4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
44 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
55 # define SET_FPEMU_CTL(a,b) (-EINVAL)
58 # define GET_FPEMU_CTL(a,b) (-EINVAL)
61 # define SET_FPEXC_CTL(a,b) (-EINVAL)
64 # define GET_FPEXC_CTL(a,b) (-EINVAL)
67 # define GET_ENDIAN(a,b) (-EINVAL)
70 # define SET_ENDIAN(a,b) (-EINVAL)
73 # define GET_TSC_CTL(a) (-EINVAL)
76 # define SET_TSC_CTL(a) (-EINVAL)
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
84 int overflowuid
= DEFAULT_OVERFLOWUID
;
85 int overflowgid
= DEFAULT_OVERFLOWGID
;
88 EXPORT_SYMBOL(overflowuid
);
89 EXPORT_SYMBOL(overflowgid
);
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
97 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
98 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
100 EXPORT_SYMBOL(fs_overflowuid
);
101 EXPORT_SYMBOL(fs_overflowgid
);
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
109 EXPORT_SYMBOL(cad_pid
);
112 * If set, this is used for preparing the system to power off.
115 void (*pm_power_off_prepare
)(void);
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
121 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
123 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
126 if (pcred
->uid
!= cred
->euid
&&
127 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
131 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
135 no_nice
= security_task_setnice(p
, niceval
);
142 set_user_nice(p
, niceval
);
147 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
149 struct task_struct
*g
, *p
;
150 struct user_struct
*user
;
151 const struct cred
*cred
= current_cred();
155 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
158 /* normalize: avoid signed division (rounding problems) */
166 read_lock(&tasklist_lock
);
170 p
= find_task_by_vpid(who
);
174 error
= set_one_prio(p
, niceval
, error
);
178 pgrp
= find_vpid(who
);
180 pgrp
= task_pgrp(current
);
181 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
182 error
= set_one_prio(p
, niceval
, error
);
183 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
186 user
= (struct user_struct
*) cred
->user
;
189 else if ((who
!= cred
->uid
) &&
190 !(user
= find_user(who
)))
191 goto out_unlock
; /* No processes for this user */
193 do_each_thread(g
, p
) {
194 if (__task_cred(p
)->uid
== who
)
195 error
= set_one_prio(p
, niceval
, error
);
196 } while_each_thread(g
, p
);
197 if (who
!= cred
->uid
)
198 free_uid(user
); /* For find_user() */
202 read_unlock(&tasklist_lock
);
209 * Ugh. To avoid negative return values, "getpriority()" will
210 * not return the normal nice-value, but a negated value that
211 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
212 * to stay compatible.
214 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
216 struct task_struct
*g
, *p
;
217 struct user_struct
*user
;
218 const struct cred
*cred
= current_cred();
219 long niceval
, retval
= -ESRCH
;
222 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
225 read_lock(&tasklist_lock
);
229 p
= find_task_by_vpid(who
);
233 niceval
= 20 - task_nice(p
);
234 if (niceval
> retval
)
240 pgrp
= find_vpid(who
);
242 pgrp
= task_pgrp(current
);
243 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
244 niceval
= 20 - task_nice(p
);
245 if (niceval
> retval
)
247 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
250 user
= (struct user_struct
*) cred
->user
;
253 else if ((who
!= cred
->uid
) &&
254 !(user
= find_user(who
)))
255 goto out_unlock
; /* No processes for this user */
257 do_each_thread(g
, p
) {
258 if (__task_cred(p
)->uid
== who
) {
259 niceval
= 20 - task_nice(p
);
260 if (niceval
> retval
)
263 } while_each_thread(g
, p
);
264 if (who
!= cred
->uid
)
265 free_uid(user
); /* for find_user() */
269 read_unlock(&tasklist_lock
);
275 * emergency_restart - reboot the system
277 * Without shutting down any hardware or taking any locks
278 * reboot the system. This is called when we know we are in
279 * trouble so this is our best effort to reboot. This is
280 * safe to call in interrupt context.
