2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
42 static int ext3_writepage_trans_blocks(struct inode
*inode
);
45 * Test whether an inode is a fast symlink.
47 static int ext3_inode_is_fast_symlink(struct inode
*inode
)
49 int ea_blocks
= EXT3_I(inode
)->i_file_acl
?
50 (inode
->i_sb
->s_blocksize
>> 9) : 0;
52 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
56 * The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled. Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
64 int ext3_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
65 struct buffer_head
*bh
, ext3_fsblk_t blocknr
)
71 BUFFER_TRACE(bh
, "enter");
73 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
75 bh
, is_metadata
, inode
->i_mode
,
76 test_opt(inode
->i_sb
, DATA_FLAGS
));
78 /* Never use the revoke function if we are doing full data
79 * journaling: there is no need to, and a V1 superblock won't
80 * support it. Otherwise, only skip the revoke on un-journaled
83 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT3_MOUNT_JOURNAL_DATA
||
84 (!is_metadata
&& !ext3_should_journal_data(inode
))) {
86 BUFFER_TRACE(bh
, "call journal_forget");
87 return ext3_journal_forget(handle
, bh
);
93 * data!=journal && (is_metadata || should_journal_data(inode))
95 BUFFER_TRACE(bh
, "call ext3_journal_revoke");
96 err
= ext3_journal_revoke(handle
, blocknr
, bh
);
98 ext3_abort(inode
->i_sb
, __func__
,
99 "error %d when attempting revoke", err
);
100 BUFFER_TRACE(bh
, "exit");
105 * Work out how many blocks we need to proceed with the next chunk of a
106 * truncate transaction.
108 static unsigned long blocks_for_truncate(struct inode
*inode
)
110 unsigned long needed
;
112 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
114 /* Give ourselves just enough room to cope with inodes in which
115 * i_blocks is corrupt: we've seen disk corruptions in the past
116 * which resulted in random data in an inode which looked enough
117 * like a regular file for ext3 to try to delete it. Things
118 * will go a bit crazy if that happens, but at least we should
119 * try not to panic the whole kernel. */
123 /* But we need to bound the transaction so we don't overflow the
125 if (needed
> EXT3_MAX_TRANS_DATA
)
126 needed
= EXT3_MAX_TRANS_DATA
;
128 return EXT3_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
132 * Truncate transactions can be complex and absolutely huge. So we need to
133 * be able to restart the transaction at a conventient checkpoint to make
134 * sure we don't overflow the journal.
136 * start_transaction gets us a new handle for a truncate transaction,
137 * and extend_transaction tries to extend the existing one a bit. If
138 * extend fails, we need to propagate the failure up and restart the
139 * transaction in the top-level truncate loop. --sct
141 static handle_t
*start_transaction(struct inode
*inode
)
145 result
= ext3_journal_start(inode
, blocks_for_truncate(inode
));
149 ext3_std_error(inode
->i_sb
, PTR_ERR(result
));
154 * Try to extend this transaction for the purposes of truncation.
156 * Returns 0 if we managed to create more room. If we can't create more
157 * room, and the transaction must be restarted we return 1.
159 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
161 if (handle
->h_buffer_credits
> EXT3_RESERVE_TRANS_BLOCKS
)
163 if (!ext3_journal_extend(handle
, blocks_for_truncate(inode
)))
169 * Restart the transaction associated with *handle. This does a commit,
170 * so before we call here everything must be consistently dirtied against
173 static int ext3_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
175 jbd_debug(2, "restarting handle %p\n", handle
);
176 return ext3_journal_restart(handle
, blocks_for_truncate(inode
));
180 * Called at the last iput() if i_nlink is zero.
182 void ext3_delete_inode (struct inode
* inode
)
186 truncate_inode_pages(&inode
->i_data
, 0);
188 if (is_bad_inode(inode
))
191 handle
= start_transaction(inode
);
192 if (IS_ERR(handle
)) {
194 * If we're going to skip the normal cleanup, we still need to
195 * make sure that the in-core orphan linked list is properly
198 ext3_orphan_del(NULL
, inode
);
206 ext3_truncate(inode
);
208 * Kill off the orphan record which ext3_truncate created.
209 * AKPM: I think this can be inside the above `if'.
