staging: rtl8192e: Cleanup checkpatch -f warnings and errors - Part XVII
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / events / core.c
blobb8785e26ee1cd28c33a1c0429a49bb515c34c8d2
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include "internal.h"
41 #include <asm/irq_regs.h>
43 struct remote_function_call {
44 struct task_struct *p;
45 int (*func)(void *info);
46 void *info;
47 int ret;
50 static void remote_function(void *data)
52 struct remote_function_call *tfc = data;
53 struct task_struct *p = tfc->p;
55 if (p) {
56 tfc->ret = -EAGAIN;
57 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
58 return;
61 tfc->ret = tfc->func(tfc->info);
64 /**
65 * task_function_call - call a function on the cpu on which a task runs
66 * @p: the task to evaluate
67 * @func: the function to be called
68 * @info: the function call argument
70 * Calls the function @func when the task is currently running. This might
71 * be on the current CPU, which just calls the function directly
73 * returns: @func return value, or
74 * -ESRCH - when the process isn't running
75 * -EAGAIN - when the process moved away
77 static int
78 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 struct remote_function_call data = {
81 .p = p,
82 .func = func,
83 .info = info,
84 .ret = -ESRCH, /* No such (running) process */
87 if (task_curr(p))
88 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 return data.ret;
93 /**
94 * cpu_function_call - call a function on the cpu
95 * @func: the function to be called
96 * @info: the function call argument
98 * Calls the function @func on the remote cpu.
100 * returns: @func return value or -ENXIO when the cpu is offline
102 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 struct remote_function_call data = {
105 .p = NULL,
106 .func = func,
107 .info = info,
108 .ret = -ENXIO, /* No such CPU */
111 smp_call_function_single(cpu, remote_function, &data, 1);
113 return data.ret;
116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
117 PERF_FLAG_FD_OUTPUT |\
118 PERF_FLAG_PID_CGROUP)
120 enum event_type_t {
121 EVENT_FLEXIBLE = 0x1,
122 EVENT_PINNED = 0x2,
123 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
127 * perf_sched_events : >0 events exist
128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 struct jump_label_key perf_sched_events __read_mostly;
131 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133 static atomic_t nr_mmap_events __read_mostly;
134 static atomic_t nr_comm_events __read_mostly;
135 static atomic_t nr_task_events __read_mostly;
137 static LIST_HEAD(pmus);
138 static DEFINE_MUTEX(pmus_lock);
139 static struct srcu_struct pmus_srcu;
142 * perf event paranoia level:
143 * -1 - not paranoid at all
144 * 0 - disallow raw tracepoint access for unpriv
145 * 1 - disallow cpu events for unpriv
146 * 2 - disallow kernel profiling for unpriv
148 int sysctl_perf_event_paranoid __read_mostly = 1;
150 /* Minimum for 512 kiB + 1 user control page */
151 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
154 * max perf event sample rate
156 #define DEFAULT_MAX_SAMPLE_RATE 100000
157 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
158 static int max_samples_per_tick __read_mostly =
159 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161 int perf_proc_update_handler(struct ctl_table *table, int write,
162 void __user *buffer, size_t *lenp,
163 loff_t *ppos)
165 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167 if (ret || !write)
168 return ret;
170 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172 return 0;
175 static atomic64_t perf_event_id;
177 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
178 enum event_type_t event_type);
180 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
181 enum event_type_t event_type,
182 struct task_struct *task);
184 static void update_context_time(struct perf_event_context *ctx);
185 static u64 perf_event_time(struct perf_event *event);
187 void __weak perf_event_print_debug(void) { }
189 extern __weak const char *perf_pmu_name(void)
191 return "pmu";
194 static inline u64 perf_clock(void)
196 return local_clock();
199 static inline struct perf_cpu_context *
200 __get_cpu_context(struct perf_event_context *ctx)
202 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
205 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
206 struct perf_event_context *ctx)
208 raw_spin_lock(&cpuctx->ctx.lock);
209 if (ctx)
210 raw_spin_lock(&ctx->lock);
213 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
214 struct perf_event_context *ctx)
216 if (ctx)
217 raw_spin_unlock(&ctx->lock);
218 raw_spin_unlock(&cpuctx->ctx.lock);
221 #ifdef CONFIG_CGROUP_PERF
224 * Must ensure cgroup is pinned (css_get) before calling
225 * this function. In other words, we cannot call this function
226 * if there is no cgroup event for the current CPU context.
228 static inline struct perf_cgroup *
229 perf_cgroup_from_task(struct task_struct *task)
231 return container_of(task_subsys_state(task, perf_subsys_id),
232 struct perf_cgroup, css);
235 static inline bool
236 perf_cgroup_match(struct perf_event *event)
238 struct perf_event_context *ctx = event->ctx;
239 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
241 return !event->cgrp || event->cgrp == cpuctx->cgrp;
244 static inline void perf_get_cgroup(struct perf_event *event)
246 css_get(&event->cgrp->css);
249 static inline void perf_put_cgroup(struct perf_event *event)
251 css_put(&event->cgrp->css);
254 static inline void perf_detach_cgroup(struct perf_event *event)
256 perf_put_cgroup(event);
257 event->cgrp = NULL;
260 static inline int is_cgroup_event(struct perf_event *event)
262 return event->cgrp != NULL;
265 static inline u64 perf_cgroup_event_time(struct perf_event *event)
267 struct perf_cgroup_info *t;
269 t = per_cpu_ptr(event->cgrp->info, event->cpu);
270 return t->time;
273 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
275 struct perf_cgroup_info *info;
276 u64 now;
278 now = perf_clock();
280 info = this_cpu_ptr(cgrp->info);
282 info->time += now - info->timestamp;
283 info->timestamp = now;
286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
288 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
289 if (cgrp_out)
290 __update_cgrp_time(cgrp_out);
293 static inline void update_cgrp_time_from_event(struct perf_event *event)
295 struct perf_cgroup *cgrp;
298 * ensure we access cgroup data only when needed and
299 * when we know the cgroup is pinned (css_get)
301 if (!is_cgroup_event(event))
302 return;
304 cgrp = perf_cgroup_from_task(current);
306 * Do not update time when cgroup is not active
308 if (cgrp == event->cgrp)
309 __update_cgrp_time(event->cgrp);
312 static inline void
313 perf_cgroup_set_timestamp(struct task_struct *task,
314 struct perf_event_context *ctx)
316 struct perf_cgroup *cgrp;
317 struct perf_cgroup_info *info;
320 * ctx->lock held by caller
321 * ensure we do not access cgroup data
322 * unless we have the cgroup pinned (css_get)
324 if (!task || !ctx->nr_cgroups)
325 return;
327 cgrp = perf_cgroup_from_task(task);
328 info = this_cpu_ptr(cgrp->info);
329 info->timestamp = ctx->timestamp;
332 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
333 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
336 * reschedule events based on the cgroup constraint of task.
338 * mode SWOUT : schedule out everything
339 * mode SWIN : schedule in based on cgroup for next
341 void perf_cgroup_switch(struct task_struct *task, int mode)
343 struct perf_cpu_context *cpuctx;
344 struct pmu *pmu;
345 unsigned long flags;
348 * disable interrupts to avoid geting nr_cgroup
349 * changes via __perf_event_disable(). Also
350 * avoids preemption.
352 local_irq_save(flags);
355 * we reschedule only in the presence of cgroup
356 * constrained events.
358 rcu_read_lock();
360 list_for_each_entry_rcu(pmu, &pmus, entry) {
361 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
364 * perf_cgroup_events says at least one
365 * context on this CPU has cgroup events.
367 * ctx->nr_cgroups reports the number of cgroup
368 * events for a context.
370 if (cpuctx->ctx.nr_cgroups > 0) {
371 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
372 perf_pmu_disable(cpuctx->ctx.pmu);
374 if (mode & PERF_CGROUP_SWOUT) {
375 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
377 * must not be done before ctxswout due
378 * to event_filter_match() in event_sched_out()
380 cpuctx->cgrp = NULL;
383 if (mode & PERF_CGROUP_SWIN) {
384 WARN_ON_ONCE(cpuctx->cgrp);
385 /* set cgrp before ctxsw in to
386 * allow event_filter_match() to not
387 * have to pass task around
389 cpuctx->cgrp = perf_cgroup_from_task(task);
390 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
392 perf_pmu_enable(cpuctx->ctx.pmu);
393 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
397 rcu_read_unlock();
399 local_irq_restore(flags);
402 static inline void perf_cgroup_sched_out(struct task_struct *task)
404 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
407 static inline void perf_cgroup_sched_in(struct task_struct *task)
409 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
412 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
413 struct perf_event_attr *attr,
414 struct perf_event *group_leader)
416 struct perf_cgroup *cgrp;
417 struct cgroup_subsys_state *css;
418 struct file *file;
419 int ret = 0, fput_needed;
421 file = fget_light(fd, &fput_needed);
422 if (!file)
423 return -EBADF;
425 css = cgroup_css_from_dir(file, perf_subsys_id);
426 if (IS_ERR(css)) {
427 ret = PTR_ERR(css);
428 goto out;
431 cgrp = container_of(css, struct perf_cgroup, css);
432 event->cgrp = cgrp;
434 /* must be done before we fput() the file */
435 perf_get_cgroup(event);
438 * all events in a group must monitor
439 * the same cgroup because a task belongs
440 * to only one perf cgroup at a time
442 if (group_leader && group_leader->cgrp != cgrp) {
443 perf_detach_cgroup(event);
444 ret = -EINVAL;
446 out:
447 fput_light(file, fput_needed);
448 return ret;
451 static inline void
452 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
454 struct perf_cgroup_info *t;
455 t = per_cpu_ptr(event->cgrp->info, event->cpu);
456 event->shadow_ctx_time = now - t->timestamp;
459 static inline void
460 perf_cgroup_defer_enabled(struct perf_event *event)
463 * when the current task's perf cgroup does not match
464 * the event's, we need to remember to call the
465 * perf_mark_enable() function the first time a task with
466 * a matching perf cgroup is scheduled in.
468 if (is_cgroup_event(event) && !perf_cgroup_match(event))
469 event->cgrp_defer_enabled = 1;
472 static inline void
473 perf_cgroup_mark_enabled(struct perf_event *event,
474 struct perf_event_context *ctx)
476 struct perf_event *sub;
477 u64 tstamp = perf_event_time(event);
479 if (!event->cgrp_defer_enabled)
480 return;
482 event->cgrp_defer_enabled = 0;
484 event->tstamp_enabled = tstamp - event->total_time_enabled;
485 list_for_each_entry(sub, &event->sibling_list, group_entry) {
486 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
487 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
488 sub->cgrp_defer_enabled = 0;
492 #else /* !CONFIG_CGROUP_PERF */
494 static inline bool
495 perf_cgroup_match(struct perf_event *event)
497 return true;
500 static inline void perf_detach_cgroup(struct perf_event *event)
503 static inline int is_cgroup_event(struct perf_event *event)
505 return 0;
508 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
510 return 0;
513 static inline void update_cgrp_time_from_event(struct perf_event *event)
517 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
521 static inline void perf_cgroup_sched_out(struct task_struct *task)
525 static inline void perf_cgroup_sched_in(struct task_struct *task)
529 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
530 struct perf_event_attr *attr,
531 struct perf_event *group_leader)
533 return -EINVAL;
536 static inline void
537 perf_cgroup_set_timestamp(struct task_struct *task,
538 struct perf_event_context *ctx)
542 void
543 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
547 static inline void
548 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
552 static inline u64 perf_cgroup_event_time(struct perf_event *event)
554 return 0;
557 static inline void
558 perf_cgroup_defer_enabled(struct perf_event *event)
562 static inline void
563 perf_cgroup_mark_enabled(struct perf_event *event,
564 struct perf_event_context *ctx)
567 #endif
569 void perf_pmu_disable(struct pmu *pmu)
571 int *count = this_cpu_ptr(pmu->pmu_disable_count);
572 if (!(*count)++)
573 pmu->pmu_disable(pmu);
576 void perf_pmu_enable(struct pmu *pmu)
578 int *count = this_cpu_ptr(pmu->pmu_disable_count);
579 if (!--(*count))
580 pmu->pmu_enable(pmu);
583 static DEFINE_PER_CPU(struct list_head, rotation_list);
586 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
587 * because they're strictly cpu affine and rotate_start is called with IRQs
588 * disabled, while rotate_context is called from IRQ context.
590 static void perf_pmu_rotate_start(struct pmu *pmu)
592 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
593 struct list_head *head = &__get_cpu_var(rotation_list);
595 WARN_ON(!irqs_disabled());
597 if (list_empty(&cpuctx->rotation_list))
598 list_add(&cpuctx->rotation_list, head);
601 static void get_ctx(struct perf_event_context *ctx)
603 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
606 static void put_ctx(struct perf_event_context *ctx)
608 if (atomic_dec_and_test(&ctx->refcount)) {
609 if (ctx->parent_ctx)
610 put_ctx(ctx->parent_ctx);
611 if (ctx->task)
612 put_task_struct(ctx->task);
613 kfree_rcu(ctx, rcu_head);
617 static void unclone_ctx(struct perf_event_context *ctx)
619 if (ctx->parent_ctx) {
620 put_ctx(ctx->parent_ctx);
621 ctx->parent_ctx = NULL;
625 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
628 * only top level events have the pid namespace they were created in
630 if (event->parent)
631 event = event->parent;
633 return task_tgid_nr_ns(p, event->ns);
636 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
639 * only top level events have the pid namespace they were created in
641 if (event->parent)
642 event = event->parent;
644 return task_pid_nr_ns(p, event->ns);
648 * If we inherit events we want to return the parent event id
649 * to userspace.
651 static u64 primary_event_id(struct perf_event *event)
653 u64 id = event->id;
655 if (event->parent)
656 id = event->parent->id;
658 return id;
662 * Get the perf_event_context for a task and lock it.
663 * This has to cope with with the fact that until it is locked,
664 * the context could get moved to another task.
666 static struct perf_event_context *
667 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
669 struct perf_event_context *ctx;
671 rcu_read_lock();
672 retry:
673 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
674 if (ctx) {
676 * If this context is a clone of another, it might
677 * get swapped for another underneath us by
678 * perf_event_task_sched_out, though the
679 * rcu_read_lock() protects us from any context
680 * getting freed. Lock the context and check if it
681 * got swapped before we could get the lock, and retry
682 * if so. If we locked the right context, then it
683 * can't get swapped on us any more.
685 raw_spin_lock_irqsave(&ctx->lock, *flags);
686 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
687 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
688 goto retry;
691 if (!atomic_inc_not_zero(&ctx->refcount)) {
692 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
693 ctx = NULL;
696 rcu_read_unlock();
697 return ctx;
701 * Get the context for a task and increment its pin_count so it
702 * can't get swapped to another task. This also increments its
703 * reference count so that the context can't get freed.
705 static struct perf_event_context *
706 perf_pin_task_context(struct task_struct *task, int ctxn)
708 struct perf_event_context *ctx;
709 unsigned long flags;
711 ctx = perf_lock_task_context(task, ctxn, &flags);
712 if (ctx) {
713 ++ctx->pin_count;
714 raw_spin_unlock_irqrestore(&ctx->lock, flags);
716 return ctx;
719 static void perf_unpin_context(struct perf_event_context *ctx)
721 unsigned long flags;
723 raw_spin_lock_irqsave(&ctx->lock, flags);
724 --ctx->pin_count;
725 raw_spin_unlock_irqrestore(&ctx->lock, flags);
729 * Update the record of the current time in a context.
731 static void update_context_time(struct perf_event_context *ctx)
733 u64 now = perf_clock();
735 ctx->time += now - ctx->timestamp;
736 ctx->timestamp = now;
739 static u64 perf_event_time(struct perf_event *event)
741 struct perf_event_context *ctx = event->ctx;
743 if (is_cgroup_event(event))
744 return perf_cgroup_event_time(event);
746 return ctx ? ctx->time : 0;
750 * Update the total_time_enabled and total_time_running fields for a event.
751 * The caller of this function needs to hold the ctx->lock.
753 static void update_event_times(struct perf_event *event)
755 struct perf_event_context *ctx = event->ctx;
756 u64 run_end;
758 if (event->state < PERF_EVENT_STATE_INACTIVE ||
759 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
760 return;
762 * in cgroup mode, time_enabled represents
763 * the time the event was enabled AND active
764 * tasks were in the monitored cgroup. This is
765 * independent of the activity of the context as
766 * there may be a mix of cgroup and non-cgroup events.
768 * That is why we treat cgroup events differently
769 * here.
771 if (is_cgroup_event(event))
772 run_end = perf_event_time(event);
773 else if (ctx->is_active)
774 run_end = ctx->time;
775 else
776 run_end = event->tstamp_stopped;
778 event->total_time_enabled = run_end - event->tstamp_enabled;
780 if (event->state == PERF_EVENT_STATE_INACTIVE)
781 run_end = event->tstamp_stopped;
782 else
783 run_end = perf_event_time(event);
785 event->total_time_running = run_end - event->tstamp_running;
790 * Update total_time_enabled and total_time_running for all events in a group.
792 static void update_group_times(struct perf_event *leader)
794 struct perf_event *event;
796 update_event_times(leader);
797 list_for_each_entry(event, &leader->sibling_list, group_entry)
798 update_event_times(event);
801 static struct list_head *
802 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
804 if (event->attr.pinned)
805 return &ctx->pinned_groups;
806 else
807 return &ctx->flexible_groups;
811 * Add a event from the lists for its context.
812 * Must be called with ctx->mutex and ctx->lock held.
814 static void
815 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
817 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
818 event->attach_state |= PERF_ATTACH_CONTEXT;
821 * If we're a stand alone event or group leader, we go to the context
822 * list, group events are kept attached to the group so that
823 * perf_group_detach can, at all times, locate all siblings.
825 if (event->group_leader == event) {
826 struct list_head *list;
828 if (is_software_event(event))
829 event->group_flags |= PERF_GROUP_SOFTWARE;
831 list = ctx_group_list(event, ctx);
832 list_add_tail(&event->group_entry, list);
835 if (is_cgroup_event(event))
836 ctx->nr_cgroups++;
838 list_add_rcu(&event->event_entry, &ctx->event_list);
839 if (!ctx->nr_events)
840 perf_pmu_rotate_start(ctx->pmu);
841 ctx->nr_events++;
842 if (event->attr.inherit_stat)
843 ctx->nr_stat++;
847 * Called at perf_event creation and when events are attached/detached from a
848 * group.
850 static void perf_event__read_size(struct perf_event *event)
852 int entry = sizeof(u64); /* value */
853 int size = 0;
854 int nr = 1;
856 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
857 size += sizeof(u64);
859 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
860 size += sizeof(u64);
862 if (event->attr.read_format & PERF_FORMAT_ID)
863 entry += sizeof(u64);
865 if (event->attr.read_format & PERF_FORMAT_GROUP) {
866 nr += event->group_leader->nr_siblings;
867 size += sizeof(u64);
870 size += entry * nr;
871 event->read_size = size;
874 static void perf_event__header_size(struct perf_event *event)
876 struct perf_sample_data *data;
877 u64 sample_type = event->attr.sample_type;
878 u16 size = 0;
880 perf_event__read_size(event);
882 if (sample_type & PERF_SAMPLE_IP)
883 size += sizeof(data->ip);
885 if (sample_type & PERF_SAMPLE_ADDR)
886 size += sizeof(data->addr);
888 if (sample_type & PERF_SAMPLE_PERIOD)
889 size += sizeof(data->period);
891 if (sample_type & PERF_SAMPLE_READ)
892 size += event->read_size;
894 event->header_size = size;
897 static void perf_event__id_header_size(struct perf_event *event)
899 struct perf_sample_data *data;
900 u64 sample_type = event->attr.sample_type;
901 u16 size = 0;
903 if (sample_type & PERF_SAMPLE_TID)
904 size += sizeof(data->tid_entry);
906 if (sample_type & PERF_SAMPLE_TIME)
907 size += sizeof(data->time);
909 if (sample_type & PERF_SAMPLE_ID)
910 size += sizeof(data->id);
912 if (sample_type & PERF_SAMPLE_STREAM_ID)
913 size += sizeof(data->stream_id);
915 if (sample_type & PERF_SAMPLE_CPU)
916 size += sizeof(data->cpu_entry);
918 event->id_header_size = size;
921 static void perf_group_attach(struct perf_event *event)
923 struct perf_event *group_leader = event->group_leader, *pos;
926 * We can have double attach due to group movement in perf_event_open.
928 if (event->attach_state & PERF_ATTACH_GROUP)
929 return;
931 event->attach_state |= PERF_ATTACH_GROUP;
933 if (group_leader == event)
934 return;
936 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
937 !is_software_event(event))
938 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
940 list_add_tail(&event->group_entry, &group_leader->sibling_list);
941 group_leader->nr_siblings++;
943 perf_event__header_size(group_leader);
945 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
946 perf_event__header_size(pos);
950 * Remove a event from the lists for its context.
951 * Must be called with ctx->mutex and ctx->lock held.
953 static void
954 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
956 struct perf_cpu_context *cpuctx;
958 * We can have double detach due to exit/hot-unplug + close.
960 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
961 return;
963 event->attach_state &= ~PERF_ATTACH_CONTEXT;
965 if (is_cgroup_event(event)) {
966 ctx->nr_cgroups--;
967 cpuctx = __get_cpu_context(ctx);
969 * if there are no more cgroup events
970 * then cler cgrp to avoid stale pointer
971 * in update_cgrp_time_from_cpuctx()
973 if (!ctx->nr_cgroups)
974 cpuctx->cgrp = NULL;
977 ctx->nr_events--;
978 if (event->attr.inherit_stat)
979 ctx->nr_stat--;
981 list_del_rcu(&event->event_entry);
983 if (event->group_leader == event)
984 list_del_init(&event->group_entry);
986 update_group_times(event);
989 * If event was in error state, then keep it
990 * that way, otherwise bogus counts will be
991 * returned on read(). The only way to get out
992 * of error state is by explicit re-enabling
993 * of the event
995 if (event->state > PERF_EVENT_STATE_OFF)
996 event->state = PERF_EVENT_STATE_OFF;
999 static void perf_group_detach(struct perf_event *event)
1001 struct perf_event *sibling, *tmp;
1002 struct list_head *list = NULL;
1005 * We can have double detach due to exit/hot-unplug + close.