282 void emergency_restart(void)
284 machine_emergency_restart();
286 EXPORT_SYMBOL_GPL(emergency_restart
);
288 void kernel_restart_prepare(char *cmd
)
290 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
291 system_state
= SYSTEM_RESTART
;
297 * kernel_restart - reboot the system
298 * @cmd: pointer to buffer containing command to execute for restart
301 * Shutdown everything and perform a clean reboot.
302 * This is not safe to call in interrupt context.
304 void kernel_restart(char *cmd
)
306 kernel_restart_prepare(cmd
);
308 printk(KERN_EMERG
"Restarting system.\n");
310 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
311 machine_restart(cmd
);
313 EXPORT_SYMBOL_GPL(kernel_restart
);
315 static void kernel_shutdown_prepare(enum system_states state
)
317 blocking_notifier_call_chain(&reboot_notifier_list
,
318 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
319 system_state
= state
;
323 * kernel_halt - halt the system
325 * Shutdown everything and perform a clean system halt.
327 void kernel_halt(void)
329 kernel_shutdown_prepare(SYSTEM_HALT
);
331 printk(KERN_EMERG
"System halted.\n");
335 EXPORT_SYMBOL_GPL(kernel_halt
);
338 * kernel_power_off - power_off the system
340 * Shutdown everything and perform a clean system power_off.
342 void kernel_power_off(void)
344 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
345 if (pm_power_off_prepare
)
346 pm_power_off_prepare();
347 disable_nonboot_cpus();
349 printk(KERN_EMERG
"Power down.\n");
352 EXPORT_SYMBOL_GPL(kernel_power_off
);
354 static DEFINE_MUTEX(reboot_mutex
);
357 * Reboot system call: for obvious reasons only root may call it,
358 * and even root needs to set up some magic numbers in the registers
359 * so that some mistake won't make this reboot the whole machine.
360 * You can also set the meaning of the ctrl-alt-del-key here.
362 * reboot doesn't sync: do that yourself before calling this.
364 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
370 /* We only trust the superuser with rebooting the system. */
371 if (!capable(CAP_SYS_BOOT
))
374 /* For safety, we require "magic" arguments. */
375 if (magic1
!= LINUX_REBOOT_MAGIC1
||
376 (magic2
!= LINUX_REBOOT_MAGIC2
&&
377 magic2
!= LINUX_REBOOT_MAGIC2A
&&
378 magic2
!= LINUX_REBOOT_MAGIC2B
&&
379 magic2
!= LINUX_REBOOT_MAGIC2C
))
382 /* Instead of trying to make the power_off code look like
383 * halt when pm_power_off is not set do it the easy way.
385 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
386 cmd
= LINUX_REBOOT_CMD_HALT
;
388 mutex_lock(&reboot_mutex
);
390 case LINUX_REBOOT_CMD_RESTART
:
391 kernel_restart(NULL
);
394 case LINUX_REBOOT_CMD_CAD_ON
:
398 case LINUX_REBOOT_CMD_CAD_OFF
:
402 case LINUX_REBOOT_CMD_HALT
:
405 panic("cannot halt");
407 case LINUX_REBOOT_CMD_POWER_OFF
:
412 case LINUX_REBOOT_CMD_RESTART2
:
413 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
417 buffer
[sizeof(buffer
) - 1] = '\0';
419 kernel_restart(buffer
);
423 case LINUX_REBOOT_CMD_KEXEC
:
424 ret
= kernel_kexec();
428 #ifdef CONFIG_HIBERNATION
429 case LINUX_REBOOT_CMD_SW_SUSPEND
:
438 mutex_unlock(&reboot_mutex
);
442 static void deferred_cad(struct work_struct
*dummy
)
444 kernel_restart(NULL
);
448 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
449 * As it's called within an interrupt, it may NOT sync: the only choice
450 * is whether to reboot at once, or just ignore the ctrl-alt-del.