210 * Note that ext3_orphan_del() has to be able to cope with the
211 * deletion of a non-existent orphan - this is because we don't
212 * know if ext3_truncate() actually created an orphan record.
213 * (Well, we could do this if we need to, but heck - it works)
215 ext3_orphan_del(handle
, inode
);
216 EXT3_I(inode
)->i_dtime
= get_seconds();
219 * One subtle ordering requirement: if anything has gone wrong
220 * (transaction abort, IO errors, whatever), then we can still
221 * do these next steps (the fs will already have been marked as
222 * having errors), but we can't free the inode if the mark_dirty
225 if (ext3_mark_inode_dirty(handle
, inode
))
226 /* If that failed, just do the required in-core inode clear. */
229 ext3_free_inode(handle
, inode
);
230 ext3_journal_stop(handle
);
233 clear_inode(inode
); /* We must guarantee clearing of inode... */
239 struct buffer_head
*bh
;
242 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
244 p
->key
= *(p
->p
= v
);
248 static int verify_chain(Indirect
*from
, Indirect
*to
)
250 while (from
<= to
&& from
->key
== *from
->p
)
256 * ext3_block_to_path - parse the block number into array of offsets
257 * @inode: inode in question (we are only interested in its superblock)
258 * @i_block: block number to be parsed
259 * @offsets: array to store the offsets in
260 * @boundary: set this non-zero if the referred-to block is likely to be
261 * followed (on disk) by an indirect block.
263 * To store the locations of file's data ext3 uses a data structure common
264 * for UNIX filesystems - tree of pointers anchored in the inode, with
265 * data blocks at leaves and indirect blocks in intermediate nodes.
266 * This function translates the block number into path in that tree -
267 * return value is the path length and @offsets[n] is the offset of
268 * pointer to (n+1)th node in the nth one. If @block is out of range
269 * (negative or too large) warning is printed and zero returned.
271 * Note: function doesn't find node addresses, so no IO is needed. All
272 * we need to know is the capacity of indirect blocks (taken from the
277 * Portability note: the last comparison (check that we fit into triple
278 * indirect block) is spelled differently, because otherwise on an
279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280 * if our filesystem had 8Kb blocks. We might use long long, but that would
281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282 * i_block would have to be negative in the very beginning, so we would not
286 static int ext3_block_to_path(struct inode
*inode
,
287 long i_block
, int offsets
[4], int *boundary
)
289 int ptrs
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
290 int ptrs_bits
= EXT3_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
291 const long direct_blocks
= EXT3_NDIR_BLOCKS
,
292 indirect_blocks
= ptrs
,
293 double_blocks
= (1 << (ptrs_bits
* 2));
298 ext3_warning (inode
->i_sb
, "ext3_block_to_path", "block < 0");
299 } else if (i_block
< direct_blocks
) {
300 offsets
[n
++] = i_block
;
301 final
= direct_blocks
;
302 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
303 offsets
[n
++] = EXT3_IND_BLOCK
;
304 offsets
[n
++] = i_block
;
306 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
307 offsets
[n
++] = EXT3_DIND_BLOCK
;
308 offsets
[n
++] = i_block
>> ptrs_bits
;
309 offsets
[n
++] = i_block
& (ptrs
- 1);
311 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
312 offsets
[n
++] = EXT3_TIND_BLOCK
;
313 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
314 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
315 offsets
[n
++] = i_block
& (ptrs
- 1);
318 ext3_warning(inode
->i_sb
, "ext3_block_to_path", "block > big");
321 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
326 * ext3_get_branch - read the chain of indirect blocks leading to data
327 * @inode: inode in question
328 * @depth: depth of the chain (1 - direct pointer, etc.)
329 * @offsets: offsets of pointers in inode/indirect blocks
330 * @chain: place to store the result
331 * @err: here we store the error value
333 * Function fills the array of triples <key, p, bh> and returns %NULL
334 * if everything went OK or the pointer to the last filled triple
335 * (incomplete one) otherwise. Upon the return chain[i].key contains
336 * the number of (i+1)-th block in the chain (as it is stored in memory,
337 * i.e. little-endian 32-bit), chain[i].p contains the address of that
338 * number (it points into struct inode for i==0 and into the bh->b_data
339 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340 * block for i>0 and NULL for i==0. In other words, it holds the block
341 * numbers of the chain, addresses they were taken from (and where we can
342 * verify that chain did not change) and buffer_heads hosting these
345 * Function stops when it stumbles upon zero pointer (absent block)
346 * (pointer to last triple returned, *@err == 0)
347 * or when it gets an IO error reading an indirect block
348 * (ditto, *@err == -EIO)
349 * or when it notices that chain had been changed while it was reading
350 * (ditto, *@err == -EAGAIN)
351 * or when it reads all @depth-1 indirect blocks successfully and finds
352 * the whole chain, all way to the data (returns %NULL, *err == 0).