1007 if (!(event->attach_state & PERF_ATTACH_GROUP))
1008 return;
1010 event->attach_state &= ~PERF_ATTACH_GROUP;
1013 * If this is a sibling, remove it from its group.
1015 if (event->group_leader != event) {
1016 list_del_init(&event->group_entry);
1017 event->group_leader->nr_siblings--;
1018 goto out;
1021 if (!list_empty(&event->group_entry))
1022 list = &event->group_entry;
1025 * If this was a group event with sibling events then
1026 * upgrade the siblings to singleton events by adding them
1027 * to whatever list we are on.
1029 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1030 if (list)
1031 list_move_tail(&sibling->group_entry, list);
1032 sibling->group_leader = sibling;
1034 /* Inherit group flags from the previous leader */
1035 sibling->group_flags = event->group_flags;
1038 out:
1039 perf_event__header_size(event->group_leader);
1041 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1042 perf_event__header_size(tmp);
1045 static inline int
1046 event_filter_match(struct perf_event *event)
1048 return (event->cpu == -1 || event->cpu == smp_processor_id())
1049 && perf_cgroup_match(event);
1052 static void
1053 event_sched_out(struct perf_event *event,
1054 struct perf_cpu_context *cpuctx,
1055 struct perf_event_context *ctx)
1057 u64 tstamp = perf_event_time(event);
1058 u64 delta;
1060 * An event which could not be activated because of
1061 * filter mismatch still needs to have its timings
1062 * maintained, otherwise bogus information is return
1063 * via read() for time_enabled, time_running:
1065 if (event->state == PERF_EVENT_STATE_INACTIVE
1066 && !event_filter_match(event)) {
1067 delta = tstamp - event->tstamp_stopped;
1068 event->tstamp_running += delta;
1069 event->tstamp_stopped = tstamp;
1072 if (event->state != PERF_EVENT_STATE_ACTIVE)
1073 return;
1075 event->state = PERF_EVENT_STATE_INACTIVE;
1076 if (event->pending_disable) {
1077 event->pending_disable = 0;
1078 event->state = PERF_EVENT_STATE_OFF;
1080 event->tstamp_stopped = tstamp;
1081 event->pmu->del(event, 0);
1082 event->oncpu = -1;
1084 if (!is_software_event(event))
1085 cpuctx->active_oncpu--;
1086 ctx->nr_active--;
1087 if (event->attr.exclusive || !cpuctx->active_oncpu)
1088 cpuctx->exclusive = 0;
1091 static void
1092 group_sched_out(struct perf_event *group_event,
1093 struct perf_cpu_context *cpuctx,
1094 struct perf_event_context *ctx)
1096 struct perf_event *event;
1097 int state = group_event->state;
1099 event_sched_out(group_event, cpuctx, ctx);
1102 * Schedule out siblings (if any):
1104 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1105 event_sched_out(event, cpuctx, ctx);
1107 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1108 cpuctx->exclusive = 0;
1112 * Cross CPU call to remove a performance event
1114 * We disable the event on the hardware level first. After that we
1115 * remove it from the context list.
1117 static int __perf_remove_from_context(void *info)
1119 struct perf_event *event = info;
1120 struct perf_event_context *ctx = event->ctx;
1121 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1123 raw_spin_lock(&ctx->lock);
1124 event_sched_out(event, cpuctx, ctx);
1125 list_del_event(event, ctx);
1126 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1127 ctx->is_active = 0;
1128 cpuctx->task_ctx = NULL;
1130 raw_spin_unlock(&ctx->lock);
1132 return 0;
1137 * Remove the event from a task's (or a CPU's) list of events.
1139 * CPU events are removed with a smp call. For task events we only
1140 * call when the task is on a CPU.
1142 * If event->ctx is a cloned context, callers must make sure that
1143 * every task struct that event->ctx->task could possibly point to
1144 * remains valid. This is OK when called from perf_release since
1145 * that only calls us on the top-level context, which can't be a clone.
1146 * When called from perf_event_exit_task, it's OK because the
1147 * context has been detached from its task.
1149 static void perf_remove_from_context(struct perf_event *event)
1151 struct perf_event_context *ctx = event->ctx;
1152 struct task_struct *task = ctx->task;
1154 lockdep_assert_held(&ctx->mutex);
1156 if (!task) {
1158 * Per cpu events are removed via an smp call and
1159 * the removal is always successful.
1161 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1162 return;
1165 retry:
1166 if (!task_function_call(task, __perf_remove_from_context, event))
1167 return;
1169 raw_spin_lock_irq(&ctx->lock);
1171 * If we failed to find a running task, but find the context active now
1172 * that we've acquired the ctx->lock, retry.
1174 if (ctx->is_active) {
1175 raw_spin_unlock_irq(&ctx->lock);
1176 goto retry;
1180 * Since the task isn't running, its safe to remove the event, us
1181 * holding the ctx->lock ensures the task won't get scheduled in.
1183 list_del_event(event, ctx);
1184 raw_spin_unlock_irq(&ctx->lock);
1188 * Cross CPU call to disable a performance event
1190 static int __perf_event_disable(void *info)
1192 struct perf_event *event = info;
1193 struct perf_event_context *ctx = event->ctx;
1194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1197 * If this is a per-task event, need to check whether this
1198 * event's task is the current task on this cpu.
1200 * Can trigger due to concurrent perf_event_context_sched_out()
1201 * flipping contexts around.
1203 if (ctx->task && cpuctx->task_ctx != ctx)
1204 return -EINVAL;
1206 raw_spin_lock(&ctx->lock);
1209 * If the event is on, turn it off.
1210 * If it is in error state, leave it in error state.
1212 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1213 update_context_time(ctx);
1214 update_cgrp_time_from_event(event);
1215 update_group_times(event);
1216 if (event == event->group_leader)
1217 group_sched_out(event, cpuctx, ctx);
1218 else
1219 event_sched_out(event, cpuctx, ctx);
1220 event->state = PERF_EVENT_STATE_OFF;
1223 raw_spin_unlock(&ctx->lock);
1225 return 0;
1229 * Disable a event.
1231 * If event->ctx is a cloned context, callers must make sure that
1232 * every task struct that event->ctx->task could possibly point to
1233 * remains valid. This condition is satisifed when called through
1234 * perf_event_for_each_child or perf_event_for_each because they
1235 * hold the top-level event's child_mutex, so any descendant that
1236 * goes to exit will block in sync_child_event.
1237 * When called from perf_pending_event it's OK because event->ctx
1238 * is the current context on this CPU and preemption is disabled,
1239 * hence we can't get into perf_event_task_sched_out for this context.
1241 void perf_event_disable(struct perf_event *event)
1243 struct perf_event_context *ctx = event->ctx;
1244 struct task_struct *task = ctx->task;
1246 if (!task) {
1248 * Disable the event on the cpu that it's on
1250 cpu_function_call(event->cpu, __perf_event_disable, event);
1251 return;
1254 retry:
1255 if (!task_function_call(task, __perf_event_disable, event))
1256 return;
1258 raw_spin_lock_irq(&ctx->lock);
1260 * If the event is still active, we need to retry the cross-call.
1262 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1263 raw_spin_unlock_irq(&ctx->lock);
1265 * Reload the task pointer, it might have been changed by
1266 * a concurrent perf_event_context_sched_out().
1268 task = ctx->task;
1269 goto retry;
1273 * Since we have the lock this context can't be scheduled
1274 * in, so we can change the state safely.
1276 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1277 update_group_times(event);
1278 event->state = PERF_EVENT_STATE_OFF;
1280 raw_spin_unlock_irq(&ctx->lock);
1283 static void perf_set_shadow_time(struct perf_event *event,
1284 struct perf_event_context *ctx,
1285 u64 tstamp)
1288 * use the correct time source for the time snapshot
1290 * We could get by without this by leveraging the
1291 * fact that to get to this function, the caller
1292 * has most likely already called update_context_time()
1293 * and update_cgrp_time_xx() and thus both timestamp
1294 * are identical (or very close). Given that tstamp is,
1295 * already adjusted for cgroup, we could say that:
1296 * tstamp - ctx->timestamp
1297 * is equivalent to
1298 * tstamp - cgrp->timestamp.
1300 * Then, in perf_output_read(), the calculation would
1301 * work with no changes because:
1302 * - event is guaranteed scheduled in
1303 * - no scheduled out in between
1304 * - thus the timestamp would be the same
1306 * But this is a bit hairy.
1308 * So instead, we have an explicit cgroup call to remain
1309 * within the time time source all along. We believe it
1310 * is cleaner and simpler to understand.
1312 if (is_cgroup_event(event))
1313 perf_cgroup_set_shadow_time(event, tstamp);
1314 else
1315 event->shadow_ctx_time = tstamp - ctx->timestamp;
1318 #define MAX_INTERRUPTS (~0ULL)
1320 static void perf_log_throttle(struct perf_event *event, int enable);
1322 static int
1323 event_sched_in(struct perf_event *event,
1324 struct perf_cpu_context *cpuctx,
1325 struct perf_event_context *ctx)
1327 u64 tstamp = perf_event_time(event);
1329 if (event->state <= PERF_EVENT_STATE_OFF)
1330 return 0;
1332 event->state = PERF_EVENT_STATE_ACTIVE;
1333 event->oncpu = smp_processor_id();
1336 * Unthrottle events, since we scheduled we might have missed several
1337 * ticks already, also for a heavily scheduling task there is little
1338 * guarantee it'll get a tick in a timely manner.
1340 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1341 perf_log_throttle(event, 1);
1342 event->hw.interrupts = 0;
1346 * The new state must be visible before we turn it on in the hardware:
1348 smp_wmb();
1350 if (event->pmu->add(event, PERF_EF_START)) {
1351 event->state = PERF_EVENT_STATE_INACTIVE;
1352 event->oncpu = -1;
1353 return -EAGAIN;
1356 event->tstamp_running += tstamp - event->tstamp_stopped;
1358 perf_set_shadow_time(event, ctx, tstamp);
1360 if (!is_software_event(event))
1361 cpuctx->active_oncpu++;
1362 ctx->nr_active++;
1364 if (event->attr.exclusive)
1365 cpuctx->exclusive = 1;
1367 return 0;
1370 static int
1371 group_sched_in(struct perf_event *group_event,
1372 struct perf_cpu_context *cpuctx,
1373 struct perf_event_context *ctx)
1375 struct perf_event *event, *partial_group = NULL;
1376 struct pmu *pmu = group_event->pmu;
1377 u64 now = ctx->time;
1378 bool simulate = false;
1380 if (group_event->state == PERF_EVENT_STATE_OFF)
1381 return 0;
1383 pmu->start_txn(pmu);
1385 if (event_sched_in(group_event, cpuctx, ctx)) {
1386 pmu->cancel_txn(pmu);
1387 return -EAGAIN;
1391 * Schedule in siblings as one group (if any):
1393 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1394 if (event_sched_in(event, cpuctx, ctx)) {
1395 partial_group = event;
1396 goto group_error;
1400 if (!pmu->commit_txn(pmu))
1401 return 0;
1403 group_error:
1405 * Groups can be scheduled in as one unit only, so undo any
1406 * partial group before returning:
1407 * The events up to the failed event are scheduled out normally,
1408 * tstamp_stopped will be updated.
1410 * The failed events and the remaining siblings need to have
1411 * their timings updated as if they had gone thru event_sched_in()
1412 * and event_sched_out(). This is required to get consistent timings
1413 * across the group. This also takes care of the case where the group
1414 * could never be scheduled by ensuring tstamp_stopped is set to mark
1415 * the time the event was actually stopped, such that time delta
1416 * calculation in update_event_times() is correct.
1418 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1419 if (event == partial_group)
1420 simulate = true;
1422 if (simulate) {
1423 event->tstamp_running += now - event->tstamp_stopped;
1424 event->tstamp_stopped = now;
1425 } else {
1426 event_sched_out(event, cpuctx, ctx);
1429 event_sched_out(group_event, cpuctx, ctx);
1431 pmu->cancel_txn(pmu);
1433 return -EAGAIN;
1437 * Work out whether we can put this event group on the CPU now.
1439 static int group_can_go_on(struct perf_event *event,
1440 struct perf_cpu_context *cpuctx,
1441 int can_add_hw)
1444 * Groups consisting entirely of software events can always go on.
1446 if (event->group_flags & PERF_GROUP_SOFTWARE)
1447 return 1;
1449 * If an exclusive group is already on, no other hardware
1450 * events can go on.
1452 if (cpuctx->exclusive)
1453 return 0;
1455 * If this group is exclusive and there are already
1456 * events on the CPU, it can't go on.
1458 if (event->attr.exclusive && cpuctx->active_oncpu)
1459 return 0;
1461 * Otherwise, try to add it if all previous groups were able
1462 * to go on.
1464 return can_add_hw;
1467 static void add_event_to_ctx(struct perf_event *event,
1468 struct perf_event_context *ctx)
1470 u64 tstamp = perf_event_time(event);
1472 list_add_event(event, ctx);
1473 perf_group_attach(event);
1474 event->tstamp_enabled = tstamp;
1475 event->tstamp_running = tstamp;
1476 event->tstamp_stopped = tstamp;
1479 static void task_ctx_sched_out(struct perf_event_context *ctx);
1480 static void
1481 ctx_sched_in(struct perf_event_context *ctx,
1482 struct perf_cpu_context *cpuctx,
1483 enum event_type_t event_type,
1484 struct task_struct *task);
1486 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1487 struct perf_event_context *ctx,
1488 struct task_struct *task)
1490 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1491 if (ctx)
1492 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1493 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1494 if (ctx)
1495 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1499 * Cross CPU call to install and enable a performance event
1501 * Must be called with ctx->mutex held
1503 static int __perf_install_in_context(void *info)
1505 struct perf_event *event = info;
1506 struct perf_event_context *ctx = event->ctx;
1507 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1508 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1509 struct task_struct *task = current;
1511 perf_ctx_lock(cpuctx, task_ctx);
1512 perf_pmu_disable(cpuctx->ctx.pmu);
1515 * If there was an active task_ctx schedule it out.
1517 if (task_ctx)
1518 task_ctx_sched_out(task_ctx);
1521 * If the context we're installing events in is not the
1522 * active task_ctx, flip them.
1524 if (ctx->task && task_ctx != ctx) {
1525 if (task_ctx)
1526 raw_spin_unlock(&task_ctx->lock);
1527 raw_spin_lock(&ctx->lock);
1528 task_ctx = ctx;
1531 if (task_ctx) {
1532 cpuctx->task_ctx = task_ctx;
1533 task = task_ctx->task;
1536 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1538 update_context_time(ctx);
1540 * update cgrp time only if current cgrp
1541 * matches event->cgrp. Must be done before
1542 * calling add_event_to_ctx()
1544 update_cgrp_time_from_event(event);
1546 add_event_to_ctx(event, ctx);
1549 * Schedule everything back in
1551 perf_event_sched_in(cpuctx, task_ctx, task);
1553 perf_pmu_enable(cpuctx->ctx.pmu);
1554 perf_ctx_unlock(cpuctx, task_ctx);
1556 return 0;
1560 * Attach a performance event to a context
1562 * First we add the event to the list with the hardware enable bit
1563 * in event->hw_config cleared.
1565 * If the event is attached to a task which is on a CPU we use a smp
1566 * call to enable it in the task context. The task might have been
1567 * scheduled away, but we check this in the smp call again.
1569 static void
1570 perf_install_in_context(struct perf_event_context *ctx,
1571 struct perf_event *event,
1572 int cpu)
1574 struct task_struct *task = ctx->task;
1576 lockdep_assert_held(&ctx->mutex);
1578 event->ctx = ctx;
1580 if (!task) {
1582 * Per cpu events are installed via an smp call and
1583 * the install is always successful.
1585 cpu_function_call(cpu, __perf_install_in_context, event);
1586 return;
1589 retry:
1590 if (!task_function_call(task, __perf_install_in_context, event))
1591 return;
1593 raw_spin_lock_irq(&ctx->lock);
1595 * If we failed to find a running task, but find the context active now
1596 * that we've acquired the ctx->lock, retry.
1598 if (ctx->is_active) {
1599 raw_spin_unlock_irq(&ctx->lock);
1600 goto retry;
1604 * Since the task isn't running, its safe to add the event, us holding
1605 * the ctx->lock ensures the task won't get scheduled in.
1607 add_event_to_ctx(event, ctx);
1608 raw_spin_unlock_irq(&ctx->lock);
1612 * Put a event into inactive state and update time fields.
1613 * Enabling the leader of a group effectively enables all
1614 * the group members that aren't explicitly disabled, so we
1615 * have to update their ->tstamp_enabled also.
1616 * Note: this works for group members as well as group leaders
1617 * since the non-leader members' sibling_lists will be empty.
1619 static void __perf_event_mark_enabled(struct perf_event *event,
1620 struct perf_event_context *ctx)
1622 struct perf_event *sub;
1623 u64 tstamp = perf_event_time(event);
1625 event->state = PERF_EVENT_STATE_INACTIVE;
1626 event->tstamp_enabled = tstamp - event->total_time_enabled;
1627 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1628 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1629 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1634 * Cross CPU call to enable a performance event
1636 static int __perf_event_enable(void *info)
1638 struct perf_event *event = info;
1639 struct perf_event_context *ctx = event->ctx;
1640 struct perf_event *leader = event->group_leader;
1641 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1642 int err;
1644 if (WARN_ON_ONCE(!ctx->is_active))
1645 return -EINVAL;
1647 raw_spin_lock(&ctx->lock);
1648 update_context_time(ctx);
1650 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1651 goto unlock;
1654 * set current task's cgroup time reference point
1656 perf_cgroup_set_timestamp(current, ctx);
1658 __perf_event_mark_enabled(event, ctx);
1660 if (!event_filter_match(event)) {
1661 if (is_cgroup_event(event))
1662 perf_cgroup_defer_enabled(event);
1663 goto unlock;
1667 * If the event is in a group and isn't the group leader,
1668 * then don't put it on unless the group is on.
1670 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1671 goto unlock;
1673 if (!group_can_go_on(event, cpuctx, 1)) {
1674 err = -EEXIST;
1675 } else {
1676 if (event == leader)
1677 err = group_sched_in(event, cpuctx, ctx);
1678 else
1679 err = event_sched_in(event, cpuctx, ctx);
1682 if (err) {
1684 * If this event can't go on and it's part of a
1685 * group, then the whole group has to come off.
1687 if (leader != event)
1688 group_sched_out(leader, cpuctx, ctx);
1689 if (leader->attr.pinned) {
1690 update_group_times(leader);
1691 leader->state = PERF_EVENT_STATE_ERROR;
1695 unlock:
1696 raw_spin_unlock(&ctx->lock);
1698 return 0;
1702 * Enable a event.
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
1706 * remains valid. This condition is satisfied when called through
1707 * perf_event_for_each_child or perf_event_for_each as described
1708 * for perf_event_disable.
1710 void perf_event_enable(struct perf_event *event)
1712 struct perf_event_context *ctx = event->ctx;
1713 struct task_struct *task = ctx->task;
1715 if (!task) {
1717 * Enable the event on the cpu that it's on
1719 cpu_function_call(event->cpu, __perf_event_enable, event);
1720 return;
1723 raw_spin_lock_irq(&ctx->lock);
1724 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1725 goto out;
1728 * If the event is in error state, clear that first.
1729 * That way, if we see the event in error state below, we
1730 * know that it has gone back into error state, as distinct
1731 * from the task having been scheduled away before the
1732 * cross-call arrived.
1734 if (event->state == PERF_EVENT_STATE_ERROR)
1735 event->state = PERF_EVENT_STATE_OFF;
1737 retry:
1738 if (!ctx->is_active) {
1739 __perf_event_mark_enabled(event, ctx);
1740 goto out;
1743 raw_spin_unlock_irq(&ctx->lock);
1745 if (!task_function_call(task, __perf_event_enable, event))
1746 return;
1748 raw_spin_lock_irq(&ctx->lock);
1751 * If the context is active and the event is still off,
1752 * we need to retry the cross-call.
1754 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1756 * task could have been flipped by a concurrent
1757 * perf_event_context_sched_out()
1759 task = ctx->task;
1760 goto retry;
1763 out:
1764 raw_spin_unlock_irq(&ctx->lock);
1767 int perf_event_refresh(struct perf_event *event, int refresh)
1770 * not supported on inherited events
1772 if (event->attr.inherit || !is_sampling_event(event))
1773 return -EINVAL;
1775 atomic_add(refresh, &event->event_limit);
1776 perf_event_enable(event);
1778 return 0;
1780 EXPORT_SYMBOL_GPL(perf_event_refresh);
1782 static void ctx_sched_out(struct perf_event_context *ctx,
1783 struct perf_cpu_context *cpuctx,
1784 enum event_type_t event_type)
1786 struct perf_event *event;
1787 int is_active = ctx->is_active;
1789 ctx->is_active &= ~event_type;
1790 if (likely(!ctx->nr_events))
1791 return;
1793 update_context_time(ctx);
1794 update_cgrp_time_from_cpuctx(cpuctx);
1795 if (!ctx->nr_active)
1796 return;
1798 perf_pmu_disable(ctx->pmu);
1799 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1800 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1801 group_sched_out(event, cpuctx, ctx);
1804 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1805 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1806 group_sched_out(event, cpuctx, ctx);
1808 perf_pmu_enable(ctx->pmu);
1812 * Test whether two contexts are equivalent, i.e. whether they
1813 * have both been cloned from the same version of the same context
1814 * and they both have the same number of enabled events.
