2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
41 #include <asm/irq_regs.h>
43 struct remote_function_call
{
44 struct task_struct
*p
;
45 int (*func
)(void *info
);
50 static void remote_function(void *data
)
52 struct remote_function_call
*tfc
= data
;
53 struct task_struct
*p
= tfc
->p
;
57 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
61 tfc
->ret
= tfc
->func(tfc
->info
);
65 * task_function_call - call a function on the cpu on which a task runs
66 * @p: the task to evaluate
67 * @func: the function to be called
68 * @info: the function call argument
70 * Calls the function @func when the task is currently running. This might
71 * be on the current CPU, which just calls the function directly
73 * returns: @func return value, or
74 * -ESRCH - when the process isn't running
75 * -EAGAIN - when the process moved away
78 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
80 struct remote_function_call data
= {
84 .ret
= -ESRCH
, /* No such (running) process */
88 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
94 * cpu_function_call - call a function on the cpu
95 * @func: the function to be called
96 * @info: the function call argument
98 * Calls the function @func on the remote cpu.
100 * returns: @func return value or -ENXIO when the cpu is offline
102 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
104 struct remote_function_call data
= {
108 .ret
= -ENXIO
, /* No such CPU */
111 smp_call_function_single(cpu
, remote_function
, &data
, 1);
116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
117 PERF_FLAG_FD_OUTPUT |\
118 PERF_FLAG_PID_CGROUP)
121 EVENT_FLEXIBLE
= 0x1,
123 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
127 * perf_sched_events : >0 events exist
128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 struct jump_label_key perf_sched_events __read_mostly
;
131 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
133 static atomic_t nr_mmap_events __read_mostly
;
134 static atomic_t nr_comm_events __read_mostly
;
135 static atomic_t nr_task_events __read_mostly
;
137 static LIST_HEAD(pmus
);
138 static DEFINE_MUTEX(pmus_lock
);
139 static struct srcu_struct pmus_srcu
;
142 * perf event paranoia level:
143 * -1 - not paranoid at all
144 * 0 - disallow raw tracepoint access for unpriv
145 * 1 - disallow cpu events for unpriv
146 * 2 - disallow kernel profiling for unpriv
148 int sysctl_perf_event_paranoid __read_mostly
= 1;
150 /* Minimum for 512 kiB + 1 user control page */
151 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
154 * max perf event sample rate
156 #define DEFAULT_MAX_SAMPLE_RATE 100000
157 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
158 static int max_samples_per_tick __read_mostly
=
159 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
161 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
162 void __user
*buffer
, size_t *lenp
,
165 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
170 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
175 static atomic64_t perf_event_id
;
177 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
178 enum event_type_t event_type
);
180 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
181 enum event_type_t event_type
,
182 struct task_struct
*task
);
184 static void update_context_time(struct perf_event_context
*ctx
);
185 static u64
perf_event_time(struct perf_event
*event
);
187 void __weak
perf_event_print_debug(void) { }
189 extern __weak
const char *perf_pmu_name(void)
194 static inline u64
perf_clock(void)
196 return local_clock();
199 static inline struct perf_cpu_context
*
200 __get_cpu_context(struct perf_event_context
*ctx
)
202 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
205 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
206 struct perf_event_context
*ctx
)
208 raw_spin_lock(&cpuctx
->ctx
.lock
);
210 raw_spin_lock(&ctx
->lock
);
213 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
214 struct perf_event_context
*ctx
)
217 raw_spin_unlock(&ctx
->lock
);
218 raw_spin_unlock(&cpuctx
->ctx
.lock
);
221 #ifdef CONFIG_CGROUP_PERF
224 * Must ensure cgroup is pinned (css_get) before calling
225 * this function. In other words, we cannot call this function
226 * if there is no cgroup event for the current CPU context.
228 static inline struct perf_cgroup
*
229 perf_cgroup_from_task(struct task_struct
*task
)
231 return container_of(task_subsys_state(task
, perf_subsys_id
),
232 struct perf_cgroup
, css
);
236 perf_cgroup_match(struct perf_event
*event
)
238 struct perf_event_context
*ctx
= event
->ctx
;
239 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
241 return !event
->cgrp
|| event
->cgrp
== cpuctx
->cgrp
;
244 static inline void perf_get_cgroup(struct perf_event
*event
)
246 css_get(&event
->cgrp
->css
);
249 static inline void perf_put_cgroup(struct perf_event
*event
)
251 css_put(&event
->cgrp
->css
);
254 static inline void perf_detach_cgroup(struct perf_event
*event
)
256 perf_put_cgroup(event
);
260 static inline int is_cgroup_event(struct perf_event
*event
)
262 return event
->cgrp
!= NULL
;
265 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
267 struct perf_cgroup_info
*t
;
269 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
273 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
275 struct perf_cgroup_info
*info
;
280 info
= this_cpu_ptr(cgrp
->info
);
282 info
->time
+= now
- info
->timestamp
;
283 info
->timestamp
= now
;
286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
288 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
290 __update_cgrp_time(cgrp_out
);
293 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
295 struct perf_cgroup
*cgrp
;
298 * ensure we access cgroup data only when needed and
299 * when we know the cgroup is pinned (css_get)
301 if (!is_cgroup_event(event
))
304 cgrp
= perf_cgroup_from_task(current
);
306 * Do not update time when cgroup is not active
308 if (cgrp
== event
->cgrp
)
309 __update_cgrp_time(event
->cgrp
);
313 perf_cgroup_set_timestamp(struct task_struct
*task
,
314 struct perf_event_context
*ctx
)
316 struct perf_cgroup
*cgrp
;
317 struct perf_cgroup_info
*info
;
320 * ctx->lock held by caller
321 * ensure we do not access cgroup data
322 * unless we have the cgroup pinned (css_get)
324 if (!task
|| !ctx
->nr_cgroups
)
327 cgrp
= perf_cgroup_from_task(task
);
328 info
= this_cpu_ptr(cgrp
->info
);
329 info
->timestamp
= ctx
->timestamp
;
332 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
333 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
336 * reschedule events based on the cgroup constraint of task.
338 * mode SWOUT : schedule out everything
339 * mode SWIN : schedule in based on cgroup for next
341 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
343 struct perf_cpu_context
*cpuctx
;
348 * disable interrupts to avoid geting nr_cgroup
349 * changes via __perf_event_disable(). Also
352 local_irq_save(flags
);
355 * we reschedule only in the presence of cgroup
356 * constrained events.
360 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
361 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
364 * perf_cgroup_events says at least one
365 * context on this CPU has cgroup events.
367 * ctx->nr_cgroups reports the number of cgroup
368 * events for a context.
370 if (cpuctx
->ctx
.nr_cgroups
> 0) {
371 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
372 perf_pmu_disable(cpuctx
->ctx
.pmu
);
374 if (mode
& PERF_CGROUP_SWOUT
) {
375 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
377 * must not be done before ctxswout due
378 * to event_filter_match() in event_sched_out()
383 if (mode
& PERF_CGROUP_SWIN
) {
384 WARN_ON_ONCE(cpuctx
->cgrp
);
385 /* set cgrp before ctxsw in to
386 * allow event_filter_match() to not
387 * have to pass task around
389 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
390 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
392 perf_pmu_enable(cpuctx
->ctx
.pmu
);
393 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
399 local_irq_restore(flags
);
402 static inline void perf_cgroup_sched_out(struct task_struct
*task
)
404 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
407 static inline void perf_cgroup_sched_in(struct task_struct
*task
)
409 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
412 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
413 struct perf_event_attr
*attr
,
414 struct perf_event
*group_leader
)
416 struct perf_cgroup
*cgrp
;
417 struct cgroup_subsys_state
*css
;
419 int ret
= 0, fput_needed
;
421 file
= fget_light(fd
, &fput_needed
);
425 css
= cgroup_css_from_dir(file
, perf_subsys_id
);
431 cgrp
= container_of(css
, struct perf_cgroup
, css
);
434 /* must be done before we fput() the file */
435 perf_get_cgroup(event
);
438 * all events in a group must monitor
439 * the same cgroup because a task belongs
440 * to only one perf cgroup at a time
442 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
443 perf_detach_cgroup(event
);
447 fput_light(file
, fput_needed
);
452 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
454 struct perf_cgroup_info
*t
;
455 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
456 event
->shadow_ctx_time
= now
- t
->timestamp
;
460 perf_cgroup_defer_enabled(struct perf_event
*event
)
463 * when the current task's perf cgroup does not match
464 * the event's, we need to remember to call the
465 * perf_mark_enable() function the first time a task with
466 * a matching perf cgroup is scheduled in.
468 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
469 event
->cgrp_defer_enabled
= 1;
473 perf_cgroup_mark_enabled(struct perf_event
*event
,
474 struct perf_event_context
*ctx
)
476 struct perf_event
*sub
;
477 u64 tstamp
= perf_event_time(event
);
479 if (!event
->cgrp_defer_enabled
)
482 event
->cgrp_defer_enabled
= 0;
484 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
485 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
486 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
487 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
488 sub
->cgrp_defer_enabled
= 0;
492 #else /* !CONFIG_CGROUP_PERF */
495 perf_cgroup_match(struct perf_event
*event
)
500 static inline void perf_detach_cgroup(struct perf_event
*event
)
503 static inline int is_cgroup_event(struct perf_event
*event
)
508 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
513 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
517 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
521 static inline void perf_cgroup_sched_out(struct task_struct
*task
)
525 static inline void perf_cgroup_sched_in(struct task_struct
*task
)
529 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
530 struct perf_event_attr
*attr
,
531 struct perf_event
*group_leader
)
537 perf_cgroup_set_timestamp(struct task_struct
*task
,
538 struct perf_event_context
*ctx
)
543 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
548 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
552 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
558 perf_cgroup_defer_enabled(struct perf_event
*event
)
563 perf_cgroup_mark_enabled(struct perf_event
*event
,
564 struct perf_event_context
*ctx
)
569 void perf_pmu_disable(struct pmu
*pmu
)
571 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
573 pmu
->pmu_disable(pmu
);
576 void perf_pmu_enable(struct pmu
*pmu
)
578 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
580 pmu
->pmu_enable(pmu
);
583 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
586 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
587 * because they're strictly cpu affine and rotate_start is called with IRQs
588 * disabled, while rotate_context is called from IRQ context.
590 static void perf_pmu_rotate_start(struct pmu
*pmu
)
592 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
593 struct list_head
*head
= &__get_cpu_var(rotation_list
);
595 WARN_ON(!irqs_disabled());
597 if (list_empty(&cpuctx
->rotation_list
))
598 list_add(&cpuctx
->rotation_list
, head
);
601 static void get_ctx(struct perf_event_context
*ctx
)
603 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
606 static void put_ctx(struct perf_event_context
*ctx
)
608 if (atomic_dec_and_test(&ctx
->refcount
)) {
610 put_ctx(ctx
->parent_ctx
);
612 put_task_struct(ctx
->task
);
613 kfree_rcu(ctx
, rcu_head
);
617 static void unclone_ctx(struct perf_event_context
*ctx
)
619 if (ctx
->parent_ctx
) {
620 put_ctx(ctx
->parent_ctx
);
621 ctx
->parent_ctx
= NULL
;
625 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
628 * only top level events have the pid namespace they were created in
631 event
= event
->parent
;
633 return task_tgid_nr_ns(p
, event
->ns
);
636 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
639 * only top level events have the pid namespace they were created in
642 event
= event
->parent
;
644 return task_pid_nr_ns(p
, event
->ns
);
648 * If we inherit events we want to return the parent event id
651 static u64
primary_event_id(struct perf_event
*event
)
656 id
= event
->parent
->id
;
662 * Get the perf_event_context for a task and lock it.
663 * This has to cope with with the fact that until it is locked,
664 * the context could get moved to another task.
666 static struct perf_event_context
*
667 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
669 struct perf_event_context
*ctx
;
673 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
676 * If this context is a clone of another, it might
677 * get swapped for another underneath us by
678 * perf_event_task_sched_out, though the
679 * rcu_read_lock() protects us from any context
680 * getting freed. Lock the context and check if it
681 * got swapped before we could get the lock, and retry
682 * if so. If we locked the right context, then it
683 * can't get swapped on us any more.
685 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
686 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
687 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
691 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
692 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
701 * Get the context for a task and increment its pin_count so it
702 * can't get swapped to another task. This also increments its
703 * reference count so that the context can't get freed.
705 static struct perf_event_context
*
706 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
708 struct perf_event_context
*ctx
;
711 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
714 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
719 static void perf_unpin_context(struct perf_event_context
*ctx
)
723 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
725 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
729 * Update the record of the current time in a context.
731 static void update_context_time(struct perf_event_context
*ctx
)
733 u64 now
= perf_clock();
735 ctx
->time
+= now
- ctx
->timestamp
;
736 ctx
->timestamp
= now
;
739 static u64
perf_event_time(struct perf_event
*event
)
741 struct perf_event_context
*ctx
= event
->ctx
;
743 if (is_cgroup_event(event
))
744 return perf_cgroup_event_time(event
);
746 return ctx
? ctx
->time
: 0;
750 * Update the total_time_enabled and total_time_running fields for a event.
751 * The caller of this function needs to hold the ctx->lock.
753 static void update_event_times(struct perf_event
*event
)
755 struct perf_event_context
*ctx
= event
->ctx
;
758 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
759 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
762 * in cgroup mode, time_enabled represents
763 * the time the event was enabled AND active
764 * tasks were in the monitored cgroup. This is
765 * independent of the activity of the context as
766 * there may be a mix of cgroup and non-cgroup events.
768 * That is why we treat cgroup events differently
771 if (is_cgroup_event(event
))
772 run_end
= perf_event_time(event
);
773 else if (ctx
->is_active
)
776 run_end
= event
->tstamp_stopped
;
778 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
780 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
781 run_end
= event
->tstamp_stopped
;
783 run_end
= perf_event_time(event
);
785 event
->total_time_running
= run_end
- event
->tstamp_running
;
790 * Update total_time_enabled and total_time_running for all events in a group.
792 static void update_group_times(struct perf_event
*leader
)
794 struct perf_event
*event
;
796 update_event_times(leader
);
797 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
798 update_event_times(event
);
801 static struct list_head
*
802 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
804 if (event
->attr
.pinned
)
805 return &ctx
->pinned_groups
;
807 return &ctx
->flexible_groups
;
811 * Add a event from the lists for its context.
812 * Must be called with ctx->mutex and ctx->lock held.
815 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
817 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
818 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
821 * If we're a stand alone event or group leader, we go to the context
822 * list, group events are kept attached to the group so that
823 * perf_group_detach can, at all times, locate all siblings.
825 if (event
->group_leader
== event
) {
826 struct list_head
*list
;
828 if (is_software_event(event
))
829 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
831 list
= ctx_group_list(event
, ctx
);
832 list_add_tail(&event
->group_entry
, list
);
835 if (is_cgroup_event(event
))
838 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
840 perf_pmu_rotate_start(ctx
->pmu
);
842 if (event
->attr
.inherit_stat
)
847 * Called at perf_event creation and when events are attached/detached from a
850 static void perf_event__read_size(struct perf_event
*event
)
852 int entry
= sizeof(u64
); /* value */
856 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
859 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
862 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
863 entry
+= sizeof(u64
);
865 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
866 nr
+= event
->group_leader
->nr_siblings
;
871 event
->read_size
= size
;
874 static void perf_event__header_size(struct perf_event
*event
)
876 struct perf_sample_data
*data
;
877 u64 sample_type
= event
->attr
.sample_type
;
880 perf_event__read_size(event
);
882 if (sample_type
& PERF_SAMPLE_IP
)
883 size
+= sizeof(data
->ip
);
885 if (sample_type
& PERF_SAMPLE_ADDR
)
886 size
+= sizeof(data
->addr
);
888 if (sample_type
& PERF_SAMPLE_PERIOD
)
889 size
+= sizeof(data
->period
);
891 if (sample_type
& PERF_SAMPLE_READ
)
892 size
+= event
->read_size
;
894 event
->header_size
= size
;
897 static void perf_event__id_header_size(struct perf_event
*event
)
899 struct perf_sample_data
*data
;
900 u64 sample_type
= event
->attr
.sample_type
;
903 if (sample_type
& PERF_SAMPLE_TID
)
904 size
+= sizeof(data
->tid_entry
);
906 if (sample_type
& PERF_SAMPLE_TIME
)
907 size
+= sizeof(data
->time
);
909 if (sample_type
& PERF_SAMPLE_ID
)
910 size
+= sizeof(data
->id
);
912 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
913 size
+= sizeof(data
->stream_id
);
915 if (sample_type
& PERF_SAMPLE_CPU
)
916 size
+= sizeof(data
->cpu_entry
);
918 event
->id_header_size
= size
;
921 static void perf_group_attach(struct perf_event
*event
)
923 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
926 * We can have double attach due to group movement in perf_event_open.
928 if (event
->attach_state
& PERF_ATTACH_GROUP
)
931 event
->attach_state
|= PERF_ATTACH_GROUP
;
933 if (group_leader
== event
)
936 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
937 !is_software_event(event
))
938 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
940 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
941 group_leader
->nr_siblings
++;
943 perf_event__header_size(group_leader
);
945 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
946 perf_event__header_size(pos
);
950 * Remove a event from the lists for its context.
951 * Must be called with ctx->mutex and ctx->lock held.
954 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
956 struct perf_cpu_context
*cpuctx
;
958 * We can have double detach due to exit/hot-unplug + close.
960 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
963 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
965 if (is_cgroup_event(event
)) {
967 cpuctx
= __get_cpu_context(ctx
);
969 * if there are no more cgroup events
970 * then cler cgrp to avoid stale pointer
971 * in update_cgrp_time_from_cpuctx()
973 if (!ctx
->nr_cgroups
)
978 if (event
->attr
.inherit_stat
)
981 list_del_rcu(&event
->event_entry
);
983 if (event
->group_leader
== event
)
984 list_del_init(&event
->group_entry
);
986 update_group_times(event
);
989 * If event was in error state, then keep it
990 * that way, otherwise bogus counts will be
991 * returned on read(). The only way to get out
992 * of error state is by explicit re-enabling
995 if (event
->state
> PERF_EVENT_STATE_OFF
)
996 event
->state
= PERF_EVENT_STATE_OFF
;
999 static void perf_group_detach(struct perf_event
*event
)
1001 struct perf_event
*sibling
, *tmp
;
1002 struct list_head
*list
= NULL
;
1005 * We can have double detach due to exit/hot-unplug + close.