452 void ctrl_alt_del(void)
454 static DECLARE_WORK(cad_work
, deferred_cad
);
457 schedule_work(&cad_work
);
459 kill_cad_pid(SIGINT
, 1);
463 * Unprivileged users may change the real gid to the effective gid
464 * or vice versa. (BSD-style)
466 * If you set the real gid at all, or set the effective gid to a value not
467 * equal to the real gid, then the saved gid is set to the new effective gid.
469 * This makes it possible for a setgid program to completely drop its
470 * privileges, which is often a useful assertion to make when you are doing
471 * a security audit over a program.
473 * The general idea is that a program which uses just setregid() will be
474 * 100% compatible with BSD. A program which uses just setgid() will be
475 * 100% compatible with POSIX with saved IDs.
477 * SMP: There are not races, the GIDs are checked only by filesystem
478 * operations (as far as semantic preservation is concerned).
480 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
482 const struct cred
*old
;
486 new = prepare_creds();
489 old
= current_cred();
491 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
496 if (rgid
!= (gid_t
) -1) {
497 if (old
->gid
== rgid
||
504 if (egid
!= (gid_t
) -1) {
505 if (old
->gid
== egid
||
514 if (rgid
!= (gid_t
) -1 ||
515 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
516 new->sgid
= new->egid
;
517 new->fsgid
= new->egid
;
519 return commit_creds(new);
527 * setgid() is implemented like SysV w/ SAVED_IDS
529 * SMP: Same implicit races as above.
531 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
533 const struct cred
*old
;
537 new = prepare_creds();
540 old
= current_cred();
542 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
547 if (capable(CAP_SETGID
))
548 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
549 else if (gid
== old
->gid
|| gid
== old
->sgid
)
550 new->egid
= new->fsgid
= gid
;
554 return commit_creds(new);
562 * change the user struct in a credentials set to match the new UID
564 static int set_user(struct cred
*new)
566 struct user_struct
*new_user
;
568 new_user
= alloc_uid(current_user_ns(), new->uid
);
572 if (!task_can_switch_user(new_user
, current
)) {
577 if (atomic_read(&new_user
->processes
) >=
578 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
579 new_user
!= INIT_USER
) {
585 new->user
= new_user
;
590 * Unprivileged users may change the real uid to the effective uid
591 * or vice versa. (BSD-style)
593 * If you set the real uid at all, or set the effective uid to a value not
594 * equal to the real uid, then the saved uid is set to the new effective uid.
596 * This makes it possible for a setuid program to completely drop its
597 * privileges, which is often a useful assertion to make when you are doing
598 * a security audit over a program.
600 * The general idea is that a program which uses just setreuid() will be
601 * 100% compatible with BSD. A program which uses just setuid() will be
602 * 100% compatible with POSIX with saved IDs.
604 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
606 const struct cred
*old
;
610 new = prepare_creds();
613 old
= current_cred();
615 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
620 if (ruid
!= (uid_t
) -1) {
622 if (old
->uid
!= ruid
&&
624 !capable(CAP_SETUID
))
628 if (euid
!= (uid_t
) -1) {
630 if (old
->uid
!= euid
&&
633 !capable(CAP_SETUID
))
637 if (new->uid
!= old
->uid
) {
638 retval
= set_user(new);
642 if (ruid
!= (uid_t
) -1 ||
643 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
644 new->suid
= new->euid
;
645 new->fsuid
= new->euid
;
647 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
651 return commit_creds(new);
659 * setuid() is implemented like SysV with SAVED_IDS
661 * Note that SAVED_ID's is deficient in that a setuid root program
662 * like sendmail, for example, cannot set its uid to be a normal
663 * user and then switch back, because if you're root, setuid() sets
664 * the saved uid too. If you don't like this, blame the bright people
665 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
666 * will allow a root program to temporarily drop privileges and be able to
667 * regain them by swapping the real and effective uid.