1815 * If the number of enabled events is the same, then the set
1816 * of enabled events should be the same, because these are both
1817 * inherited contexts, therefore we can't access individual events
1818 * in them directly with an fd; we can only enable/disable all
1819 * events via prctl, or enable/disable all events in a family
1820 * via ioctl, which will have the same effect on both contexts.
1822 static int context_equiv(struct perf_event_context *ctx1,
1823 struct perf_event_context *ctx2)
1825 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1826 && ctx1->parent_gen == ctx2->parent_gen
1827 && !ctx1->pin_count && !ctx2->pin_count;
1830 static void __perf_event_sync_stat(struct perf_event *event,
1831 struct perf_event *next_event)
1833 u64 value;
1835 if (!event->attr.inherit_stat)
1836 return;
1839 * Update the event value, we cannot use perf_event_read()
1840 * because we're in the middle of a context switch and have IRQs
1841 * disabled, which upsets smp_call_function_single(), however
1842 * we know the event must be on the current CPU, therefore we
1843 * don't need to use it.
1845 switch (event->state) {
1846 case PERF_EVENT_STATE_ACTIVE:
1847 event->pmu->read(event);
1848 /* fall-through */
1850 case PERF_EVENT_STATE_INACTIVE:
1851 update_event_times(event);
1852 break;
1854 default:
1855 break;
1859 * In order to keep per-task stats reliable we need to flip the event
1860 * values when we flip the contexts.
1862 value = local64_read(&next_event->count);
1863 value = local64_xchg(&event->count, value);
1864 local64_set(&next_event->count, value);
1866 swap(event->total_time_enabled, next_event->total_time_enabled);
1867 swap(event->total_time_running, next_event->total_time_running);
1870 * Since we swizzled the values, update the user visible data too.
1872 perf_event_update_userpage(event);
1873 perf_event_update_userpage(next_event);
1876 #define list_next_entry(pos, member) \
1877 list_entry(pos->member.next, typeof(*pos), member)
1879 static void perf_event_sync_stat(struct perf_event_context *ctx,
1880 struct perf_event_context *next_ctx)
1882 struct perf_event *event, *next_event;
1884 if (!ctx->nr_stat)
1885 return;
1887 update_context_time(ctx);
1889 event = list_first_entry(&ctx->event_list,
1890 struct perf_event, event_entry);
1892 next_event = list_first_entry(&next_ctx->event_list,
1893 struct perf_event, event_entry);
1895 while (&event->event_entry != &ctx->event_list &&
1896 &next_event->event_entry != &next_ctx->event_list) {
1898 __perf_event_sync_stat(event, next_event);
1900 event = list_next_entry(event, event_entry);
1901 next_event = list_next_entry(next_event, event_entry);
1905 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1906 struct task_struct *next)
1908 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1909 struct perf_event_context *next_ctx;
1910 struct perf_event_context *parent;
1911 struct perf_cpu_context *cpuctx;
1912 int do_switch = 1;
1914 if (likely(!ctx))
1915 return;
1917 cpuctx = __get_cpu_context(ctx);
1918 if (!cpuctx->task_ctx)
1919 return;
1921 rcu_read_lock();
1922 parent = rcu_dereference(ctx->parent_ctx);
1923 next_ctx = next->perf_event_ctxp[ctxn];
1924 if (parent && next_ctx &&
1925 rcu_dereference(next_ctx->parent_ctx) == parent) {
1927 * Looks like the two contexts are clones, so we might be
1928 * able to optimize the context switch. We lock both
1929 * contexts and check that they are clones under the
1930 * lock (including re-checking that neither has been
1931 * uncloned in the meantime). It doesn't matter which
1932 * order we take the locks because no other cpu could
1933 * be trying to lock both of these tasks.
1935 raw_spin_lock(&ctx->lock);
1936 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1937 if (context_equiv(ctx, next_ctx)) {
1939 * XXX do we need a memory barrier of sorts
1940 * wrt to rcu_dereference() of perf_event_ctxp
1942 task->perf_event_ctxp[ctxn] = next_ctx;
1943 next->perf_event_ctxp[ctxn] = ctx;
1944 ctx->task = next;
1945 next_ctx->task = task;
1946 do_switch = 0;
1948 perf_event_sync_stat(ctx, next_ctx);
1950 raw_spin_unlock(&next_ctx->lock);
1951 raw_spin_unlock(&ctx->lock);
1953 rcu_read_unlock();
1955 if (do_switch) {
1956 raw_spin_lock(&ctx->lock);
1957 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1958 cpuctx->task_ctx = NULL;
1959 raw_spin_unlock(&ctx->lock);
1963 #define for_each_task_context_nr(ctxn) \
1964 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1967 * Called from scheduler to remove the events of the current task,
1968 * with interrupts disabled.
1970 * We stop each event and update the event value in event->count.
1972 * This does not protect us against NMI, but disable()
1973 * sets the disabled bit in the control field of event _before_
1974 * accessing the event control register. If a NMI hits, then it will
1975 * not restart the event.
1977 void __perf_event_task_sched_out(struct task_struct *task,
1978 struct task_struct *next)
1980 int ctxn;
1982 for_each_task_context_nr(ctxn)
1983 perf_event_context_sched_out(task, ctxn, next);
1986 * if cgroup events exist on this CPU, then we need
1987 * to check if we have to switch out PMU state.
1988 * cgroup event are system-wide mode only
1990 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1991 perf_cgroup_sched_out(task);
1994 static void task_ctx_sched_out(struct perf_event_context *ctx)
1996 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1998 if (!cpuctx->task_ctx)
1999 return;
2001 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2002 return;
2004 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2005 cpuctx->task_ctx = NULL;
2009 * Called with IRQs disabled
2011 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2012 enum event_type_t event_type)
2014 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2017 static void
2018 ctx_pinned_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx)
2021 struct perf_event *event;
2023 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2024 if (event->state <= PERF_EVENT_STATE_OFF)
2025 continue;
2026 if (!event_filter_match(event))
2027 continue;
2029 /* may need to reset tstamp_enabled */
2030 if (is_cgroup_event(event))
2031 perf_cgroup_mark_enabled(event, ctx);
2033 if (group_can_go_on(event, cpuctx, 1))
2034 group_sched_in(event, cpuctx, ctx);
2037 * If this pinned group hasn't been scheduled,
2038 * put it in error state.
2040 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2041 update_group_times(event);
2042 event->state = PERF_EVENT_STATE_ERROR;
2047 static void
2048 ctx_flexible_sched_in(struct perf_event_context *ctx,
2049 struct perf_cpu_context *cpuctx)
2051 struct perf_event *event;
2052 int can_add_hw = 1;
2054 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2055 /* Ignore events in OFF or ERROR state */
2056 if (event->state <= PERF_EVENT_STATE_OFF)
2057 continue;
2059 * Listen to the 'cpu' scheduling filter constraint
2060 * of events:
2062 if (!event_filter_match(event))
2063 continue;
2065 /* may need to reset tstamp_enabled */
2066 if (is_cgroup_event(event))
2067 perf_cgroup_mark_enabled(event, ctx);
2069 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2070 if (group_sched_in(event, cpuctx, ctx))
2071 can_add_hw = 0;
2076 static void
2077 ctx_sched_in(struct perf_event_context *ctx,
2078 struct perf_cpu_context *cpuctx,
2079 enum event_type_t event_type,
2080 struct task_struct *task)
2082 u64 now;
2083 int is_active = ctx->is_active;
2085 ctx->is_active |= event_type;
2086 if (likely(!ctx->nr_events))
2087 return;
2089 now = perf_clock();
2090 ctx->timestamp = now;
2091 perf_cgroup_set_timestamp(task, ctx);
2093 * First go through the list and put on any pinned groups
2094 * in order to give them the best chance of going on.
2096 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2097 ctx_pinned_sched_in(ctx, cpuctx);
2099 /* Then walk through the lower prio flexible groups */
2100 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2101 ctx_flexible_sched_in(ctx, cpuctx);
2104 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2105 enum event_type_t event_type,
2106 struct task_struct *task)
2108 struct perf_event_context *ctx = &cpuctx->ctx;
2110 ctx_sched_in(ctx, cpuctx, event_type, task);
2113 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2114 struct task_struct *task)
2116 struct perf_cpu_context *cpuctx;
2118 cpuctx = __get_cpu_context(ctx);
2119 if (cpuctx->task_ctx == ctx)
2120 return;
2122 perf_ctx_lock(cpuctx, ctx);
2123 perf_pmu_disable(ctx->pmu);
2125 * We want to keep the following priority order:
2126 * cpu pinned (that don't need to move), task pinned,
2127 * cpu flexible, task flexible.
2129 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2131 perf_event_sched_in(cpuctx, ctx, task);
2133 cpuctx->task_ctx = ctx;
2135 perf_pmu_enable(ctx->pmu);
2136 perf_ctx_unlock(cpuctx, ctx);
2139 * Since these rotations are per-cpu, we need to ensure the
2140 * cpu-context we got scheduled on is actually rotating.
2142 perf_pmu_rotate_start(ctx->pmu);
2146 * Called from scheduler to add the events of the current task
2147 * with interrupts disabled.
2149 * We restore the event value and then enable it.
2151 * This does not protect us against NMI, but enable()
2152 * sets the enabled bit in the control field of event _before_
2153 * accessing the event control register. If a NMI hits, then it will
2154 * keep the event running.
2156 void __perf_event_task_sched_in(struct task_struct *task)
2158 struct perf_event_context *ctx;
2159 int ctxn;
2161 for_each_task_context_nr(ctxn) {
2162 ctx = task->perf_event_ctxp[ctxn];
2163 if (likely(!ctx))
2164 continue;
2166 perf_event_context_sched_in(ctx, task);
2169 * if cgroup events exist on this CPU, then we need
2170 * to check if we have to switch in PMU state.
2171 * cgroup event are system-wide mode only
2173 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2174 perf_cgroup_sched_in(task);
2177 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2179 u64 frequency = event->attr.sample_freq;
2180 u64 sec = NSEC_PER_SEC;
2181 u64 divisor, dividend;
2183 int count_fls, nsec_fls, frequency_fls, sec_fls;
2185 count_fls = fls64(count);
2186 nsec_fls = fls64(nsec);
2187 frequency_fls = fls64(frequency);
2188 sec_fls = 30;
2191 * We got @count in @nsec, with a target of sample_freq HZ
2192 * the target period becomes:
2194 * @count * 10^9
2195 * period = -------------------
2196 * @nsec * sample_freq
2201 * Reduce accuracy by one bit such that @a and @b converge
2202 * to a similar magnitude.
2204 #define REDUCE_FLS(a, b) \
2205 do { \
2206 if (a##_fls > b##_fls) { \
2207 a >>= 1; \
2208 a##_fls--; \
2209 } else { \
2210 b >>= 1; \
2211 b##_fls--; \
2213 } while (0)
2216 * Reduce accuracy until either term fits in a u64, then proceed with
2217 * the other, so that finally we can do a u64/u64 division.
2219 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2220 REDUCE_FLS(nsec, frequency);
2221 REDUCE_FLS(sec, count);
2224 if (count_fls + sec_fls > 64) {
2225 divisor = nsec * frequency;
2227 while (count_fls + sec_fls > 64) {
2228 REDUCE_FLS(count, sec);
2229 divisor >>= 1;
2232 dividend = count * sec;
2233 } else {
2234 dividend = count * sec;
2236 while (nsec_fls + frequency_fls > 64) {
2237 REDUCE_FLS(nsec, frequency);
2238 dividend >>= 1;
2241 divisor = nsec * frequency;
2244 if (!divisor)
2245 return dividend;
2247 return div64_u64(dividend, divisor);
2250 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2252 struct hw_perf_event *hwc = &event->hw;
2253 s64 period, sample_period;
2254 s64 delta;
2256 period = perf_calculate_period(event, nsec, count);
2258 delta = (s64)(period - hwc->sample_period);
2259 delta = (delta + 7) / 8; /* low pass filter */
2261 sample_period = hwc->sample_period + delta;
2263 if (!sample_period)
2264 sample_period = 1;
2266 hwc->sample_period = sample_period;
2268 if (local64_read(&hwc->period_left) > 8*sample_period) {
2269 event->pmu->stop(event, PERF_EF_UPDATE);
2270 local64_set(&hwc->period_left, 0);
2271 event->pmu->start(event, PERF_EF_RELOAD);
2275 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2277 struct perf_event *event;
2278 struct hw_perf_event *hwc;
2279 u64 interrupts, now;
2280 s64 delta;
2282 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2283 if (event->state != PERF_EVENT_STATE_ACTIVE)
2284 continue;
2286 if (!event_filter_match(event))
2287 continue;
2289 hwc = &event->hw;
2291 interrupts = hwc->interrupts;
2292 hwc->interrupts = 0;
2295 * unthrottle events on the tick
2297 if (interrupts == MAX_INTERRUPTS) {
2298 perf_log_throttle(event, 1);
2299 event->pmu->start(event, 0);
2302 if (!event->attr.freq || !event->attr.sample_freq)
2303 continue;
2305 event->pmu->read(event);
2306 now = local64_read(&event->count);
2307 delta = now - hwc->freq_count_stamp;
2308 hwc->freq_count_stamp = now;
2310 if (delta > 0)
2311 perf_adjust_period(event, period, delta);
2316 * Round-robin a context's events:
2318 static void rotate_ctx(struct perf_event_context *ctx)
2321 * Rotate the first entry last of non-pinned groups. Rotation might be
2322 * disabled by the inheritance code.
2324 if (!ctx->rotate_disable)
2325 list_rotate_left(&ctx->flexible_groups);
2329 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2330 * because they're strictly cpu affine and rotate_start is called with IRQs
2331 * disabled, while rotate_context is called from IRQ context.
2333 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2335 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2336 struct perf_event_context *ctx = NULL;
2337 int rotate = 0, remove = 1;
2339 if (cpuctx->ctx.nr_events) {
2340 remove = 0;
2341 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2342 rotate = 1;
2345 ctx = cpuctx->task_ctx;
2346 if (ctx && ctx->nr_events) {
2347 remove = 0;
2348 if (ctx->nr_events != ctx->nr_active)
2349 rotate = 1;
2352 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2353 perf_pmu_disable(cpuctx->ctx.pmu);
2354 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2355 if (ctx)
2356 perf_ctx_adjust_freq(ctx, interval);
2358 if (!rotate)
2359 goto done;
2361 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2362 if (ctx)
2363 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2365 rotate_ctx(&cpuctx->ctx);
2366 if (ctx)
2367 rotate_ctx(ctx);
2369 perf_event_sched_in(cpuctx, ctx, current);
2371 done:
2372 if (remove)
2373 list_del_init(&cpuctx->rotation_list);
2375 perf_pmu_enable(cpuctx->ctx.pmu);
2376 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2379 void perf_event_task_tick(void)
2381 struct list_head *head = &__get_cpu_var(rotation_list);
2382 struct perf_cpu_context *cpuctx, *tmp;
2384 WARN_ON(!irqs_disabled());
2386 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2387 if (cpuctx->jiffies_interval == 1 ||
2388 !(jiffies % cpuctx->jiffies_interval))
2389 perf_rotate_context(cpuctx);
2393 static int event_enable_on_exec(struct perf_event *event,
2394 struct perf_event_context *ctx)
2396 if (!event->attr.enable_on_exec)
2397 return 0;
2399 event->attr.enable_on_exec = 0;
2400 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2401 return 0;
2403 __perf_event_mark_enabled(event, ctx);
2405 return 1;
2409 * Enable all of a task's events that have been marked enable-on-exec.
2410 * This expects task == current.
2412 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2414 struct perf_event *event;
2415 unsigned long flags;
2416 int enabled = 0;
2417 int ret;
2419 local_irq_save(flags);
2420 if (!ctx || !ctx->nr_events)
2421 goto out;
2424 * We must ctxsw out cgroup events to avoid conflict
2425 * when invoking perf_task_event_sched_in() later on
2426 * in this function. Otherwise we end up trying to
2427 * ctxswin cgroup events which are already scheduled
2428 * in.
2430 perf_cgroup_sched_out(current);
2432 raw_spin_lock(&ctx->lock);
2433 task_ctx_sched_out(ctx);
2435 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2436 ret = event_enable_on_exec(event, ctx);
2437 if (ret)
2438 enabled = 1;
2441 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2442 ret = event_enable_on_exec(event, ctx);
2443 if (ret)
2444 enabled = 1;
2448 * Unclone this context if we enabled any event.
2450 if (enabled)
2451 unclone_ctx(ctx);
2453 raw_spin_unlock(&ctx->lock);
2456 * Also calls ctxswin for cgroup events, if any:
2458 perf_event_context_sched_in(ctx, ctx->task);
2459 out:
2460 local_irq_restore(flags);
2464 * Cross CPU call to read the hardware event
2466 static void __perf_event_read(void *info)
2468 struct perf_event *event = info;
2469 struct perf_event_context *ctx = event->ctx;
2470 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2473 * If this is a task context, we need to check whether it is
2474 * the current task context of this cpu. If not it has been
2475 * scheduled out before the smp call arrived. In that case
2476 * event->count would have been updated to a recent sample
2477 * when the event was scheduled out.
2479 if (ctx->task && cpuctx->task_ctx != ctx)
2480 return;
2482 raw_spin_lock(&ctx->lock);
2483 if (ctx->is_active) {
2484 update_context_time(ctx);
2485 update_cgrp_time_from_event(event);
2487 update_event_times(event);
2488 if (event->state == PERF_EVENT_STATE_ACTIVE)
2489 event->pmu->read(event);
2490 raw_spin_unlock(&ctx->lock);
2493 static inline u64 perf_event_count(struct perf_event *event)
2495 return local64_read(&event->count) + atomic64_read(&event->child_count);
2498 static u64 perf_event_read(struct perf_event *event)
2501 * If event is enabled and currently active on a CPU, update the
2502 * value in the event structure:
2504 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2505 smp_call_function_single(event->oncpu,
2506 __perf_event_read, event, 1);
2507 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2508 struct perf_event_context *ctx = event->ctx;
2509 unsigned long flags;
2511 raw_spin_lock_irqsave(&ctx->lock, flags);
2513 * may read while context is not active
2514 * (e.g., thread is blocked), in that case
2515 * we cannot update context time
2517 if (ctx->is_active) {
2518 update_context_time(ctx);
2519 update_cgrp_time_from_event(event);
2521 update_event_times(event);
2522 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2525 return perf_event_count(event);
2529 * Callchain support
2532 struct callchain_cpus_entries {
2533 struct rcu_head rcu_head;
2534 struct perf_callchain_entry *cpu_entries[0];
2537 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2538 static atomic_t nr_callchain_events;
2539 static DEFINE_MUTEX(callchain_mutex);
2540 struct callchain_cpus_entries *callchain_cpus_entries;
2543 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2544 struct pt_regs *regs)
2548 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2549 struct pt_regs *regs)
2553 static void release_callchain_buffers_rcu(struct rcu_head *head)
2555 struct callchain_cpus_entries *entries;
2556 int cpu;
2558 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2560 for_each_possible_cpu(cpu)
2561 kfree(entries->cpu_entries[cpu]);
2563 kfree(entries);
2566 static void release_callchain_buffers(void)
2568 struct callchain_cpus_entries *entries;
2570 entries = callchain_cpus_entries;
2571 rcu_assign_pointer(callchain_cpus_entries, NULL);
2572 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2575 static int alloc_callchain_buffers(void)
2577 int cpu;
2578 int size;
2579 struct callchain_cpus_entries *entries;
2582 * We can't use the percpu allocation API for data that can be
2583 * accessed from NMI. Use a temporary manual per cpu allocation
2584 * until that gets sorted out.