354 static Indirect
*ext3_get_branch(struct inode
*inode
, int depth
, int *offsets
,
355 Indirect chain
[4], int *err
)
357 struct super_block
*sb
= inode
->i_sb
;
359 struct buffer_head
*bh
;
362 /* i_data is not going away, no lock needed */
363 add_chain (chain
, NULL
, EXT3_I(inode
)->i_data
+ *offsets
);
367 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
370 /* Reader: pointers */
371 if (!verify_chain(chain
, p
))
373 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
391 * ext3_find_near - find a place for allocation with sufficient locality
393 * @ind: descriptor of indirect block.
395 * This function returns the preferred place for block allocation.
396 * It is used when heuristic for sequential allocation fails.
398 * + if there is a block to the left of our position - allocate near it.
399 * + if pointer will live in indirect block - allocate near that block.
400 * + if pointer will live in inode - allocate in the same
403 * In the latter case we colour the starting block by the callers PID to
404 * prevent it from clashing with concurrent allocations for a different inode
405 * in the same block group. The PID is used here so that functionally related
406 * files will be close-by on-disk.
408 * Caller must make sure that @ind is valid and will stay that way.
410 static ext3_fsblk_t
ext3_find_near(struct inode
*inode
, Indirect
*ind
)
412 struct ext3_inode_info
*ei
= EXT3_I(inode
);
413 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
415 ext3_fsblk_t bg_start
;
416 ext3_grpblk_t colour
;
418 /* Try to find previous block */
419 for (p
= ind
->p
- 1; p
>= start
; p
--) {
421 return le32_to_cpu(*p
);
424 /* No such thing, so let's try location of indirect block */
426 return ind
->bh
->b_blocknr
;
429 * It is going to be referred to from the inode itself? OK, just put it
430 * into the same cylinder group then.
432 bg_start
= ext3_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
433 colour
= (current
->pid
% 16) *
434 (EXT3_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
435 return bg_start
+ colour
;
439 * ext3_find_goal - find a preferred place for allocation.
441 * @block: block we want
442 * @partial: pointer to the last triple within a chain
444 * Normally this function find the preferred place for block allocation,
448 static ext3_fsblk_t
ext3_find_goal(struct inode
*inode
, long block
,
451 struct ext3_block_alloc_info
*block_i
;
453 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
456 * try the heuristic for sequential allocation,
457 * failing that at least try to get decent locality.
459 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
460 && (block_i
->last_alloc_physical_block
!= 0)) {
461 return block_i
->last_alloc_physical_block
+ 1;
464 return ext3_find_near(inode
, partial
);
468 * ext3_blks_to_allocate: Look up the block map and count the number
469 * of direct blocks need to be allocated for the given branch.
471 * @branch: chain of indirect blocks
472 * @k: number of blocks need for indirect blocks
473 * @blks: number of data blocks to be mapped.
474 * @blocks_to_boundary: the offset in the indirect block
476 * return the total number of blocks to be allocate, including the
477 * direct and indirect blocks.
479 static int ext3_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
480 int blocks_to_boundary
)
482 unsigned long count
= 0;
485 * Simple case, [t,d]Indirect block(s) has not allocated yet
486 * then it's clear blocks on that path have not allocated
489 /* right now we don't handle cross boundary allocation */
490 if (blks
< blocks_to_boundary
+ 1)
493 count
+= blocks_to_boundary
+ 1;
498 while (count
< blks
&& count
<= blocks_to_boundary
&&
499 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
506 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
507 * @indirect_blks: the number of blocks need to allocate for indirect
510 * @new_blocks: on return it will store the new block numbers for
511 * the indirect blocks(if needed) and the first direct block,
512 * @blks: on return it will store the total number of allocated
515 static int ext3_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
516 ext3_fsblk_t goal
, int indirect_blks
, int blks
,
517 ext3_fsblk_t new_blocks
[4], int *err
)
520 unsigned long count
= 0;
522 ext3_fsblk_t current_block
= 0;
526 * Here we try to allocate the requested multiple blocks at once,
527 * on a best-effort basis.