1007 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1010 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1013 * If this is a sibling, remove it from its group.
1015 if (event
->group_leader
!= event
) {
1016 list_del_init(&event
->group_entry
);
1017 event
->group_leader
->nr_siblings
--;
1021 if (!list_empty(&event
->group_entry
))
1022 list
= &event
->group_entry
;
1025 * If this was a group event with sibling events then
1026 * upgrade the siblings to singleton events by adding them
1027 * to whatever list we are on.
1029 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1031 list_move_tail(&sibling
->group_entry
, list
);
1032 sibling
->group_leader
= sibling
;
1034 /* Inherit group flags from the previous leader */
1035 sibling
->group_flags
= event
->group_flags
;
1039 perf_event__header_size(event
->group_leader
);
1041 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1042 perf_event__header_size(tmp
);
1046 event_filter_match(struct perf_event
*event
)
1048 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1049 && perf_cgroup_match(event
);
1053 event_sched_out(struct perf_event
*event
,
1054 struct perf_cpu_context
*cpuctx
,
1055 struct perf_event_context
*ctx
)
1057 u64 tstamp
= perf_event_time(event
);
1060 * An event which could not be activated because of
1061 * filter mismatch still needs to have its timings
1062 * maintained, otherwise bogus information is return
1063 * via read() for time_enabled, time_running:
1065 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1066 && !event_filter_match(event
)) {
1067 delta
= tstamp
- event
->tstamp_stopped
;
1068 event
->tstamp_running
+= delta
;
1069 event
->tstamp_stopped
= tstamp
;
1072 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1075 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1076 if (event
->pending_disable
) {
1077 event
->pending_disable
= 0;
1078 event
->state
= PERF_EVENT_STATE_OFF
;
1080 event
->tstamp_stopped
= tstamp
;
1081 event
->pmu
->del(event
, 0);
1084 if (!is_software_event(event
))
1085 cpuctx
->active_oncpu
--;
1087 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1088 cpuctx
->exclusive
= 0;
1092 group_sched_out(struct perf_event
*group_event
,
1093 struct perf_cpu_context
*cpuctx
,
1094 struct perf_event_context
*ctx
)
1096 struct perf_event
*event
;
1097 int state
= group_event
->state
;
1099 event_sched_out(group_event
, cpuctx
, ctx
);
1102 * Schedule out siblings (if any):
1104 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1105 event_sched_out(event
, cpuctx
, ctx
);
1107 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1108 cpuctx
->exclusive
= 0;
1112 * Cross CPU call to remove a performance event
1114 * We disable the event on the hardware level first. After that we
1115 * remove it from the context list.
1117 static int __perf_remove_from_context(void *info
)
1119 struct perf_event
*event
= info
;
1120 struct perf_event_context
*ctx
= event
->ctx
;
1121 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1123 raw_spin_lock(&ctx
->lock
);
1124 event_sched_out(event
, cpuctx
, ctx
);
1125 list_del_event(event
, ctx
);
1126 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1128 cpuctx
->task_ctx
= NULL
;
1130 raw_spin_unlock(&ctx
->lock
);
1137 * Remove the event from a task's (or a CPU's) list of events.
1139 * CPU events are removed with a smp call. For task events we only
1140 * call when the task is on a CPU.
1142 * If event->ctx is a cloned context, callers must make sure that
1143 * every task struct that event->ctx->task could possibly point to
1144 * remains valid. This is OK when called from perf_release since
1145 * that only calls us on the top-level context, which can't be a clone.
1146 * When called from perf_event_exit_task, it's OK because the
1147 * context has been detached from its task.
1149 static void perf_remove_from_context(struct perf_event
*event
)
1151 struct perf_event_context
*ctx
= event
->ctx
;
1152 struct task_struct
*task
= ctx
->task
;
1154 lockdep_assert_held(&ctx
->mutex
);
1158 * Per cpu events are removed via an smp call and
1159 * the removal is always successful.
1161 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1166 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1169 raw_spin_lock_irq(&ctx
->lock
);
1171 * If we failed to find a running task, but find the context active now
1172 * that we've acquired the ctx->lock, retry.
1174 if (ctx
->is_active
) {
1175 raw_spin_unlock_irq(&ctx
->lock
);
1180 * Since the task isn't running, its safe to remove the event, us
1181 * holding the ctx->lock ensures the task won't get scheduled in.
1183 list_del_event(event
, ctx
);
1184 raw_spin_unlock_irq(&ctx
->lock
);
1188 * Cross CPU call to disable a performance event
1190 static int __perf_event_disable(void *info
)
1192 struct perf_event
*event
= info
;
1193 struct perf_event_context
*ctx
= event
->ctx
;
1194 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1197 * If this is a per-task event, need to check whether this
1198 * event's task is the current task on this cpu.
1200 * Can trigger due to concurrent perf_event_context_sched_out()
1201 * flipping contexts around.
1203 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1206 raw_spin_lock(&ctx
->lock
);
1209 * If the event is on, turn it off.
1210 * If it is in error state, leave it in error state.
1212 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1213 update_context_time(ctx
);
1214 update_cgrp_time_from_event(event
);
1215 update_group_times(event
);
1216 if (event
== event
->group_leader
)
1217 group_sched_out(event
, cpuctx
, ctx
);
1219 event_sched_out(event
, cpuctx
, ctx
);
1220 event
->state
= PERF_EVENT_STATE_OFF
;
1223 raw_spin_unlock(&ctx
->lock
);
1231 * If event->ctx is a cloned context, callers must make sure that
1232 * every task struct that event->ctx->task could possibly point to
1233 * remains valid. This condition is satisifed when called through
1234 * perf_event_for_each_child or perf_event_for_each because they
1235 * hold the top-level event's child_mutex, so any descendant that
1236 * goes to exit will block in sync_child_event.
1237 * When called from perf_pending_event it's OK because event->ctx
1238 * is the current context on this CPU and preemption is disabled,
1239 * hence we can't get into perf_event_task_sched_out for this context.
1241 void perf_event_disable(struct perf_event
*event
)
1243 struct perf_event_context
*ctx
= event
->ctx
;
1244 struct task_struct
*task
= ctx
->task
;
1248 * Disable the event on the cpu that it's on
1250 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1255 if (!task_function_call(task
, __perf_event_disable
, event
))
1258 raw_spin_lock_irq(&ctx
->lock
);
1260 * If the event is still active, we need to retry the cross-call.
1262 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1263 raw_spin_unlock_irq(&ctx
->lock
);
1265 * Reload the task pointer, it might have been changed by
1266 * a concurrent perf_event_context_sched_out().
1273 * Since we have the lock this context can't be scheduled
1274 * in, so we can change the state safely.
1276 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1277 update_group_times(event
);
1278 event
->state
= PERF_EVENT_STATE_OFF
;
1280 raw_spin_unlock_irq(&ctx
->lock
);
1283 static void perf_set_shadow_time(struct perf_event
*event
,
1284 struct perf_event_context
*ctx
,
1288 * use the correct time source for the time snapshot
1290 * We could get by without this by leveraging the
1291 * fact that to get to this function, the caller
1292 * has most likely already called update_context_time()
1293 * and update_cgrp_time_xx() and thus both timestamp
1294 * are identical (or very close). Given that tstamp is,
1295 * already adjusted for cgroup, we could say that:
1296 * tstamp - ctx->timestamp
1298 * tstamp - cgrp->timestamp.
1300 * Then, in perf_output_read(), the calculation would
1301 * work with no changes because:
1302 * - event is guaranteed scheduled in
1303 * - no scheduled out in between
1304 * - thus the timestamp would be the same
1306 * But this is a bit hairy.
1308 * So instead, we have an explicit cgroup call to remain
1309 * within the time time source all along. We believe it
1310 * is cleaner and simpler to understand.
1312 if (is_cgroup_event(event
))
1313 perf_cgroup_set_shadow_time(event
, tstamp
);
1315 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1318 #define MAX_INTERRUPTS (~0ULL)
1320 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1323 event_sched_in(struct perf_event
*event
,
1324 struct perf_cpu_context
*cpuctx
,
1325 struct perf_event_context
*ctx
)
1327 u64 tstamp
= perf_event_time(event
);
1329 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1332 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1333 event
->oncpu
= smp_processor_id();
1336 * Unthrottle events, since we scheduled we might have missed several
1337 * ticks already, also for a heavily scheduling task there is little
1338 * guarantee it'll get a tick in a timely manner.
1340 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1341 perf_log_throttle(event
, 1);
1342 event
->hw
.interrupts
= 0;
1346 * The new state must be visible before we turn it on in the hardware:
1350 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1351 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1356 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1358 perf_set_shadow_time(event
, ctx
, tstamp
);
1360 if (!is_software_event(event
))
1361 cpuctx
->active_oncpu
++;
1364 if (event
->attr
.exclusive
)
1365 cpuctx
->exclusive
= 1;
1371 group_sched_in(struct perf_event
*group_event
,
1372 struct perf_cpu_context
*cpuctx
,
1373 struct perf_event_context
*ctx
)
1375 struct perf_event
*event
, *partial_group
= NULL
;
1376 struct pmu
*pmu
= group_event
->pmu
;
1377 u64 now
= ctx
->time
;
1378 bool simulate
= false;
1380 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1383 pmu
->start_txn(pmu
);
1385 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1386 pmu
->cancel_txn(pmu
);
1391 * Schedule in siblings as one group (if any):
1393 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1394 if (event_sched_in(event
, cpuctx
, ctx
)) {
1395 partial_group
= event
;
1400 if (!pmu
->commit_txn(pmu
))
1405 * Groups can be scheduled in as one unit only, so undo any
1406 * partial group before returning:
1407 * The events up to the failed event are scheduled out normally,
1408 * tstamp_stopped will be updated.
1410 * The failed events and the remaining siblings need to have
1411 * their timings updated as if they had gone thru event_sched_in()
1412 * and event_sched_out(). This is required to get consistent timings
1413 * across the group. This also takes care of the case where the group
1414 * could never be scheduled by ensuring tstamp_stopped is set to mark
1415 * the time the event was actually stopped, such that time delta
1416 * calculation in update_event_times() is correct.
1418 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1419 if (event
== partial_group
)
1423 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1424 event
->tstamp_stopped
= now
;
1426 event_sched_out(event
, cpuctx
, ctx
);
1429 event_sched_out(group_event
, cpuctx
, ctx
);
1431 pmu
->cancel_txn(pmu
);
1437 * Work out whether we can put this event group on the CPU now.
1439 static int group_can_go_on(struct perf_event
*event
,
1440 struct perf_cpu_context
*cpuctx
,
1444 * Groups consisting entirely of software events can always go on.
1446 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1449 * If an exclusive group is already on, no other hardware
1452 if (cpuctx
->exclusive
)
1455 * If this group is exclusive and there are already
1456 * events on the CPU, it can't go on.
1458 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1461 * Otherwise, try to add it if all previous groups were able
1467 static void add_event_to_ctx(struct perf_event
*event
,
1468 struct perf_event_context
*ctx
)
1470 u64 tstamp
= perf_event_time(event
);
1472 list_add_event(event
, ctx
);
1473 perf_group_attach(event
);
1474 event
->tstamp_enabled
= tstamp
;
1475 event
->tstamp_running
= tstamp
;
1476 event
->tstamp_stopped
= tstamp
;
1479 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1481 ctx_sched_in(struct perf_event_context
*ctx
,
1482 struct perf_cpu_context
*cpuctx
,
1483 enum event_type_t event_type
,
1484 struct task_struct
*task
);
1486 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
1487 struct perf_event_context
*ctx
,
1488 struct task_struct
*task
)
1490 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
1492 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
1493 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
1495 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
1499 * Cross CPU call to install and enable a performance event
1501 * Must be called with ctx->mutex held
1503 static int __perf_install_in_context(void *info
)
1505 struct perf_event
*event
= info
;
1506 struct perf_event_context
*ctx
= event
->ctx
;
1507 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1508 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
1509 struct task_struct
*task
= current
;
1511 perf_ctx_lock(cpuctx
, task_ctx
);
1512 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1515 * If there was an active task_ctx schedule it out.
1518 task_ctx_sched_out(task_ctx
);
1521 * If the context we're installing events in is not the
1522 * active task_ctx, flip them.
1524 if (ctx
->task
&& task_ctx
!= ctx
) {
1526 raw_spin_unlock(&task_ctx
->lock
);
1527 raw_spin_lock(&ctx
->lock
);
1532 cpuctx
->task_ctx
= task_ctx
;
1533 task
= task_ctx
->task
;
1536 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
1538 update_context_time(ctx
);
1540 * update cgrp time only if current cgrp
1541 * matches event->cgrp. Must be done before
1542 * calling add_event_to_ctx()
1544 update_cgrp_time_from_event(event
);
1546 add_event_to_ctx(event
, ctx
);
1549 * Schedule everything back in
1551 perf_event_sched_in(cpuctx
, task_ctx
, task
);
1553 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1554 perf_ctx_unlock(cpuctx
, task_ctx
);
1560 * Attach a performance event to a context
1562 * First we add the event to the list with the hardware enable bit
1563 * in event->hw_config cleared.
1565 * If the event is attached to a task which is on a CPU we use a smp
1566 * call to enable it in the task context. The task might have been
1567 * scheduled away, but we check this in the smp call again.
1570 perf_install_in_context(struct perf_event_context
*ctx
,
1571 struct perf_event
*event
,
1574 struct task_struct
*task
= ctx
->task
;
1576 lockdep_assert_held(&ctx
->mutex
);
1582 * Per cpu events are installed via an smp call and
1583 * the install is always successful.
1585 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1590 if (!task_function_call(task
, __perf_install_in_context
, event
))
1593 raw_spin_lock_irq(&ctx
->lock
);
1595 * If we failed to find a running task, but find the context active now
1596 * that we've acquired the ctx->lock, retry.
1598 if (ctx
->is_active
) {
1599 raw_spin_unlock_irq(&ctx
->lock
);
1604 * Since the task isn't running, its safe to add the event, us holding
1605 * the ctx->lock ensures the task won't get scheduled in.
1607 add_event_to_ctx(event
, ctx
);
1608 raw_spin_unlock_irq(&ctx
->lock
);
1612 * Put a event into inactive state and update time fields.
1613 * Enabling the leader of a group effectively enables all
1614 * the group members that aren't explicitly disabled, so we
1615 * have to update their ->tstamp_enabled also.
1616 * Note: this works for group members as well as group leaders
1617 * since the non-leader members' sibling_lists will be empty.
1619 static void __perf_event_mark_enabled(struct perf_event
*event
,
1620 struct perf_event_context
*ctx
)
1622 struct perf_event
*sub
;
1623 u64 tstamp
= perf_event_time(event
);
1625 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1626 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1627 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1628 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1629 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1634 * Cross CPU call to enable a performance event
1636 static int __perf_event_enable(void *info
)
1638 struct perf_event
*event
= info
;
1639 struct perf_event_context
*ctx
= event
->ctx
;
1640 struct perf_event
*leader
= event
->group_leader
;
1641 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1644 if (WARN_ON_ONCE(!ctx
->is_active
))
1647 raw_spin_lock(&ctx
->lock
);
1648 update_context_time(ctx
);
1650 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1654 * set current task's cgroup time reference point
1656 perf_cgroup_set_timestamp(current
, ctx
);
1658 __perf_event_mark_enabled(event
, ctx
);
1660 if (!event_filter_match(event
)) {
1661 if (is_cgroup_event(event
))
1662 perf_cgroup_defer_enabled(event
);
1667 * If the event is in a group and isn't the group leader,
1668 * then don't put it on unless the group is on.
1670 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1673 if (!group_can_go_on(event
, cpuctx
, 1)) {
1676 if (event
== leader
)
1677 err
= group_sched_in(event
, cpuctx
, ctx
);
1679 err
= event_sched_in(event
, cpuctx
, ctx
);
1684 * If this event can't go on and it's part of a
1685 * group, then the whole group has to come off.
1687 if (leader
!= event
)
1688 group_sched_out(leader
, cpuctx
, ctx
);
1689 if (leader
->attr
.pinned
) {
1690 update_group_times(leader
);
1691 leader
->state
= PERF_EVENT_STATE_ERROR
;
1696 raw_spin_unlock(&ctx
->lock
);
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
1706 * remains valid. This condition is satisfied when called through
1707 * perf_event_for_each_child or perf_event_for_each as described
1708 * for perf_event_disable.
1710 void perf_event_enable(struct perf_event
*event
)
1712 struct perf_event_context
*ctx
= event
->ctx
;
1713 struct task_struct
*task
= ctx
->task
;
1717 * Enable the event on the cpu that it's on
1719 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
1723 raw_spin_lock_irq(&ctx
->lock
);
1724 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1728 * If the event is in error state, clear that first.
1729 * That way, if we see the event in error state below, we
1730 * know that it has gone back into error state, as distinct
1731 * from the task having been scheduled away before the
1732 * cross-call arrived.
1734 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1735 event
->state
= PERF_EVENT_STATE_OFF
;
1738 if (!ctx
->is_active
) {
1739 __perf_event_mark_enabled(event
, ctx
);
1743 raw_spin_unlock_irq(&ctx
->lock
);
1745 if (!task_function_call(task
, __perf_event_enable
, event
))
1748 raw_spin_lock_irq(&ctx
->lock
);
1751 * If the context is active and the event is still off,
1752 * we need to retry the cross-call.