2586 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2588 entries = kzalloc(size, GFP_KERNEL);
2589 if (!entries)
2590 return -ENOMEM;
2592 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2594 for_each_possible_cpu(cpu) {
2595 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2596 cpu_to_node(cpu));
2597 if (!entries->cpu_entries[cpu])
2598 goto fail;
2601 rcu_assign_pointer(callchain_cpus_entries, entries);
2603 return 0;
2605 fail:
2606 for_each_possible_cpu(cpu)
2607 kfree(entries->cpu_entries[cpu]);
2608 kfree(entries);
2610 return -ENOMEM;
2613 static int get_callchain_buffers(void)
2615 int err = 0;
2616 int count;
2618 mutex_lock(&callchain_mutex);
2620 count = atomic_inc_return(&nr_callchain_events);
2621 if (WARN_ON_ONCE(count < 1)) {
2622 err = -EINVAL;
2623 goto exit;
2626 if (count > 1) {
2627 /* If the allocation failed, give up */
2628 if (!callchain_cpus_entries)
2629 err = -ENOMEM;
2630 goto exit;
2633 err = alloc_callchain_buffers();
2634 if (err)
2635 release_callchain_buffers();
2636 exit:
2637 mutex_unlock(&callchain_mutex);
2639 return err;
2642 static void put_callchain_buffers(void)
2644 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2645 release_callchain_buffers();
2646 mutex_unlock(&callchain_mutex);
2650 static int get_recursion_context(int *recursion)
2652 int rctx;
2654 if (in_nmi())
2655 rctx = 3;
2656 else if (in_irq())
2657 rctx = 2;
2658 else if (in_softirq())
2659 rctx = 1;
2660 else
2661 rctx = 0;
2663 if (recursion[rctx])
2664 return -1;
2666 recursion[rctx]++;
2667 barrier();
2669 return rctx;
2672 static inline void put_recursion_context(int *recursion, int rctx)
2674 barrier();
2675 recursion[rctx]--;
2678 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2680 int cpu;
2681 struct callchain_cpus_entries *entries;
2683 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2684 if (*rctx == -1)
2685 return NULL;
2687 entries = rcu_dereference(callchain_cpus_entries);
2688 if (!entries)
2689 return NULL;
2691 cpu = smp_processor_id();
2693 return &entries->cpu_entries[cpu][*rctx];
2696 static void
2697 put_callchain_entry(int rctx)
2699 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2702 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2704 int rctx;
2705 struct perf_callchain_entry *entry;
2708 entry = get_callchain_entry(&rctx);
2709 if (rctx == -1)
2710 return NULL;
2712 if (!entry)
2713 goto exit_put;
2715 entry->nr = 0;
2717 if (!user_mode(regs)) {
2718 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2719 perf_callchain_kernel(entry, regs);
2720 if (current->mm)
2721 regs = task_pt_regs(current);
2722 else
2723 regs = NULL;
2726 if (regs) {
2727 perf_callchain_store(entry, PERF_CONTEXT_USER);
2728 perf_callchain_user(entry, regs);
2731 exit_put:
2732 put_callchain_entry(rctx);
2734 return entry;
2738 * Initialize the perf_event context in a task_struct:
2740 static void __perf_event_init_context(struct perf_event_context *ctx)
2742 raw_spin_lock_init(&ctx->lock);
2743 mutex_init(&ctx->mutex);
2744 INIT_LIST_HEAD(&ctx->pinned_groups);
2745 INIT_LIST_HEAD(&ctx->flexible_groups);
2746 INIT_LIST_HEAD(&ctx->event_list);
2747 atomic_set(&ctx->refcount, 1);
2750 static struct perf_event_context *
2751 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2753 struct perf_event_context *ctx;
2755 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2756 if (!ctx)
2757 return NULL;
2759 __perf_event_init_context(ctx);
2760 if (task) {
2761 ctx->task = task;
2762 get_task_struct(task);
2764 ctx->pmu = pmu;
2766 return ctx;
2769 static struct task_struct *
2770 find_lively_task_by_vpid(pid_t vpid)
2772 struct task_struct *task;
2773 int err;
2775 rcu_read_lock();
2776 if (!vpid)
2777 task = current;
2778 else
2779 task = find_task_by_vpid(vpid);
2780 if (task)
2781 get_task_struct(task);
2782 rcu_read_unlock();
2784 if (!task)
2785 return ERR_PTR(-ESRCH);
2787 /* Reuse ptrace permission checks for now. */
2788 err = -EACCES;
2789 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2790 goto errout;
2792 return task;
2793 errout:
2794 put_task_struct(task);
2795 return ERR_PTR(err);
2800 * Returns a matching context with refcount and pincount.
2802 static struct perf_event_context *
2803 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2805 struct perf_event_context *ctx;
2806 struct perf_cpu_context *cpuctx;
2807 unsigned long flags;
2808 int ctxn, err;
2810 if (!task) {
2811 /* Must be root to operate on a CPU event: */
2812 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2813 return ERR_PTR(-EACCES);
2816 * We could be clever and allow to attach a event to an
2817 * offline CPU and activate it when the CPU comes up, but
2818 * that's for later.
2820 if (!cpu_online(cpu))
2821 return ERR_PTR(-ENODEV);
2823 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2824 ctx = &cpuctx->ctx;
2825 get_ctx(ctx);
2826 ++ctx->pin_count;
2828 return ctx;
2831 err = -EINVAL;
2832 ctxn = pmu->task_ctx_nr;
2833 if (ctxn < 0)
2834 goto errout;
2836 retry:
2837 ctx = perf_lock_task_context(task, ctxn, &flags);
2838 if (ctx) {
2839 unclone_ctx(ctx);
2840 ++ctx->pin_count;
2841 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2842 } else {
2843 ctx = alloc_perf_context(pmu, task);
2844 err = -ENOMEM;
2845 if (!ctx)
2846 goto errout;
2848 err = 0;
2849 mutex_lock(&task->perf_event_mutex);
2851 * If it has already passed perf_event_exit_task().
2852 * we must see PF_EXITING, it takes this mutex too.
2854 if (task->flags & PF_EXITING)
2855 err = -ESRCH;
2856 else if (task->perf_event_ctxp[ctxn])
2857 err = -EAGAIN;
2858 else {
2859 get_ctx(ctx);
2860 ++ctx->pin_count;
2861 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2863 mutex_unlock(&task->perf_event_mutex);
2865 if (unlikely(err)) {
2866 put_ctx(ctx);
2868 if (err == -EAGAIN)
2869 goto retry;
2870 goto errout;
2874 return ctx;
2876 errout:
2877 return ERR_PTR(err);
2880 static void perf_event_free_filter(struct perf_event *event);
2882 static void free_event_rcu(struct rcu_head *head)
2884 struct perf_event *event;
2886 event = container_of(head, struct perf_event, rcu_head);
2887 if (event->ns)
2888 put_pid_ns(event->ns);
2889 perf_event_free_filter(event);
2890 kfree(event);
2893 static void ring_buffer_put(struct ring_buffer *rb);
2895 static void free_event(struct perf_event *event)
2897 irq_work_sync(&event->pending);
2899 if (!event->parent) {
2900 if (event->attach_state & PERF_ATTACH_TASK)
2901 jump_label_dec(&perf_sched_events);
2902 if (event->attr.mmap || event->attr.mmap_data)
2903 atomic_dec(&nr_mmap_events);
2904 if (event->attr.comm)
2905 atomic_dec(&nr_comm_events);
2906 if (event->attr.task)
2907 atomic_dec(&nr_task_events);
2908 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2909 put_callchain_buffers();
2910 if (is_cgroup_event(event)) {
2911 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2912 jump_label_dec(&perf_sched_events);
2916 if (event->rb) {
2917 ring_buffer_put(event->rb);
2918 event->rb = NULL;
2921 if (is_cgroup_event(event))
2922 perf_detach_cgroup(event);
2924 if (event->destroy)
2925 event->destroy(event);
2927 if (event->ctx)
2928 put_ctx(event->ctx);
2930 call_rcu(&event->rcu_head, free_event_rcu);
2933 int perf_event_release_kernel(struct perf_event *event)
2935 struct perf_event_context *ctx = event->ctx;
2937 WARN_ON_ONCE(ctx->parent_ctx);
2939 * There are two ways this annotation is useful:
2941 * 1) there is a lock recursion from perf_event_exit_task
2942 * see the comment there.
2944 * 2) there is a lock-inversion with mmap_sem through
2945 * perf_event_read_group(), which takes faults while
2946 * holding ctx->mutex, however this is called after
2947 * the last filedesc died, so there is no possibility
2948 * to trigger the AB-BA case.
2950 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2951 raw_spin_lock_irq(&ctx->lock);
2952 perf_group_detach(event);
2953 raw_spin_unlock_irq(&ctx->lock);
2954 perf_remove_from_context(event);
2955 mutex_unlock(&ctx->mutex);
2957 free_event(event);
2959 return 0;
2961 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2964 * Called when the last reference to the file is gone.
2966 static int perf_release(struct inode *inode, struct file *file)
2968 struct perf_event *event = file->private_data;
2969 struct task_struct *owner;
2971 file->private_data = NULL;
2973 rcu_read_lock();
2974 owner = ACCESS_ONCE(event->owner);
2976 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2977 * !owner it means the list deletion is complete and we can indeed
2978 * free this event, otherwise we need to serialize on
2979 * owner->perf_event_mutex.
2981 smp_read_barrier_depends();
2982 if (owner) {
2984 * Since delayed_put_task_struct() also drops the last
2985 * task reference we can safely take a new reference
2986 * while holding the rcu_read_lock().
2988 get_task_struct(owner);
2990 rcu_read_unlock();
2992 if (owner) {
2993 mutex_lock(&owner->perf_event_mutex);
2995 * We have to re-check the event->owner field, if it is cleared
2996 * we raced with perf_event_exit_task(), acquiring the mutex
2997 * ensured they're done, and we can proceed with freeing the
2998 * event.
3000 if (event->owner)
3001 list_del_init(&event->owner_entry);
3002 mutex_unlock(&owner->perf_event_mutex);
3003 put_task_struct(owner);
3006 return perf_event_release_kernel(event);
3009 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3011 struct perf_event *child;
3012 u64 total = 0;
3014 *enabled = 0;
3015 *running = 0;
3017 mutex_lock(&event->child_mutex);
3018 total += perf_event_read(event);
3019 *enabled += event->total_time_enabled +
3020 atomic64_read(&event->child_total_time_enabled);
3021 *running += event->total_time_running +
3022 atomic64_read(&event->child_total_time_running);
3024 list_for_each_entry(child, &event->child_list, child_list) {
3025 total += perf_event_read(child);
3026 *enabled += child->total_time_enabled;
3027 *running += child->total_time_running;
3029 mutex_unlock(&event->child_mutex);
3031 return total;
3033 EXPORT_SYMBOL_GPL(perf_event_read_value);
3035 static int perf_event_read_group(struct perf_event *event,
3036 u64 read_format, char __user *buf)
3038 struct perf_event *leader = event->group_leader, *sub;
3039 int n = 0, size = 0, ret = -EFAULT;
3040 struct perf_event_context *ctx = leader->ctx;
3041 u64 values[5];
3042 u64 count, enabled, running;
3044 mutex_lock(&ctx->mutex);
3045 count = perf_event_read_value(leader, &enabled, &running);
3047 values[n++] = 1 + leader->nr_siblings;
3048 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3049 values[n++] = enabled;
3050 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3051 values[n++] = running;
3052 values[n++] = count;
3053 if (read_format & PERF_FORMAT_ID)
3054 values[n++] = primary_event_id(leader);
3056 size = n * sizeof(u64);
3058 if (copy_to_user(buf, values, size))
3059 goto unlock;
3061 ret = size;
3063 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3064 n = 0;
3066 values[n++] = perf_event_read_value(sub, &enabled, &running);
3067 if (read_format & PERF_FORMAT_ID)
3068 values[n++] = primary_event_id(sub);
3070 size = n * sizeof(u64);
3072 if (copy_to_user(buf + ret, values, size)) {
3073 ret = -EFAULT;
3074 goto unlock;
3077 ret += size;
3079 unlock:
3080 mutex_unlock(&ctx->mutex);
3082 return ret;
3085 static int perf_event_read_one(struct perf_event *event,
3086 u64 read_format, char __user *buf)
3088 u64 enabled, running;
3089 u64 values[4];
3090 int n = 0;
3092 values[n++] = perf_event_read_value(event, &enabled, &running);
3093 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3094 values[n++] = enabled;
3095 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3096 values[n++] = running;
3097 if (read_format & PERF_FORMAT_ID)
3098 values[n++] = primary_event_id(event);
3100 if (copy_to_user(buf, values, n * sizeof(u64)))
3101 return -EFAULT;
3103 return n * sizeof(u64);
3107 * Read the performance event - simple non blocking version for now
3109 static ssize_t
3110 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3112 u64 read_format = event->attr.read_format;
3113 int ret;
3116 * Return end-of-file for a read on a event that is in
3117 * error state (i.e. because it was pinned but it couldn't be
3118 * scheduled on to the CPU at some point).
3120 if (event->state == PERF_EVENT_STATE_ERROR)
3121 return 0;
3123 if (count < event->read_size)
3124 return -ENOSPC;
3126 WARN_ON_ONCE(event->ctx->parent_ctx);
3127 if (read_format & PERF_FORMAT_GROUP)
3128 ret = perf_event_read_group(event, read_format, buf);
3129 else
3130 ret = perf_event_read_one(event, read_format, buf);
3132 return ret;
3135 static ssize_t
3136 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3138 struct perf_event *event = file->private_data;
3140 return perf_read_hw(event, buf, count);
3143 static unsigned int perf_poll(struct file *file, poll_table *wait)
3145 struct perf_event *event = file->private_data;
3146 struct ring_buffer *rb;
3147 unsigned int events = POLL_HUP;
3149 rcu_read_lock();
3150 rb = rcu_dereference(event->rb);
3151 if (rb)
3152 events = atomic_xchg(&rb->poll, 0);
3153 rcu_read_unlock();
3155 poll_wait(file, &event->waitq, wait);
3157 return events;
3160 static void perf_event_reset(struct perf_event *event)
3162 (void)perf_event_read(event);
3163 local64_set(&event->count, 0);
3164 perf_event_update_userpage(event);
3168 * Holding the top-level event's child_mutex means that any
3169 * descendant process that has inherited this event will block
3170 * in sync_child_event if it goes to exit, thus satisfying the
3171 * task existence requirements of perf_event_enable/disable.
3173 static void perf_event_for_each_child(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3176 struct perf_event *child;
3178 WARN_ON_ONCE(event->ctx->parent_ctx);
3179 mutex_lock(&event->child_mutex);
3180 func(event);
3181 list_for_each_entry(child, &event->child_list, child_list)
3182 func(child);
3183 mutex_unlock(&event->child_mutex);
3186 static void perf_event_for_each(struct perf_event *event,
3187 void (*func)(struct perf_event *))
3189 struct perf_event_context *ctx = event->ctx;
3190 struct perf_event *sibling;
3192 WARN_ON_ONCE(ctx->parent_ctx);
3193 mutex_lock(&ctx->mutex);
3194 event = event->group_leader;
3196 perf_event_for_each_child(event, func);
3197 func(event);
3198 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3199 perf_event_for_each_child(event, func);
3200 mutex_unlock(&ctx->mutex);
3203 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3205 struct perf_event_context *ctx = event->ctx;
3206 int ret = 0;
3207 u64 value;
3209 if (!is_sampling_event(event))
3210 return -EINVAL;
3212 if (copy_from_user(&value, arg, sizeof(value)))
3213 return -EFAULT;
3215 if (!value)
3216 return -EINVAL;
3218 raw_spin_lock_irq(&ctx->lock);
3219 if (event->attr.freq) {
3220 if (value > sysctl_perf_event_sample_rate) {
3221 ret = -EINVAL;
3222 goto unlock;
3225 event->attr.sample_freq = value;
3226 } else {
3227 event->attr.sample_period = value;
3228 event->hw.sample_period = value;
3230 unlock:
3231 raw_spin_unlock_irq(&ctx->lock);
3233 return ret;
3236 static const struct file_operations perf_fops;
3238 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3240 struct file *file;
3242 file = fget_light(fd, fput_needed);
3243 if (!file)
3244 return ERR_PTR(-EBADF);
3246 if (file->f_op != &perf_fops) {
3247 fput_light(file, *fput_needed);
3248 *fput_needed = 0;
3249 return ERR_PTR(-EBADF);
3252 return file->private_data;
3255 static int perf_event_set_output(struct perf_event *event,
3256 struct perf_event *output_event);
3257 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3259 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3261 struct perf_event *event = file->private_data;
3262 void (*func)(struct perf_event *);
3263 u32 flags = arg;
3265 switch (cmd) {
3266 case PERF_EVENT_IOC_ENABLE:
3267 func = perf_event_enable;
3268 break;
3269 case PERF_EVENT_IOC_DISABLE:
3270 func = perf_event_disable;
3271 break;
3272 case PERF_EVENT_IOC_RESET:
3273 func = perf_event_reset;
3274 break;
3276 case PERF_EVENT_IOC_REFRESH:
3277 return perf_event_refresh(event, arg);
3279 case PERF_EVENT_IOC_PERIOD:
3280 return perf_event_period(event, (u64 __user *)arg);
3282 case PERF_EVENT_IOC_SET_OUTPUT:
3284 struct perf_event *output_event = NULL;
3285 int fput_needed = 0;
3286 int ret;
3288 if (arg != -1) {
3289 output_event = perf_fget_light(arg, &fput_needed);
3290 if (IS_ERR(output_event))
3291 return PTR_ERR(output_event);
3294 ret = perf_event_set_output(event, output_event);
3295 if (output_event)
3296 fput_light(output_event->filp, fput_needed);
3298 return ret;
3301 case PERF_EVENT_IOC_SET_FILTER:
3302 return perf_event_set_filter(event, (void __user *)arg);
3304 default:
3305 return -ENOTTY;
3308 if (flags & PERF_IOC_FLAG_GROUP)
3309 perf_event_for_each(event, func);
3310 else
3311 perf_event_for_each_child(event, func);
3313 return 0;
3316 int perf_event_task_enable(void)
3318 struct perf_event *event;
3320 mutex_lock(&current->perf_event_mutex);
3321 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3322 perf_event_for_each_child(event, perf_event_enable);
3323 mutex_unlock(&current->perf_event_mutex);
3325 return 0;
3328 int perf_event_task_disable(void)
3330 struct perf_event *event;
3332 mutex_lock(&current->perf_event_mutex);
3333 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3334 perf_event_for_each_child(event, perf_event_disable);
3335 mutex_unlock(&current->perf_event_mutex);
3337 return 0;
3340 #ifndef PERF_EVENT_INDEX_OFFSET
3341 # define PERF_EVENT_INDEX_OFFSET 0
3342 #endif
3344 static int perf_event_index(struct perf_event *event)
3346 if (event->hw.state & PERF_HES_STOPPED)
3347 return 0;
3349 if (event->state != PERF_EVENT_STATE_ACTIVE)
3350 return 0;
3352 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3355 static void calc_timer_values(struct perf_event *event,
3356 u64 *running,
3357 u64 *enabled)
3359 u64 now, ctx_time;
3361 now = perf_clock();
3362 ctx_time = event->shadow_ctx_time + now;
3363 *enabled = ctx_time - event->tstamp_enabled;
3364 *running = ctx_time - event->tstamp_running;
3368 * Callers need to ensure there can be no nesting of this function, otherwise
3369 * the seqlock logic goes bad. We can not serialize this because the arch
3370 * code calls this from NMI context.
3372 void perf_event_update_userpage(struct perf_event *event)
3374 struct perf_event_mmap_page *userpg;
3375 struct ring_buffer *rb;
3376 u64 enabled, running;
3378 rcu_read_lock();
3380 * compute total_time_enabled, total_time_running
3381 * based on snapshot values taken when the event
3382 * was last scheduled in.
3384 * we cannot simply called update_context_time()
3385 * because of locking issue as we can be called in
3386 * NMI context
3388 calc_timer_values(event, &enabled, &running);
3389 rb = rcu_dereference(event->rb);
3390 if (!rb)
3391 goto unlock;
3393 userpg = rb->user_page;
3396 * Disable preemption so as to not let the corresponding user-space
3397 * spin too long if we get preempted.
3399 preempt_disable();
3400 ++userpg->lock;
3401 barrier();
3402 userpg->index = perf_event_index(event);
3403 userpg->offset = perf_event_count(event);
3404 if (event->state == PERF_EVENT_STATE_ACTIVE)
3405 userpg->offset -= local64_read(&event->hw.prev_count);
3407 userpg->time_enabled = enabled +
3408 atomic64_read(&event->child_total_time_enabled);
3410 userpg->time_running = running +
3411 atomic64_read(&event->child_total_time_running);
3413 barrier();
3414 ++userpg->lock;
3415 preempt_enable();
3416 unlock:
3417 rcu_read_unlock();
3420 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3422 struct perf_event *event = vma->vm_file->private_data;
3423 struct ring_buffer *rb;
3424 int ret = VM_FAULT_SIGBUS;
3426 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3427 if (vmf->pgoff == 0)
3428 ret = 0;
3429 return ret;
3432 rcu_read_lock();
3433 rb = rcu_dereference(event->rb);
3434 if (!rb)
3435 goto unlock;
3437 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3438 goto unlock;
3440 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3441 if (!vmf->page)
3442 goto unlock;
3444 get_page(vmf->page);
3445 vmf->page->mapping = vma->vm_file->f_mapping;
3446 vmf->page->index = vmf->pgoff;
3448 ret = 0;
3449 unlock:
3450 rcu_read_unlock();
3452 return ret;
3455 static void rb_free_rcu(struct rcu_head *rcu_head)
3457 struct ring_buffer *rb;
3459 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3460 rb_free(rb);
3463 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3465 struct ring_buffer *rb;
3467 rcu_read_lock();
3468 rb = rcu_dereference(event->rb);
3469 if (rb) {
3470 if (!atomic_inc_not_zero(&rb->refcount))
3471 rb = NULL;
3473 rcu_read_unlock();
3475 return rb;
3478 static void ring_buffer_put(struct ring_buffer *rb)
3480 if (!atomic_dec_and_test(&rb->refcount))
3481 return;
3483 call_rcu(&rb->rcu_head, rb_free_rcu);
3486 static void perf_mmap_open(struct vm_area_struct *vma)
3488 struct perf_event *event = vma->vm_file->private_data;
3490 atomic_inc(&event->mmap_count);
3493 static void perf_mmap_close(struct vm_area_struct *vma)
3495 struct perf_event *event = vma->vm_file->private_data;
3497 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3498 unsigned long size = perf_data_size(event->rb);
3499 struct user_struct *user = event->mmap_user;
3500 struct ring_buffer *rb = event->rb;
3502 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3503 vma->vm_mm->locked_vm -= event->mmap_locked;
3504 rcu_assign_pointer(event->rb, NULL);
3505 mutex_unlock(&event->mmap_mutex);
3507 ring_buffer_put(rb);
3508 free_uid(user);
3512 static const struct vm_operations_struct perf_mmap_vmops = {
3513 .open = perf_mmap_open,
3514 .close = perf_mmap_close,
3515 .fault = perf_mmap_fault,
3516 .page_mkwrite = perf_mmap_fault,
3519 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3521 struct perf_event *event = file->private_data;
3522 unsigned long user_locked, user_lock_limit;
3523 struct user_struct *user = current_user();
3524 unsigned long locked, lock_limit;
3525 struct ring_buffer *rb;
3526 unsigned long vma_size;
3527 unsigned long nr_pages;
3528 long user_extra, extra;
3529 int ret = 0, flags = 0;
3532 * Don't allow mmap() of inherited per-task counters. This would
3533 * create a performance issue due to all children writing to the
3534 * same rb.
3536 if (event->cpu == -1 && event->attr.inherit)
3537 return -EINVAL;
3539 if (!(vma->vm_flags & VM_SHARED))
3540 return -EINVAL;
3542 vma_size = vma->vm_end - vma->vm_start;
3543 nr_pages = (vma_size / PAGE_SIZE) - 1;
3546 * If we have rb pages ensure they're a power-of-two number, so we
3547 * can do bitmasks instead of modulo.