528 * To build a branch, we should allocate blocks for
529 * the indirect blocks(if not allocated yet), and at least
530 * the first direct block of this branch. That's the
531 * minimum number of blocks need to allocate(required)
533 target
= blks
+ indirect_blks
;
537 /* allocating blocks for indirect blocks and direct blocks */
538 current_block
= ext3_new_blocks(handle
,inode
,goal
,&count
,err
);
543 /* allocate blocks for indirect blocks */
544 while (index
< indirect_blks
&& count
) {
545 new_blocks
[index
++] = current_block
++;
553 /* save the new block number for the first direct block */
554 new_blocks
[index
] = current_block
;
556 /* total number of blocks allocated for direct blocks */
561 for (i
= 0; i
<index
; i
++)
562 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
567 * ext3_alloc_branch - allocate and set up a chain of blocks.
569 * @indirect_blks: number of allocated indirect blocks
570 * @blks: number of allocated direct blocks
571 * @offsets: offsets (in the blocks) to store the pointers to next.
572 * @branch: place to store the chain in.
574 * This function allocates blocks, zeroes out all but the last one,
575 * links them into chain and (if we are synchronous) writes them to disk.
576 * In other words, it prepares a branch that can be spliced onto the
577 * inode. It stores the information about that chain in the branch[], in
578 * the same format as ext3_get_branch() would do. We are calling it after
579 * we had read the existing part of chain and partial points to the last
580 * triple of that (one with zero ->key). Upon the exit we have the same
581 * picture as after the successful ext3_get_block(), except that in one
582 * place chain is disconnected - *branch->p is still zero (we did not
583 * set the last link), but branch->key contains the number that should
584 * be placed into *branch->p to fill that gap.
586 * If allocation fails we free all blocks we've allocated (and forget
587 * their buffer_heads) and return the error value the from failed
588 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 * as described above and return 0.
591 static int ext3_alloc_branch(handle_t
*handle
, struct inode
*inode
,
592 int indirect_blks
, int *blks
, ext3_fsblk_t goal
,
593 int *offsets
, Indirect
*branch
)
595 int blocksize
= inode
->i_sb
->s_blocksize
;
598 struct buffer_head
*bh
;
600 ext3_fsblk_t new_blocks
[4];
601 ext3_fsblk_t current_block
;
603 num
= ext3_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
604 *blks
, new_blocks
, &err
);
608 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
610 * metadata blocks and data blocks are allocated.
612 for (n
= 1; n
<= indirect_blks
; n
++) {
614 * Get buffer_head for parent block, zero it out
615 * and set the pointer to new one, then send
618 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
621 BUFFER_TRACE(bh
, "call get_create_access");
622 err
= ext3_journal_get_create_access(handle
, bh
);
629 memset(bh
->b_data
, 0, blocksize
);
630 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
631 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
632 *branch
[n
].p
= branch
[n
].key
;
633 if ( n
== indirect_blks
) {
634 current_block
= new_blocks
[n
];
636 * End of chain, update the last new metablock of
637 * the chain to point to the new allocated
638 * data blocks numbers
640 for (i
=1; i
< num
; i
++)
641 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
643 BUFFER_TRACE(bh
, "marking uptodate");
644 set_buffer_uptodate(bh
);
647 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
648 err
= ext3_journal_dirty_metadata(handle
, bh
);
655 /* Allocation failed, free what we already allocated */
656 for (i
= 1; i
<= n
; i
++) {
657 BUFFER_TRACE(branch
[i
].bh
, "call journal_forget");
658 ext3_journal_forget(handle
, branch
[i
].bh
);
660 for (i
= 0; i
<indirect_blks
; i
++)
661 ext3_free_blocks(handle
, inode
, new_blocks
[i
], 1);
663 ext3_free_blocks(handle
, inode
, new_blocks
[i
], num
);
669 * ext3_splice_branch - splice the allocated branch onto inode.