1754 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
1756 * task could have been flipped by a concurrent
1757 * perf_event_context_sched_out()
1764 raw_spin_unlock_irq(&ctx
->lock
);
1767 int perf_event_refresh(struct perf_event
*event
, int refresh
)
1770 * not supported on inherited events
1772 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1775 atomic_add(refresh
, &event
->event_limit
);
1776 perf_event_enable(event
);
1780 EXPORT_SYMBOL_GPL(perf_event_refresh
);
1782 static void ctx_sched_out(struct perf_event_context
*ctx
,
1783 struct perf_cpu_context
*cpuctx
,
1784 enum event_type_t event_type
)
1786 struct perf_event
*event
;
1787 int is_active
= ctx
->is_active
;
1789 ctx
->is_active
&= ~event_type
;
1790 if (likely(!ctx
->nr_events
))
1793 update_context_time(ctx
);
1794 update_cgrp_time_from_cpuctx(cpuctx
);
1795 if (!ctx
->nr_active
)
1798 perf_pmu_disable(ctx
->pmu
);
1799 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
1800 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1801 group_sched_out(event
, cpuctx
, ctx
);
1804 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
1805 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1806 group_sched_out(event
, cpuctx
, ctx
);
1808 perf_pmu_enable(ctx
->pmu
);
1812 * Test whether two contexts are equivalent, i.e. whether they
1813 * have both been cloned from the same version of the same context
1814 * and they both have the same number of enabled events.
1815 * If the number of enabled events is the same, then the set
1816 * of enabled events should be the same, because these are both
1817 * inherited contexts, therefore we can't access individual events
1818 * in them directly with an fd; we can only enable/disable all
1819 * events via prctl, or enable/disable all events in a family
1820 * via ioctl, which will have the same effect on both contexts.
1822 static int context_equiv(struct perf_event_context
*ctx1
,
1823 struct perf_event_context
*ctx2
)
1825 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1826 && ctx1
->parent_gen
== ctx2
->parent_gen
1827 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1830 static void __perf_event_sync_stat(struct perf_event
*event
,
1831 struct perf_event
*next_event
)
1835 if (!event
->attr
.inherit_stat
)
1839 * Update the event value, we cannot use perf_event_read()
1840 * because we're in the middle of a context switch and have IRQs
1841 * disabled, which upsets smp_call_function_single(), however
1842 * we know the event must be on the current CPU, therefore we
1843 * don't need to use it.
1845 switch (event
->state
) {
1846 case PERF_EVENT_STATE_ACTIVE
:
1847 event
->pmu
->read(event
);
1850 case PERF_EVENT_STATE_INACTIVE
:
1851 update_event_times(event
);
1859 * In order to keep per-task stats reliable we need to flip the event
1860 * values when we flip the contexts.
1862 value
= local64_read(&next_event
->count
);
1863 value
= local64_xchg(&event
->count
, value
);
1864 local64_set(&next_event
->count
, value
);
1866 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1867 swap(event
->total_time_running
, next_event
->total_time_running
);
1870 * Since we swizzled the values, update the user visible data too.
1872 perf_event_update_userpage(event
);
1873 perf_event_update_userpage(next_event
);
1876 #define list_next_entry(pos, member) \
1877 list_entry(pos->member.next, typeof(*pos), member)
1879 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1880 struct perf_event_context
*next_ctx
)
1882 struct perf_event
*event
, *next_event
;
1887 update_context_time(ctx
);
1889 event
= list_first_entry(&ctx
->event_list
,
1890 struct perf_event
, event_entry
);
1892 next_event
= list_first_entry(&next_ctx
->event_list
,
1893 struct perf_event
, event_entry
);
1895 while (&event
->event_entry
!= &ctx
->event_list
&&
1896 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1898 __perf_event_sync_stat(event
, next_event
);
1900 event
= list_next_entry(event
, event_entry
);
1901 next_event
= list_next_entry(next_event
, event_entry
);
1905 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1906 struct task_struct
*next
)
1908 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1909 struct perf_event_context
*next_ctx
;
1910 struct perf_event_context
*parent
;
1911 struct perf_cpu_context
*cpuctx
;
1917 cpuctx
= __get_cpu_context(ctx
);
1918 if (!cpuctx
->task_ctx
)
1922 parent
= rcu_dereference(ctx
->parent_ctx
);
1923 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1924 if (parent
&& next_ctx
&&
1925 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1927 * Looks like the two contexts are clones, so we might be
1928 * able to optimize the context switch. We lock both
1929 * contexts and check that they are clones under the
1930 * lock (including re-checking that neither has been
1931 * uncloned in the meantime). It doesn't matter which
1932 * order we take the locks because no other cpu could
1933 * be trying to lock both of these tasks.
1935 raw_spin_lock(&ctx
->lock
);
1936 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1937 if (context_equiv(ctx
, next_ctx
)) {
1939 * XXX do we need a memory barrier of sorts
1940 * wrt to rcu_dereference() of perf_event_ctxp
1942 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1943 next
->perf_event_ctxp
[ctxn
] = ctx
;
1945 next_ctx
->task
= task
;
1948 perf_event_sync_stat(ctx
, next_ctx
);
1950 raw_spin_unlock(&next_ctx
->lock
);
1951 raw_spin_unlock(&ctx
->lock
);
1956 raw_spin_lock(&ctx
->lock
);
1957 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1958 cpuctx
->task_ctx
= NULL
;
1959 raw_spin_unlock(&ctx
->lock
);
1963 #define for_each_task_context_nr(ctxn) \
1964 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1967 * Called from scheduler to remove the events of the current task,
1968 * with interrupts disabled.
1970 * We stop each event and update the event value in event->count.
1972 * This does not protect us against NMI, but disable()
1973 * sets the disabled bit in the control field of event _before_
1974 * accessing the event control register. If a NMI hits, then it will
1975 * not restart the event.
1977 void __perf_event_task_sched_out(struct task_struct
*task
,
1978 struct task_struct
*next
)
1982 for_each_task_context_nr(ctxn
)
1983 perf_event_context_sched_out(task
, ctxn
, next
);
1986 * if cgroup events exist on this CPU, then we need
1987 * to check if we have to switch out PMU state.
1988 * cgroup event are system-wide mode only
1990 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
1991 perf_cgroup_sched_out(task
);
1994 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
1996 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1998 if (!cpuctx
->task_ctx
)
2001 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2004 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2005 cpuctx
->task_ctx
= NULL
;
2009 * Called with IRQs disabled
2011 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2012 enum event_type_t event_type
)
2014 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2018 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2019 struct perf_cpu_context
*cpuctx
)
2021 struct perf_event
*event
;
2023 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2024 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2026 if (!event_filter_match(event
))
2029 /* may need to reset tstamp_enabled */
2030 if (is_cgroup_event(event
))
2031 perf_cgroup_mark_enabled(event
, ctx
);
2033 if (group_can_go_on(event
, cpuctx
, 1))
2034 group_sched_in(event
, cpuctx
, ctx
);
2037 * If this pinned group hasn't been scheduled,
2038 * put it in error state.
2040 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2041 update_group_times(event
);
2042 event
->state
= PERF_EVENT_STATE_ERROR
;
2048 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2049 struct perf_cpu_context
*cpuctx
)
2051 struct perf_event
*event
;
2054 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2055 /* Ignore events in OFF or ERROR state */
2056 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2059 * Listen to the 'cpu' scheduling filter constraint
2062 if (!event_filter_match(event
))
2065 /* may need to reset tstamp_enabled */
2066 if (is_cgroup_event(event
))
2067 perf_cgroup_mark_enabled(event
, ctx
);
2069 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2070 if (group_sched_in(event
, cpuctx
, ctx
))
2077 ctx_sched_in(struct perf_event_context
*ctx
,
2078 struct perf_cpu_context
*cpuctx
,
2079 enum event_type_t event_type
,
2080 struct task_struct
*task
)
2083 int is_active
= ctx
->is_active
;
2085 ctx
->is_active
|= event_type
;
2086 if (likely(!ctx
->nr_events
))
2090 ctx
->timestamp
= now
;
2091 perf_cgroup_set_timestamp(task
, ctx
);
2093 * First go through the list and put on any pinned groups
2094 * in order to give them the best chance of going on.
2096 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2097 ctx_pinned_sched_in(ctx
, cpuctx
);
2099 /* Then walk through the lower prio flexible groups */
2100 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2101 ctx_flexible_sched_in(ctx
, cpuctx
);
2104 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2105 enum event_type_t event_type
,
2106 struct task_struct
*task
)
2108 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2110 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2113 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2114 struct task_struct
*task
)
2116 struct perf_cpu_context
*cpuctx
;
2118 cpuctx
= __get_cpu_context(ctx
);
2119 if (cpuctx
->task_ctx
== ctx
)
2122 perf_ctx_lock(cpuctx
, ctx
);
2123 perf_pmu_disable(ctx
->pmu
);
2125 * We want to keep the following priority order:
2126 * cpu pinned (that don't need to move), task pinned,
2127 * cpu flexible, task flexible.
2129 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2131 perf_event_sched_in(cpuctx
, ctx
, task
);
2133 cpuctx
->task_ctx
= ctx
;
2135 perf_pmu_enable(ctx
->pmu
);
2136 perf_ctx_unlock(cpuctx
, ctx
);
2139 * Since these rotations are per-cpu, we need to ensure the
2140 * cpu-context we got scheduled on is actually rotating.
2142 perf_pmu_rotate_start(ctx
->pmu
);
2146 * Called from scheduler to add the events of the current task
2147 * with interrupts disabled.
2149 * We restore the event value and then enable it.
2151 * This does not protect us against NMI, but enable()
2152 * sets the enabled bit in the control field of event _before_
2153 * accessing the event control register. If a NMI hits, then it will
2154 * keep the event running.
2156 void __perf_event_task_sched_in(struct task_struct
*task
)
2158 struct perf_event_context
*ctx
;
2161 for_each_task_context_nr(ctxn
) {
2162 ctx
= task
->perf_event_ctxp
[ctxn
];
2166 perf_event_context_sched_in(ctx
, task
);
2169 * if cgroup events exist on this CPU, then we need
2170 * to check if we have to switch in PMU state.
2171 * cgroup event are system-wide mode only
2173 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2174 perf_cgroup_sched_in(task
);
2177 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2179 u64 frequency
= event
->attr
.sample_freq
;
2180 u64 sec
= NSEC_PER_SEC
;
2181 u64 divisor
, dividend
;
2183 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2185 count_fls
= fls64(count
);
2186 nsec_fls
= fls64(nsec
);
2187 frequency_fls
= fls64(frequency
);
2191 * We got @count in @nsec, with a target of sample_freq HZ
2192 * the target period becomes:
2195 * period = -------------------
2196 * @nsec * sample_freq
2201 * Reduce accuracy by one bit such that @a and @b converge
2202 * to a similar magnitude.
2204 #define REDUCE_FLS(a, b) \
2206 if (a##_fls > b##_fls) { \
2216 * Reduce accuracy until either term fits in a u64, then proceed with
2217 * the other, so that finally we can do a u64/u64 division.
2219 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2220 REDUCE_FLS(nsec
, frequency
);
2221 REDUCE_FLS(sec
, count
);
2224 if (count_fls
+ sec_fls
> 64) {
2225 divisor
= nsec
* frequency
;
2227 while (count_fls
+ sec_fls
> 64) {
2228 REDUCE_FLS(count
, sec
);
2232 dividend
= count
* sec
;
2234 dividend
= count
* sec
;
2236 while (nsec_fls
+ frequency_fls
> 64) {
2237 REDUCE_FLS(nsec
, frequency
);
2241 divisor
= nsec
* frequency
;
2247 return div64_u64(dividend
, divisor
);
2250 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2252 struct hw_perf_event
*hwc
= &event
->hw
;
2253 s64 period
, sample_period
;
2256 period
= perf_calculate_period(event
, nsec
, count
);
2258 delta
= (s64
)(period
- hwc
->sample_period
);
2259 delta
= (delta
+ 7) / 8; /* low pass filter */
2261 sample_period
= hwc
->sample_period
+ delta
;
2266 hwc
->sample_period
= sample_period
;
2268 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2269 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2270 local64_set(&hwc
->period_left
, 0);
2271 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2275 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
2277 struct perf_event
*event
;
2278 struct hw_perf_event
*hwc
;
2279 u64 interrupts
, now
;
2282 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2283 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2286 if (!event_filter_match(event
))
2291 interrupts
= hwc
->interrupts
;
2292 hwc
->interrupts
= 0;
2295 * unthrottle events on the tick
2297 if (interrupts
== MAX_INTERRUPTS
) {
2298 perf_log_throttle(event
, 1);
2299 event
->pmu
->start(event
, 0);
2302 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2305 event
->pmu
->read(event
);
2306 now
= local64_read(&event
->count
);
2307 delta
= now
- hwc
->freq_count_stamp
;
2308 hwc
->freq_count_stamp
= now
;
2311 perf_adjust_period(event
, period
, delta
);
2316 * Round-robin a context's events:
2318 static void rotate_ctx(struct perf_event_context
*ctx
)
2321 * Rotate the first entry last of non-pinned groups. Rotation might be
2322 * disabled by the inheritance code.
2324 if (!ctx
->rotate_disable
)
2325 list_rotate_left(&ctx
->flexible_groups
);
2329 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2330 * because they're strictly cpu affine and rotate_start is called with IRQs
2331 * disabled, while rotate_context is called from IRQ context.
2333 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2335 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
2336 struct perf_event_context
*ctx
= NULL
;
2337 int rotate
= 0, remove
= 1;
2339 if (cpuctx
->ctx
.nr_events
) {
2341 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2345 ctx
= cpuctx
->task_ctx
;
2346 if (ctx
&& ctx
->nr_events
) {
2348 if (ctx
->nr_events
!= ctx
->nr_active
)
2352 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2353 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2354 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
2356 perf_ctx_adjust_freq(ctx
, interval
);
2361 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2363 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
2365 rotate_ctx(&cpuctx
->ctx
);
2369 perf_event_sched_in(cpuctx
, ctx
, current
);
2373 list_del_init(&cpuctx
->rotation_list
);
2375 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2376 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2379 void perf_event_task_tick(void)
2381 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2382 struct perf_cpu_context
*cpuctx
, *tmp
;
2384 WARN_ON(!irqs_disabled());
2386 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2387 if (cpuctx
->jiffies_interval
== 1 ||
2388 !(jiffies
% cpuctx
->jiffies_interval
))
2389 perf_rotate_context(cpuctx
);
2393 static int event_enable_on_exec(struct perf_event
*event
,
2394 struct perf_event_context
*ctx
)
2396 if (!event
->attr
.enable_on_exec
)
2399 event
->attr
.enable_on_exec
= 0;
2400 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2403 __perf_event_mark_enabled(event
, ctx
);
2409 * Enable all of a task's events that have been marked enable-on-exec.
2410 * This expects task == current.
2412 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2414 struct perf_event
*event
;
2415 unsigned long flags
;
2419 local_irq_save(flags
);
2420 if (!ctx
|| !ctx
->nr_events
)
2424 * We must ctxsw out cgroup events to avoid conflict
2425 * when invoking perf_task_event_sched_in() later on
2426 * in this function. Otherwise we end up trying to
2427 * ctxswin cgroup events which are already scheduled
2430 perf_cgroup_sched_out(current
);
2432 raw_spin_lock(&ctx
->lock
);
2433 task_ctx_sched_out(ctx
);
2435 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2436 ret
= event_enable_on_exec(event
, ctx
);
2441 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2442 ret
= event_enable_on_exec(event
, ctx
);
2448 * Unclone this context if we enabled any event.
2453 raw_spin_unlock(&ctx
->lock
);
2456 * Also calls ctxswin for cgroup events, if any:
2458 perf_event_context_sched_in(ctx
, ctx
->task
);
2460 local_irq_restore(flags
);
2464 * Cross CPU call to read the hardware event
2466 static void __perf_event_read(void *info
)
2468 struct perf_event
*event
= info
;
2469 struct perf_event_context
*ctx
= event
->ctx
;
2470 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2473 * If this is a task context, we need to check whether it is
2474 * the current task context of this cpu. If not it has been
2475 * scheduled out before the smp call arrived. In that case
2476 * event->count would have been updated to a recent sample
2477 * when the event was scheduled out.
2479 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2482 raw_spin_lock(&ctx
->lock
);
2483 if (ctx
->is_active
) {
2484 update_context_time(ctx
);
2485 update_cgrp_time_from_event(event
);
2487 update_event_times(event
);
2488 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2489 event
->pmu
->read(event
);
2490 raw_spin_unlock(&ctx
->lock
);
2493 static inline u64
perf_event_count(struct perf_event
*event
)
2495 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2498 static u64
perf_event_read(struct perf_event
*event
)
2501 * If event is enabled and currently active on a CPU, update the
2502 * value in the event structure:
2504 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2505 smp_call_function_single(event
->oncpu
,
2506 __perf_event_read
, event
, 1);
2507 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2508 struct perf_event_context
*ctx
= event
->ctx
;
2509 unsigned long flags
;
2511 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
2513 * may read while context is not active
2514 * (e.g., thread is blocked), in that case
2515 * we cannot update context time
2517 if (ctx
->is_active
) {
2518 update_context_time(ctx
);
2519 update_cgrp_time_from_event(event
);
2521 update_event_times(event
);
2522 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2525 return perf_event_count(event
);
2532 struct callchain_cpus_entries
{
2533 struct rcu_head rcu_head
;
2534 struct perf_callchain_entry
*cpu_entries
[0];
2537 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
2538 static atomic_t nr_callchain_events
;
2539 static DEFINE_MUTEX(callchain_mutex
);
2540 struct callchain_cpus_entries
*callchain_cpus_entries
;
2543 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
2544 struct pt_regs
*regs
)
2548 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
2549 struct pt_regs
*regs
)
2553 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
2555 struct callchain_cpus_entries
*entries
;
2558 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
2560 for_each_possible_cpu(cpu
)
2561 kfree(entries
->cpu_entries
[cpu
]);
2566 static void release_callchain_buffers(void)
2568 struct callchain_cpus_entries
*entries
;
2570 entries
= callchain_cpus_entries
;
2571 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
2572 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
2575 static int alloc_callchain_buffers(void)
2579 struct callchain_cpus_entries
*entries
;
2582 * We can't use the percpu allocation API for data that can be
2583 * accessed from NMI. Use a temporary manual per cpu allocation
2584 * until that gets sorted out.