669 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
671 const struct cred
*old
;
675 new = prepare_creds();
678 old
= current_cred();
680 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
685 if (capable(CAP_SETUID
)) {
686 new->suid
= new->uid
= uid
;
687 if (uid
!= old
->uid
) {
688 retval
= set_user(new);
692 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
696 new->fsuid
= new->euid
= uid
;
698 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
702 return commit_creds(new);
711 * This function implements a generic ability to update ruid, euid,
712 * and suid. This allows you to implement the 4.4 compatible seteuid().
714 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
716 const struct cred
*old
;
720 new = prepare_creds();
724 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
727 old
= current_cred();
730 if (!capable(CAP_SETUID
)) {
731 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
732 ruid
!= old
->euid
&& ruid
!= old
->suid
)
734 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
735 euid
!= old
->euid
&& euid
!= old
->suid
)
737 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
738 suid
!= old
->euid
&& suid
!= old
->suid
)
742 if (ruid
!= (uid_t
) -1) {
744 if (ruid
!= old
->uid
) {
745 retval
= set_user(new);
750 if (euid
!= (uid_t
) -1)
752 if (suid
!= (uid_t
) -1)
754 new->fsuid
= new->euid
;
756 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
760 return commit_creds(new);
767 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
769 const struct cred
*cred
= current_cred();
772 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
773 !(retval
= put_user(cred
->euid
, euid
)))
774 retval
= put_user(cred
->suid
, suid
);
780 * Same as above, but for rgid, egid, sgid.
782 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
784 const struct cred
*old
;
788 new = prepare_creds();
791 old
= current_cred();
793 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
798 if (!capable(CAP_SETGID
)) {
799 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
800 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
802 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
803 egid
!= old
->egid
&& egid
!= old
->sgid
)
805 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
806 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
810 if (rgid
!= (gid_t
) -1)
812 if (egid
!= (gid_t
) -1)
814 if (sgid
!= (gid_t
) -1)
816 new->fsgid
= new->egid
;
818 return commit_creds(new);
825 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
827 const struct cred
*cred
= current_cred();
830 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
831 !(retval
= put_user(cred
->egid
, egid
)))
832 retval
= put_user(cred
->sgid
, sgid
);
839 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
840 * is used for "access()" and for the NFS daemon (letting nfsd stay at
841 * whatever uid it wants to). It normally shadows "euid", except when
842 * explicitly set by setfsuid() or for access..
844 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
846 const struct cred
*old
;
850 new = prepare_creds();
852 return current_fsuid();
853 old
= current_cred();
854 old_fsuid
= old
->fsuid
;
856 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
) < 0)
859 if (uid
== old
->uid
|| uid
== old
->euid
||
860 uid
== old
->suid
|| uid
== old
->fsuid
||
861 capable(CAP_SETUID
)) {
862 if (uid
!= old_fsuid
) {
864 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
879 * Samma på svenska..
881 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
883 const struct cred
*old
;
887 new = prepare_creds();
889 return current_fsgid();
890 old
= current_cred();
891 old_fsgid
= old
->fsgid
;
893 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
896 if (gid
== old
->gid
|| gid
== old
->egid
||
897 gid
== old
->sgid
|| gid
== old
->fsgid
||
898 capable(CAP_SETGID
)) {
899 if (gid
!= old_fsgid
) {
914 void do_sys_times(struct tms
*tms
)
916 cputime_t tgutime
, tgstime
, cutime
, cstime
;
918 spin_lock_irq(¤t
->sighand
->siglock
);
919 thread_group_times(current
, &tgutime
, &tgstime
);
920 cutime
= current
->signal
->cutime
;
921 cstime
= current
->signal
->cstime
;
922 spin_unlock_irq(¤t
->sighand
->siglock
);
923 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
924 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
925 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
926 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
929 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
935 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
938 force_successful_syscall_return();
939 return (long) jiffies_64_to_clock_t(get_jiffies_64());
943 * This needs some heavy checking ...