671 * @block: (logical) number of block we are adding
672 * @chain: chain of indirect blocks (with a missing link - see
674 * @where: location of missing link
675 * @num: number of indirect blocks we are adding
676 * @blks: number of direct blocks we are adding
678 * This function fills the missing link and does all housekeeping needed in
679 * inode (->i_blocks, etc.). In case of success we end up with the full
680 * chain to new block and return 0.
682 static int ext3_splice_branch(handle_t
*handle
, struct inode
*inode
,
683 long block
, Indirect
*where
, int num
, int blks
)
687 struct ext3_block_alloc_info
*block_i
;
688 ext3_fsblk_t current_block
;
690 block_i
= EXT3_I(inode
)->i_block_alloc_info
;
692 * If we're splicing into a [td]indirect block (as opposed to the
693 * inode) then we need to get write access to the [td]indirect block
697 BUFFER_TRACE(where
->bh
, "get_write_access");
698 err
= ext3_journal_get_write_access(handle
, where
->bh
);
704 *where
->p
= where
->key
;
707 * Update the host buffer_head or inode to point to more just allocated
708 * direct blocks blocks
710 if (num
== 0 && blks
> 1) {
711 current_block
= le32_to_cpu(where
->key
) + 1;
712 for (i
= 1; i
< blks
; i
++)
713 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
717 * update the most recently allocated logical & physical block
718 * in i_block_alloc_info, to assist find the proper goal block for next
722 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
723 block_i
->last_alloc_physical_block
=
724 le32_to_cpu(where
[num
].key
) + blks
- 1;
727 /* We are done with atomic stuff, now do the rest of housekeeping */
729 inode
->i_ctime
= CURRENT_TIME_SEC
;
730 ext3_mark_inode_dirty(handle
, inode
);
732 /* had we spliced it onto indirect block? */
735 * If we spliced it onto an indirect block, we haven't
736 * altered the inode. Note however that if it is being spliced
737 * onto an indirect block at the very end of the file (the
738 * file is growing) then we *will* alter the inode to reflect
739 * the new i_size. But that is not done here - it is done in
740 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
742 jbd_debug(5, "splicing indirect only\n");
743 BUFFER_TRACE(where
->bh
, "call ext3_journal_dirty_metadata");
744 err
= ext3_journal_dirty_metadata(handle
, where
->bh
);
749 * OK, we spliced it into the inode itself on a direct block.
750 * Inode was dirtied above.
752 jbd_debug(5, "splicing direct\n");
757 for (i
= 1; i
<= num
; i
++) {
758 BUFFER_TRACE(where
[i
].bh
, "call journal_forget");
759 ext3_journal_forget(handle
, where
[i
].bh
);
760 ext3_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
762 ext3_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
768 * Allocation strategy is simple: if we have to allocate something, we will
769 * have to go the whole way to leaf. So let's do it before attaching anything
770 * to tree, set linkage between the newborn blocks, write them if sync is
771 * required, recheck the path, free and repeat if check fails, otherwise
772 * set the last missing link (that will protect us from any truncate-generated
773 * removals - all blocks on the path are immune now) and possibly force the
774 * write on the parent block.
775 * That has a nice additional property: no special recovery from the failed
776 * allocations is needed - we simply release blocks and do not touch anything
777 * reachable from inode.
779 * `handle' can be NULL if create == 0.
781 * The BKL may not be held on entry here. Be sure to take it early.
782 * return > 0, # of blocks mapped or allocated.
783 * return = 0, if plain lookup failed.
784 * return < 0, error case.
786 int ext3_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
787 sector_t iblock
, unsigned long maxblocks
,
788 struct buffer_head
*bh_result
,
789 int create
, int extend_disksize
)
797 int blocks_to_boundary
= 0;
799 struct ext3_inode_info
*ei
= EXT3_I(inode
);
801 ext3_fsblk_t first_block
= 0;
804 J_ASSERT(handle
!= NULL
|| create
== 0);
805 depth
= ext3_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
810 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
812 /* Simplest case - block found, no allocation needed */
814 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
815 clear_buffer_new(bh_result
);
818 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
821 if (!verify_chain(chain
, partial
)) {
823 * Indirect block might be removed by
824 * truncate while we were reading it.