3549 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3550 return -EINVAL;
3552 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3553 return -EINVAL;
3555 if (vma->vm_pgoff != 0)
3556 return -EINVAL;
3558 WARN_ON_ONCE(event->ctx->parent_ctx);
3559 mutex_lock(&event->mmap_mutex);
3560 if (event->rb) {
3561 if (event->rb->nr_pages == nr_pages)
3562 atomic_inc(&event->rb->refcount);
3563 else
3564 ret = -EINVAL;
3565 goto unlock;
3568 user_extra = nr_pages + 1;
3569 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3572 * Increase the limit linearly with more CPUs:
3574 user_lock_limit *= num_online_cpus();
3576 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3578 extra = 0;
3579 if (user_locked > user_lock_limit)
3580 extra = user_locked - user_lock_limit;
3582 lock_limit = rlimit(RLIMIT_MEMLOCK);
3583 lock_limit >>= PAGE_SHIFT;
3584 locked = vma->vm_mm->locked_vm + extra;
3586 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3587 !capable(CAP_IPC_LOCK)) {
3588 ret = -EPERM;
3589 goto unlock;
3592 WARN_ON(event->rb);
3594 if (vma->vm_flags & VM_WRITE)
3595 flags |= RING_BUFFER_WRITABLE;
3597 rb = rb_alloc(nr_pages,
3598 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3599 event->cpu, flags);
3601 if (!rb) {
3602 ret = -ENOMEM;
3603 goto unlock;
3605 rcu_assign_pointer(event->rb, rb);
3607 atomic_long_add(user_extra, &user->locked_vm);
3608 event->mmap_locked = extra;
3609 event->mmap_user = get_current_user();
3610 vma->vm_mm->locked_vm += event->mmap_locked;
3612 unlock:
3613 if (!ret)
3614 atomic_inc(&event->mmap_count);
3615 mutex_unlock(&event->mmap_mutex);
3617 vma->vm_flags |= VM_RESERVED;
3618 vma->vm_ops = &perf_mmap_vmops;
3620 return ret;
3623 static int perf_fasync(int fd, struct file *filp, int on)
3625 struct inode *inode = filp->f_path.dentry->d_inode;
3626 struct perf_event *event = filp->private_data;
3627 int retval;
3629 mutex_lock(&inode->i_mutex);
3630 retval = fasync_helper(fd, filp, on, &event->fasync);
3631 mutex_unlock(&inode->i_mutex);
3633 if (retval < 0)
3634 return retval;
3636 return 0;
3639 static const struct file_operations perf_fops = {
3640 .llseek = no_llseek,
3641 .release = perf_release,
3642 .read = perf_read,
3643 .poll = perf_poll,
3644 .unlocked_ioctl = perf_ioctl,
3645 .compat_ioctl = perf_ioctl,
3646 .mmap = perf_mmap,
3647 .fasync = perf_fasync,
3651 * Perf event wakeup
3653 * If there's data, ensure we set the poll() state and publish everything
3654 * to user-space before waking everybody up.
3657 void perf_event_wakeup(struct perf_event *event)
3659 wake_up_all(&event->waitq);
3661 if (event->pending_kill) {
3662 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3663 event->pending_kill = 0;
3667 static void perf_pending_event(struct irq_work *entry)
3669 struct perf_event *event = container_of(entry,
3670 struct perf_event, pending);
3672 if (event->pending_disable) {
3673 event->pending_disable = 0;
3674 __perf_event_disable(event);
3677 if (event->pending_wakeup) {
3678 event->pending_wakeup = 0;
3679 perf_event_wakeup(event);
3684 * We assume there is only KVM supporting the callbacks.
3685 * Later on, we might change it to a list if there is
3686 * another virtualization implementation supporting the callbacks.
3688 struct perf_guest_info_callbacks *perf_guest_cbs;
3690 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3692 perf_guest_cbs = cbs;
3693 return 0;
3695 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3697 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3699 perf_guest_cbs = NULL;
3700 return 0;
3702 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3704 static void __perf_event_header__init_id(struct perf_event_header *header,
3705 struct perf_sample_data *data,
3706 struct perf_event *event)
3708 u64 sample_type = event->attr.sample_type;
3710 data->type = sample_type;
3711 header->size += event->id_header_size;
3713 if (sample_type & PERF_SAMPLE_TID) {
3714 /* namespace issues */
3715 data->tid_entry.pid = perf_event_pid(event, current);
3716 data->tid_entry.tid = perf_event_tid(event, current);
3719 if (sample_type & PERF_SAMPLE_TIME)
3720 data->time = perf_clock();
3722 if (sample_type & PERF_SAMPLE_ID)
3723 data->id = primary_event_id(event);
3725 if (sample_type & PERF_SAMPLE_STREAM_ID)
3726 data->stream_id = event->id;
3728 if (sample_type & PERF_SAMPLE_CPU) {
3729 data->cpu_entry.cpu = raw_smp_processor_id();
3730 data->cpu_entry.reserved = 0;
3734 void perf_event_header__init_id(struct perf_event_header *header,
3735 struct perf_sample_data *data,
3736 struct perf_event *event)
3738 if (event->attr.sample_id_all)
3739 __perf_event_header__init_id(header, data, event);
3742 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3743 struct perf_sample_data *data)
3745 u64 sample_type = data->type;
3747 if (sample_type & PERF_SAMPLE_TID)
3748 perf_output_put(handle, data->tid_entry);
3750 if (sample_type & PERF_SAMPLE_TIME)
3751 perf_output_put(handle, data->time);
3753 if (sample_type & PERF_SAMPLE_ID)
3754 perf_output_put(handle, data->id);
3756 if (sample_type & PERF_SAMPLE_STREAM_ID)
3757 perf_output_put(handle, data->stream_id);
3759 if (sample_type & PERF_SAMPLE_CPU)
3760 perf_output_put(handle, data->cpu_entry);
3763 void perf_event__output_id_sample(struct perf_event *event,
3764 struct perf_output_handle *handle,
3765 struct perf_sample_data *sample)
3767 if (event->attr.sample_id_all)
3768 __perf_event__output_id_sample(handle, sample);
3771 static void perf_output_read_one(struct perf_output_handle *handle,
3772 struct perf_event *event,
3773 u64 enabled, u64 running)
3775 u64 read_format = event->attr.read_format;
3776 u64 values[4];
3777 int n = 0;
3779 values[n++] = perf_event_count(event);
3780 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3781 values[n++] = enabled +
3782 atomic64_read(&event->child_total_time_enabled);
3784 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3785 values[n++] = running +
3786 atomic64_read(&event->child_total_time_running);
3788 if (read_format & PERF_FORMAT_ID)
3789 values[n++] = primary_event_id(event);
3791 __output_copy(handle, values, n * sizeof(u64));
3795 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3797 static void perf_output_read_group(struct perf_output_handle *handle,
3798 struct perf_event *event,
3799 u64 enabled, u64 running)
3801 struct perf_event *leader = event->group_leader, *sub;
3802 u64 read_format = event->attr.read_format;
3803 u64 values[5];
3804 int n = 0;
3806 values[n++] = 1 + leader->nr_siblings;
3808 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3809 values[n++] = enabled;
3811 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3812 values[n++] = running;
3814 if (leader != event)
3815 leader->pmu->read(leader);
3817 values[n++] = perf_event_count(leader);
3818 if (read_format & PERF_FORMAT_ID)
3819 values[n++] = primary_event_id(leader);
3821 __output_copy(handle, values, n * sizeof(u64));
3823 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3824 n = 0;
3826 if (sub != event)
3827 sub->pmu->read(sub);
3829 values[n++] = perf_event_count(sub);
3830 if (read_format & PERF_FORMAT_ID)
3831 values[n++] = primary_event_id(sub);
3833 __output_copy(handle, values, n * sizeof(u64));
3837 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3838 PERF_FORMAT_TOTAL_TIME_RUNNING)
3840 static void perf_output_read(struct perf_output_handle *handle,
3841 struct perf_event *event)
3843 u64 enabled = 0, running = 0;
3844 u64 read_format = event->attr.read_format;
3847 * compute total_time_enabled, total_time_running
3848 * based on snapshot values taken when the event
3849 * was last scheduled in.
3851 * we cannot simply called update_context_time()
3852 * because of locking issue as we are called in
3853 * NMI context
3855 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3856 calc_timer_values(event, &enabled, &running);
3858 if (event->attr.read_format & PERF_FORMAT_GROUP)
3859 perf_output_read_group(handle, event, enabled, running);
3860 else
3861 perf_output_read_one(handle, event, enabled, running);
3864 void perf_output_sample(struct perf_output_handle *handle,
3865 struct perf_event_header *header,
3866 struct perf_sample_data *data,
3867 struct perf_event *event)
3869 u64 sample_type = data->type;
3871 perf_output_put(handle, *header);
3873 if (sample_type & PERF_SAMPLE_IP)
3874 perf_output_put(handle, data->ip);
3876 if (sample_type & PERF_SAMPLE_TID)
3877 perf_output_put(handle, data->tid_entry);
3879 if (sample_type & PERF_SAMPLE_TIME)
3880 perf_output_put(handle, data->time);
3882 if (sample_type & PERF_SAMPLE_ADDR)
3883 perf_output_put(handle, data->addr);
3885 if (sample_type & PERF_SAMPLE_ID)
3886 perf_output_put(handle, data->id);
3888 if (sample_type & PERF_SAMPLE_STREAM_ID)
3889 perf_output_put(handle, data->stream_id);
3891 if (sample_type & PERF_SAMPLE_CPU)
3892 perf_output_put(handle, data->cpu_entry);
3894 if (sample_type & PERF_SAMPLE_PERIOD)
3895 perf_output_put(handle, data->period);
3897 if (sample_type & PERF_SAMPLE_READ)
3898 perf_output_read(handle, event);
3900 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3901 if (data->callchain) {
3902 int size = 1;
3904 if (data->callchain)
3905 size += data->callchain->nr;
3907 size *= sizeof(u64);
3909 __output_copy(handle, data->callchain, size);
3910 } else {
3911 u64 nr = 0;
3912 perf_output_put(handle, nr);
3916 if (sample_type & PERF_SAMPLE_RAW) {
3917 if (data->raw) {
3918 perf_output_put(handle, data->raw->size);
3919 __output_copy(handle, data->raw->data,
3920 data->raw->size);
3921 } else {
3922 struct {
3923 u32 size;
3924 u32 data;
3925 } raw = {
3926 .size = sizeof(u32),
3927 .data = 0,
3929 perf_output_put(handle, raw);
3933 if (!event->attr.watermark) {
3934 int wakeup_events = event->attr.wakeup_events;
3936 if (wakeup_events) {
3937 struct ring_buffer *rb = handle->rb;
3938 int events = local_inc_return(&rb->events);
3940 if (events >= wakeup_events) {
3941 local_sub(wakeup_events, &rb->events);
3942 local_inc(&rb->wakeup);
3948 void perf_prepare_sample(struct perf_event_header *header,
3949 struct perf_sample_data *data,
3950 struct perf_event *event,
3951 struct pt_regs *regs)
3953 u64 sample_type = event->attr.sample_type;
3955 header->type = PERF_RECORD_SAMPLE;
3956 header->size = sizeof(*header) + event->header_size;
3958 header->misc = 0;
3959 header->misc |= perf_misc_flags(regs);
3961 __perf_event_header__init_id(header, data, event);
3963 if (sample_type & PERF_SAMPLE_IP)
3964 data->ip = perf_instruction_pointer(regs);
3966 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3967 int size = 1;
3969 data->callchain = perf_callchain(regs);
3971 if (data->callchain)
3972 size += data->callchain->nr;
3974 header->size += size * sizeof(u64);
3977 if (sample_type & PERF_SAMPLE_RAW) {
3978 int size = sizeof(u32);
3980 if (data->raw)
3981 size += data->raw->size;
3982 else
3983 size += sizeof(u32);
3985 WARN_ON_ONCE(size & (sizeof(u64)-1));
3986 header->size += size;
3990 static void perf_event_output(struct perf_event *event,
3991 struct perf_sample_data *data,
3992 struct pt_regs *regs)
3994 struct perf_output_handle handle;
3995 struct perf_event_header header;
3997 /* protect the callchain buffers */
3998 rcu_read_lock();
4000 perf_prepare_sample(&header, data, event, regs);
4002 if (perf_output_begin(&handle, event, header.size))
4003 goto exit;
4005 perf_output_sample(&handle, &header, data, event);
4007 perf_output_end(&handle);
4009 exit:
4010 rcu_read_unlock();
4014 * read event_id
4017 struct perf_read_event {
4018 struct perf_event_header header;
4020 u32 pid;
4021 u32 tid;
4024 static void
4025 perf_event_read_event(struct perf_event *event,
4026 struct task_struct *task)
4028 struct perf_output_handle handle;
4029 struct perf_sample_data sample;
4030 struct perf_read_event read_event = {
4031 .header = {
4032 .type = PERF_RECORD_READ,
4033 .misc = 0,
4034 .size = sizeof(read_event) + event->read_size,
4036 .pid = perf_event_pid(event, task),
4037 .tid = perf_event_tid(event, task),
4039 int ret;
4041 perf_event_header__init_id(&read_event.header, &sample, event);
4042 ret = perf_output_begin(&handle, event, read_event.header.size);
4043 if (ret)
4044 return;
4046 perf_output_put(&handle, read_event);
4047 perf_output_read(&handle, event);
4048 perf_event__output_id_sample(event, &handle, &sample);
4050 perf_output_end(&handle);
4054 * task tracking -- fork/exit
4056 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4059 struct perf_task_event {
4060 struct task_struct *task;
4061 struct perf_event_context *task_ctx;
4063 struct {
4064 struct perf_event_header header;
4066 u32 pid;
4067 u32 ppid;
4068 u32 tid;
4069 u32 ptid;
4070 u64 time;
4071 } event_id;
4074 static void perf_event_task_output(struct perf_event *event,
4075 struct perf_task_event *task_event)
4077 struct perf_output_handle handle;
4078 struct perf_sample_data sample;
4079 struct task_struct *task = task_event->task;
4080 int ret, size = task_event->event_id.header.size;
4082 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4084 ret = perf_output_begin(&handle, event,
4085 task_event->event_id.header.size);
4086 if (ret)
4087 goto out;
4089 task_event->event_id.pid = perf_event_pid(event, task);
4090 task_event->event_id.ppid = perf_event_pid(event, current);
4092 task_event->event_id.tid = perf_event_tid(event, task);
4093 task_event->event_id.ptid = perf_event_tid(event, current);
4095 perf_output_put(&handle, task_event->event_id);
4097 perf_event__output_id_sample(event, &handle, &sample);
4099 perf_output_end(&handle);
4100 out:
4101 task_event->event_id.header.size = size;
4104 static int perf_event_task_match(struct perf_event *event)
4106 if (event->state < PERF_EVENT_STATE_INACTIVE)
4107 return 0;
4109 if (!event_filter_match(event))
4110 return 0;
4112 if (event->attr.comm || event->attr.mmap ||
4113 event->attr.mmap_data || event->attr.task)
4114 return 1;
4116 return 0;
4119 static void perf_event_task_ctx(struct perf_event_context *ctx,
4120 struct perf_task_event *task_event)
4122 struct perf_event *event;
4124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125 if (perf_event_task_match(event))
4126 perf_event_task_output(event, task_event);
4130 static void perf_event_task_event(struct perf_task_event *task_event)
4132 struct perf_cpu_context *cpuctx;
4133 struct perf_event_context *ctx;
4134 struct pmu *pmu;
4135 int ctxn;
4137 rcu_read_lock();
4138 list_for_each_entry_rcu(pmu, &pmus, entry) {
4139 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4140 if (cpuctx->active_pmu != pmu)
4141 goto next;
4142 perf_event_task_ctx(&cpuctx->ctx, task_event);
4144 ctx = task_event->task_ctx;
4145 if (!ctx) {
4146 ctxn = pmu->task_ctx_nr;
4147 if (ctxn < 0)
4148 goto next;
4149 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4151 if (ctx)
4152 perf_event_task_ctx(ctx, task_event);
4153 next:
4154 put_cpu_ptr(pmu->pmu_cpu_context);
4156 rcu_read_unlock();
4159 static void perf_event_task(struct task_struct *task,
4160 struct perf_event_context *task_ctx,
4161 int new)
4163 struct perf_task_event task_event;
4165 if (!atomic_read(&nr_comm_events) &&
4166 !atomic_read(&nr_mmap_events) &&
4167 !atomic_read(&nr_task_events))
4168 return;
4170 task_event = (struct perf_task_event){
4171 .task = task,
4172 .task_ctx = task_ctx,
4173 .event_id = {
4174 .header = {
4175 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4176 .misc = 0,
4177 .size = sizeof(task_event.event_id),
4179 /* .pid */
4180 /* .ppid */
4181 /* .tid */
4182 /* .ptid */
4183 .time = perf_clock(),
4187 perf_event_task_event(&task_event);
4190 void perf_event_fork(struct task_struct *task)
4192 perf_event_task(task, NULL, 1);
4196 * comm tracking
4199 struct perf_comm_event {
4200 struct task_struct *task;
4201 char *comm;
4202 int comm_size;
4204 struct {
4205 struct perf_event_header header;
4207 u32 pid;
4208 u32 tid;
4209 } event_id;
4212 static void perf_event_comm_output(struct perf_event *event,
4213 struct perf_comm_event *comm_event)
4215 struct perf_output_handle handle;
4216 struct perf_sample_data sample;
4217 int size = comm_event->event_id.header.size;
4218 int ret;
4220 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4221 ret = perf_output_begin(&handle, event,
4222 comm_event->event_id.header.size);
4224 if (ret)
4225 goto out;
4227 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4228 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4230 perf_output_put(&handle, comm_event->event_id);
4231 __output_copy(&handle, comm_event->comm,
4232 comm_event->comm_size);
4234 perf_event__output_id_sample(event, &handle, &sample);
4236 perf_output_end(&handle);
4237 out:
4238 comm_event->event_id.header.size = size;
4241 static int perf_event_comm_match(struct perf_event *event)
4243 if (event->state < PERF_EVENT_STATE_INACTIVE)
4244 return 0;
4246 if (!event_filter_match(event))
4247 return 0;
4249 if (event->attr.comm)
4250 return 1;
4252 return 0;
4255 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4256 struct perf_comm_event *comm_event)
4258 struct perf_event *event;
4260 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4261 if (perf_event_comm_match(event))
4262 perf_event_comm_output(event, comm_event);
4266 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4268 struct perf_cpu_context *cpuctx;
4269 struct perf_event_context *ctx;
4270 char comm[TASK_COMM_LEN];
4271 unsigned int size;
4272 struct pmu *pmu;
4273 int ctxn;
4275 memset(comm, 0, sizeof(comm));
4276 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4277 size = ALIGN(strlen(comm)+1, sizeof(u64));
4279 comm_event->comm = comm;
4280 comm_event->comm_size = size;
4282 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4283 rcu_read_lock();
4284 list_for_each_entry_rcu(pmu, &pmus, entry) {
4285 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4286 if (cpuctx->active_pmu != pmu)
4287 goto next;
4288 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4290 ctxn = pmu->task_ctx_nr;
4291 if (ctxn < 0)
4292 goto next;
4294 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4295 if (ctx)
4296 perf_event_comm_ctx(ctx, comm_event);
4297 next:
4298 put_cpu_ptr(pmu->pmu_cpu_context);
4300 rcu_read_unlock();
4303 void perf_event_comm(struct task_struct *task)
4305 struct perf_comm_event comm_event;
4306 struct perf_event_context *ctx;
4307 int ctxn;
4309 for_each_task_context_nr(ctxn) {
4310 ctx = task->perf_event_ctxp[ctxn];
4311 if (!ctx)
4312 continue;
4314 perf_event_enable_on_exec(ctx);
4317 if (!atomic_read(&nr_comm_events))
4318 return;
4320 comm_event = (struct perf_comm_event){
4321 .task = task,
4322 /* .comm */
4323 /* .comm_size */
4324 .event_id = {
4325 .header = {
4326 .type = PERF_RECORD_COMM,
4327 .misc = 0,
4328 /* .size */
4330 /* .pid */
4331 /* .tid */
4335 perf_event_comm_event(&comm_event);
4339 * mmap tracking
4342 struct perf_mmap_event {
4343 struct vm_area_struct *vma;
4345 const char *file_name;
4346 int file_size;
4348 struct {
4349 struct perf_event_header header;
4351 u32 pid;
4352 u32 tid;
4353 u64 start;
4354 u64 len;
4355 u64 pgoff;
4356 } event_id;
4359 static void perf_event_mmap_output(struct perf_event *event,
4360 struct perf_mmap_event *mmap_event)
4362 struct perf_output_handle handle;
4363 struct perf_sample_data sample;
4364 int size = mmap_event->event_id.header.size;
4365 int ret;
4367 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4368 ret = perf_output_begin(&handle, event,
4369 mmap_event->event_id.header.size);
4370 if (ret)
4371 goto out;
4373 mmap_event->event_id.pid = perf_event_pid(event, current);
4374 mmap_event->event_id.tid = perf_event_tid(event, current);
4376 perf_output_put(&handle, mmap_event->event_id);
4377 __output_copy(&handle, mmap_event->file_name,
4378 mmap_event->file_size);
4380 perf_event__output_id_sample(event, &handle, &sample);
4382 perf_output_end(&handle);
4383 out:
4384 mmap_event->event_id.header.size = size;
4387 static int perf_event_mmap_match(struct perf_event *event,
4388 struct perf_mmap_event *mmap_event,
4389 int executable)
4391 if (event->state < PERF_EVENT_STATE_INACTIVE)
4392 return 0;
4394 if (!event_filter_match(event))
4395 return 0;
4397 if ((!executable && event->attr.mmap_data) ||
4398 (executable && event->attr.mmap))
4399 return 1;
4401 return 0;
4404 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4405 struct perf_mmap_event *mmap_event,
4406 int executable)
4408 struct perf_event *event;
4410 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4411 if (perf_event_mmap_match(event, mmap_event, executable))
4412 perf_event_mmap_output(event, mmap_event);
4416 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4418 struct perf_cpu_context *cpuctx;
4419 struct perf_event_context *ctx;
4420 struct vm_area_struct *vma = mmap_event->vma;
4421 struct file *file = vma->vm_file;
4422 unsigned int size;
4423 char tmp[16];
4424 char *buf = NULL;
4425 const char *name;
4426 struct pmu *pmu;
4427 int ctxn;
4429 memset(tmp, 0, sizeof(tmp));
4431 if (file) {
4433 * d_path works from the end of the rb backwards, so we
4434 * need to add enough zero bytes after the string to handle
4435 * the 64bit alignment we do later.