2586 size
= offsetof(struct callchain_cpus_entries
, cpu_entries
[nr_cpu_ids
]);
2588 entries
= kzalloc(size
, GFP_KERNEL
);
2592 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2594 for_each_possible_cpu(cpu
) {
2595 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2597 if (!entries
->cpu_entries
[cpu
])
2601 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2606 for_each_possible_cpu(cpu
)
2607 kfree(entries
->cpu_entries
[cpu
]);
2613 static int get_callchain_buffers(void)
2618 mutex_lock(&callchain_mutex
);
2620 count
= atomic_inc_return(&nr_callchain_events
);
2621 if (WARN_ON_ONCE(count
< 1)) {
2627 /* If the allocation failed, give up */
2628 if (!callchain_cpus_entries
)
2633 err
= alloc_callchain_buffers();
2635 release_callchain_buffers();
2637 mutex_unlock(&callchain_mutex
);
2642 static void put_callchain_buffers(void)
2644 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2645 release_callchain_buffers();
2646 mutex_unlock(&callchain_mutex
);
2650 static int get_recursion_context(int *recursion
)
2658 else if (in_softirq())
2663 if (recursion
[rctx
])
2672 static inline void put_recursion_context(int *recursion
, int rctx
)
2678 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2681 struct callchain_cpus_entries
*entries
;
2683 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2687 entries
= rcu_dereference(callchain_cpus_entries
);
2691 cpu
= smp_processor_id();
2693 return &entries
->cpu_entries
[cpu
][*rctx
];
2697 put_callchain_entry(int rctx
)
2699 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2702 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2705 struct perf_callchain_entry
*entry
;
2708 entry
= get_callchain_entry(&rctx
);
2717 if (!user_mode(regs
)) {
2718 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2719 perf_callchain_kernel(entry
, regs
);
2721 regs
= task_pt_regs(current
);
2727 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2728 perf_callchain_user(entry
, regs
);
2732 put_callchain_entry(rctx
);
2738 * Initialize the perf_event context in a task_struct:
2740 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2742 raw_spin_lock_init(&ctx
->lock
);
2743 mutex_init(&ctx
->mutex
);
2744 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2745 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2746 INIT_LIST_HEAD(&ctx
->event_list
);
2747 atomic_set(&ctx
->refcount
, 1);
2750 static struct perf_event_context
*
2751 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2753 struct perf_event_context
*ctx
;
2755 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2759 __perf_event_init_context(ctx
);
2762 get_task_struct(task
);
2769 static struct task_struct
*
2770 find_lively_task_by_vpid(pid_t vpid
)
2772 struct task_struct
*task
;
2779 task
= find_task_by_vpid(vpid
);
2781 get_task_struct(task
);
2785 return ERR_PTR(-ESRCH
);
2787 /* Reuse ptrace permission checks for now. */
2789 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2794 put_task_struct(task
);
2795 return ERR_PTR(err
);
2800 * Returns a matching context with refcount and pincount.
2802 static struct perf_event_context
*
2803 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2805 struct perf_event_context
*ctx
;
2806 struct perf_cpu_context
*cpuctx
;
2807 unsigned long flags
;
2811 /* Must be root to operate on a CPU event: */
2812 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2813 return ERR_PTR(-EACCES
);
2816 * We could be clever and allow to attach a event to an
2817 * offline CPU and activate it when the CPU comes up, but
2820 if (!cpu_online(cpu
))
2821 return ERR_PTR(-ENODEV
);
2823 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2832 ctxn
= pmu
->task_ctx_nr
;
2837 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2841 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2843 ctx
= alloc_perf_context(pmu
, task
);
2849 mutex_lock(&task
->perf_event_mutex
);
2851 * If it has already passed perf_event_exit_task().
2852 * we must see PF_EXITING, it takes this mutex too.
2854 if (task
->flags
& PF_EXITING
)
2856 else if (task
->perf_event_ctxp
[ctxn
])
2861 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2863 mutex_unlock(&task
->perf_event_mutex
);
2865 if (unlikely(err
)) {
2877 return ERR_PTR(err
);
2880 static void perf_event_free_filter(struct perf_event
*event
);
2882 static void free_event_rcu(struct rcu_head
*head
)
2884 struct perf_event
*event
;
2886 event
= container_of(head
, struct perf_event
, rcu_head
);
2888 put_pid_ns(event
->ns
);
2889 perf_event_free_filter(event
);
2893 static void ring_buffer_put(struct ring_buffer
*rb
);
2895 static void free_event(struct perf_event
*event
)
2897 irq_work_sync(&event
->pending
);
2899 if (!event
->parent
) {
2900 if (event
->attach_state
& PERF_ATTACH_TASK
)
2901 jump_label_dec(&perf_sched_events
);
2902 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2903 atomic_dec(&nr_mmap_events
);
2904 if (event
->attr
.comm
)
2905 atomic_dec(&nr_comm_events
);
2906 if (event
->attr
.task
)
2907 atomic_dec(&nr_task_events
);
2908 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2909 put_callchain_buffers();
2910 if (is_cgroup_event(event
)) {
2911 atomic_dec(&per_cpu(perf_cgroup_events
, event
->cpu
));
2912 jump_label_dec(&perf_sched_events
);
2917 ring_buffer_put(event
->rb
);
2921 if (is_cgroup_event(event
))
2922 perf_detach_cgroup(event
);
2925 event
->destroy(event
);
2928 put_ctx(event
->ctx
);
2930 call_rcu(&event
->rcu_head
, free_event_rcu
);
2933 int perf_event_release_kernel(struct perf_event
*event
)
2935 struct perf_event_context
*ctx
= event
->ctx
;
2937 WARN_ON_ONCE(ctx
->parent_ctx
);
2939 * There are two ways this annotation is useful:
2941 * 1) there is a lock recursion from perf_event_exit_task
2942 * see the comment there.
2944 * 2) there is a lock-inversion with mmap_sem through
2945 * perf_event_read_group(), which takes faults while
2946 * holding ctx->mutex, however this is called after
2947 * the last filedesc died, so there is no possibility
2948 * to trigger the AB-BA case.
2950 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2951 raw_spin_lock_irq(&ctx
->lock
);
2952 perf_group_detach(event
);
2953 raw_spin_unlock_irq(&ctx
->lock
);
2954 perf_remove_from_context(event
);
2955 mutex_unlock(&ctx
->mutex
);
2961 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2964 * Called when the last reference to the file is gone.
2966 static int perf_release(struct inode
*inode
, struct file
*file
)
2968 struct perf_event
*event
= file
->private_data
;
2969 struct task_struct
*owner
;
2971 file
->private_data
= NULL
;
2974 owner
= ACCESS_ONCE(event
->owner
);
2976 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2977 * !owner it means the list deletion is complete and we can indeed
2978 * free this event, otherwise we need to serialize on
2979 * owner->perf_event_mutex.
2981 smp_read_barrier_depends();
2984 * Since delayed_put_task_struct() also drops the last
2985 * task reference we can safely take a new reference
2986 * while holding the rcu_read_lock().
2988 get_task_struct(owner
);
2993 mutex_lock(&owner
->perf_event_mutex
);
2995 * We have to re-check the event->owner field, if it is cleared
2996 * we raced with perf_event_exit_task(), acquiring the mutex
2997 * ensured they're done, and we can proceed with freeing the
3001 list_del_init(&event
->owner_entry
);
3002 mutex_unlock(&owner
->perf_event_mutex
);
3003 put_task_struct(owner
);
3006 return perf_event_release_kernel(event
);
3009 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3011 struct perf_event
*child
;
3017 mutex_lock(&event
->child_mutex
);
3018 total
+= perf_event_read(event
);
3019 *enabled
+= event
->total_time_enabled
+
3020 atomic64_read(&event
->child_total_time_enabled
);
3021 *running
+= event
->total_time_running
+
3022 atomic64_read(&event
->child_total_time_running
);
3024 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3025 total
+= perf_event_read(child
);
3026 *enabled
+= child
->total_time_enabled
;
3027 *running
+= child
->total_time_running
;
3029 mutex_unlock(&event
->child_mutex
);
3033 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3035 static int perf_event_read_group(struct perf_event
*event
,
3036 u64 read_format
, char __user
*buf
)
3038 struct perf_event
*leader
= event
->group_leader
, *sub
;
3039 int n
= 0, size
= 0, ret
= -EFAULT
;
3040 struct perf_event_context
*ctx
= leader
->ctx
;
3042 u64 count
, enabled
, running
;
3044 mutex_lock(&ctx
->mutex
);
3045 count
= perf_event_read_value(leader
, &enabled
, &running
);
3047 values
[n
++] = 1 + leader
->nr_siblings
;
3048 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3049 values
[n
++] = enabled
;
3050 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3051 values
[n
++] = running
;
3052 values
[n
++] = count
;
3053 if (read_format
& PERF_FORMAT_ID
)
3054 values
[n
++] = primary_event_id(leader
);
3056 size
= n
* sizeof(u64
);
3058 if (copy_to_user(buf
, values
, size
))
3063 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3066 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3067 if (read_format
& PERF_FORMAT_ID
)
3068 values
[n
++] = primary_event_id(sub
);
3070 size
= n
* sizeof(u64
);
3072 if (copy_to_user(buf
+ ret
, values
, size
)) {
3080 mutex_unlock(&ctx
->mutex
);
3085 static int perf_event_read_one(struct perf_event
*event
,
3086 u64 read_format
, char __user
*buf
)
3088 u64 enabled
, running
;
3092 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3093 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3094 values
[n
++] = enabled
;
3095 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3096 values
[n
++] = running
;
3097 if (read_format
& PERF_FORMAT_ID
)
3098 values
[n
++] = primary_event_id(event
);
3100 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3103 return n
* sizeof(u64
);
3107 * Read the performance event - simple non blocking version for now
3110 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3112 u64 read_format
= event
->attr
.read_format
;
3116 * Return end-of-file for a read on a event that is in
3117 * error state (i.e. because it was pinned but it couldn't be
3118 * scheduled on to the CPU at some point).
3120 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3123 if (count
< event
->read_size
)
3126 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3127 if (read_format
& PERF_FORMAT_GROUP
)
3128 ret
= perf_event_read_group(event
, read_format
, buf
);
3130 ret
= perf_event_read_one(event
, read_format
, buf
);
3136 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3138 struct perf_event
*event
= file
->private_data
;
3140 return perf_read_hw(event
, buf
, count
);
3143 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3145 struct perf_event
*event
= file
->private_data
;
3146 struct ring_buffer
*rb
;
3147 unsigned int events
= POLL_HUP
;
3150 rb
= rcu_dereference(event
->rb
);
3152 events
= atomic_xchg(&rb
->poll
, 0);
3155 poll_wait(file
, &event
->waitq
, wait
);
3160 static void perf_event_reset(struct perf_event
*event
)
3162 (void)perf_event_read(event
);
3163 local64_set(&event
->count
, 0);
3164 perf_event_update_userpage(event
);
3168 * Holding the top-level event's child_mutex means that any
3169 * descendant process that has inherited this event will block
3170 * in sync_child_event if it goes to exit, thus satisfying the
3171 * task existence requirements of perf_event_enable/disable.
3173 static void perf_event_for_each_child(struct perf_event
*event
,
3174 void (*func
)(struct perf_event
*))
3176 struct perf_event
*child
;
3178 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3179 mutex_lock(&event
->child_mutex
);
3181 list_for_each_entry(child
, &event
->child_list
, child_list
)
3183 mutex_unlock(&event
->child_mutex
);
3186 static void perf_event_for_each(struct perf_event
*event
,
3187 void (*func
)(struct perf_event
*))
3189 struct perf_event_context
*ctx
= event
->ctx
;
3190 struct perf_event
*sibling
;
3192 WARN_ON_ONCE(ctx
->parent_ctx
);
3193 mutex_lock(&ctx
->mutex
);
3194 event
= event
->group_leader
;
3196 perf_event_for_each_child(event
, func
);
3198 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3199 perf_event_for_each_child(event
, func
);
3200 mutex_unlock(&ctx
->mutex
);
3203 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3205 struct perf_event_context
*ctx
= event
->ctx
;
3209 if (!is_sampling_event(event
))
3212 if (copy_from_user(&value
, arg
, sizeof(value
)))
3218 raw_spin_lock_irq(&ctx
->lock
);
3219 if (event
->attr
.freq
) {
3220 if (value
> sysctl_perf_event_sample_rate
) {
3225 event
->attr
.sample_freq
= value
;
3227 event
->attr
.sample_period
= value
;
3228 event
->hw
.sample_period
= value
;
3231 raw_spin_unlock_irq(&ctx
->lock
);
3236 static const struct file_operations perf_fops
;
3238 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
3242 file
= fget_light(fd
, fput_needed
);
3244 return ERR_PTR(-EBADF
);
3246 if (file
->f_op
!= &perf_fops
) {
3247 fput_light(file
, *fput_needed
);
3249 return ERR_PTR(-EBADF
);
3252 return file
->private_data
;
3255 static int perf_event_set_output(struct perf_event
*event
,
3256 struct perf_event
*output_event
);
3257 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3259 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3261 struct perf_event
*event
= file
->private_data
;
3262 void (*func
)(struct perf_event
*);
3266 case PERF_EVENT_IOC_ENABLE
:
3267 func
= perf_event_enable
;
3269 case PERF_EVENT_IOC_DISABLE
:
3270 func
= perf_event_disable
;
3272 case PERF_EVENT_IOC_RESET
:
3273 func
= perf_event_reset
;
3276 case PERF_EVENT_IOC_REFRESH
:
3277 return perf_event_refresh(event
, arg
);
3279 case PERF_EVENT_IOC_PERIOD
:
3280 return perf_event_period(event
, (u64 __user
*)arg
);
3282 case PERF_EVENT_IOC_SET_OUTPUT
:
3284 struct perf_event
*output_event
= NULL
;
3285 int fput_needed
= 0;
3289 output_event
= perf_fget_light(arg
, &fput_needed
);
3290 if (IS_ERR(output_event
))
3291 return PTR_ERR(output_event
);
3294 ret
= perf_event_set_output(event
, output_event
);
3296 fput_light(output_event
->filp
, fput_needed
);
3301 case PERF_EVENT_IOC_SET_FILTER
:
3302 return perf_event_set_filter(event
, (void __user
*)arg
);
3308 if (flags
& PERF_IOC_FLAG_GROUP
)
3309 perf_event_for_each(event
, func
);
3311 perf_event_for_each_child(event
, func
);
3316 int perf_event_task_enable(void)
3318 struct perf_event
*event
;
3320 mutex_lock(¤t
->perf_event_mutex
);
3321 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3322 perf_event_for_each_child(event
, perf_event_enable
);
3323 mutex_unlock(¤t
->perf_event_mutex
);
3328 int perf_event_task_disable(void)
3330 struct perf_event
*event
;
3332 mutex_lock(¤t
->perf_event_mutex
);
3333 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3334 perf_event_for_each_child(event
, perf_event_disable
);
3335 mutex_unlock(¤t
->perf_event_mutex
);
3340 #ifndef PERF_EVENT_INDEX_OFFSET
3341 # define PERF_EVENT_INDEX_OFFSET 0
3344 static int perf_event_index(struct perf_event
*event
)
3346 if (event
->hw
.state
& PERF_HES_STOPPED
)
3349 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3352 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
3355 static void calc_timer_values(struct perf_event
*event
,
3362 ctx_time
= event
->shadow_ctx_time
+ now
;
3363 *enabled
= ctx_time
- event
->tstamp_enabled
;
3364 *running
= ctx_time
- event
->tstamp_running
;
3368 * Callers need to ensure there can be no nesting of this function, otherwise
3369 * the seqlock logic goes bad. We can not serialize this because the arch
3370 * code calls this from NMI context.
3372 void perf_event_update_userpage(struct perf_event
*event
)
3374 struct perf_event_mmap_page
*userpg
;
3375 struct ring_buffer
*rb
;
3376 u64 enabled
, running
;
3380 * compute total_time_enabled, total_time_running
3381 * based on snapshot values taken when the event
3382 * was last scheduled in.
3384 * we cannot simply called update_context_time()
3385 * because of locking issue as we can be called in
3388 calc_timer_values(event
, &enabled
, &running
);
3389 rb
= rcu_dereference(event
->rb
);
3393 userpg
= rb
->user_page
;
3396 * Disable preemption so as to not let the corresponding user-space
3397 * spin too long if we get preempted.
3402 userpg
->index
= perf_event_index(event
);
3403 userpg
->offset
= perf_event_count(event
);
3404 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3405 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3407 userpg
->time_enabled
= enabled
+
3408 atomic64_read(&event
->child_total_time_enabled
);
3410 userpg
->time_running
= running
+
3411 atomic64_read(&event
->child_total_time_running
);
3420 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3422 struct perf_event
*event
= vma
->vm_file
->private_data
;
3423 struct ring_buffer
*rb
;
3424 int ret
= VM_FAULT_SIGBUS
;
3426 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3427 if (vmf
->pgoff
== 0)
3433 rb
= rcu_dereference(event
->rb
);
3437 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3440 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
3444 get_page(vmf
->page
);
3445 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3446 vmf
->page
->index
= vmf
->pgoff
;
3455 static void rb_free_rcu(struct rcu_head
*rcu_head
)
3457 struct ring_buffer
*rb
;
3459 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
3463 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
3465 struct ring_buffer
*rb
;
3468 rb
= rcu_dereference(event
->rb
);
3470 if (!atomic_inc_not_zero(&rb
->refcount
))
3478 static void ring_buffer_put(struct ring_buffer
*rb
)
3480 if (!atomic_dec_and_test(&rb
->refcount
))
3483 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
3486 static void perf_mmap_open(struct vm_area_struct
*vma
)
3488 struct perf_event
*event
= vma
->vm_file
->private_data
;
3490 atomic_inc(&event
->mmap_count
);
3493 static void perf_mmap_close(struct vm_area_struct
*vma
)
3495 struct perf_event
*event
= vma
->vm_file
->private_data
;
3497 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3498 unsigned long size
= perf_data_size(event
->rb
);
3499 struct user_struct
*user
= event
->mmap_user
;
3500 struct ring_buffer
*rb
= event
->rb
;
3502 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3503 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
3504 rcu_assign_pointer(event
->rb
, NULL
);
3505 mutex_unlock(&event
->mmap_mutex
);
3507 ring_buffer_put(rb
);
3512 static const struct vm_operations_struct perf_mmap_vmops
= {
3513 .open
= perf_mmap_open
,
3514 .close
= perf_mmap_close
,
3515 .fault
= perf_mmap_fault
,
3516 .page_mkwrite
= perf_mmap_fault
,
3519 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3521 struct perf_event
*event
= file
->private_data
;
3522 unsigned long user_locked
, user_lock_limit
;
3523 struct user_struct
*user
= current_user();
3524 unsigned long locked
, lock_limit
;
3525 struct ring_buffer
*rb
;
3526 unsigned long vma_size
;
3527 unsigned long nr_pages
;
3528 long user_extra
, extra
;
3529 int ret
= 0, flags
= 0;
3532 * Don't allow mmap() of inherited per-task counters. This would
3533 * create a performance issue due to all children writing to the
3536 if (event
->cpu
== -1 && event
->attr
.inherit
)
3539 if (!(vma
->vm_flags
& VM_SHARED
))
3542 vma_size
= vma
->vm_end
- vma
->vm_start
;
3543 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3546 * If we have rb pages ensure they're a power-of-two number, so we
3547 * can do bitmasks instead of modulo.