944 * I just haven't the stomach for it. I also don't fully
945 * understand sessions/pgrp etc. Let somebody who does explain it.
947 * OK, I think I have the protection semantics right.... this is really
948 * only important on a multi-user system anyway, to make sure one user
949 * can't send a signal to a process owned by another. -TYT, 12/12/91
951 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
954 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
956 struct task_struct
*p
;
957 struct task_struct
*group_leader
= current
->group_leader
;
962 pid
= task_pid_vnr(group_leader
);
968 /* From this point forward we keep holding onto the tasklist lock
969 * so that our parent does not change from under us. -DaveM
971 write_lock_irq(&tasklist_lock
);
974 p
= find_task_by_vpid(pid
);
979 if (!thread_group_leader(p
))
982 if (same_thread_group(p
->real_parent
, group_leader
)) {
984 if (task_session(p
) != task_session(group_leader
))
991 if (p
!= group_leader
)
996 if (p
->signal
->leader
)
1001 struct task_struct
*g
;
1003 pgrp
= find_vpid(pgid
);
1004 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1005 if (!g
|| task_session(g
) != task_session(group_leader
))
1009 err
= security_task_setpgid(p
, pgid
);
1013 if (task_pgrp(p
) != pgrp
)
1014 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1018 /* All paths lead to here, thus we are safe. -DaveM */
1019 write_unlock_irq(&tasklist_lock
);
1023 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1025 struct task_struct
*p
;
1031 grp
= task_pgrp(current
);
1034 p
= find_task_by_vpid(pid
);
1041 retval
= security_task_getpgid(p
);
1045 retval
= pid_vnr(grp
);
1051 #ifdef __ARCH_WANT_SYS_GETPGRP
1053 SYSCALL_DEFINE0(getpgrp
)
1055 return sys_getpgid(0);
1060 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1062 struct task_struct
*p
;
1068 sid
= task_session(current
);
1071 p
= find_task_by_vpid(pid
);
1074 sid
= task_session(p
);
1078 retval
= security_task_getsid(p
);
1082 retval
= pid_vnr(sid
);
1088 SYSCALL_DEFINE0(setsid
)
1090 struct task_struct
*group_leader
= current
->group_leader
;
1091 struct pid
*sid
= task_pid(group_leader
);
1092 pid_t session
= pid_vnr(sid
);
1095 write_lock_irq(&tasklist_lock
);
1096 /* Fail if I am already a session leader */
1097 if (group_leader
->signal
->leader
)
1100 /* Fail if a process group id already exists that equals the
1101 * proposed session id.
1103 if (pid_task(sid
, PIDTYPE_PGID
))
1106 group_leader
->signal
->leader
= 1;
1107 __set_special_pids(sid
);
1109 proc_clear_tty(group_leader
);
1113 write_unlock_irq(&tasklist_lock
);
1115 proc_sid_connector(group_leader
);
1119 DECLARE_RWSEM(uts_sem
);
1121 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1125 down_read(&uts_sem
);
1126 if (copy_to_user(name
, utsname(), sizeof *name
))
1132 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1135 char tmp
[__NEW_UTS_LEN
];
1137 if (!capable(CAP_SYS_ADMIN
))
1139 if (len
< 0 || len
> __NEW_UTS_LEN
)
1141 down_write(&uts_sem
);
1143 if (!copy_from_user(tmp
, name
, len
)) {
1144 struct new_utsname
*u
= utsname();
1146 memcpy(u
->nodename
, tmp
, len
);
1147 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1154 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1156 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1159 struct new_utsname
*u
;
1163 down_read(&uts_sem
);
1165 i
= 1 + strlen(u
->nodename
);
1169 if (copy_to_user(name
, u
->nodename
, i
))
1178 * Only setdomainname; getdomainname can be implemented by calling
1181 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1184 char tmp
[__NEW_UTS_LEN
];
1186 if (!capable(CAP_SYS_ADMIN
))
1188 if (len
< 0 || len
> __NEW_UTS_LEN
)
1191 down_write(&uts_sem
);
1193 if (!copy_from_user(tmp
, name
, len
)) {
1194 struct new_utsname
*u
= utsname();
1196 memcpy(u
->domainname
, tmp
, len
);
1197 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1204 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1206 if (resource
>= RLIM_NLIMITS
)
1209 struct rlimit value
;
1210 task_lock(current
->group_leader
);
1211 value
= current
->signal
->rlim
[resource
];
1212 task_unlock(current
->group_leader
);
1213 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1217 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1220 * Back compatibility for getrlimit. Needed for some apps.