825 * Handling of that case: forget what we've
826 * got now. Flag the err as EAGAIN, so it
833 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
835 if (blk
== first_block
+ count
)
844 /* Next simple case - plain lookup or failed read of indirect block */
845 if (!create
|| err
== -EIO
)
848 mutex_lock(&ei
->truncate_mutex
);
851 * If the indirect block is missing while we are reading
852 * the chain(ext3_get_branch() returns -EAGAIN err), or
853 * if the chain has been changed after we grab the semaphore,
854 * (either because another process truncated this branch, or
855 * another get_block allocated this branch) re-grab the chain to see if
856 * the request block has been allocated or not.
858 * Since we already block the truncate/other get_block
859 * at this point, we will have the current copy of the chain when we
860 * splice the branch into the tree.
862 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
863 while (partial
> chain
) {
867 partial
= ext3_get_branch(inode
, depth
, offsets
, chain
, &err
);
870 mutex_unlock(&ei
->truncate_mutex
);
873 clear_buffer_new(bh_result
);
879 * Okay, we need to do block allocation. Lazily initialize the block
880 * allocation info here if necessary
882 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
883 ext3_init_block_alloc_info(inode
);
885 goal
= ext3_find_goal(inode
, iblock
, partial
);
887 /* the number of blocks need to allocate for [d,t]indirect blocks */
888 indirect_blks
= (chain
+ depth
) - partial
- 1;
891 * Next look up the indirect map to count the totoal number of
892 * direct blocks to allocate for this branch.
894 count
= ext3_blks_to_allocate(partial
, indirect_blks
,
895 maxblocks
, blocks_to_boundary
);
897 * Block out ext3_truncate while we alter the tree
899 err
= ext3_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
900 offsets
+ (partial
- chain
), partial
);
903 * The ext3_splice_branch call will free and forget any buffers
904 * on the new chain if there is a failure, but that risks using
905 * up transaction credits, especially for bitmaps where the
906 * credits cannot be returned. Can we handle this somehow? We
907 * may need to return -EAGAIN upwards in the worst case. --sct
910 err
= ext3_splice_branch(handle
, inode
, iblock
,
911 partial
, indirect_blks
, count
);
913 * i_disksize growing is protected by truncate_mutex. Don't forget to
914 * protect it if you're about to implement concurrent
915 * ext3_get_block() -bzzz
917 if (!err
&& extend_disksize
&& inode
->i_size
> ei
->i_disksize
)
918 ei
->i_disksize
= inode
->i_size
;
919 mutex_unlock(&ei
->truncate_mutex
);
923 set_buffer_new(bh_result
);
925 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
926 if (count
> blocks_to_boundary
)
927 set_buffer_boundary(bh_result
);
929 /* Clean up and exit */
930 partial
= chain
+ depth
- 1; /* the whole chain */
932 while (partial
> chain
) {
933 BUFFER_TRACE(partial
->bh
, "call brelse");
937 BUFFER_TRACE(bh_result
, "returned");
942 /* Maximum number of blocks we map for direct IO at once. */
943 #define DIO_MAX_BLOCKS 4096
945 * Number of credits we need for writing DIO_MAX_BLOCKS:
946 * We need sb + group descriptor + bitmap + inode -> 4
947 * For B blocks with A block pointers per block we need:
948 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
949 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
951 #define DIO_CREDITS 25
953 static int ext3_get_block(struct inode
*inode
, sector_t iblock
,
954 struct buffer_head
*bh_result
, int create
)
956 handle_t
*handle
= ext3_journal_current_handle();
957 int ret
= 0, started
= 0;
958 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
960 if (create
&& !handle
) { /* Direct IO write... */
961 if (max_blocks
> DIO_MAX_BLOCKS
)
962 max_blocks
= DIO_MAX_BLOCKS
;
963 handle
= ext3_journal_start(inode
, DIO_CREDITS
+
964 2 * EXT3_QUOTA_TRANS_BLOCKS(inode
->i_sb
));
965 if (IS_ERR(handle
)) {
966 ret
= PTR_ERR(handle
);
972 ret
= ext3_get_blocks_handle(handle
, inode
, iblock
,
973 max_blocks
, bh_result
, create
, 0);
975 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
979 ext3_journal_stop(handle
);
985 * `handle' can be NULL if create is zero
987 struct buffer_head
*ext3_getblk(handle_t
*handle
, struct inode
*inode
,
988 long block
, int create
, int *errp
)
990 struct buffer_head dummy
;
993 J_ASSERT(handle
!= NULL
|| create
== 0);
996 dummy
.b_blocknr
= -1000;
997 buffer_trace_init(&dummy
.b_history
);
998 err
= ext3_get_blocks_handle(handle
, inode
, block
, 1,
1001 * ext3_get_blocks_handle() returns number of blocks
1002 * mapped. 0 in case of a HOLE.