3549 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3552 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3555 if (vma
->vm_pgoff
!= 0)
3558 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3559 mutex_lock(&event
->mmap_mutex
);
3561 if (event
->rb
->nr_pages
== nr_pages
)
3562 atomic_inc(&event
->rb
->refcount
);
3568 user_extra
= nr_pages
+ 1;
3569 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3572 * Increase the limit linearly with more CPUs:
3574 user_lock_limit
*= num_online_cpus();
3576 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3579 if (user_locked
> user_lock_limit
)
3580 extra
= user_locked
- user_lock_limit
;
3582 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3583 lock_limit
>>= PAGE_SHIFT
;
3584 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3586 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3587 !capable(CAP_IPC_LOCK
)) {
3594 if (vma
->vm_flags
& VM_WRITE
)
3595 flags
|= RING_BUFFER_WRITABLE
;
3597 rb
= rb_alloc(nr_pages
,
3598 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
3605 rcu_assign_pointer(event
->rb
, rb
);
3607 atomic_long_add(user_extra
, &user
->locked_vm
);
3608 event
->mmap_locked
= extra
;
3609 event
->mmap_user
= get_current_user();
3610 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3614 atomic_inc(&event
->mmap_count
);
3615 mutex_unlock(&event
->mmap_mutex
);
3617 vma
->vm_flags
|= VM_RESERVED
;
3618 vma
->vm_ops
= &perf_mmap_vmops
;
3623 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3625 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3626 struct perf_event
*event
= filp
->private_data
;
3629 mutex_lock(&inode
->i_mutex
);
3630 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3631 mutex_unlock(&inode
->i_mutex
);
3639 static const struct file_operations perf_fops
= {
3640 .llseek
= no_llseek
,
3641 .release
= perf_release
,
3644 .unlocked_ioctl
= perf_ioctl
,
3645 .compat_ioctl
= perf_ioctl
,
3647 .fasync
= perf_fasync
,
3653 * If there's data, ensure we set the poll() state and publish everything
3654 * to user-space before waking everybody up.
3657 void perf_event_wakeup(struct perf_event
*event
)
3659 wake_up_all(&event
->waitq
);
3661 if (event
->pending_kill
) {
3662 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3663 event
->pending_kill
= 0;
3667 static void perf_pending_event(struct irq_work
*entry
)
3669 struct perf_event
*event
= container_of(entry
,
3670 struct perf_event
, pending
);
3672 if (event
->pending_disable
) {
3673 event
->pending_disable
= 0;
3674 __perf_event_disable(event
);
3677 if (event
->pending_wakeup
) {
3678 event
->pending_wakeup
= 0;
3679 perf_event_wakeup(event
);
3684 * We assume there is only KVM supporting the callbacks.
3685 * Later on, we might change it to a list if there is
3686 * another virtualization implementation supporting the callbacks.
3688 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3690 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3692 perf_guest_cbs
= cbs
;
3695 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3697 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3699 perf_guest_cbs
= NULL
;
3702 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3704 static void __perf_event_header__init_id(struct perf_event_header
*header
,
3705 struct perf_sample_data
*data
,
3706 struct perf_event
*event
)
3708 u64 sample_type
= event
->attr
.sample_type
;
3710 data
->type
= sample_type
;
3711 header
->size
+= event
->id_header_size
;
3713 if (sample_type
& PERF_SAMPLE_TID
) {
3714 /* namespace issues */
3715 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3716 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3719 if (sample_type
& PERF_SAMPLE_TIME
)
3720 data
->time
= perf_clock();
3722 if (sample_type
& PERF_SAMPLE_ID
)
3723 data
->id
= primary_event_id(event
);
3725 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3726 data
->stream_id
= event
->id
;
3728 if (sample_type
& PERF_SAMPLE_CPU
) {
3729 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3730 data
->cpu_entry
.reserved
= 0;
3734 void perf_event_header__init_id(struct perf_event_header
*header
,
3735 struct perf_sample_data
*data
,
3736 struct perf_event
*event
)
3738 if (event
->attr
.sample_id_all
)
3739 __perf_event_header__init_id(header
, data
, event
);
3742 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
3743 struct perf_sample_data
*data
)
3745 u64 sample_type
= data
->type
;
3747 if (sample_type
& PERF_SAMPLE_TID
)
3748 perf_output_put(handle
, data
->tid_entry
);
3750 if (sample_type
& PERF_SAMPLE_TIME
)
3751 perf_output_put(handle
, data
->time
);
3753 if (sample_type
& PERF_SAMPLE_ID
)
3754 perf_output_put(handle
, data
->id
);
3756 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3757 perf_output_put(handle
, data
->stream_id
);
3759 if (sample_type
& PERF_SAMPLE_CPU
)
3760 perf_output_put(handle
, data
->cpu_entry
);
3763 void perf_event__output_id_sample(struct perf_event
*event
,
3764 struct perf_output_handle
*handle
,
3765 struct perf_sample_data
*sample
)
3767 if (event
->attr
.sample_id_all
)
3768 __perf_event__output_id_sample(handle
, sample
);
3771 static void perf_output_read_one(struct perf_output_handle
*handle
,
3772 struct perf_event
*event
,
3773 u64 enabled
, u64 running
)
3775 u64 read_format
= event
->attr
.read_format
;
3779 values
[n
++] = perf_event_count(event
);
3780 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3781 values
[n
++] = enabled
+
3782 atomic64_read(&event
->child_total_time_enabled
);
3784 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3785 values
[n
++] = running
+
3786 atomic64_read(&event
->child_total_time_running
);
3788 if (read_format
& PERF_FORMAT_ID
)
3789 values
[n
++] = primary_event_id(event
);
3791 __output_copy(handle
, values
, n
* sizeof(u64
));
3795 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3797 static void perf_output_read_group(struct perf_output_handle
*handle
,
3798 struct perf_event
*event
,
3799 u64 enabled
, u64 running
)
3801 struct perf_event
*leader
= event
->group_leader
, *sub
;
3802 u64 read_format
= event
->attr
.read_format
;
3806 values
[n
++] = 1 + leader
->nr_siblings
;
3808 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3809 values
[n
++] = enabled
;
3811 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3812 values
[n
++] = running
;
3814 if (leader
!= event
)
3815 leader
->pmu
->read(leader
);
3817 values
[n
++] = perf_event_count(leader
);
3818 if (read_format
& PERF_FORMAT_ID
)
3819 values
[n
++] = primary_event_id(leader
);
3821 __output_copy(handle
, values
, n
* sizeof(u64
));
3823 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3827 sub
->pmu
->read(sub
);
3829 values
[n
++] = perf_event_count(sub
);
3830 if (read_format
& PERF_FORMAT_ID
)
3831 values
[n
++] = primary_event_id(sub
);
3833 __output_copy(handle
, values
, n
* sizeof(u64
));
3837 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3838 PERF_FORMAT_TOTAL_TIME_RUNNING)
3840 static void perf_output_read(struct perf_output_handle
*handle
,
3841 struct perf_event
*event
)
3843 u64 enabled
= 0, running
= 0;
3844 u64 read_format
= event
->attr
.read_format
;
3847 * compute total_time_enabled, total_time_running
3848 * based on snapshot values taken when the event
3849 * was last scheduled in.
3851 * we cannot simply called update_context_time()
3852 * because of locking issue as we are called in
3855 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
3856 calc_timer_values(event
, &enabled
, &running
);
3858 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3859 perf_output_read_group(handle
, event
, enabled
, running
);
3861 perf_output_read_one(handle
, event
, enabled
, running
);
3864 void perf_output_sample(struct perf_output_handle
*handle
,
3865 struct perf_event_header
*header
,
3866 struct perf_sample_data
*data
,
3867 struct perf_event
*event
)
3869 u64 sample_type
= data
->type
;
3871 perf_output_put(handle
, *header
);
3873 if (sample_type
& PERF_SAMPLE_IP
)
3874 perf_output_put(handle
, data
->ip
);
3876 if (sample_type
& PERF_SAMPLE_TID
)
3877 perf_output_put(handle
, data
->tid_entry
);
3879 if (sample_type
& PERF_SAMPLE_TIME
)
3880 perf_output_put(handle
, data
->time
);
3882 if (sample_type
& PERF_SAMPLE_ADDR
)
3883 perf_output_put(handle
, data
->addr
);
3885 if (sample_type
& PERF_SAMPLE_ID
)
3886 perf_output_put(handle
, data
->id
);
3888 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3889 perf_output_put(handle
, data
->stream_id
);
3891 if (sample_type
& PERF_SAMPLE_CPU
)
3892 perf_output_put(handle
, data
->cpu_entry
);
3894 if (sample_type
& PERF_SAMPLE_PERIOD
)
3895 perf_output_put(handle
, data
->period
);
3897 if (sample_type
& PERF_SAMPLE_READ
)
3898 perf_output_read(handle
, event
);
3900 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3901 if (data
->callchain
) {
3904 if (data
->callchain
)
3905 size
+= data
->callchain
->nr
;
3907 size
*= sizeof(u64
);
3909 __output_copy(handle
, data
->callchain
, size
);
3912 perf_output_put(handle
, nr
);
3916 if (sample_type
& PERF_SAMPLE_RAW
) {
3918 perf_output_put(handle
, data
->raw
->size
);
3919 __output_copy(handle
, data
->raw
->data
,
3926 .size
= sizeof(u32
),
3929 perf_output_put(handle
, raw
);
3933 if (!event
->attr
.watermark
) {
3934 int wakeup_events
= event
->attr
.wakeup_events
;
3936 if (wakeup_events
) {
3937 struct ring_buffer
*rb
= handle
->rb
;
3938 int events
= local_inc_return(&rb
->events
);
3940 if (events
>= wakeup_events
) {
3941 local_sub(wakeup_events
, &rb
->events
);
3942 local_inc(&rb
->wakeup
);
3948 void perf_prepare_sample(struct perf_event_header
*header
,
3949 struct perf_sample_data
*data
,
3950 struct perf_event
*event
,
3951 struct pt_regs
*regs
)
3953 u64 sample_type
= event
->attr
.sample_type
;
3955 header
->type
= PERF_RECORD_SAMPLE
;
3956 header
->size
= sizeof(*header
) + event
->header_size
;
3959 header
->misc
|= perf_misc_flags(regs
);
3961 __perf_event_header__init_id(header
, data
, event
);
3963 if (sample_type
& PERF_SAMPLE_IP
)
3964 data
->ip
= perf_instruction_pointer(regs
);
3966 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3969 data
->callchain
= perf_callchain(regs
);
3971 if (data
->callchain
)
3972 size
+= data
->callchain
->nr
;
3974 header
->size
+= size
* sizeof(u64
);
3977 if (sample_type
& PERF_SAMPLE_RAW
) {
3978 int size
= sizeof(u32
);
3981 size
+= data
->raw
->size
;
3983 size
+= sizeof(u32
);
3985 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3986 header
->size
+= size
;
3990 static void perf_event_output(struct perf_event
*event
,
3991 struct perf_sample_data
*data
,
3992 struct pt_regs
*regs
)
3994 struct perf_output_handle handle
;
3995 struct perf_event_header header
;
3997 /* protect the callchain buffers */
4000 perf_prepare_sample(&header
, data
, event
, regs
);
4002 if (perf_output_begin(&handle
, event
, header
.size
))
4005 perf_output_sample(&handle
, &header
, data
, event
);
4007 perf_output_end(&handle
);
4017 struct perf_read_event
{
4018 struct perf_event_header header
;
4025 perf_event_read_event(struct perf_event
*event
,
4026 struct task_struct
*task
)
4028 struct perf_output_handle handle
;
4029 struct perf_sample_data sample
;
4030 struct perf_read_event read_event
= {
4032 .type
= PERF_RECORD_READ
,
4034 .size
= sizeof(read_event
) + event
->read_size
,
4036 .pid
= perf_event_pid(event
, task
),
4037 .tid
= perf_event_tid(event
, task
),
4041 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4042 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
4046 perf_output_put(&handle
, read_event
);
4047 perf_output_read(&handle
, event
);
4048 perf_event__output_id_sample(event
, &handle
, &sample
);
4050 perf_output_end(&handle
);
4054 * task tracking -- fork/exit
4056 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4059 struct perf_task_event
{
4060 struct task_struct
*task
;
4061 struct perf_event_context
*task_ctx
;
4064 struct perf_event_header header
;
4074 static void perf_event_task_output(struct perf_event
*event
,
4075 struct perf_task_event
*task_event
)
4077 struct perf_output_handle handle
;
4078 struct perf_sample_data sample
;
4079 struct task_struct
*task
= task_event
->task
;
4080 int ret
, size
= task_event
->event_id
.header
.size
;
4082 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4084 ret
= perf_output_begin(&handle
, event
,
4085 task_event
->event_id
.header
.size
);
4089 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4090 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4092 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4093 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4095 perf_output_put(&handle
, task_event
->event_id
);
4097 perf_event__output_id_sample(event
, &handle
, &sample
);
4099 perf_output_end(&handle
);
4101 task_event
->event_id
.header
.size
= size
;
4104 static int perf_event_task_match(struct perf_event
*event
)
4106 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4109 if (!event_filter_match(event
))
4112 if (event
->attr
.comm
|| event
->attr
.mmap
||
4113 event
->attr
.mmap_data
|| event
->attr
.task
)
4119 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
4120 struct perf_task_event
*task_event
)
4122 struct perf_event
*event
;
4124 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4125 if (perf_event_task_match(event
))
4126 perf_event_task_output(event
, task_event
);
4130 static void perf_event_task_event(struct perf_task_event
*task_event
)
4132 struct perf_cpu_context
*cpuctx
;
4133 struct perf_event_context
*ctx
;
4138 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4139 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4140 if (cpuctx
->active_pmu
!= pmu
)
4142 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
4144 ctx
= task_event
->task_ctx
;
4146 ctxn
= pmu
->task_ctx_nr
;
4149 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4152 perf_event_task_ctx(ctx
, task_event
);
4154 put_cpu_ptr(pmu
->pmu_cpu_context
);
4159 static void perf_event_task(struct task_struct
*task
,
4160 struct perf_event_context
*task_ctx
,
4163 struct perf_task_event task_event
;
4165 if (!atomic_read(&nr_comm_events
) &&
4166 !atomic_read(&nr_mmap_events
) &&
4167 !atomic_read(&nr_task_events
))
4170 task_event
= (struct perf_task_event
){
4172 .task_ctx
= task_ctx
,
4175 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4177 .size
= sizeof(task_event
.event_id
),
4183 .time
= perf_clock(),
4187 perf_event_task_event(&task_event
);
4190 void perf_event_fork(struct task_struct
*task
)
4192 perf_event_task(task
, NULL
, 1);
4199 struct perf_comm_event
{
4200 struct task_struct
*task
;
4205 struct perf_event_header header
;
4212 static void perf_event_comm_output(struct perf_event
*event
,
4213 struct perf_comm_event
*comm_event
)
4215 struct perf_output_handle handle
;
4216 struct perf_sample_data sample
;
4217 int size
= comm_event
->event_id
.header
.size
;
4220 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4221 ret
= perf_output_begin(&handle
, event
,
4222 comm_event
->event_id
.header
.size
);
4227 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4228 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4230 perf_output_put(&handle
, comm_event
->event_id
);
4231 __output_copy(&handle
, comm_event
->comm
,
4232 comm_event
->comm_size
);
4234 perf_event__output_id_sample(event
, &handle
, &sample
);
4236 perf_output_end(&handle
);
4238 comm_event
->event_id
.header
.size
= size
;
4241 static int perf_event_comm_match(struct perf_event
*event
)
4243 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4246 if (!event_filter_match(event
))
4249 if (event
->attr
.comm
)
4255 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4256 struct perf_comm_event
*comm_event
)
4258 struct perf_event
*event
;
4260 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4261 if (perf_event_comm_match(event
))
4262 perf_event_comm_output(event
, comm_event
);
4266 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4268 struct perf_cpu_context
*cpuctx
;
4269 struct perf_event_context
*ctx
;
4270 char comm
[TASK_COMM_LEN
];
4275 memset(comm
, 0, sizeof(comm
));
4276 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4277 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4279 comm_event
->comm
= comm
;
4280 comm_event
->comm_size
= size
;
4282 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4284 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4285 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4286 if (cpuctx
->active_pmu
!= pmu
)
4288 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4290 ctxn
= pmu
->task_ctx_nr
;
4294 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4296 perf_event_comm_ctx(ctx
, comm_event
);
4298 put_cpu_ptr(pmu
->pmu_cpu_context
);
4303 void perf_event_comm(struct task_struct
*task
)
4305 struct perf_comm_event comm_event
;
4306 struct perf_event_context
*ctx
;
4309 for_each_task_context_nr(ctxn
) {
4310 ctx
= task
->perf_event_ctxp
[ctxn
];
4314 perf_event_enable_on_exec(ctx
);
4317 if (!atomic_read(&nr_comm_events
))
4320 comm_event
= (struct perf_comm_event
){
4326 .type
= PERF_RECORD_COMM
,
4335 perf_event_comm_event(&comm_event
);
4342 struct perf_mmap_event
{
4343 struct vm_area_struct
*vma
;
4345 const char *file_name
;
4349 struct perf_event_header header
;
4359 static void perf_event_mmap_output(struct perf_event
*event
,
4360 struct perf_mmap_event
*mmap_event
)
4362 struct perf_output_handle handle
;
4363 struct perf_sample_data sample
;
4364 int size
= mmap_event
->event_id
.header
.size
;
4367 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4368 ret
= perf_output_begin(&handle
, event
,
4369 mmap_event
->event_id
.header
.size
);
4373 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4374 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4376 perf_output_put(&handle
, mmap_event
->event_id
);
4377 __output_copy(&handle
, mmap_event
->file_name
,
4378 mmap_event
->file_size
);
4380 perf_event__output_id_sample(event
, &handle
, &sample
);
4382 perf_output_end(&handle
);
4384 mmap_event
->event_id
.header
.size
= size
;
4387 static int perf_event_mmap_match(struct perf_event
*event
,
4388 struct perf_mmap_event
*mmap_event
,
4391 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4394 if (!event_filter_match(event
))
4397 if ((!executable
&& event
->attr
.mmap_data
) ||
4398 (executable
&& event
->attr
.mmap
))
4404 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4405 struct perf_mmap_event
*mmap_event
,
4408 struct perf_event
*event
;
4410 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4411 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4412 perf_event_mmap_output(event
, mmap_event
);
4416 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4418 struct perf_cpu_context
*cpuctx
;
4419 struct perf_event_context
*ctx
;
4420 struct vm_area_struct
*vma
= mmap_event
->vma
;
4421 struct file
*file
= vma
->vm_file
;
4429 memset(tmp
, 0, sizeof(tmp
));
4433 * d_path works from the end of the rb backwards, so we
4434 * need to add enough zero bytes after the string to handle
4435 * the 64bit alignment we do later.