4437 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4438 if (!buf) {
4439 name = strncpy(tmp, "//enomem", sizeof(tmp));
4440 goto got_name;
4442 name = d_path(&file->f_path, buf, PATH_MAX);
4443 if (IS_ERR(name)) {
4444 name = strncpy(tmp, "//toolong", sizeof(tmp));
4445 goto got_name;
4447 } else {
4448 if (arch_vma_name(mmap_event->vma)) {
4449 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4450 sizeof(tmp));
4451 goto got_name;
4454 if (!vma->vm_mm) {
4455 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4456 goto got_name;
4457 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4458 vma->vm_end >= vma->vm_mm->brk) {
4459 name = strncpy(tmp, "[heap]", sizeof(tmp));
4460 goto got_name;
4461 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4462 vma->vm_end >= vma->vm_mm->start_stack) {
4463 name = strncpy(tmp, "[stack]", sizeof(tmp));
4464 goto got_name;
4467 name = strncpy(tmp, "//anon", sizeof(tmp));
4468 goto got_name;
4471 got_name:
4472 size = ALIGN(strlen(name)+1, sizeof(u64));
4474 mmap_event->file_name = name;
4475 mmap_event->file_size = size;
4477 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4479 rcu_read_lock();
4480 list_for_each_entry_rcu(pmu, &pmus, entry) {
4481 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4482 if (cpuctx->active_pmu != pmu)
4483 goto next;
4484 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4485 vma->vm_flags & VM_EXEC);
4487 ctxn = pmu->task_ctx_nr;
4488 if (ctxn < 0)
4489 goto next;
4491 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4492 if (ctx) {
4493 perf_event_mmap_ctx(ctx, mmap_event,
4494 vma->vm_flags & VM_EXEC);
4496 next:
4497 put_cpu_ptr(pmu->pmu_cpu_context);
4499 rcu_read_unlock();
4501 kfree(buf);
4504 void perf_event_mmap(struct vm_area_struct *vma)
4506 struct perf_mmap_event mmap_event;
4508 if (!atomic_read(&nr_mmap_events))
4509 return;
4511 mmap_event = (struct perf_mmap_event){
4512 .vma = vma,
4513 /* .file_name */
4514 /* .file_size */
4515 .event_id = {
4516 .header = {
4517 .type = PERF_RECORD_MMAP,
4518 .misc = PERF_RECORD_MISC_USER,
4519 /* .size */
4521 /* .pid */
4522 /* .tid */
4523 .start = vma->vm_start,
4524 .len = vma->vm_end - vma->vm_start,
4525 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4529 perf_event_mmap_event(&mmap_event);
4533 * IRQ throttle logging
4536 static void perf_log_throttle(struct perf_event *event, int enable)
4538 struct perf_output_handle handle;
4539 struct perf_sample_data sample;
4540 int ret;
4542 struct {
4543 struct perf_event_header header;
4544 u64 time;
4545 u64 id;
4546 u64 stream_id;
4547 } throttle_event = {
4548 .header = {
4549 .type = PERF_RECORD_THROTTLE,
4550 .misc = 0,
4551 .size = sizeof(throttle_event),
4553 .time = perf_clock(),
4554 .id = primary_event_id(event),
4555 .stream_id = event->id,
4558 if (enable)
4559 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4561 perf_event_header__init_id(&throttle_event.header, &sample, event);
4563 ret = perf_output_begin(&handle, event,
4564 throttle_event.header.size);
4565 if (ret)
4566 return;
4568 perf_output_put(&handle, throttle_event);
4569 perf_event__output_id_sample(event, &handle, &sample);
4570 perf_output_end(&handle);
4574 * Generic event overflow handling, sampling.
4577 static int __perf_event_overflow(struct perf_event *event,
4578 int throttle, struct perf_sample_data *data,
4579 struct pt_regs *regs)
4581 int events = atomic_read(&event->event_limit);
4582 struct hw_perf_event *hwc = &event->hw;
4583 int ret = 0;
4586 * Non-sampling counters might still use the PMI to fold short
4587 * hardware counters, ignore those.
4589 if (unlikely(!is_sampling_event(event)))
4590 return 0;
4592 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4593 if (throttle) {
4594 hwc->interrupts = MAX_INTERRUPTS;
4595 perf_log_throttle(event, 0);
4596 ret = 1;
4598 } else
4599 hwc->interrupts++;
4601 if (event->attr.freq) {
4602 u64 now = perf_clock();
4603 s64 delta = now - hwc->freq_time_stamp;
4605 hwc->freq_time_stamp = now;
4607 if (delta > 0 && delta < 2*TICK_NSEC)
4608 perf_adjust_period(event, delta, hwc->last_period);
4612 * XXX event_limit might not quite work as expected on inherited
4613 * events
4616 event->pending_kill = POLL_IN;
4617 if (events && atomic_dec_and_test(&event->event_limit)) {
4618 ret = 1;
4619 event->pending_kill = POLL_HUP;
4620 event->pending_disable = 1;
4621 irq_work_queue(&event->pending);
4624 if (event->overflow_handler)
4625 event->overflow_handler(event, data, regs);
4626 else
4627 perf_event_output(event, data, regs);
4629 if (event->fasync && event->pending_kill) {
4630 event->pending_wakeup = 1;
4631 irq_work_queue(&event->pending);
4634 return ret;
4637 int perf_event_overflow(struct perf_event *event,
4638 struct perf_sample_data *data,
4639 struct pt_regs *regs)
4641 return __perf_event_overflow(event, 1, data, regs);
4645 * Generic software event infrastructure
4648 struct swevent_htable {
4649 struct swevent_hlist *swevent_hlist;
4650 struct mutex hlist_mutex;
4651 int hlist_refcount;
4653 /* Recursion avoidance in each contexts */
4654 int recursion[PERF_NR_CONTEXTS];
4657 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4660 * We directly increment event->count and keep a second value in
4661 * event->hw.period_left to count intervals. This period event
4662 * is kept in the range [-sample_period, 0] so that we can use the
4663 * sign as trigger.
4666 static u64 perf_swevent_set_period(struct perf_event *event)
4668 struct hw_perf_event *hwc = &event->hw;
4669 u64 period = hwc->last_period;
4670 u64 nr, offset;
4671 s64 old, val;
4673 hwc->last_period = hwc->sample_period;
4675 again:
4676 old = val = local64_read(&hwc->period_left);
4677 if (val < 0)
4678 return 0;
4680 nr = div64_u64(period + val, period);
4681 offset = nr * period;
4682 val -= offset;
4683 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4684 goto again;
4686 return nr;
4689 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4690 struct perf_sample_data *data,
4691 struct pt_regs *regs)
4693 struct hw_perf_event *hwc = &event->hw;
4694 int throttle = 0;
4696 data->period = event->hw.last_period;
4697 if (!overflow)
4698 overflow = perf_swevent_set_period(event);
4700 if (hwc->interrupts == MAX_INTERRUPTS)
4701 return;
4703 for (; overflow; overflow--) {
4704 if (__perf_event_overflow(event, throttle,
4705 data, regs)) {
4707 * We inhibit the overflow from happening when
4708 * hwc->interrupts == MAX_INTERRUPTS.
4710 break;
4712 throttle = 1;
4716 static void perf_swevent_event(struct perf_event *event, u64 nr,
4717 struct perf_sample_data *data,
4718 struct pt_regs *regs)
4720 struct hw_perf_event *hwc = &event->hw;
4722 local64_add(nr, &event->count);
4724 if (!regs)
4725 return;
4727 if (!is_sampling_event(event))
4728 return;
4730 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4731 return perf_swevent_overflow(event, 1, data, regs);
4733 if (local64_add_negative(nr, &hwc->period_left))
4734 return;
4736 perf_swevent_overflow(event, 0, data, regs);
4739 static int perf_exclude_event(struct perf_event *event,
4740 struct pt_regs *regs)
4742 if (event->hw.state & PERF_HES_STOPPED)
4743 return 1;
4745 if (regs) {
4746 if (event->attr.exclude_user && user_mode(regs))
4747 return 1;
4749 if (event->attr.exclude_kernel && !user_mode(regs))
4750 return 1;
4753 return 0;
4756 static int perf_swevent_match(struct perf_event *event,
4757 enum perf_type_id type,
4758 u32 event_id,
4759 struct perf_sample_data *data,
4760 struct pt_regs *regs)
4762 if (event->attr.type != type)
4763 return 0;
4765 if (event->attr.config != event_id)
4766 return 0;
4768 if (perf_exclude_event(event, regs))
4769 return 0;
4771 return 1;
4774 static inline u64 swevent_hash(u64 type, u32 event_id)
4776 u64 val = event_id | (type << 32);
4778 return hash_64(val, SWEVENT_HLIST_BITS);
4781 static inline struct hlist_head *
4782 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4784 u64 hash = swevent_hash(type, event_id);
4786 return &hlist->heads[hash];
4789 /* For the read side: events when they trigger */
4790 static inline struct hlist_head *
4791 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4793 struct swevent_hlist *hlist;
4795 hlist = rcu_dereference(swhash->swevent_hlist);
4796 if (!hlist)
4797 return NULL;
4799 return __find_swevent_head(hlist, type, event_id);
4802 /* For the event head insertion and removal in the hlist */
4803 static inline struct hlist_head *
4804 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4806 struct swevent_hlist *hlist;
4807 u32 event_id = event->attr.config;
4808 u64 type = event->attr.type;
4811 * Event scheduling is always serialized against hlist allocation
4812 * and release. Which makes the protected version suitable here.
4813 * The context lock guarantees that.
4815 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4816 lockdep_is_held(&event->ctx->lock));
4817 if (!hlist)
4818 return NULL;
4820 return __find_swevent_head(hlist, type, event_id);
4823 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4824 u64 nr,
4825 struct perf_sample_data *data,
4826 struct pt_regs *regs)
4828 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4829 struct perf_event *event;
4830 struct hlist_node *node;
4831 struct hlist_head *head;
4833 rcu_read_lock();
4834 head = find_swevent_head_rcu(swhash, type, event_id);
4835 if (!head)
4836 goto end;
4838 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4839 if (perf_swevent_match(event, type, event_id, data, regs))
4840 perf_swevent_event(event, nr, data, regs);
4842 end:
4843 rcu_read_unlock();
4846 int perf_swevent_get_recursion_context(void)
4848 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4850 return get_recursion_context(swhash->recursion);
4852 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4854 inline void perf_swevent_put_recursion_context(int rctx)
4856 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4858 put_recursion_context(swhash->recursion, rctx);
4861 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4863 struct perf_sample_data data;
4864 int rctx;
4866 preempt_disable_notrace();
4867 rctx = perf_swevent_get_recursion_context();
4868 if (rctx < 0)
4869 return;
4871 perf_sample_data_init(&data, addr);
4873 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4875 perf_swevent_put_recursion_context(rctx);
4876 preempt_enable_notrace();
4879 static void perf_swevent_read(struct perf_event *event)
4883 static int perf_swevent_add(struct perf_event *event, int flags)
4885 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4886 struct hw_perf_event *hwc = &event->hw;
4887 struct hlist_head *head;
4889 if (is_sampling_event(event)) {
4890 hwc->last_period = hwc->sample_period;
4891 perf_swevent_set_period(event);
4894 hwc->state = !(flags & PERF_EF_START);
4896 head = find_swevent_head(swhash, event);
4897 if (WARN_ON_ONCE(!head))
4898 return -EINVAL;
4900 hlist_add_head_rcu(&event->hlist_entry, head);
4902 return 0;
4905 static void perf_swevent_del(struct perf_event *event, int flags)
4907 hlist_del_rcu(&event->hlist_entry);
4910 static void perf_swevent_start(struct perf_event *event, int flags)
4912 event->hw.state = 0;
4915 static void perf_swevent_stop(struct perf_event *event, int flags)
4917 event->hw.state = PERF_HES_STOPPED;
4920 /* Deref the hlist from the update side */
4921 static inline struct swevent_hlist *
4922 swevent_hlist_deref(struct swevent_htable *swhash)
4924 return rcu_dereference_protected(swhash->swevent_hlist,
4925 lockdep_is_held(&swhash->hlist_mutex));
4928 static void swevent_hlist_release(struct swevent_htable *swhash)
4930 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4932 if (!hlist)
4933 return;
4935 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4936 kfree_rcu(hlist, rcu_head);
4939 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4941 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4943 mutex_lock(&swhash->hlist_mutex);
4945 if (!--swhash->hlist_refcount)
4946 swevent_hlist_release(swhash);
4948 mutex_unlock(&swhash->hlist_mutex);
4951 static void swevent_hlist_put(struct perf_event *event)
4953 int cpu;
4955 if (event->cpu != -1) {
4956 swevent_hlist_put_cpu(event, event->cpu);
4957 return;
4960 for_each_possible_cpu(cpu)
4961 swevent_hlist_put_cpu(event, cpu);
4964 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4966 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4967 int err = 0;
4969 mutex_lock(&swhash->hlist_mutex);
4971 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4972 struct swevent_hlist *hlist;
4974 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4975 if (!hlist) {
4976 err = -ENOMEM;
4977 goto exit;
4979 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4981 swhash->hlist_refcount++;
4982 exit:
4983 mutex_unlock(&swhash->hlist_mutex);
4985 return err;
4988 static int swevent_hlist_get(struct perf_event *event)
4990 int err;
4991 int cpu, failed_cpu;
4993 if (event->cpu != -1)
4994 return swevent_hlist_get_cpu(event, event->cpu);
4996 get_online_cpus();
4997 for_each_possible_cpu(cpu) {
4998 err = swevent_hlist_get_cpu(event, cpu);
4999 if (err) {
5000 failed_cpu = cpu;
5001 goto fail;
5004 put_online_cpus();
5006 return 0;
5007 fail:
5008 for_each_possible_cpu(cpu) {
5009 if (cpu == failed_cpu)
5010 break;
5011 swevent_hlist_put_cpu(event, cpu);
5014 put_online_cpus();
5015 return err;
5018 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5020 static void sw_perf_event_destroy(struct perf_event *event)
5022 u64 event_id = event->attr.config;
5024 WARN_ON(event->parent);
5026 jump_label_dec(&perf_swevent_enabled[event_id]);
5027 swevent_hlist_put(event);
5030 static int perf_swevent_init(struct perf_event *event)
5032 int event_id = event->attr.config;
5034 if (event->attr.type != PERF_TYPE_SOFTWARE)
5035 return -ENOENT;
5037 switch (event_id) {
5038 case PERF_COUNT_SW_CPU_CLOCK:
5039 case PERF_COUNT_SW_TASK_CLOCK:
5040 return -ENOENT;
5042 default:
5043 break;
5046 if (event_id >= PERF_COUNT_SW_MAX)
5047 return -ENOENT;
5049 if (!event->parent) {
5050 int err;
5052 err = swevent_hlist_get(event);
5053 if (err)
5054 return err;
5056 jump_label_inc(&perf_swevent_enabled[event_id]);
5057 event->destroy = sw_perf_event_destroy;
5060 return 0;
5063 static struct pmu perf_swevent = {
5064 .task_ctx_nr = perf_sw_context,
5066 .event_init = perf_swevent_init,
5067 .add = perf_swevent_add,
5068 .del = perf_swevent_del,
5069 .start = perf_swevent_start,
5070 .stop = perf_swevent_stop,
5071 .read = perf_swevent_read,
5074 #ifdef CONFIG_EVENT_TRACING
5076 static int perf_tp_filter_match(struct perf_event *event,
5077 struct perf_sample_data *data)
5079 void *record = data->raw->data;
5081 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5082 return 1;
5083 return 0;
5086 static int perf_tp_event_match(struct perf_event *event,
5087 struct perf_sample_data *data,
5088 struct pt_regs *regs)
5090 if (event->hw.state & PERF_HES_STOPPED)
5091 return 0;
5093 * All tracepoints are from kernel-space.
5095 if (event->attr.exclude_kernel)
5096 return 0;
5098 if (!perf_tp_filter_match(event, data))
5099 return 0;
5101 return 1;
5104 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5105 struct pt_regs *regs, struct hlist_head *head, int rctx)
5107 struct perf_sample_data data;
5108 struct perf_event *event;
5109 struct hlist_node *node;
5111 struct perf_raw_record raw = {
5112 .size = entry_size,
5113 .data = record,
5116 perf_sample_data_init(&data, addr);
5117 data.raw = &raw;
5119 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5120 if (perf_tp_event_match(event, &data, regs))
5121 perf_swevent_event(event, count, &data, regs);
5124 perf_swevent_put_recursion_context(rctx);
5126 EXPORT_SYMBOL_GPL(perf_tp_event);
5128 static void tp_perf_event_destroy(struct perf_event *event)
5130 perf_trace_destroy(event);
5133 static int perf_tp_event_init(struct perf_event *event)
5135 int err;
5137 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5138 return -ENOENT;
5140 err = perf_trace_init(event);
5141 if (err)
5142 return err;
5144 event->destroy = tp_perf_event_destroy;
5146 return 0;
5149 static struct pmu perf_tracepoint = {
5150 .task_ctx_nr = perf_sw_context,
5152 .event_init = perf_tp_event_init,
5153 .add = perf_trace_add,
5154 .del = perf_trace_del,
5155 .start = perf_swevent_start,
5156 .stop = perf_swevent_stop,
5157 .read = perf_swevent_read,
5160 static inline void perf_tp_register(void)
5162 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5165 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5167 char *filter_str;
5168 int ret;
5170 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5171 return -EINVAL;
5173 filter_str = strndup_user(arg, PAGE_SIZE);
5174 if (IS_ERR(filter_str))
5175 return PTR_ERR(filter_str);
5177 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5179 kfree(filter_str);
5180 return ret;
5183 static void perf_event_free_filter(struct perf_event *event)
5185 ftrace_profile_free_filter(event);
5188 #else
5190 static inline void perf_tp_register(void)
5194 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5196 return -ENOENT;
5199 static void perf_event_free_filter(struct perf_event *event)
5203 #endif /* CONFIG_EVENT_TRACING */
5205 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5206 void perf_bp_event(struct perf_event *bp, void *data)
5208 struct perf_sample_data sample;
5209 struct pt_regs *regs = data;
5211 perf_sample_data_init(&sample, bp->attr.bp_addr);
5213 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5214 perf_swevent_event(bp, 1, &sample, regs);
5216 #endif
5219 * hrtimer based swevent callback
5222 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5224 enum hrtimer_restart ret = HRTIMER_RESTART;
5225 struct perf_sample_data data;
5226 struct pt_regs *regs;
5227 struct perf_event *event;
5228 u64 period;
5230 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5232 if (event->state != PERF_EVENT_STATE_ACTIVE)
5233 return HRTIMER_NORESTART;
5235 event->pmu->read(event);
5237 perf_sample_data_init(&data, 0);
5238 data.period = event->hw.last_period;
5239 regs = get_irq_regs();
5241 if (regs && !perf_exclude_event(event, regs)) {
5242 if (!(event->attr.exclude_idle && current->pid == 0))
5243 if (perf_event_overflow(event, &data, regs))
5244 ret = HRTIMER_NORESTART;
5247 period = max_t(u64, 10000, event->hw.sample_period);
5248 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5250 return ret;
5253 static void perf_swevent_start_hrtimer(struct perf_event *event)
5255 struct hw_perf_event *hwc = &event->hw;
5256 s64 period;
5258 if (!is_sampling_event(event))
5259 return;
5261 period = local64_read(&hwc->period_left);
5262 if (period) {
5263 if (period < 0)
5264 period = 10000;
5266 local64_set(&hwc->period_left, 0);
5267 } else {
5268 period = max_t(u64, 10000, hwc->sample_period);
5270 __hrtimer_start_range_ns(&hwc->hrtimer,
5271 ns_to_ktime(period), 0,
5272 HRTIMER_MODE_REL_PINNED, 0);
5275 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5277 struct hw_perf_event *hwc = &event->hw;
5279 if (is_sampling_event(event)) {
5280 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5281 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5283 hrtimer_cancel(&hwc->hrtimer);
5287 static void perf_swevent_init_hrtimer(struct perf_event *event)
5289 struct hw_perf_event *hwc = &event->hw;
5291 if (!is_sampling_event(event))
5292 return;
5294 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5295 hwc->hrtimer.function = perf_swevent_hrtimer;
5298 * Since hrtimers have a fixed rate, we can do a static freq->period
5299 * mapping and avoid the whole period adjust feedback stuff.