1223 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1224 struct rlimit __user
*, rlim
)
1227 if (resource
>= RLIM_NLIMITS
)
1230 task_lock(current
->group_leader
);
1231 x
= current
->signal
->rlim
[resource
];
1232 task_unlock(current
->group_leader
);
1233 if (x
.rlim_cur
> 0x7FFFFFFF)
1234 x
.rlim_cur
= 0x7FFFFFFF;
1235 if (x
.rlim_max
> 0x7FFFFFFF)
1236 x
.rlim_max
= 0x7FFFFFFF;
1237 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1242 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1244 struct rlimit new_rlim
, *old_rlim
;
1247 if (resource
>= RLIM_NLIMITS
)
1249 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1251 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1253 old_rlim
= current
->signal
->rlim
+ resource
;
1254 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1255 !capable(CAP_SYS_RESOURCE
))
1257 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1260 retval
= security_task_setrlimit(resource
, &new_rlim
);
1264 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1266 * The caller is asking for an immediate RLIMIT_CPU
1267 * expiry. But we use the zero value to mean "it was
1268 * never set". So let's cheat and make it one second
1271 new_rlim
.rlim_cur
= 1;
1274 task_lock(current
->group_leader
);
1275 *old_rlim
= new_rlim
;
1276 task_unlock(current
->group_leader
);
1278 if (resource
!= RLIMIT_CPU
)
1282 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1283 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1284 * very long-standing error, and fixing it now risks breakage of
1285 * applications, so we live with it
1287 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1290 update_rlimit_cpu(new_rlim
.rlim_cur
);
1296 * It would make sense to put struct rusage in the task_struct,
1297 * except that would make the task_struct be *really big*. After
1298 * task_struct gets moved into malloc'ed memory, it would
1299 * make sense to do this. It will make moving the rest of the information
1300 * a lot simpler! (Which we're not doing right now because we're not
1301 * measuring them yet).
1303 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1304 * races with threads incrementing their own counters. But since word
1305 * reads are atomic, we either get new values or old values and we don't
1306 * care which for the sums. We always take the siglock to protect reading
1307 * the c* fields from p->signal from races with exit.c updating those
1308 * fields when reaping, so a sample either gets all the additions of a
1309 * given child after it's reaped, or none so this sample is before reaping.
1312 * We need to take the siglock for CHILDEREN, SELF and BOTH
1313 * for the cases current multithreaded, non-current single threaded
1314 * non-current multithreaded. Thread traversal is now safe with
1316 * Strictly speaking, we donot need to take the siglock if we are current and
1317 * single threaded, as no one else can take our signal_struct away, no one
1318 * else can reap the children to update signal->c* counters, and no one else
1319 * can race with the signal-> fields. If we do not take any lock, the
1320 * signal-> fields could be read out of order while another thread was just
1321 * exiting. So we should place a read memory barrier when we avoid the lock.