4437 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4439 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4442 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4444 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4448 if (arch_vma_name(mmap_event
->vma
)) {
4449 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4455 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4457 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4458 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4459 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4461 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4462 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4463 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4467 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4472 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4474 mmap_event
->file_name
= name
;
4475 mmap_event
->file_size
= size
;
4477 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4480 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4481 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4482 if (cpuctx
->active_pmu
!= pmu
)
4484 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4485 vma
->vm_flags
& VM_EXEC
);
4487 ctxn
= pmu
->task_ctx_nr
;
4491 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4493 perf_event_mmap_ctx(ctx
, mmap_event
,
4494 vma
->vm_flags
& VM_EXEC
);
4497 put_cpu_ptr(pmu
->pmu_cpu_context
);
4504 void perf_event_mmap(struct vm_area_struct
*vma
)
4506 struct perf_mmap_event mmap_event
;
4508 if (!atomic_read(&nr_mmap_events
))
4511 mmap_event
= (struct perf_mmap_event
){
4517 .type
= PERF_RECORD_MMAP
,
4518 .misc
= PERF_RECORD_MISC_USER
,
4523 .start
= vma
->vm_start
,
4524 .len
= vma
->vm_end
- vma
->vm_start
,
4525 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4529 perf_event_mmap_event(&mmap_event
);
4533 * IRQ throttle logging
4536 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4538 struct perf_output_handle handle
;
4539 struct perf_sample_data sample
;
4543 struct perf_event_header header
;
4547 } throttle_event
= {
4549 .type
= PERF_RECORD_THROTTLE
,
4551 .size
= sizeof(throttle_event
),
4553 .time
= perf_clock(),
4554 .id
= primary_event_id(event
),
4555 .stream_id
= event
->id
,
4559 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4561 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4563 ret
= perf_output_begin(&handle
, event
,
4564 throttle_event
.header
.size
);
4568 perf_output_put(&handle
, throttle_event
);
4569 perf_event__output_id_sample(event
, &handle
, &sample
);
4570 perf_output_end(&handle
);
4574 * Generic event overflow handling, sampling.
4577 static int __perf_event_overflow(struct perf_event
*event
,
4578 int throttle
, struct perf_sample_data
*data
,
4579 struct pt_regs
*regs
)
4581 int events
= atomic_read(&event
->event_limit
);
4582 struct hw_perf_event
*hwc
= &event
->hw
;
4586 * Non-sampling counters might still use the PMI to fold short
4587 * hardware counters, ignore those.
4589 if (unlikely(!is_sampling_event(event
)))
4592 if (unlikely(hwc
->interrupts
>= max_samples_per_tick
)) {
4594 hwc
->interrupts
= MAX_INTERRUPTS
;
4595 perf_log_throttle(event
, 0);
4601 if (event
->attr
.freq
) {
4602 u64 now
= perf_clock();
4603 s64 delta
= now
- hwc
->freq_time_stamp
;
4605 hwc
->freq_time_stamp
= now
;
4607 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4608 perf_adjust_period(event
, delta
, hwc
->last_period
);
4612 * XXX event_limit might not quite work as expected on inherited
4616 event
->pending_kill
= POLL_IN
;
4617 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4619 event
->pending_kill
= POLL_HUP
;
4620 event
->pending_disable
= 1;
4621 irq_work_queue(&event
->pending
);
4624 if (event
->overflow_handler
)
4625 event
->overflow_handler(event
, data
, regs
);
4627 perf_event_output(event
, data
, regs
);
4629 if (event
->fasync
&& event
->pending_kill
) {
4630 event
->pending_wakeup
= 1;
4631 irq_work_queue(&event
->pending
);
4637 int perf_event_overflow(struct perf_event
*event
,
4638 struct perf_sample_data
*data
,
4639 struct pt_regs
*regs
)
4641 return __perf_event_overflow(event
, 1, data
, regs
);
4645 * Generic software event infrastructure
4648 struct swevent_htable
{
4649 struct swevent_hlist
*swevent_hlist
;
4650 struct mutex hlist_mutex
;
4653 /* Recursion avoidance in each contexts */
4654 int recursion
[PERF_NR_CONTEXTS
];
4657 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4660 * We directly increment event->count and keep a second value in
4661 * event->hw.period_left to count intervals. This period event
4662 * is kept in the range [-sample_period, 0] so that we can use the
4666 static u64
perf_swevent_set_period(struct perf_event
*event
)
4668 struct hw_perf_event
*hwc
= &event
->hw
;
4669 u64 period
= hwc
->last_period
;
4673 hwc
->last_period
= hwc
->sample_period
;
4676 old
= val
= local64_read(&hwc
->period_left
);
4680 nr
= div64_u64(period
+ val
, period
);
4681 offset
= nr
* period
;
4683 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4689 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4690 struct perf_sample_data
*data
,
4691 struct pt_regs
*regs
)
4693 struct hw_perf_event
*hwc
= &event
->hw
;
4696 data
->period
= event
->hw
.last_period
;
4698 overflow
= perf_swevent_set_period(event
);
4700 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4703 for (; overflow
; overflow
--) {
4704 if (__perf_event_overflow(event
, throttle
,
4707 * We inhibit the overflow from happening when
4708 * hwc->interrupts == MAX_INTERRUPTS.
4716 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4717 struct perf_sample_data
*data
,
4718 struct pt_regs
*regs
)
4720 struct hw_perf_event
*hwc
= &event
->hw
;
4722 local64_add(nr
, &event
->count
);
4727 if (!is_sampling_event(event
))
4730 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4731 return perf_swevent_overflow(event
, 1, data
, regs
);
4733 if (local64_add_negative(nr
, &hwc
->period_left
))
4736 perf_swevent_overflow(event
, 0, data
, regs
);
4739 static int perf_exclude_event(struct perf_event
*event
,
4740 struct pt_regs
*regs
)
4742 if (event
->hw
.state
& PERF_HES_STOPPED
)
4746 if (event
->attr
.exclude_user
&& user_mode(regs
))
4749 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4756 static int perf_swevent_match(struct perf_event
*event
,
4757 enum perf_type_id type
,
4759 struct perf_sample_data
*data
,
4760 struct pt_regs
*regs
)
4762 if (event
->attr
.type
!= type
)
4765 if (event
->attr
.config
!= event_id
)
4768 if (perf_exclude_event(event
, regs
))
4774 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4776 u64 val
= event_id
| (type
<< 32);
4778 return hash_64(val
, SWEVENT_HLIST_BITS
);
4781 static inline struct hlist_head
*
4782 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4784 u64 hash
= swevent_hash(type
, event_id
);
4786 return &hlist
->heads
[hash
];
4789 /* For the read side: events when they trigger */
4790 static inline struct hlist_head
*
4791 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4793 struct swevent_hlist
*hlist
;
4795 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4799 return __find_swevent_head(hlist
, type
, event_id
);
4802 /* For the event head insertion and removal in the hlist */
4803 static inline struct hlist_head
*
4804 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4806 struct swevent_hlist
*hlist
;
4807 u32 event_id
= event
->attr
.config
;
4808 u64 type
= event
->attr
.type
;
4811 * Event scheduling is always serialized against hlist allocation
4812 * and release. Which makes the protected version suitable here.
4813 * The context lock guarantees that.
4815 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4816 lockdep_is_held(&event
->ctx
->lock
));
4820 return __find_swevent_head(hlist
, type
, event_id
);
4823 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4825 struct perf_sample_data
*data
,
4826 struct pt_regs
*regs
)
4828 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4829 struct perf_event
*event
;
4830 struct hlist_node
*node
;
4831 struct hlist_head
*head
;
4834 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4838 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4839 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4840 perf_swevent_event(event
, nr
, data
, regs
);
4846 int perf_swevent_get_recursion_context(void)
4848 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4850 return get_recursion_context(swhash
->recursion
);
4852 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4854 inline void perf_swevent_put_recursion_context(int rctx
)
4856 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4858 put_recursion_context(swhash
->recursion
, rctx
);
4861 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
4863 struct perf_sample_data data
;
4866 preempt_disable_notrace();
4867 rctx
= perf_swevent_get_recursion_context();
4871 perf_sample_data_init(&data
, addr
);
4873 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
4875 perf_swevent_put_recursion_context(rctx
);
4876 preempt_enable_notrace();
4879 static void perf_swevent_read(struct perf_event
*event
)
4883 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4885 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4886 struct hw_perf_event
*hwc
= &event
->hw
;
4887 struct hlist_head
*head
;
4889 if (is_sampling_event(event
)) {
4890 hwc
->last_period
= hwc
->sample_period
;
4891 perf_swevent_set_period(event
);
4894 hwc
->state
= !(flags
& PERF_EF_START
);
4896 head
= find_swevent_head(swhash
, event
);
4897 if (WARN_ON_ONCE(!head
))
4900 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4905 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4907 hlist_del_rcu(&event
->hlist_entry
);
4910 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4912 event
->hw
.state
= 0;
4915 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4917 event
->hw
.state
= PERF_HES_STOPPED
;
4920 /* Deref the hlist from the update side */
4921 static inline struct swevent_hlist
*
4922 swevent_hlist_deref(struct swevent_htable
*swhash
)
4924 return rcu_dereference_protected(swhash
->swevent_hlist
,
4925 lockdep_is_held(&swhash
->hlist_mutex
));
4928 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4930 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4935 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4936 kfree_rcu(hlist
, rcu_head
);
4939 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4941 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4943 mutex_lock(&swhash
->hlist_mutex
);
4945 if (!--swhash
->hlist_refcount
)
4946 swevent_hlist_release(swhash
);
4948 mutex_unlock(&swhash
->hlist_mutex
);
4951 static void swevent_hlist_put(struct perf_event
*event
)
4955 if (event
->cpu
!= -1) {
4956 swevent_hlist_put_cpu(event
, event
->cpu
);
4960 for_each_possible_cpu(cpu
)
4961 swevent_hlist_put_cpu(event
, cpu
);
4964 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4966 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4969 mutex_lock(&swhash
->hlist_mutex
);
4971 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
4972 struct swevent_hlist
*hlist
;
4974 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4979 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
4981 swhash
->hlist_refcount
++;
4983 mutex_unlock(&swhash
->hlist_mutex
);
4988 static int swevent_hlist_get(struct perf_event
*event
)
4991 int cpu
, failed_cpu
;
4993 if (event
->cpu
!= -1)
4994 return swevent_hlist_get_cpu(event
, event
->cpu
);
4997 for_each_possible_cpu(cpu
) {
4998 err
= swevent_hlist_get_cpu(event
, cpu
);
5008 for_each_possible_cpu(cpu
) {
5009 if (cpu
== failed_cpu
)
5011 swevent_hlist_put_cpu(event
, cpu
);
5018 struct jump_label_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5020 static void sw_perf_event_destroy(struct perf_event
*event
)
5022 u64 event_id
= event
->attr
.config
;
5024 WARN_ON(event
->parent
);
5026 jump_label_dec(&perf_swevent_enabled
[event_id
]);
5027 swevent_hlist_put(event
);
5030 static int perf_swevent_init(struct perf_event
*event
)
5032 int event_id
= event
->attr
.config
;
5034 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5038 case PERF_COUNT_SW_CPU_CLOCK
:
5039 case PERF_COUNT_SW_TASK_CLOCK
:
5046 if (event_id
>= PERF_COUNT_SW_MAX
)
5049 if (!event
->parent
) {
5052 err
= swevent_hlist_get(event
);
5056 jump_label_inc(&perf_swevent_enabled
[event_id
]);
5057 event
->destroy
= sw_perf_event_destroy
;
5063 static struct pmu perf_swevent
= {
5064 .task_ctx_nr
= perf_sw_context
,
5066 .event_init
= perf_swevent_init
,
5067 .add
= perf_swevent_add
,
5068 .del
= perf_swevent_del
,
5069 .start
= perf_swevent_start
,
5070 .stop
= perf_swevent_stop
,
5071 .read
= perf_swevent_read
,
5074 #ifdef CONFIG_EVENT_TRACING
5076 static int perf_tp_filter_match(struct perf_event
*event
,
5077 struct perf_sample_data
*data
)
5079 void *record
= data
->raw
->data
;
5081 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5086 static int perf_tp_event_match(struct perf_event
*event
,
5087 struct perf_sample_data
*data
,
5088 struct pt_regs
*regs
)
5090 if (event
->hw
.state
& PERF_HES_STOPPED
)
5093 * All tracepoints are from kernel-space.
5095 if (event
->attr
.exclude_kernel
)
5098 if (!perf_tp_filter_match(event
, data
))
5104 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5105 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
5107 struct perf_sample_data data
;
5108 struct perf_event
*event
;
5109 struct hlist_node
*node
;
5111 struct perf_raw_record raw
= {
5116 perf_sample_data_init(&data
, addr
);
5119 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5120 if (perf_tp_event_match(event
, &data
, regs
))
5121 perf_swevent_event(event
, count
, &data
, regs
);
5124 perf_swevent_put_recursion_context(rctx
);
5126 EXPORT_SYMBOL_GPL(perf_tp_event
);
5128 static void tp_perf_event_destroy(struct perf_event
*event
)
5130 perf_trace_destroy(event
);
5133 static int perf_tp_event_init(struct perf_event
*event
)
5137 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5140 err
= perf_trace_init(event
);
5144 event
->destroy
= tp_perf_event_destroy
;
5149 static struct pmu perf_tracepoint
= {
5150 .task_ctx_nr
= perf_sw_context
,
5152 .event_init
= perf_tp_event_init
,
5153 .add
= perf_trace_add
,
5154 .del
= perf_trace_del
,
5155 .start
= perf_swevent_start
,
5156 .stop
= perf_swevent_stop
,
5157 .read
= perf_swevent_read
,
5160 static inline void perf_tp_register(void)
5162 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5165 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5170 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5173 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5174 if (IS_ERR(filter_str
))
5175 return PTR_ERR(filter_str
);
5177 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5183 static void perf_event_free_filter(struct perf_event
*event
)
5185 ftrace_profile_free_filter(event
);
5190 static inline void perf_tp_register(void)
5194 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5199 static void perf_event_free_filter(struct perf_event
*event
)
5203 #endif /* CONFIG_EVENT_TRACING */
5205 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5206 void perf_bp_event(struct perf_event
*bp
, void *data
)
5208 struct perf_sample_data sample
;
5209 struct pt_regs
*regs
= data
;
5211 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5213 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5214 perf_swevent_event(bp
, 1, &sample
, regs
);
5219 * hrtimer based swevent callback
5222 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5224 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5225 struct perf_sample_data data
;
5226 struct pt_regs
*regs
;
5227 struct perf_event
*event
;
5230 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5232 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5233 return HRTIMER_NORESTART
;
5235 event
->pmu
->read(event
);
5237 perf_sample_data_init(&data
, 0);
5238 data
.period
= event
->hw
.last_period
;
5239 regs
= get_irq_regs();
5241 if (regs
&& !perf_exclude_event(event
, regs
)) {
5242 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5243 if (perf_event_overflow(event
, &data
, regs
))
5244 ret
= HRTIMER_NORESTART
;
5247 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5248 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5253 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5255 struct hw_perf_event
*hwc
= &event
->hw
;
5258 if (!is_sampling_event(event
))
5261 period
= local64_read(&hwc
->period_left
);
5266 local64_set(&hwc
->period_left
, 0);
5268 period
= max_t(u64
, 10000, hwc
->sample_period
);
5270 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5271 ns_to_ktime(period
), 0,
5272 HRTIMER_MODE_REL_PINNED
, 0);
5275 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5277 struct hw_perf_event
*hwc
= &event
->hw
;
5279 if (is_sampling_event(event
)) {
5280 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5281 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5283 hrtimer_cancel(&hwc
->hrtimer
);
5287 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
5289 struct hw_perf_event
*hwc
= &event
->hw
;
5291 if (!is_sampling_event(event
))
5294 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5295 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5298 * Since hrtimers have a fixed rate, we can do a static freq->period
5299 * mapping and avoid the whole period adjust feedback stuff.