5301 if (event->attr.freq) {
5302 long freq = event->attr.sample_freq;
5304 event->attr.sample_period = NSEC_PER_SEC / freq;
5305 hwc->sample_period = event->attr.sample_period;
5306 local64_set(&hwc->period_left, hwc->sample_period);
5307 event->attr.freq = 0;
5312 * Software event: cpu wall time clock
5315 static void cpu_clock_event_update(struct perf_event *event)
5317 s64 prev;
5318 u64 now;
5320 now = local_clock();
5321 prev = local64_xchg(&event->hw.prev_count, now);
5322 local64_add(now - prev, &event->count);
5325 static void cpu_clock_event_start(struct perf_event *event, int flags)
5327 local64_set(&event->hw.prev_count, local_clock());
5328 perf_swevent_start_hrtimer(event);
5331 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5333 perf_swevent_cancel_hrtimer(event);
5334 cpu_clock_event_update(event);
5337 static int cpu_clock_event_add(struct perf_event *event, int flags)
5339 if (flags & PERF_EF_START)
5340 cpu_clock_event_start(event, flags);
5342 return 0;
5345 static void cpu_clock_event_del(struct perf_event *event, int flags)
5347 cpu_clock_event_stop(event, flags);
5350 static void cpu_clock_event_read(struct perf_event *event)
5352 cpu_clock_event_update(event);
5355 static int cpu_clock_event_init(struct perf_event *event)
5357 if (event->attr.type != PERF_TYPE_SOFTWARE)
5358 return -ENOENT;
5360 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5361 return -ENOENT;
5363 perf_swevent_init_hrtimer(event);
5365 return 0;
5368 static struct pmu perf_cpu_clock = {
5369 .task_ctx_nr = perf_sw_context,
5371 .event_init = cpu_clock_event_init,
5372 .add = cpu_clock_event_add,
5373 .del = cpu_clock_event_del,
5374 .start = cpu_clock_event_start,
5375 .stop = cpu_clock_event_stop,
5376 .read = cpu_clock_event_read,
5380 * Software event: task time clock
5383 static void task_clock_event_update(struct perf_event *event, u64 now)
5385 u64 prev;
5386 s64 delta;
5388 prev = local64_xchg(&event->hw.prev_count, now);
5389 delta = now - prev;
5390 local64_add(delta, &event->count);
5393 static void task_clock_event_start(struct perf_event *event, int flags)
5395 local64_set(&event->hw.prev_count, event->ctx->time);
5396 perf_swevent_start_hrtimer(event);
5399 static void task_clock_event_stop(struct perf_event *event, int flags)
5401 perf_swevent_cancel_hrtimer(event);
5402 task_clock_event_update(event, event->ctx->time);
5405 static int task_clock_event_add(struct perf_event *event, int flags)
5407 if (flags & PERF_EF_START)
5408 task_clock_event_start(event, flags);
5410 return 0;
5413 static void task_clock_event_del(struct perf_event *event, int flags)
5415 task_clock_event_stop(event, PERF_EF_UPDATE);
5418 static void task_clock_event_read(struct perf_event *event)
5420 u64 now = perf_clock();
5421 u64 delta = now - event->ctx->timestamp;
5422 u64 time = event->ctx->time + delta;
5424 task_clock_event_update(event, time);
5427 static int task_clock_event_init(struct perf_event *event)
5429 if (event->attr.type != PERF_TYPE_SOFTWARE)
5430 return -ENOENT;
5432 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5433 return -ENOENT;
5435 perf_swevent_init_hrtimer(event);
5437 return 0;
5440 static struct pmu perf_task_clock = {
5441 .task_ctx_nr = perf_sw_context,
5443 .event_init = task_clock_event_init,
5444 .add = task_clock_event_add,
5445 .del = task_clock_event_del,
5446 .start = task_clock_event_start,
5447 .stop = task_clock_event_stop,
5448 .read = task_clock_event_read,
5451 static void perf_pmu_nop_void(struct pmu *pmu)
5455 static int perf_pmu_nop_int(struct pmu *pmu)
5457 return 0;
5460 static void perf_pmu_start_txn(struct pmu *pmu)
5462 perf_pmu_disable(pmu);
5465 static int perf_pmu_commit_txn(struct pmu *pmu)
5467 perf_pmu_enable(pmu);
5468 return 0;
5471 static void perf_pmu_cancel_txn(struct pmu *pmu)
5473 perf_pmu_enable(pmu);
5477 * Ensures all contexts with the same task_ctx_nr have the same
5478 * pmu_cpu_context too.
5480 static void *find_pmu_context(int ctxn)
5482 struct pmu *pmu;
5484 if (ctxn < 0)
5485 return NULL;
5487 list_for_each_entry(pmu, &pmus, entry) {
5488 if (pmu->task_ctx_nr == ctxn)
5489 return pmu->pmu_cpu_context;
5492 return NULL;
5495 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5497 int cpu;
5499 for_each_possible_cpu(cpu) {
5500 struct perf_cpu_context *cpuctx;
5502 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5504 if (cpuctx->active_pmu == old_pmu)
5505 cpuctx->active_pmu = pmu;
5509 static void free_pmu_context(struct pmu *pmu)
5511 struct pmu *i;
5513 mutex_lock(&pmus_lock);
5515 * Like a real lame refcount.
5517 list_for_each_entry(i, &pmus, entry) {
5518 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5519 update_pmu_context(i, pmu);
5520 goto out;
5524 free_percpu(pmu->pmu_cpu_context);
5525 out:
5526 mutex_unlock(&pmus_lock);
5528 static struct idr pmu_idr;
5530 static ssize_t
5531 type_show(struct device *dev, struct device_attribute *attr, char *page)
5533 struct pmu *pmu = dev_get_drvdata(dev);
5535 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5538 static struct device_attribute pmu_dev_attrs[] = {
5539 __ATTR_RO(type),
5540 __ATTR_NULL,
5543 static int pmu_bus_running;
5544 static struct bus_type pmu_bus = {
5545 .name = "event_source",
5546 .dev_attrs = pmu_dev_attrs,
5549 static void pmu_dev_release(struct device *dev)
5551 kfree(dev);
5554 static int pmu_dev_alloc(struct pmu *pmu)
5556 int ret = -ENOMEM;
5558 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5559 if (!pmu->dev)
5560 goto out;
5562 device_initialize(pmu->dev);
5563 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5564 if (ret)
5565 goto free_dev;
5567 dev_set_drvdata(pmu->dev, pmu);
5568 pmu->dev->bus = &pmu_bus;
5569 pmu->dev->release = pmu_dev_release;
5570 ret = device_add(pmu->dev);
5571 if (ret)
5572 goto free_dev;
5574 out:
5575 return ret;
5577 free_dev:
5578 put_device(pmu->dev);
5579 goto out;
5582 static struct lock_class_key cpuctx_mutex;
5583 static struct lock_class_key cpuctx_lock;
5585 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5587 int cpu, ret;
5589 mutex_lock(&pmus_lock);
5590 ret = -ENOMEM;
5591 pmu->pmu_disable_count = alloc_percpu(int);
5592 if (!pmu->pmu_disable_count)
5593 goto unlock;
5595 pmu->type = -1;
5596 if (!name)
5597 goto skip_type;
5598 pmu->name = name;
5600 if (type < 0) {
5601 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5602 if (!err)
5603 goto free_pdc;
5605 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5606 if (err) {
5607 ret = err;
5608 goto free_pdc;
5611 pmu->type = type;
5613 if (pmu_bus_running) {
5614 ret = pmu_dev_alloc(pmu);
5615 if (ret)
5616 goto free_idr;
5619 skip_type:
5620 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5621 if (pmu->pmu_cpu_context)
5622 goto got_cpu_context;
5624 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5625 if (!pmu->pmu_cpu_context)
5626 goto free_dev;
5628 for_each_possible_cpu(cpu) {
5629 struct perf_cpu_context *cpuctx;
5631 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5632 __perf_event_init_context(&cpuctx->ctx);
5633 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5634 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5635 cpuctx->ctx.type = cpu_context;
5636 cpuctx->ctx.pmu = pmu;
5637 cpuctx->jiffies_interval = 1;
5638 INIT_LIST_HEAD(&cpuctx->rotation_list);
5639 cpuctx->active_pmu = pmu;
5642 got_cpu_context:
5643 if (!pmu->start_txn) {
5644 if (pmu->pmu_enable) {
5646 * If we have pmu_enable/pmu_disable calls, install
5647 * transaction stubs that use that to try and batch
5648 * hardware accesses.
5650 pmu->start_txn = perf_pmu_start_txn;
5651 pmu->commit_txn = perf_pmu_commit_txn;
5652 pmu->cancel_txn = perf_pmu_cancel_txn;
5653 } else {
5654 pmu->start_txn = perf_pmu_nop_void;
5655 pmu->commit_txn = perf_pmu_nop_int;
5656 pmu->cancel_txn = perf_pmu_nop_void;
5660 if (!pmu->pmu_enable) {
5661 pmu->pmu_enable = perf_pmu_nop_void;
5662 pmu->pmu_disable = perf_pmu_nop_void;
5665 list_add_rcu(&pmu->entry, &pmus);
5666 ret = 0;
5667 unlock:
5668 mutex_unlock(&pmus_lock);
5670 return ret;
5672 free_dev:
5673 device_del(pmu->dev);
5674 put_device(pmu->dev);
5676 free_idr:
5677 if (pmu->type >= PERF_TYPE_MAX)
5678 idr_remove(&pmu_idr, pmu->type);
5680 free_pdc:
5681 free_percpu(pmu->pmu_disable_count);
5682 goto unlock;
5685 void perf_pmu_unregister(struct pmu *pmu)
5687 mutex_lock(&pmus_lock);
5688 list_del_rcu(&pmu->entry);
5689 mutex_unlock(&pmus_lock);
5692 * We dereference the pmu list under both SRCU and regular RCU, so
5693 * synchronize against both of those.
5695 synchronize_srcu(&pmus_srcu);
5696 synchronize_rcu();
5698 free_percpu(pmu->pmu_disable_count);
5699 if (pmu->type >= PERF_TYPE_MAX)
5700 idr_remove(&pmu_idr, pmu->type);
5701 device_del(pmu->dev);
5702 put_device(pmu->dev);
5703 free_pmu_context(pmu);
5706 struct pmu *perf_init_event(struct perf_event *event)
5708 struct pmu *pmu = NULL;
5709 int idx;
5710 int ret;
5712 idx = srcu_read_lock(&pmus_srcu);
5714 rcu_read_lock();
5715 pmu = idr_find(&pmu_idr, event->attr.type);
5716 rcu_read_unlock();
5717 if (pmu) {
5718 ret = pmu->event_init(event);
5719 if (ret)
5720 pmu = ERR_PTR(ret);
5721 goto unlock;
5724 list_for_each_entry_rcu(pmu, &pmus, entry) {
5725 ret = pmu->event_init(event);
5726 if (!ret)
5727 goto unlock;
5729 if (ret != -ENOENT) {
5730 pmu = ERR_PTR(ret);
5731 goto unlock;
5734 pmu = ERR_PTR(-ENOENT);
5735 unlock:
5736 srcu_read_unlock(&pmus_srcu, idx);
5738 return pmu;
5742 * Allocate and initialize a event structure
5744 static struct perf_event *
5745 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5746 struct task_struct *task,
5747 struct perf_event *group_leader,
5748 struct perf_event *parent_event,
5749 perf_overflow_handler_t overflow_handler,
5750 void *context)
5752 struct pmu *pmu;
5753 struct perf_event *event;
5754 struct hw_perf_event *hwc;
5755 long err;
5757 if ((unsigned)cpu >= nr_cpu_ids) {
5758 if (!task || cpu != -1)
5759 return ERR_PTR(-EINVAL);
5762 event = kzalloc(sizeof(*event), GFP_KERNEL);
5763 if (!event)
5764 return ERR_PTR(-ENOMEM);
5767 * Single events are their own group leaders, with an
5768 * empty sibling list:
5770 if (!group_leader)
5771 group_leader = event;
5773 mutex_init(&event->child_mutex);
5774 INIT_LIST_HEAD(&event->child_list);
5776 INIT_LIST_HEAD(&event->group_entry);
5777 INIT_LIST_HEAD(&event->event_entry);
5778 INIT_LIST_HEAD(&event->sibling_list);
5779 init_waitqueue_head(&event->waitq);
5780 init_irq_work(&event->pending, perf_pending_event);
5782 mutex_init(&event->mmap_mutex);
5784 event->cpu = cpu;
5785 event->attr = *attr;
5786 event->group_leader = group_leader;
5787 event->pmu = NULL;
5788 event->oncpu = -1;
5790 event->parent = parent_event;
5792 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5793 event->id = atomic64_inc_return(&perf_event_id);
5795 event->state = PERF_EVENT_STATE_INACTIVE;
5797 if (task) {
5798 event->attach_state = PERF_ATTACH_TASK;
5799 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5801 * hw_breakpoint is a bit difficult here..
5803 if (attr->type == PERF_TYPE_BREAKPOINT)
5804 event->hw.bp_target = task;
5805 #endif
5808 if (!overflow_handler && parent_event) {
5809 overflow_handler = parent_event->overflow_handler;
5810 context = parent_event->overflow_handler_context;
5813 event->overflow_handler = overflow_handler;
5814 event->overflow_handler_context = context;
5816 if (attr->disabled)
5817 event->state = PERF_EVENT_STATE_OFF;
5819 pmu = NULL;
5821 hwc = &event->hw;
5822 hwc->sample_period = attr->sample_period;
5823 if (attr->freq && attr->sample_freq)
5824 hwc->sample_period = 1;
5825 hwc->last_period = hwc->sample_period;
5827 local64_set(&hwc->period_left, hwc->sample_period);
5830 * we currently do not support PERF_FORMAT_GROUP on inherited events
5832 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5833 goto done;
5835 pmu = perf_init_event(event);
5837 done:
5838 err = 0;
5839 if (!pmu)
5840 err = -EINVAL;
5841 else if (IS_ERR(pmu))
5842 err = PTR_ERR(pmu);
5844 if (err) {
5845 if (event->ns)
5846 put_pid_ns(event->ns);
5847 kfree(event);
5848 return ERR_PTR(err);
5851 event->pmu = pmu;
5853 if (!event->parent) {
5854 if (event->attach_state & PERF_ATTACH_TASK)
5855 jump_label_inc(&perf_sched_events);
5856 if (event->attr.mmap || event->attr.mmap_data)
5857 atomic_inc(&nr_mmap_events);
5858 if (event->attr.comm)
5859 atomic_inc(&nr_comm_events);
5860 if (event->attr.task)
5861 atomic_inc(&nr_task_events);
5862 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5863 err = get_callchain_buffers();
5864 if (err) {
5865 free_event(event);
5866 return ERR_PTR(err);
5871 return event;
5874 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5875 struct perf_event_attr *attr)
5877 u32 size;
5878 int ret;
5880 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5881 return -EFAULT;
5884 * zero the full structure, so that a short copy will be nice.
5886 memset(attr, 0, sizeof(*attr));
5888 ret = get_user(size, &uattr->size);
5889 if (ret)
5890 return ret;
5892 if (size > PAGE_SIZE) /* silly large */
5893 goto err_size;
5895 if (!size) /* abi compat */
5896 size = PERF_ATTR_SIZE_VER0;
5898 if (size < PERF_ATTR_SIZE_VER0)
5899 goto err_size;
5902 * If we're handed a bigger struct than we know of,
5903 * ensure all the unknown bits are 0 - i.e. new
5904 * user-space does not rely on any kernel feature
5905 * extensions we dont know about yet.
5907 if (size > sizeof(*attr)) {
5908 unsigned char __user *addr;
5909 unsigned char __user *end;
5910 unsigned char val;
5912 addr = (void __user *)uattr + sizeof(*attr);
5913 end = (void __user *)uattr + size;
5915 for (; addr < end; addr++) {
5916 ret = get_user(val, addr);
5917 if (ret)
5918 return ret;
5919 if (val)
5920 goto err_size;
5922 size = sizeof(*attr);
5925 ret = copy_from_user(attr, uattr, size);
5926 if (ret)
5927 return -EFAULT;
5929 if (attr->__reserved_1)
5930 return -EINVAL;
5932 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5933 return -EINVAL;
5935 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5936 return -EINVAL;
5938 out:
5939 return ret;
5941 err_size:
5942 put_user(sizeof(*attr), &uattr->size);
5943 ret = -E2BIG;
5944 goto out;
5947 static int
5948 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5950 struct ring_buffer *rb = NULL, *old_rb = NULL;
5951 int ret = -EINVAL;
5953 if (!output_event)
5954 goto set;
5956 /* don't allow circular references */
5957 if (event == output_event)
5958 goto out;
5961 * Don't allow cross-cpu buffers
5963 if (output_event->cpu != event->cpu)
5964 goto out;
5967 * If its not a per-cpu rb, it must be the same task.
5969 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5970 goto out;
5972 set:
5973 mutex_lock(&event->mmap_mutex);
5974 /* Can't redirect output if we've got an active mmap() */
5975 if (atomic_read(&event->mmap_count))
5976 goto unlock;
5978 if (output_event) {
5979 /* get the rb we want to redirect to */
5980 rb = ring_buffer_get(output_event);
5981 if (!rb)
5982 goto unlock;
5985 old_rb = event->rb;
5986 rcu_assign_pointer(event->rb, rb);
5987 ret = 0;
5988 unlock:
5989 mutex_unlock(&event->mmap_mutex);
5991 if (old_rb)
5992 ring_buffer_put(old_rb);
5993 out:
5994 return ret;
5998 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6000 * @attr_uptr: event_id type attributes for monitoring/sampling
6001 * @pid: target pid
6002 * @cpu: target cpu
6003 * @group_fd: group leader event fd
6005 SYSCALL_DEFINE5(perf_event_open,
6006 struct perf_event_attr __user *, attr_uptr,
6007 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6009 struct perf_event *group_leader = NULL, *output_event = NULL;
6010 struct perf_event *event, *sibling;
6011 struct perf_event_attr attr;
6012 struct perf_event_context *ctx;
6013 struct file *event_file = NULL;
6014 struct file *group_file = NULL;
6015 struct task_struct *task = NULL;
6016 struct pmu *pmu;
6017 int event_fd;
6018 int move_group = 0;
6019 int fput_needed = 0;
6020 int err;
6022 /* for future expandability... */
6023 if (flags & ~PERF_FLAG_ALL)
6024 return -EINVAL;
6026 err = perf_copy_attr(attr_uptr, &attr);
6027 if (err)
6028 return err;
6030 if (!attr.exclude_kernel) {
6031 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6032 return -EACCES;
6035 if (attr.freq) {
6036 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6037 return -EINVAL;
6041 * In cgroup mode, the pid argument is used to pass the fd
6042 * opened to the cgroup directory in cgroupfs. The cpu argument
6043 * designates the cpu on which to monitor threads from that
6044 * cgroup.
6046 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6047 return -EINVAL;
6049 event_fd = get_unused_fd_flags(O_RDWR);
6050 if (event_fd < 0)
6051 return event_fd;
6053 if (group_fd != -1) {
6054 group_leader = perf_fget_light(group_fd, &fput_needed);
6055 if (IS_ERR(group_leader)) {
6056 err = PTR_ERR(group_leader);
6057 goto err_fd;
6059 group_file = group_leader->filp;
6060 if (flags & PERF_FLAG_FD_OUTPUT)
6061 output_event = group_leader;
6062 if (flags & PERF_FLAG_FD_NO_GROUP)
6063 group_leader = NULL;
6066 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6067 task = find_lively_task_by_vpid(pid);
6068 if (IS_ERR(task)) {
6069 err = PTR_ERR(task);
6070 goto err_group_fd;
6074 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6075 NULL, NULL);
6076 if (IS_ERR(event)) {
6077 err = PTR_ERR(event);
6078 goto err_task;
6081 if (flags & PERF_FLAG_PID_CGROUP) {
6082 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6083 if (err)
6084 goto err_alloc;
6086 * one more event:
6087 * - that has cgroup constraint on event->cpu
6088 * - that may need work on context switch
6090 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6091 jump_label_inc(&perf_sched_events);
6095 * Special case software events and allow them to be part of
6096 * any hardware group.
6098 pmu = event->pmu;
6100 if (group_leader &&
6101 (is_software_event(event) != is_software_event(group_leader))) {
6102 if (is_software_event(event)) {
6104 * If event and group_leader are not both a software
6105 * event, and event is, then group leader is not.
6107 * Allow the addition of software events to !software
6108 * groups, this is safe because software events never
6109 * fail to schedule.
6111 pmu = group_leader->pmu;
6112 } else if (is_software_event(group_leader) &&
6113 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6115 * In case the group is a pure software group, and we
6116 * try to add a hardware event, move the whole group to
6117 * the hardware context.
6119 move_group = 1;
6124 * Get the target context (task or percpu):
6126 ctx = find_get_context(pmu, task, cpu);
6127 if (IS_ERR(ctx)) {
6128 err = PTR_ERR(ctx);
6129 goto err_alloc;
6132 if (task) {
6133 put_task_struct(task);
6134 task = NULL;
6138 * Look up the group leader (we will attach this event to it):
6140 if (group_leader) {
6141 err = -EINVAL;
6144 * Do not allow a recursive hierarchy (this new sibling
6145 * becoming part of another group-sibling):
6147 if (group_leader->group_leader != group_leader)
6148 goto err_context;
6150 * Do not allow to attach to a group in a different
6151 * task or CPU context:
6153 if (move_group) {
6154 if (group_leader->ctx->type != ctx->type)
6155 goto err_context;
6156 } else {
6157 if (group_leader->ctx != ctx)
6158 goto err_context;
6162 * Only a group leader can be exclusive or pinned
6164 if (attr.exclusive || attr.pinned)
6165 goto err_context;
6168 if (output_event) {
6169 err = perf_event_set_output(event, output_event);
6170 if (err)
6171 goto err_context;
6174 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6175 if (IS_ERR(event_file)) {
6176 err = PTR_ERR(event_file);
6177 goto err_context;
6180 if (move_group) {
6181 struct perf_event_context *gctx = group_leader->ctx;
6183 mutex_lock(&gctx->mutex);
6184 perf_remove_from_context(group_leader);
6185 list_for_each_entry(sibling, &group_leader->sibling_list,
6186 group_entry) {
6187 perf_remove_from_context(sibling);
6188 put_ctx(gctx);
6190 mutex_unlock(&gctx->mutex);
6191 put_ctx(gctx);
6194 event->filp = event_file;
6195 WARN_ON_ONCE(ctx->parent_ctx);
6196 mutex_lock(&ctx->mutex);
6198 if (move_group) {
6199 perf_install_in_context(ctx, group_leader, cpu);
6200 get_ctx(ctx);
6201 list_for_each_entry(sibling, &group_leader->sibling_list,
6202 group_entry) {
6203 perf_install_in_context(ctx, sibling, cpu);
6204 get_ctx(ctx);
6208 perf_install_in_context(ctx, event, cpu);
6209 ++ctx->generation;
6210 perf_unpin_context(ctx);
6211 mutex_unlock(&ctx->mutex);
6213 event->owner = current;
6215 mutex_lock(&current->perf_event_mutex);
6216 list_add_tail(&event->owner_entry, &current->perf_event_list);
6217 mutex_unlock(&current->perf_event_mutex);
6220 * Precalculate sample_data sizes
6222 perf_event__header_size(event);
6223 perf_event__id_header_size(event);
6226 * Drop the reference on the group_event after placing the
6227 * new event on the sibling_list. This ensures destruction
6228 * of the group leader will find the pointer to itself in
6229 * perf_group_detach().