1322 * On the writer side, write memory barrier is implied in __exit_signal
1323 * as __exit_signal releases the siglock spinlock after updating the signal->
1324 * fields. But we don't do this yet to keep things simple.
1328 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1330 r
->ru_nvcsw
+= t
->nvcsw
;
1331 r
->ru_nivcsw
+= t
->nivcsw
;
1332 r
->ru_minflt
+= t
->min_flt
;
1333 r
->ru_majflt
+= t
->maj_flt
;
1334 r
->ru_inblock
+= task_io_get_inblock(t
);
1335 r
->ru_oublock
+= task_io_get_oublock(t
);
1338 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1340 struct task_struct
*t
;
1341 unsigned long flags
;
1342 cputime_t tgutime
, tgstime
, utime
, stime
;
1343 unsigned long maxrss
= 0;
1345 memset((char *) r
, 0, sizeof *r
);
1346 utime
= stime
= cputime_zero
;
1348 if (who
== RUSAGE_THREAD
) {
1349 task_times(current
, &utime
, &stime
);
1350 accumulate_thread_rusage(p
, r
);
1351 maxrss
= p
->signal
->maxrss
;
1355 if (!lock_task_sighand(p
, &flags
))
1360 case RUSAGE_CHILDREN
:
1361 utime
= p
->signal
->cutime
;
1362 stime
= p
->signal
->cstime
;
1363 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1364 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1365 r
->ru_minflt
= p
->signal
->cmin_flt
;
1366 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1367 r
->ru_inblock
= p
->signal
->cinblock
;
1368 r
->ru_oublock
= p
->signal
->coublock
;
1369 maxrss
= p
->signal
->cmaxrss
;
1371 if (who
== RUSAGE_CHILDREN
)
1375 thread_group_times(p
, &tgutime
, &tgstime
);
1376 utime
= cputime_add(utime
, tgutime
);
1377 stime
= cputime_add(stime
, tgstime
);
1378 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1379 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1380 r
->ru_minflt
+= p
->signal
->min_flt
;
1381 r
->ru_majflt
+= p
->signal
->maj_flt
;
1382 r
->ru_inblock
+= p
->signal
->inblock
;
1383 r
->ru_oublock
+= p
->signal
->oublock
;
1384 if (maxrss
< p
->signal
->maxrss
)
1385 maxrss
= p
->signal
->maxrss
;
1388 accumulate_thread_rusage(t
, r
);
1396 unlock_task_sighand(p
, &flags
);
1399 cputime_to_timeval(utime
, &r
->ru_utime
);
1400 cputime_to_timeval(stime
, &r
->ru_stime
);
1402 if (who
!= RUSAGE_CHILDREN
) {
1403 struct mm_struct
*mm
= get_task_mm(p
);
1405 setmax_mm_hiwater_rss(&maxrss
, mm
);
1409 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1412 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1415 k_getrusage(p
, who
, &r
);
1416 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1419 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1421 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1422 who
!= RUSAGE_THREAD
)
1424 return getrusage(current
, who
, ru
);
1427 SYSCALL_DEFINE1(umask
, int, mask
)
1429 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1433 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1434 unsigned long, arg4
, unsigned long, arg5
)
1436 struct task_struct
*me
= current
;
1437 unsigned char comm
[sizeof(me
->comm
)];
1440 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1441 if (error
!= -ENOSYS
)
1446 case PR_SET_PDEATHSIG
:
1447 if (!valid_signal(arg2
)) {
1451 me
->pdeath_signal
= arg2
;
1454 case PR_GET_PDEATHSIG
:
1455 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1457 case PR_GET_DUMPABLE
:
1458 error
= get_dumpable(me
->mm
);
1460 case PR_SET_DUMPABLE
:
1461 if (arg2
< 0 || arg2
> 1) {