5301 if (event
->attr
.freq
) {
5302 long freq
= event
->attr
.sample_freq
;
5304 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
5305 hwc
->sample_period
= event
->attr
.sample_period
;
5306 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5307 event
->attr
.freq
= 0;
5312 * Software event: cpu wall time clock
5315 static void cpu_clock_event_update(struct perf_event
*event
)
5320 now
= local_clock();
5321 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5322 local64_add(now
- prev
, &event
->count
);
5325 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5327 local64_set(&event
->hw
.prev_count
, local_clock());
5328 perf_swevent_start_hrtimer(event
);
5331 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5333 perf_swevent_cancel_hrtimer(event
);
5334 cpu_clock_event_update(event
);
5337 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5339 if (flags
& PERF_EF_START
)
5340 cpu_clock_event_start(event
, flags
);
5345 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5347 cpu_clock_event_stop(event
, flags
);
5350 static void cpu_clock_event_read(struct perf_event
*event
)
5352 cpu_clock_event_update(event
);
5355 static int cpu_clock_event_init(struct perf_event
*event
)
5357 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5360 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5363 perf_swevent_init_hrtimer(event
);
5368 static struct pmu perf_cpu_clock
= {
5369 .task_ctx_nr
= perf_sw_context
,
5371 .event_init
= cpu_clock_event_init
,
5372 .add
= cpu_clock_event_add
,
5373 .del
= cpu_clock_event_del
,
5374 .start
= cpu_clock_event_start
,
5375 .stop
= cpu_clock_event_stop
,
5376 .read
= cpu_clock_event_read
,
5380 * Software event: task time clock
5383 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5388 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5390 local64_add(delta
, &event
->count
);
5393 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5395 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5396 perf_swevent_start_hrtimer(event
);
5399 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5401 perf_swevent_cancel_hrtimer(event
);
5402 task_clock_event_update(event
, event
->ctx
->time
);
5405 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5407 if (flags
& PERF_EF_START
)
5408 task_clock_event_start(event
, flags
);
5413 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5415 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5418 static void task_clock_event_read(struct perf_event
*event
)
5420 u64 now
= perf_clock();
5421 u64 delta
= now
- event
->ctx
->timestamp
;
5422 u64 time
= event
->ctx
->time
+ delta
;
5424 task_clock_event_update(event
, time
);
5427 static int task_clock_event_init(struct perf_event
*event
)
5429 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5432 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5435 perf_swevent_init_hrtimer(event
);
5440 static struct pmu perf_task_clock
= {
5441 .task_ctx_nr
= perf_sw_context
,
5443 .event_init
= task_clock_event_init
,
5444 .add
= task_clock_event_add
,
5445 .del
= task_clock_event_del
,
5446 .start
= task_clock_event_start
,
5447 .stop
= task_clock_event_stop
,
5448 .read
= task_clock_event_read
,
5451 static void perf_pmu_nop_void(struct pmu
*pmu
)
5455 static int perf_pmu_nop_int(struct pmu
*pmu
)
5460 static void perf_pmu_start_txn(struct pmu
*pmu
)
5462 perf_pmu_disable(pmu
);
5465 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5467 perf_pmu_enable(pmu
);
5471 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5473 perf_pmu_enable(pmu
);
5477 * Ensures all contexts with the same task_ctx_nr have the same
5478 * pmu_cpu_context too.
5480 static void *find_pmu_context(int ctxn
)
5487 list_for_each_entry(pmu
, &pmus
, entry
) {
5488 if (pmu
->task_ctx_nr
== ctxn
)
5489 return pmu
->pmu_cpu_context
;
5495 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5499 for_each_possible_cpu(cpu
) {
5500 struct perf_cpu_context
*cpuctx
;
5502 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5504 if (cpuctx
->active_pmu
== old_pmu
)
5505 cpuctx
->active_pmu
= pmu
;
5509 static void free_pmu_context(struct pmu
*pmu
)
5513 mutex_lock(&pmus_lock
);
5515 * Like a real lame refcount.
5517 list_for_each_entry(i
, &pmus
, entry
) {
5518 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5519 update_pmu_context(i
, pmu
);
5524 free_percpu(pmu
->pmu_cpu_context
);
5526 mutex_unlock(&pmus_lock
);
5528 static struct idr pmu_idr
;
5531 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5533 struct pmu
*pmu
= dev_get_drvdata(dev
);
5535 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5538 static struct device_attribute pmu_dev_attrs
[] = {
5543 static int pmu_bus_running
;
5544 static struct bus_type pmu_bus
= {
5545 .name
= "event_source",
5546 .dev_attrs
= pmu_dev_attrs
,
5549 static void pmu_dev_release(struct device
*dev
)
5554 static int pmu_dev_alloc(struct pmu
*pmu
)
5558 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5562 device_initialize(pmu
->dev
);
5563 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5567 dev_set_drvdata(pmu
->dev
, pmu
);
5568 pmu
->dev
->bus
= &pmu_bus
;
5569 pmu
->dev
->release
= pmu_dev_release
;
5570 ret
= device_add(pmu
->dev
);
5578 put_device(pmu
->dev
);
5582 static struct lock_class_key cpuctx_mutex
;
5583 static struct lock_class_key cpuctx_lock
;
5585 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5589 mutex_lock(&pmus_lock
);
5591 pmu
->pmu_disable_count
= alloc_percpu(int);
5592 if (!pmu
->pmu_disable_count
)
5601 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
5605 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
5613 if (pmu_bus_running
) {
5614 ret
= pmu_dev_alloc(pmu
);
5620 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5621 if (pmu
->pmu_cpu_context
)
5622 goto got_cpu_context
;
5624 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5625 if (!pmu
->pmu_cpu_context
)
5628 for_each_possible_cpu(cpu
) {
5629 struct perf_cpu_context
*cpuctx
;
5631 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5632 __perf_event_init_context(&cpuctx
->ctx
);
5633 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
5634 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
5635 cpuctx
->ctx
.type
= cpu_context
;
5636 cpuctx
->ctx
.pmu
= pmu
;
5637 cpuctx
->jiffies_interval
= 1;
5638 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5639 cpuctx
->active_pmu
= pmu
;
5643 if (!pmu
->start_txn
) {
5644 if (pmu
->pmu_enable
) {
5646 * If we have pmu_enable/pmu_disable calls, install
5647 * transaction stubs that use that to try and batch
5648 * hardware accesses.
5650 pmu
->start_txn
= perf_pmu_start_txn
;
5651 pmu
->commit_txn
= perf_pmu_commit_txn
;
5652 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5654 pmu
->start_txn
= perf_pmu_nop_void
;
5655 pmu
->commit_txn
= perf_pmu_nop_int
;
5656 pmu
->cancel_txn
= perf_pmu_nop_void
;
5660 if (!pmu
->pmu_enable
) {
5661 pmu
->pmu_enable
= perf_pmu_nop_void
;
5662 pmu
->pmu_disable
= perf_pmu_nop_void
;
5665 list_add_rcu(&pmu
->entry
, &pmus
);
5668 mutex_unlock(&pmus_lock
);
5673 device_del(pmu
->dev
);
5674 put_device(pmu
->dev
);
5677 if (pmu
->type
>= PERF_TYPE_MAX
)
5678 idr_remove(&pmu_idr
, pmu
->type
);
5681 free_percpu(pmu
->pmu_disable_count
);
5685 void perf_pmu_unregister(struct pmu
*pmu
)
5687 mutex_lock(&pmus_lock
);
5688 list_del_rcu(&pmu
->entry
);
5689 mutex_unlock(&pmus_lock
);
5692 * We dereference the pmu list under both SRCU and regular RCU, so
5693 * synchronize against both of those.
5695 synchronize_srcu(&pmus_srcu
);
5698 free_percpu(pmu
->pmu_disable_count
);
5699 if (pmu
->type
>= PERF_TYPE_MAX
)
5700 idr_remove(&pmu_idr
, pmu
->type
);
5701 device_del(pmu
->dev
);
5702 put_device(pmu
->dev
);
5703 free_pmu_context(pmu
);
5706 struct pmu
*perf_init_event(struct perf_event
*event
)
5708 struct pmu
*pmu
= NULL
;
5712 idx
= srcu_read_lock(&pmus_srcu
);
5715 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
5718 ret
= pmu
->event_init(event
);
5724 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5725 ret
= pmu
->event_init(event
);
5729 if (ret
!= -ENOENT
) {
5734 pmu
= ERR_PTR(-ENOENT
);
5736 srcu_read_unlock(&pmus_srcu
, idx
);
5742 * Allocate and initialize a event structure
5744 static struct perf_event
*
5745 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5746 struct task_struct
*task
,
5747 struct perf_event
*group_leader
,
5748 struct perf_event
*parent_event
,
5749 perf_overflow_handler_t overflow_handler
,
5753 struct perf_event
*event
;
5754 struct hw_perf_event
*hwc
;
5757 if ((unsigned)cpu
>= nr_cpu_ids
) {
5758 if (!task
|| cpu
!= -1)
5759 return ERR_PTR(-EINVAL
);
5762 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5764 return ERR_PTR(-ENOMEM
);
5767 * Single events are their own group leaders, with an
5768 * empty sibling list:
5771 group_leader
= event
;
5773 mutex_init(&event
->child_mutex
);
5774 INIT_LIST_HEAD(&event
->child_list
);
5776 INIT_LIST_HEAD(&event
->group_entry
);
5777 INIT_LIST_HEAD(&event
->event_entry
);
5778 INIT_LIST_HEAD(&event
->sibling_list
);
5779 init_waitqueue_head(&event
->waitq
);
5780 init_irq_work(&event
->pending
, perf_pending_event
);
5782 mutex_init(&event
->mmap_mutex
);
5785 event
->attr
= *attr
;
5786 event
->group_leader
= group_leader
;
5790 event
->parent
= parent_event
;
5792 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5793 event
->id
= atomic64_inc_return(&perf_event_id
);
5795 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5798 event
->attach_state
= PERF_ATTACH_TASK
;
5799 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5801 * hw_breakpoint is a bit difficult here..
5803 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5804 event
->hw
.bp_target
= task
;
5808 if (!overflow_handler
&& parent_event
) {
5809 overflow_handler
= parent_event
->overflow_handler
;
5810 context
= parent_event
->overflow_handler_context
;
5813 event
->overflow_handler
= overflow_handler
;
5814 event
->overflow_handler_context
= context
;
5817 event
->state
= PERF_EVENT_STATE_OFF
;
5822 hwc
->sample_period
= attr
->sample_period
;
5823 if (attr
->freq
&& attr
->sample_freq
)
5824 hwc
->sample_period
= 1;
5825 hwc
->last_period
= hwc
->sample_period
;
5827 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5830 * we currently do not support PERF_FORMAT_GROUP on inherited events
5832 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5835 pmu
= perf_init_event(event
);
5841 else if (IS_ERR(pmu
))
5846 put_pid_ns(event
->ns
);
5848 return ERR_PTR(err
);
5853 if (!event
->parent
) {
5854 if (event
->attach_state
& PERF_ATTACH_TASK
)
5855 jump_label_inc(&perf_sched_events
);
5856 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5857 atomic_inc(&nr_mmap_events
);
5858 if (event
->attr
.comm
)
5859 atomic_inc(&nr_comm_events
);
5860 if (event
->attr
.task
)
5861 atomic_inc(&nr_task_events
);
5862 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5863 err
= get_callchain_buffers();
5866 return ERR_PTR(err
);
5874 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5875 struct perf_event_attr
*attr
)
5880 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5884 * zero the full structure, so that a short copy will be nice.
5886 memset(attr
, 0, sizeof(*attr
));
5888 ret
= get_user(size
, &uattr
->size
);
5892 if (size
> PAGE_SIZE
) /* silly large */
5895 if (!size
) /* abi compat */
5896 size
= PERF_ATTR_SIZE_VER0
;
5898 if (size
< PERF_ATTR_SIZE_VER0
)
5902 * If we're handed a bigger struct than we know of,
5903 * ensure all the unknown bits are 0 - i.e. new
5904 * user-space does not rely on any kernel feature
5905 * extensions we dont know about yet.
5907 if (size
> sizeof(*attr
)) {
5908 unsigned char __user
*addr
;
5909 unsigned char __user
*end
;
5912 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5913 end
= (void __user
*)uattr
+ size
;
5915 for (; addr
< end
; addr
++) {
5916 ret
= get_user(val
, addr
);
5922 size
= sizeof(*attr
);
5925 ret
= copy_from_user(attr
, uattr
, size
);
5929 if (attr
->__reserved_1
)
5932 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5935 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5942 put_user(sizeof(*attr
), &uattr
->size
);
5948 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5950 struct ring_buffer
*rb
= NULL
, *old_rb
= NULL
;
5956 /* don't allow circular references */
5957 if (event
== output_event
)
5961 * Don't allow cross-cpu buffers
5963 if (output_event
->cpu
!= event
->cpu
)
5967 * If its not a per-cpu rb, it must be the same task.
5969 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5973 mutex_lock(&event
->mmap_mutex
);
5974 /* Can't redirect output if we've got an active mmap() */
5975 if (atomic_read(&event
->mmap_count
))
5979 /* get the rb we want to redirect to */
5980 rb
= ring_buffer_get(output_event
);
5986 rcu_assign_pointer(event
->rb
, rb
);
5989 mutex_unlock(&event
->mmap_mutex
);
5992 ring_buffer_put(old_rb
);
5998 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6000 * @attr_uptr: event_id type attributes for monitoring/sampling
6003 * @group_fd: group leader event fd
6005 SYSCALL_DEFINE5(perf_event_open
,
6006 struct perf_event_attr __user
*, attr_uptr
,
6007 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6009 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6010 struct perf_event
*event
, *sibling
;
6011 struct perf_event_attr attr
;
6012 struct perf_event_context
*ctx
;
6013 struct file
*event_file
= NULL
;
6014 struct file
*group_file
= NULL
;
6015 struct task_struct
*task
= NULL
;
6019 int fput_needed
= 0;
6022 /* for future expandability... */
6023 if (flags
& ~PERF_FLAG_ALL
)
6026 err
= perf_copy_attr(attr_uptr
, &attr
);
6030 if (!attr
.exclude_kernel
) {
6031 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6036 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
6041 * In cgroup mode, the pid argument is used to pass the fd
6042 * opened to the cgroup directory in cgroupfs. The cpu argument
6043 * designates the cpu on which to monitor threads from that
6046 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
6049 event_fd
= get_unused_fd_flags(O_RDWR
);
6053 if (group_fd
!= -1) {
6054 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
6055 if (IS_ERR(group_leader
)) {
6056 err
= PTR_ERR(group_leader
);
6059 group_file
= group_leader
->filp
;
6060 if (flags
& PERF_FLAG_FD_OUTPUT
)
6061 output_event
= group_leader
;
6062 if (flags
& PERF_FLAG_FD_NO_GROUP
)
6063 group_leader
= NULL
;
6066 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
6067 task
= find_lively_task_by_vpid(pid
);
6069 err
= PTR_ERR(task
);
6074 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
6076 if (IS_ERR(event
)) {
6077 err
= PTR_ERR(event
);
6081 if (flags
& PERF_FLAG_PID_CGROUP
) {
6082 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
6087 * - that has cgroup constraint on event->cpu
6088 * - that may need work on context switch
6090 atomic_inc(&per_cpu(perf_cgroup_events
, event
->cpu
));
6091 jump_label_inc(&perf_sched_events
);
6095 * Special case software events and allow them to be part of
6096 * any hardware group.
6101 (is_software_event(event
) != is_software_event(group_leader
))) {
6102 if (is_software_event(event
)) {
6104 * If event and group_leader are not both a software
6105 * event, and event is, then group leader is not.
6107 * Allow the addition of software events to !software
6108 * groups, this is safe because software events never
6111 pmu
= group_leader
->pmu
;
6112 } else if (is_software_event(group_leader
) &&
6113 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
6115 * In case the group is a pure software group, and we
6116 * try to add a hardware event, move the whole group to
6117 * the hardware context.
6124 * Get the target context (task or percpu):
6126 ctx
= find_get_context(pmu
, task
, cpu
);
6133 put_task_struct(task
);
6138 * Look up the group leader (we will attach this event to it):
6144 * Do not allow a recursive hierarchy (this new sibling
6145 * becoming part of another group-sibling):
6147 if (group_leader
->group_leader
!= group_leader
)
6150 * Do not allow to attach to a group in a different
6151 * task or CPU context:
6154 if (group_leader
->ctx
->type
!= ctx
->type
)
6157 if (group_leader
->ctx
!= ctx
)
6162 * Only a group leader can be exclusive or pinned
6164 if (attr
.exclusive
|| attr
.pinned
)
6169 err
= perf_event_set_output(event
, output_event
);
6174 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
6175 if (IS_ERR(event_file
)) {
6176 err
= PTR_ERR(event_file
);
6181 struct perf_event_context
*gctx
= group_leader
->ctx
;
6183 mutex_lock(&gctx
->mutex
);
6184 perf_remove_from_context(group_leader
);
6185 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6187 perf_remove_from_context(sibling
);
6190 mutex_unlock(&gctx
->mutex
);
6194 event
->filp
= event_file
;
6195 WARN_ON_ONCE(ctx
->parent_ctx
);
6196 mutex_lock(&ctx
->mutex
);
6199 perf_install_in_context(ctx
, group_leader
, cpu
);
6201 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6203 perf_install_in_context(ctx
, sibling
, cpu
);
6208 perf_install_in_context(ctx
, event
, cpu
);
6210 perf_unpin_context(ctx
);
6211 mutex_unlock(&ctx
->mutex
);
6213 event
->owner
= current
;
6215 mutex_lock(¤t
->perf_event_mutex
);
6216 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
6217 mutex_unlock(¤t
->perf_event_mutex
);
6220 * Precalculate sample_data sizes
6222 perf_event__header_size(event
);
6223 perf_event__id_header_size(event
);
6226 * Drop the reference on the group_event after placing the
6227 * new event on the sibling_list. This ensures destruction
6228 * of the group leader will find the pointer to itself in
6229 * perf_group_detach().