6231 fput_light(group_file, fput_needed);
6232 fd_install(event_fd, event_file);
6233 return event_fd;
6235 err_context:
6236 perf_unpin_context(ctx);
6237 put_ctx(ctx);
6238 err_alloc:
6239 free_event(event);
6240 err_task:
6241 if (task)
6242 put_task_struct(task);
6243 err_group_fd:
6244 fput_light(group_file, fput_needed);
6245 err_fd:
6246 put_unused_fd(event_fd);
6247 return err;
6251 * perf_event_create_kernel_counter
6253 * @attr: attributes of the counter to create
6254 * @cpu: cpu in which the counter is bound
6255 * @task: task to profile (NULL for percpu)
6257 struct perf_event *
6258 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6259 struct task_struct *task,
6260 perf_overflow_handler_t overflow_handler,
6261 void *context)
6263 struct perf_event_context *ctx;
6264 struct perf_event *event;
6265 int err;
6268 * Get the target context (task or percpu):
6271 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6272 overflow_handler, context);
6273 if (IS_ERR(event)) {
6274 err = PTR_ERR(event);
6275 goto err;
6278 ctx = find_get_context(event->pmu, task, cpu);
6279 if (IS_ERR(ctx)) {
6280 err = PTR_ERR(ctx);
6281 goto err_free;
6284 event->filp = NULL;
6285 WARN_ON_ONCE(ctx->parent_ctx);
6286 mutex_lock(&ctx->mutex);
6287 perf_install_in_context(ctx, event, cpu);
6288 ++ctx->generation;
6289 perf_unpin_context(ctx);
6290 mutex_unlock(&ctx->mutex);
6292 return event;
6294 err_free:
6295 free_event(event);
6296 err:
6297 return ERR_PTR(err);
6299 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6301 static void sync_child_event(struct perf_event *child_event,
6302 struct task_struct *child)
6304 struct perf_event *parent_event = child_event->parent;
6305 u64 child_val;
6307 if (child_event->attr.inherit_stat)
6308 perf_event_read_event(child_event, child);
6310 child_val = perf_event_count(child_event);
6313 * Add back the child's count to the parent's count:
6315 atomic64_add(child_val, &parent_event->child_count);
6316 atomic64_add(child_event->total_time_enabled,
6317 &parent_event->child_total_time_enabled);
6318 atomic64_add(child_event->total_time_running,
6319 &parent_event->child_total_time_running);
6322 * Remove this event from the parent's list
6324 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6325 mutex_lock(&parent_event->child_mutex);
6326 list_del_init(&child_event->child_list);
6327 mutex_unlock(&parent_event->child_mutex);
6330 * Release the parent event, if this was the last
6331 * reference to it.
6333 fput(parent_event->filp);
6336 static void
6337 __perf_event_exit_task(struct perf_event *child_event,
6338 struct perf_event_context *child_ctx,
6339 struct task_struct *child)
6341 if (child_event->parent) {
6342 raw_spin_lock_irq(&child_ctx->lock);
6343 perf_group_detach(child_event);
6344 raw_spin_unlock_irq(&child_ctx->lock);
6347 perf_remove_from_context(child_event);
6350 * It can happen that the parent exits first, and has events
6351 * that are still around due to the child reference. These
6352 * events need to be zapped.
6354 if (child_event->parent) {
6355 sync_child_event(child_event, child);
6356 free_event(child_event);
6360 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6362 struct perf_event *child_event, *tmp;
6363 struct perf_event_context *child_ctx;
6364 unsigned long flags;
6366 if (likely(!child->perf_event_ctxp[ctxn])) {
6367 perf_event_task(child, NULL, 0);
6368 return;
6371 local_irq_save(flags);
6373 * We can't reschedule here because interrupts are disabled,
6374 * and either child is current or it is a task that can't be
6375 * scheduled, so we are now safe from rescheduling changing
6376 * our context.
6378 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6381 * Take the context lock here so that if find_get_context is
6382 * reading child->perf_event_ctxp, we wait until it has
6383 * incremented the context's refcount before we do put_ctx below.
6385 raw_spin_lock(&child_ctx->lock);
6386 task_ctx_sched_out(child_ctx);
6387 child->perf_event_ctxp[ctxn] = NULL;
6389 * If this context is a clone; unclone it so it can't get
6390 * swapped to another process while we're removing all
6391 * the events from it.
6393 unclone_ctx(child_ctx);
6394 update_context_time(child_ctx);
6395 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6398 * Report the task dead after unscheduling the events so that we
6399 * won't get any samples after PERF_RECORD_EXIT. We can however still
6400 * get a few PERF_RECORD_READ events.
6402 perf_event_task(child, child_ctx, 0);
6405 * We can recurse on the same lock type through:
6407 * __perf_event_exit_task()
6408 * sync_child_event()
6409 * fput(parent_event->filp)
6410 * perf_release()
6411 * mutex_lock(&ctx->mutex)
6413 * But since its the parent context it won't be the same instance.
6415 mutex_lock(&child_ctx->mutex);
6417 again:
6418 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6419 group_entry)
6420 __perf_event_exit_task(child_event, child_ctx, child);
6422 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6423 group_entry)
6424 __perf_event_exit_task(child_event, child_ctx, child);
6427 * If the last event was a group event, it will have appended all
6428 * its siblings to the list, but we obtained 'tmp' before that which
6429 * will still point to the list head terminating the iteration.
6431 if (!list_empty(&child_ctx->pinned_groups) ||
6432 !list_empty(&child_ctx->flexible_groups))
6433 goto again;
6435 mutex_unlock(&child_ctx->mutex);
6437 put_ctx(child_ctx);
6441 * When a child task exits, feed back event values to parent events.
6443 void perf_event_exit_task(struct task_struct *child)
6445 struct perf_event *event, *tmp;
6446 int ctxn;
6448 mutex_lock(&child->perf_event_mutex);
6449 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6450 owner_entry) {
6451 list_del_init(&event->owner_entry);
6454 * Ensure the list deletion is visible before we clear
6455 * the owner, closes a race against perf_release() where
6456 * we need to serialize on the owner->perf_event_mutex.
6458 smp_wmb();
6459 event->owner = NULL;
6461 mutex_unlock(&child->perf_event_mutex);
6463 for_each_task_context_nr(ctxn)
6464 perf_event_exit_task_context(child, ctxn);
6467 static void perf_free_event(struct perf_event *event,
6468 struct perf_event_context *ctx)
6470 struct perf_event *parent = event->parent;
6472 if (WARN_ON_ONCE(!parent))
6473 return;
6475 mutex_lock(&parent->child_mutex);
6476 list_del_init(&event->child_list);
6477 mutex_unlock(&parent->child_mutex);
6479 fput(parent->filp);
6481 perf_group_detach(event);
6482 list_del_event(event, ctx);
6483 free_event(event);
6487 * free an unexposed, unused context as created by inheritance by
6488 * perf_event_init_task below, used by fork() in case of fail.
6490 void perf_event_free_task(struct task_struct *task)
6492 struct perf_event_context *ctx;
6493 struct perf_event *event, *tmp;
6494 int ctxn;
6496 for_each_task_context_nr(ctxn) {
6497 ctx = task->perf_event_ctxp[ctxn];
6498 if (!ctx)
6499 continue;
6501 mutex_lock(&ctx->mutex);
6502 again:
6503 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6504 group_entry)
6505 perf_free_event(event, ctx);
6507 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6508 group_entry)
6509 perf_free_event(event, ctx);
6511 if (!list_empty(&ctx->pinned_groups) ||
6512 !list_empty(&ctx->flexible_groups))
6513 goto again;
6515 mutex_unlock(&ctx->mutex);
6517 put_ctx(ctx);
6521 void perf_event_delayed_put(struct task_struct *task)
6523 int ctxn;
6525 for_each_task_context_nr(ctxn)
6526 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6530 * inherit a event from parent task to child task:
6532 static struct perf_event *
6533 inherit_event(struct perf_event *parent_event,
6534 struct task_struct *parent,
6535 struct perf_event_context *parent_ctx,
6536 struct task_struct *child,
6537 struct perf_event *group_leader,
6538 struct perf_event_context *child_ctx)
6540 struct perf_event *child_event;
6541 unsigned long flags;
6544 * Instead of creating recursive hierarchies of events,
6545 * we link inherited events back to the original parent,
6546 * which has a filp for sure, which we use as the reference
6547 * count:
6549 if (parent_event->parent)
6550 parent_event = parent_event->parent;
6552 child_event = perf_event_alloc(&parent_event->attr,
6553 parent_event->cpu,
6554 child,
6555 group_leader, parent_event,
6556 NULL, NULL);
6557 if (IS_ERR(child_event))
6558 return child_event;
6559 get_ctx(child_ctx);
6562 * Make the child state follow the state of the parent event,
6563 * not its attr.disabled bit. We hold the parent's mutex,
6564 * so we won't race with perf_event_{en, dis}able_family.
6566 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6567 child_event->state = PERF_EVENT_STATE_INACTIVE;
6568 else
6569 child_event->state = PERF_EVENT_STATE_OFF;
6571 if (parent_event->attr.freq) {
6572 u64 sample_period = parent_event->hw.sample_period;
6573 struct hw_perf_event *hwc = &child_event->hw;
6575 hwc->sample_period = sample_period;
6576 hwc->last_period = sample_period;
6578 local64_set(&hwc->period_left, sample_period);
6581 child_event->ctx = child_ctx;
6582 child_event->overflow_handler = parent_event->overflow_handler;
6583 child_event->overflow_handler_context
6584 = parent_event->overflow_handler_context;
6587 * Precalculate sample_data sizes
6589 perf_event__header_size(child_event);
6590 perf_event__id_header_size(child_event);
6593 * Link it up in the child's context:
6595 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6596 add_event_to_ctx(child_event, child_ctx);
6597 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6600 * Get a reference to the parent filp - we will fput it
6601 * when the child event exits. This is safe to do because
6602 * we are in the parent and we know that the filp still
6603 * exists and has a nonzero count:
6605 atomic_long_inc(&parent_event->filp->f_count);
6608 * Link this into the parent event's child list
6610 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6611 mutex_lock(&parent_event->child_mutex);
6612 list_add_tail(&child_event->child_list, &parent_event->child_list);
6613 mutex_unlock(&parent_event->child_mutex);
6615 return child_event;
6618 static int inherit_group(struct perf_event *parent_event,
6619 struct task_struct *parent,
6620 struct perf_event_context *parent_ctx,
6621 struct task_struct *child,
6622 struct perf_event_context *child_ctx)
6624 struct perf_event *leader;
6625 struct perf_event *sub;
6626 struct perf_event *child_ctr;
6628 leader = inherit_event(parent_event, parent, parent_ctx,
6629 child, NULL, child_ctx);
6630 if (IS_ERR(leader))
6631 return PTR_ERR(leader);
6632 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6633 child_ctr = inherit_event(sub, parent, parent_ctx,
6634 child, leader, child_ctx);
6635 if (IS_ERR(child_ctr))
6636 return PTR_ERR(child_ctr);
6638 return 0;
6641 static int
6642 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6643 struct perf_event_context *parent_ctx,
6644 struct task_struct *child, int ctxn,
6645 int *inherited_all)
6647 int ret;
6648 struct perf_event_context *child_ctx;
6650 if (!event->attr.inherit) {
6651 *inherited_all = 0;
6652 return 0;
6655 child_ctx = child->perf_event_ctxp[ctxn];
6656 if (!child_ctx) {
6658 * This is executed from the parent task context, so
6659 * inherit events that have been marked for cloning.
6660 * First allocate and initialize a context for the
6661 * child.
6664 child_ctx = alloc_perf_context(event->pmu, child);
6665 if (!child_ctx)
6666 return -ENOMEM;
6668 child->perf_event_ctxp[ctxn] = child_ctx;
6671 ret = inherit_group(event, parent, parent_ctx,
6672 child, child_ctx);
6674 if (ret)
6675 *inherited_all = 0;
6677 return ret;
6681 * Initialize the perf_event context in task_struct
6683 int perf_event_init_context(struct task_struct *child, int ctxn)
6685 struct perf_event_context *child_ctx, *parent_ctx;
6686 struct perf_event_context *cloned_ctx;
6687 struct perf_event *event;
6688 struct task_struct *parent = current;
6689 int inherited_all = 1;
6690 unsigned long flags;
6691 int ret = 0;
6693 if (likely(!parent->perf_event_ctxp[ctxn]))
6694 return 0;
6697 * If the parent's context is a clone, pin it so it won't get
6698 * swapped under us.
6700 parent_ctx = perf_pin_task_context(parent, ctxn);
6703 * No need to check if parent_ctx != NULL here; since we saw
6704 * it non-NULL earlier, the only reason for it to become NULL
6705 * is if we exit, and since we're currently in the middle of
6706 * a fork we can't be exiting at the same time.
6710 * Lock the parent list. No need to lock the child - not PID
6711 * hashed yet and not running, so nobody can access it.
6713 mutex_lock(&parent_ctx->mutex);
6716 * We dont have to disable NMIs - we are only looking at
6717 * the list, not manipulating it:
6719 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6720 ret = inherit_task_group(event, parent, parent_ctx,
6721 child, ctxn, &inherited_all);
6722 if (ret)
6723 break;
6727 * We can't hold ctx->lock when iterating the ->flexible_group list due
6728 * to allocations, but we need to prevent rotation because
6729 * rotate_ctx() will change the list from interrupt context.
6731 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6732 parent_ctx->rotate_disable = 1;
6733 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6735 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6736 ret = inherit_task_group(event, parent, parent_ctx,
6737 child, ctxn, &inherited_all);
6738 if (ret)
6739 break;
6742 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6743 parent_ctx->rotate_disable = 0;
6745 child_ctx = child->perf_event_ctxp[ctxn];
6747 if (child_ctx && inherited_all) {
6749 * Mark the child context as a clone of the parent
6750 * context, or of whatever the parent is a clone of.
6752 * Note that if the parent is a clone, the holding of
6753 * parent_ctx->lock avoids it from being uncloned.
6755 cloned_ctx = parent_ctx->parent_ctx;
6756 if (cloned_ctx) {
6757 child_ctx->parent_ctx = cloned_ctx;
6758 child_ctx->parent_gen = parent_ctx->parent_gen;
6759 } else {
6760 child_ctx->parent_ctx = parent_ctx;
6761 child_ctx->parent_gen = parent_ctx->generation;
6763 get_ctx(child_ctx->parent_ctx);
6766 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6767 mutex_unlock(&parent_ctx->mutex);
6769 perf_unpin_context(parent_ctx);
6770 put_ctx(parent_ctx);
6772 return ret;
6776 * Initialize the perf_event context in task_struct
6778 int perf_event_init_task(struct task_struct *child)
6780 int ctxn, ret;
6782 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6783 mutex_init(&child->perf_event_mutex);
6784 INIT_LIST_HEAD(&child->perf_event_list);
6786 for_each_task_context_nr(ctxn) {
6787 ret = perf_event_init_context(child, ctxn);
6788 if (ret)
6789 return ret;
6792 return 0;
6795 static void __init perf_event_init_all_cpus(void)
6797 struct swevent_htable *swhash;
6798 int cpu;
6800 for_each_possible_cpu(cpu) {
6801 swhash = &per_cpu(swevent_htable, cpu);
6802 mutex_init(&swhash->hlist_mutex);
6803 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6807 static void __cpuinit perf_event_init_cpu(int cpu)
6809 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6811 mutex_lock(&swhash->hlist_mutex);
6812 if (swhash->hlist_refcount > 0) {
6813 struct swevent_hlist *hlist;
6815 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6816 WARN_ON(!hlist);
6817 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6819 mutex_unlock(&swhash->hlist_mutex);
6822 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6823 static void perf_pmu_rotate_stop(struct pmu *pmu)
6825 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6827 WARN_ON(!irqs_disabled());
6829 list_del_init(&cpuctx->rotation_list);
6832 static void __perf_event_exit_context(void *__info)
6834 struct perf_event_context *ctx = __info;
6835 struct perf_event *event, *tmp;
6837 perf_pmu_rotate_stop(ctx->pmu);
6839 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6840 __perf_remove_from_context(event);
6841 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6842 __perf_remove_from_context(event);
6845 static void perf_event_exit_cpu_context(int cpu)
6847 struct perf_event_context *ctx;
6848 struct pmu *pmu;
6849 int idx;
6851 idx = srcu_read_lock(&pmus_srcu);
6852 list_for_each_entry_rcu(pmu, &pmus, entry) {
6853 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6855 mutex_lock(&ctx->mutex);
6856 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6857 mutex_unlock(&ctx->mutex);
6859 srcu_read_unlock(&pmus_srcu, idx);
6862 static void perf_event_exit_cpu(int cpu)
6864 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6866 mutex_lock(&swhash->hlist_mutex);
6867 swevent_hlist_release(swhash);
6868 mutex_unlock(&swhash->hlist_mutex);
6870 perf_event_exit_cpu_context(cpu);
6872 #else
6873 static inline void perf_event_exit_cpu(int cpu) { }
6874 #endif
6876 static int
6877 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6879 int cpu;
6881 for_each_online_cpu(cpu)
6882 perf_event_exit_cpu(cpu);
6884 return NOTIFY_OK;
6888 * Run the perf reboot notifier at the very last possible moment so that
6889 * the generic watchdog code runs as long as possible.
6891 static struct notifier_block perf_reboot_notifier = {
6892 .notifier_call = perf_reboot,
6893 .priority = INT_MIN,
6896 static int __cpuinit
6897 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6899 unsigned int cpu = (long)hcpu;
6901 switch (action & ~CPU_TASKS_FROZEN) {
6903 case CPU_UP_PREPARE:
6904 case CPU_DOWN_FAILED:
6905 perf_event_init_cpu(cpu);
6906 break;
6908 case CPU_UP_CANCELED:
6909 case CPU_DOWN_PREPARE:
6910 perf_event_exit_cpu(cpu);
6911 break;
6913 default:
6914 break;
6917 return NOTIFY_OK;
6920 void __init perf_event_init(void)
6922 int ret;
6924 idr_init(&pmu_idr);
6926 perf_event_init_all_cpus();
6927 init_srcu_struct(&pmus_srcu);
6928 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6929 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6930 perf_pmu_register(&perf_task_clock, NULL, -1);
6931 perf_tp_register();
6932 perf_cpu_notifier(perf_cpu_notify);
6933 register_reboot_notifier(&perf_reboot_notifier);
6935 ret = init_hw_breakpoint();
6936 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6939 static int __init perf_event_sysfs_init(void)
6941 struct pmu *pmu;
6942 int ret;
6944 mutex_lock(&pmus_lock);
6946 ret = bus_register(&pmu_bus);
6947 if (ret)
6948 goto unlock;
6950 list_for_each_entry(pmu, &pmus, entry) {
6951 if (!pmu->name || pmu->type < 0)
6952 continue;
6954 ret = pmu_dev_alloc(pmu);
6955 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6957 pmu_bus_running = 1;
6958 ret = 0;
6960 unlock:
6961 mutex_unlock(&pmus_lock);
6963 return ret;
6965 device_initcall(perf_event_sysfs_init);
6967 #ifdef CONFIG_CGROUP_PERF
6968 static struct cgroup_subsys_state *perf_cgroup_create(
6969 struct cgroup_subsys *ss, struct cgroup *cont)
6971 struct perf_cgroup *jc;
6973 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6974 if (!jc)
6975 return ERR_PTR(-ENOMEM);
6977 jc->info = alloc_percpu(struct perf_cgroup_info);
6978 if (!jc->info) {
6979 kfree(jc);
6980 return ERR_PTR(-ENOMEM);
6983 return &jc->css;
6986 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6987 struct cgroup *cont)
6989 struct perf_cgroup *jc;
6990 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6991 struct perf_cgroup, css);
6992 free_percpu(jc->info);
6993 kfree(jc);
6996 static int __perf_cgroup_move(void *info)
6998 struct task_struct *task = info;
6999 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7000 return 0;
7003 static void
7004 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7006 task_function_call(task, __perf_cgroup_move, task);
7009 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7010 struct cgroup *old_cgrp, struct task_struct *task)
7013 * cgroup_exit() is called in the copy_process() failure path.
7014 * Ignore this case since the task hasn't ran yet, this avoids
7015 * trying to poke a half freed task state from generic code.
7017 if (!(task->flags & PF_EXITING))
7018 return;
7020 perf_cgroup_attach_task(cgrp, task);
7023 struct cgroup_subsys perf_subsys = {
7024 .name = "perf_event",
7025 .subsys_id = perf_subsys_id,
7026 .create = perf_cgroup_create,
7027 .destroy = perf_cgroup_destroy,
7028 .exit = perf_cgroup_exit,
7029 .attach_task = perf_cgroup_attach_task,
7031 #endif /* CONFIG_CGROUP_PERF */