1633 if (!retval)
1634 retval = put_user(0, &infop->si_pid);
1635 if (!retval)
1636 retval = put_user(0, &infop->si_uid);
1637 if (!retval)
1638 retval = put_user(0, &infop->si_status);
1641 return retval;
1644 asmlinkage long sys_waitid(int which, pid_t upid,
1645 struct siginfo __user *infop, int options,
1646 struct rusage __user *ru)
1648 struct pid *pid = NULL;
1649 enum pid_type type;
1650 long ret;
1652 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1653 return -EINVAL;
1654 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1655 return -EINVAL;
1657 switch (which) {
1658 case P_ALL:
1659 type = PIDTYPE_MAX;
1660 break;
1661 case P_PID:
1662 type = PIDTYPE_PID;
1663 if (upid <= 0)
1664 return -EINVAL;
1665 break;
1666 case P_PGID:
1667 type = PIDTYPE_PGID;
1668 if (upid <= 0)
1669 return -EINVAL;
1670 break;
1671 default:
1672 return -EINVAL;
1675 if (type < PIDTYPE_MAX)
1676 pid = find_get_pid(upid);
1677 ret = do_wait(type, pid, options, infop, NULL, ru);
1678 put_pid(pid);
1680 /* avoid REGPARM breakage on x86: */
1681 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1682 return ret;
1685 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1686 int options, struct rusage __user *ru)
1688 struct pid *pid = NULL;
1689 enum pid_type type;
1690 long ret;
1692 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1693 __WNOTHREAD|__WCLONE|__WALL))
1694 return -EINVAL;
1696 if (upid == -1)
1697 type = PIDTYPE_MAX;
1698 else if (upid < 0) {
1699 type = PIDTYPE_PGID;
1700 pid = find_get_pid(-upid);
1701 } else if (upid == 0) {
1702 type = PIDTYPE_PGID;
1703 pid = get_pid(task_pgrp(current));
1704 } else /* upid > 0 */ {
1705 type = PIDTYPE_PID;
1706 pid = find_get_pid(upid);
1709 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1710 put_pid(pid);
1712 /* avoid REGPARM breakage on x86: */
1713 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1714 return ret;
1717 #ifdef __ARCH_WANT_SYS_WAITPID
1720 * sys_waitpid() remains for compatibility. waitpid() should be
1721 * implemented by calling sys_wait4() from libc.a.
1723 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1725 return sys_wait4(pid, stat_addr, options, NULL);
1728 #endif