6231 fput_light(group_file
, fput_needed
);
6232 fd_install(event_fd
, event_file
);
6236 perf_unpin_context(ctx
);
6242 put_task_struct(task
);
6244 fput_light(group_file
, fput_needed
);
6246 put_unused_fd(event_fd
);
6251 * perf_event_create_kernel_counter
6253 * @attr: attributes of the counter to create
6254 * @cpu: cpu in which the counter is bound
6255 * @task: task to profile (NULL for percpu)
6258 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6259 struct task_struct
*task
,
6260 perf_overflow_handler_t overflow_handler
,
6263 struct perf_event_context
*ctx
;
6264 struct perf_event
*event
;
6268 * Get the target context (task or percpu):
6271 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
6272 overflow_handler
, context
);
6273 if (IS_ERR(event
)) {
6274 err
= PTR_ERR(event
);
6278 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6285 WARN_ON_ONCE(ctx
->parent_ctx
);
6286 mutex_lock(&ctx
->mutex
);
6287 perf_install_in_context(ctx
, event
, cpu
);
6289 perf_unpin_context(ctx
);
6290 mutex_unlock(&ctx
->mutex
);
6297 return ERR_PTR(err
);
6299 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6301 static void sync_child_event(struct perf_event
*child_event
,
6302 struct task_struct
*child
)
6304 struct perf_event
*parent_event
= child_event
->parent
;
6307 if (child_event
->attr
.inherit_stat
)
6308 perf_event_read_event(child_event
, child
);
6310 child_val
= perf_event_count(child_event
);
6313 * Add back the child's count to the parent's count:
6315 atomic64_add(child_val
, &parent_event
->child_count
);
6316 atomic64_add(child_event
->total_time_enabled
,
6317 &parent_event
->child_total_time_enabled
);
6318 atomic64_add(child_event
->total_time_running
,
6319 &parent_event
->child_total_time_running
);
6322 * Remove this event from the parent's list
6324 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6325 mutex_lock(&parent_event
->child_mutex
);
6326 list_del_init(&child_event
->child_list
);
6327 mutex_unlock(&parent_event
->child_mutex
);
6330 * Release the parent event, if this was the last
6333 fput(parent_event
->filp
);
6337 __perf_event_exit_task(struct perf_event
*child_event
,
6338 struct perf_event_context
*child_ctx
,
6339 struct task_struct
*child
)
6341 if (child_event
->parent
) {
6342 raw_spin_lock_irq(&child_ctx
->lock
);
6343 perf_group_detach(child_event
);
6344 raw_spin_unlock_irq(&child_ctx
->lock
);
6347 perf_remove_from_context(child_event
);
6350 * It can happen that the parent exits first, and has events
6351 * that are still around due to the child reference. These
6352 * events need to be zapped.
6354 if (child_event
->parent
) {
6355 sync_child_event(child_event
, child
);
6356 free_event(child_event
);
6360 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6362 struct perf_event
*child_event
, *tmp
;
6363 struct perf_event_context
*child_ctx
;
6364 unsigned long flags
;
6366 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6367 perf_event_task(child
, NULL
, 0);
6371 local_irq_save(flags
);
6373 * We can't reschedule here because interrupts are disabled,
6374 * and either child is current or it is a task that can't be
6375 * scheduled, so we are now safe from rescheduling changing
6378 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6381 * Take the context lock here so that if find_get_context is
6382 * reading child->perf_event_ctxp, we wait until it has
6383 * incremented the context's refcount before we do put_ctx below.
6385 raw_spin_lock(&child_ctx
->lock
);
6386 task_ctx_sched_out(child_ctx
);
6387 child
->perf_event_ctxp
[ctxn
] = NULL
;
6389 * If this context is a clone; unclone it so it can't get
6390 * swapped to another process while we're removing all
6391 * the events from it.
6393 unclone_ctx(child_ctx
);
6394 update_context_time(child_ctx
);
6395 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6398 * Report the task dead after unscheduling the events so that we
6399 * won't get any samples after PERF_RECORD_EXIT. We can however still
6400 * get a few PERF_RECORD_READ events.
6402 perf_event_task(child
, child_ctx
, 0);
6405 * We can recurse on the same lock type through:
6407 * __perf_event_exit_task()
6408 * sync_child_event()
6409 * fput(parent_event->filp)
6411 * mutex_lock(&ctx->mutex)
6413 * But since its the parent context it won't be the same instance.
6415 mutex_lock(&child_ctx
->mutex
);
6418 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6420 __perf_event_exit_task(child_event
, child_ctx
, child
);
6422 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6424 __perf_event_exit_task(child_event
, child_ctx
, child
);
6427 * If the last event was a group event, it will have appended all
6428 * its siblings to the list, but we obtained 'tmp' before that which
6429 * will still point to the list head terminating the iteration.
6431 if (!list_empty(&child_ctx
->pinned_groups
) ||
6432 !list_empty(&child_ctx
->flexible_groups
))
6435 mutex_unlock(&child_ctx
->mutex
);
6441 * When a child task exits, feed back event values to parent events.
6443 void perf_event_exit_task(struct task_struct
*child
)
6445 struct perf_event
*event
, *tmp
;
6448 mutex_lock(&child
->perf_event_mutex
);
6449 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6451 list_del_init(&event
->owner_entry
);
6454 * Ensure the list deletion is visible before we clear
6455 * the owner, closes a race against perf_release() where
6456 * we need to serialize on the owner->perf_event_mutex.
6459 event
->owner
= NULL
;
6461 mutex_unlock(&child
->perf_event_mutex
);
6463 for_each_task_context_nr(ctxn
)
6464 perf_event_exit_task_context(child
, ctxn
);
6467 static void perf_free_event(struct perf_event
*event
,
6468 struct perf_event_context
*ctx
)
6470 struct perf_event
*parent
= event
->parent
;
6472 if (WARN_ON_ONCE(!parent
))
6475 mutex_lock(&parent
->child_mutex
);
6476 list_del_init(&event
->child_list
);
6477 mutex_unlock(&parent
->child_mutex
);
6481 perf_group_detach(event
);
6482 list_del_event(event
, ctx
);
6487 * free an unexposed, unused context as created by inheritance by
6488 * perf_event_init_task below, used by fork() in case of fail.
6490 void perf_event_free_task(struct task_struct
*task
)
6492 struct perf_event_context
*ctx
;
6493 struct perf_event
*event
, *tmp
;
6496 for_each_task_context_nr(ctxn
) {
6497 ctx
= task
->perf_event_ctxp
[ctxn
];
6501 mutex_lock(&ctx
->mutex
);
6503 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6505 perf_free_event(event
, ctx
);
6507 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6509 perf_free_event(event
, ctx
);
6511 if (!list_empty(&ctx
->pinned_groups
) ||
6512 !list_empty(&ctx
->flexible_groups
))
6515 mutex_unlock(&ctx
->mutex
);
6521 void perf_event_delayed_put(struct task_struct
*task
)
6525 for_each_task_context_nr(ctxn
)
6526 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6530 * inherit a event from parent task to child task:
6532 static struct perf_event
*
6533 inherit_event(struct perf_event
*parent_event
,
6534 struct task_struct
*parent
,
6535 struct perf_event_context
*parent_ctx
,
6536 struct task_struct
*child
,
6537 struct perf_event
*group_leader
,
6538 struct perf_event_context
*child_ctx
)
6540 struct perf_event
*child_event
;
6541 unsigned long flags
;
6544 * Instead of creating recursive hierarchies of events,
6545 * we link inherited events back to the original parent,
6546 * which has a filp for sure, which we use as the reference
6549 if (parent_event
->parent
)
6550 parent_event
= parent_event
->parent
;
6552 child_event
= perf_event_alloc(&parent_event
->attr
,
6555 group_leader
, parent_event
,
6557 if (IS_ERR(child_event
))
6562 * Make the child state follow the state of the parent event,
6563 * not its attr.disabled bit. We hold the parent's mutex,
6564 * so we won't race with perf_event_{en, dis}able_family.
6566 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6567 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6569 child_event
->state
= PERF_EVENT_STATE_OFF
;
6571 if (parent_event
->attr
.freq
) {
6572 u64 sample_period
= parent_event
->hw
.sample_period
;
6573 struct hw_perf_event
*hwc
= &child_event
->hw
;
6575 hwc
->sample_period
= sample_period
;
6576 hwc
->last_period
= sample_period
;
6578 local64_set(&hwc
->period_left
, sample_period
);
6581 child_event
->ctx
= child_ctx
;
6582 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6583 child_event
->overflow_handler_context
6584 = parent_event
->overflow_handler_context
;
6587 * Precalculate sample_data sizes
6589 perf_event__header_size(child_event
);
6590 perf_event__id_header_size(child_event
);
6593 * Link it up in the child's context:
6595 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6596 add_event_to_ctx(child_event
, child_ctx
);
6597 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6600 * Get a reference to the parent filp - we will fput it
6601 * when the child event exits. This is safe to do because
6602 * we are in the parent and we know that the filp still
6603 * exists and has a nonzero count:
6605 atomic_long_inc(&parent_event
->filp
->f_count
);
6608 * Link this into the parent event's child list
6610 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6611 mutex_lock(&parent_event
->child_mutex
);
6612 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6613 mutex_unlock(&parent_event
->child_mutex
);
6618 static int inherit_group(struct perf_event
*parent_event
,
6619 struct task_struct
*parent
,
6620 struct perf_event_context
*parent_ctx
,
6621 struct task_struct
*child
,
6622 struct perf_event_context
*child_ctx
)
6624 struct perf_event
*leader
;
6625 struct perf_event
*sub
;
6626 struct perf_event
*child_ctr
;
6628 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6629 child
, NULL
, child_ctx
);
6631 return PTR_ERR(leader
);
6632 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6633 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6634 child
, leader
, child_ctx
);
6635 if (IS_ERR(child_ctr
))
6636 return PTR_ERR(child_ctr
);
6642 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6643 struct perf_event_context
*parent_ctx
,
6644 struct task_struct
*child
, int ctxn
,
6648 struct perf_event_context
*child_ctx
;
6650 if (!event
->attr
.inherit
) {
6655 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6658 * This is executed from the parent task context, so
6659 * inherit events that have been marked for cloning.
6660 * First allocate and initialize a context for the
6664 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6668 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6671 ret
= inherit_group(event
, parent
, parent_ctx
,
6681 * Initialize the perf_event context in task_struct
6683 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6685 struct perf_event_context
*child_ctx
, *parent_ctx
;
6686 struct perf_event_context
*cloned_ctx
;
6687 struct perf_event
*event
;
6688 struct task_struct
*parent
= current
;
6689 int inherited_all
= 1;
6690 unsigned long flags
;
6693 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6697 * If the parent's context is a clone, pin it so it won't get
6700 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6703 * No need to check if parent_ctx != NULL here; since we saw
6704 * it non-NULL earlier, the only reason for it to become NULL
6705 * is if we exit, and since we're currently in the middle of
6706 * a fork we can't be exiting at the same time.
6710 * Lock the parent list. No need to lock the child - not PID
6711 * hashed yet and not running, so nobody can access it.
6713 mutex_lock(&parent_ctx
->mutex
);
6716 * We dont have to disable NMIs - we are only looking at
6717 * the list, not manipulating it:
6719 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6720 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6721 child
, ctxn
, &inherited_all
);
6727 * We can't hold ctx->lock when iterating the ->flexible_group list due
6728 * to allocations, but we need to prevent rotation because
6729 * rotate_ctx() will change the list from interrupt context.
6731 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6732 parent_ctx
->rotate_disable
= 1;
6733 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6735 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6736 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6737 child
, ctxn
, &inherited_all
);
6742 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6743 parent_ctx
->rotate_disable
= 0;
6745 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6747 if (child_ctx
&& inherited_all
) {
6749 * Mark the child context as a clone of the parent
6750 * context, or of whatever the parent is a clone of.
6752 * Note that if the parent is a clone, the holding of
6753 * parent_ctx->lock avoids it from being uncloned.
6755 cloned_ctx
= parent_ctx
->parent_ctx
;
6757 child_ctx
->parent_ctx
= cloned_ctx
;
6758 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6760 child_ctx
->parent_ctx
= parent_ctx
;
6761 child_ctx
->parent_gen
= parent_ctx
->generation
;
6763 get_ctx(child_ctx
->parent_ctx
);
6766 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6767 mutex_unlock(&parent_ctx
->mutex
);
6769 perf_unpin_context(parent_ctx
);
6770 put_ctx(parent_ctx
);
6776 * Initialize the perf_event context in task_struct
6778 int perf_event_init_task(struct task_struct
*child
)
6782 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
6783 mutex_init(&child
->perf_event_mutex
);
6784 INIT_LIST_HEAD(&child
->perf_event_list
);
6786 for_each_task_context_nr(ctxn
) {
6787 ret
= perf_event_init_context(child
, ctxn
);
6795 static void __init
perf_event_init_all_cpus(void)
6797 struct swevent_htable
*swhash
;
6800 for_each_possible_cpu(cpu
) {
6801 swhash
= &per_cpu(swevent_htable
, cpu
);
6802 mutex_init(&swhash
->hlist_mutex
);
6803 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6807 static void __cpuinit
perf_event_init_cpu(int cpu
)
6809 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6811 mutex_lock(&swhash
->hlist_mutex
);
6812 if (swhash
->hlist_refcount
> 0) {
6813 struct swevent_hlist
*hlist
;
6815 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6817 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6819 mutex_unlock(&swhash
->hlist_mutex
);
6822 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6823 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6825 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6827 WARN_ON(!irqs_disabled());
6829 list_del_init(&cpuctx
->rotation_list
);
6832 static void __perf_event_exit_context(void *__info
)
6834 struct perf_event_context
*ctx
= __info
;
6835 struct perf_event
*event
, *tmp
;
6837 perf_pmu_rotate_stop(ctx
->pmu
);
6839 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6840 __perf_remove_from_context(event
);
6841 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6842 __perf_remove_from_context(event
);
6845 static void perf_event_exit_cpu_context(int cpu
)
6847 struct perf_event_context
*ctx
;
6851 idx
= srcu_read_lock(&pmus_srcu
);
6852 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6853 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6855 mutex_lock(&ctx
->mutex
);
6856 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6857 mutex_unlock(&ctx
->mutex
);
6859 srcu_read_unlock(&pmus_srcu
, idx
);
6862 static void perf_event_exit_cpu(int cpu
)
6864 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6866 mutex_lock(&swhash
->hlist_mutex
);
6867 swevent_hlist_release(swhash
);
6868 mutex_unlock(&swhash
->hlist_mutex
);
6870 perf_event_exit_cpu_context(cpu
);
6873 static inline void perf_event_exit_cpu(int cpu
) { }
6877 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
6881 for_each_online_cpu(cpu
)
6882 perf_event_exit_cpu(cpu
);
6888 * Run the perf reboot notifier at the very last possible moment so that
6889 * the generic watchdog code runs as long as possible.
6891 static struct notifier_block perf_reboot_notifier
= {
6892 .notifier_call
= perf_reboot
,
6893 .priority
= INT_MIN
,
6896 static int __cpuinit
6897 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6899 unsigned int cpu
= (long)hcpu
;
6901 switch (action
& ~CPU_TASKS_FROZEN
) {
6903 case CPU_UP_PREPARE
:
6904 case CPU_DOWN_FAILED
:
6905 perf_event_init_cpu(cpu
);
6908 case CPU_UP_CANCELED
:
6909 case CPU_DOWN_PREPARE
:
6910 perf_event_exit_cpu(cpu
);
6920 void __init
perf_event_init(void)
6926 perf_event_init_all_cpus();
6927 init_srcu_struct(&pmus_srcu
);
6928 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
6929 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
6930 perf_pmu_register(&perf_task_clock
, NULL
, -1);
6932 perf_cpu_notifier(perf_cpu_notify
);
6933 register_reboot_notifier(&perf_reboot_notifier
);
6935 ret
= init_hw_breakpoint();
6936 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
6939 static int __init
perf_event_sysfs_init(void)
6944 mutex_lock(&pmus_lock
);
6946 ret
= bus_register(&pmu_bus
);
6950 list_for_each_entry(pmu
, &pmus
, entry
) {
6951 if (!pmu
->name
|| pmu
->type
< 0)
6954 ret
= pmu_dev_alloc(pmu
);
6955 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
6957 pmu_bus_running
= 1;
6961 mutex_unlock(&pmus_lock
);
6965 device_initcall(perf_event_sysfs_init
);
6967 #ifdef CONFIG_CGROUP_PERF
6968 static struct cgroup_subsys_state
*perf_cgroup_create(
6969 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
6971 struct perf_cgroup
*jc
;
6973 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
6975 return ERR_PTR(-ENOMEM
);
6977 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
6980 return ERR_PTR(-ENOMEM
);
6986 static void perf_cgroup_destroy(struct cgroup_subsys
*ss
,
6987 struct cgroup
*cont
)
6989 struct perf_cgroup
*jc
;
6990 jc
= container_of(cgroup_subsys_state(cont
, perf_subsys_id
),
6991 struct perf_cgroup
, css
);
6992 free_percpu(jc
->info
);
6996 static int __perf_cgroup_move(void *info
)
6998 struct task_struct
*task
= info
;
6999 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
7004 perf_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*task
)
7006 task_function_call(task
, __perf_cgroup_move
, task
);
7009 static void perf_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7010 struct cgroup
*old_cgrp
, struct task_struct
*task
)
7013 * cgroup_exit() is called in the copy_process() failure path.
7014 * Ignore this case since the task hasn't ran yet, this avoids
7015 * trying to poke a half freed task state from generic code.
7017 if (!(task
->flags
& PF_EXITING
))
7020 perf_cgroup_attach_task(cgrp
, task
);
7023 struct cgroup_subsys perf_subsys
= {
7024 .name
= "perf_event",
7025 .subsys_id
= perf_subsys_id
,
7026 .create
= perf_cgroup_create
,
7027 .destroy
= perf_cgroup_destroy
,
7028 .exit
= perf_cgroup_exit
,
7029 .attach_task
= perf_cgroup_attach_task
,
7031 #endif /* CONFIG_CGROUP_PERF */