1465 set_dumpable(me
->mm
, arg2
);
1469 case PR_SET_UNALIGN
:
1470 error
= SET_UNALIGN_CTL(me
, arg2
);
1472 case PR_GET_UNALIGN
:
1473 error
= GET_UNALIGN_CTL(me
, arg2
);
1476 error
= SET_FPEMU_CTL(me
, arg2
);
1479 error
= GET_FPEMU_CTL(me
, arg2
);
1482 error
= SET_FPEXC_CTL(me
, arg2
);
1485 error
= GET_FPEXC_CTL(me
, arg2
);
1488 error
= PR_TIMING_STATISTICAL
;
1491 if (arg2
!= PR_TIMING_STATISTICAL
)
1498 comm
[sizeof(me
->comm
)-1] = 0;
1499 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1500 sizeof(me
->comm
) - 1) < 0)
1502 set_task_comm(me
, comm
);
1505 get_task_comm(comm
, me
);
1506 if (copy_to_user((char __user
*)arg2
, comm
,
1511 error
= GET_ENDIAN(me
, arg2
);
1514 error
= SET_ENDIAN(me
, arg2
);
1517 case PR_GET_SECCOMP
:
1518 error
= prctl_get_seccomp();
1520 case PR_SET_SECCOMP
:
1521 error
= prctl_set_seccomp(arg2
);
1524 error
= GET_TSC_CTL(arg2
);
1527 error
= SET_TSC_CTL(arg2
);
1529 case PR_TASK_PERF_EVENTS_DISABLE
:
1530 error
= perf_event_task_disable();
1532 case PR_TASK_PERF_EVENTS_ENABLE
:
1533 error
= perf_event_task_enable();
1535 case PR_GET_TIMERSLACK
:
1536 error
= current
->timer_slack_ns
;
1538 case PR_SET_TIMERSLACK
:
1540 current
->timer_slack_ns
=
1541 current
->default_timer_slack_ns
;
1543 current
->timer_slack_ns
= arg2
;
1550 case PR_MCE_KILL_CLEAR
:
1553 current
->flags
&= ~PF_MCE_PROCESS
;
1555 case PR_MCE_KILL_SET
:
1556 current
->flags
|= PF_MCE_PROCESS
;
1557 if (arg3
== PR_MCE_KILL_EARLY
)
1558 current
->flags
|= PF_MCE_EARLY
;
1559 else if (arg3
== PR_MCE_KILL_LATE
)
1560 current
->flags
&= ~PF_MCE_EARLY
;
1561 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1563 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1572 case PR_MCE_KILL_GET
:
1573 if (arg2
| arg3
| arg4
| arg5
)
1575 if (current
->flags
& PF_MCE_PROCESS
)
1576 error
= (current
->flags
& PF_MCE_EARLY
) ?
1577 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1579 error
= PR_MCE_KILL_DEFAULT
;
1588 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1589 struct getcpu_cache __user
*, unused
)
1592 int cpu
= raw_smp_processor_id();
1594 err
|= put_user(cpu
, cpup
);
1596 err
|= put_user(cpu_to_node(cpu
), nodep
);
1597 return err
? -EFAULT
: 0;
1600 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1602 static void argv_cleanup(char **argv
, char **envp
)
1608 * orderly_poweroff - Trigger an orderly system poweroff
1609 * @force: force poweroff if command execution fails
1611 * This may be called from any context to trigger a system shutdown.
1612 * If the orderly shutdown fails, it will force an immediate shutdown.
1614 int orderly_poweroff(bool force
)
1617 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1618 static char *envp
[] = {
1620 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1624 struct subprocess_info
*info
;
1627 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1628 __func__
, poweroff_cmd
);
1632 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1638 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1640 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1644 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1645 "forcing the issue\n");
1647 /* I guess this should try to kick off some daemon to
1648 sync and poweroff asap. Or not even bother syncing
1649 if we're doing an emergency shutdown? */
1656 EXPORT_SYMBOL_GPL(orderly_poweroff
);