1010 if (!err
&& buffer_mapped(&dummy
)) {
1011 struct buffer_head
*bh
;
1012 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1017 if (buffer_new(&dummy
)) {
1018 J_ASSERT(create
!= 0);
1019 J_ASSERT(handle
!= NULL
);
1022 * Now that we do not always journal data, we should
1023 * keep in mind whether this should always journal the
1024 * new buffer as metadata. For now, regular file
1025 * writes use ext3_get_block instead, so it's not a
1029 BUFFER_TRACE(bh
, "call get_create_access");
1030 fatal
= ext3_journal_get_create_access(handle
, bh
);
1031 if (!fatal
&& !buffer_uptodate(bh
)) {
1032 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1033 set_buffer_uptodate(bh
);
1036 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
1037 err
= ext3_journal_dirty_metadata(handle
, bh
);
1041 BUFFER_TRACE(bh
, "not a new buffer");
1054 struct buffer_head
*ext3_bread(handle_t
*handle
, struct inode
*inode
,
1055 int block
, int create
, int *err
)
1057 struct buffer_head
* bh
;
1059 bh
= ext3_getblk(handle
, inode
, block
, create
, err
);
1062 if (buffer_uptodate(bh
))
1064 ll_rw_block(READ_META
, 1, &bh
);
1066 if (buffer_uptodate(bh
))
1073 static int walk_page_buffers( handle_t
*handle
,
1074 struct buffer_head
*head
,
1078 int (*fn
)( handle_t
*handle
,
1079 struct buffer_head
*bh
))
1081 struct buffer_head
*bh
;
1082 unsigned block_start
, block_end
;
1083 unsigned blocksize
= head
->b_size
;
1085 struct buffer_head
*next
;
1087 for ( bh
= head
, block_start
= 0;
1088 ret
== 0 && (bh
!= head
|| !block_start
);
1089 block_start
= block_end
, bh
= next
)
1091 next
= bh
->b_this_page
;
1092 block_end
= block_start
+ blocksize
;
1093 if (block_end
<= from
|| block_start
>= to
) {
1094 if (partial
&& !buffer_uptodate(bh
))
1098 err
= (*fn
)(handle
, bh
);
1106 * To preserve ordering, it is essential that the hole instantiation and
1107 * the data write be encapsulated in a single transaction. We cannot
1108 * close off a transaction and start a new one between the ext3_get_block()
1109 * and the commit_write(). So doing the journal_start at the start of
1110 * prepare_write() is the right place.
1112 * Also, this function can nest inside ext3_writepage() ->
1113 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1114 * has generated enough buffer credits to do the whole page. So we won't
1115 * block on the journal in that case, which is good, because the caller may
1118 * By accident, ext3 can be reentered when a transaction is open via
1119 * quota file writes. If we were to commit the transaction while thus
1120 * reentered, there can be a deadlock - we would be holding a quota
1121 * lock, and the commit would never complete if another thread had a
1122 * transaction open and was blocking on the quota lock - a ranking
1125 * So what we do is to rely on the fact that journal_stop/journal_start
1126 * will _not_ run commit under these circumstances because handle->h_ref
1127 * is elevated. We'll still have enough credits for the tiny quotafile
1130 static int do_journal_get_write_access(handle_t
*handle
,
1131 struct buffer_head
*bh
)
1133 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1135 return ext3_journal_get_write_access(handle
, bh
);
1138 static int ext3_write_begin(struct file
*file
, struct address_space
*mapping
,
1139 loff_t pos
, unsigned len
, unsigned flags
,
1140 struct page
**pagep
, void **fsdata
)
1142 struct inode
*inode
= mapping
->host
;
1143 int ret
, needed_blocks
= ext3_writepage_trans_blocks(inode
);
1150 index
= pos
>> PAGE_CACHE_SHIFT
;
1151 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1155 page
= __grab_cache_page(mapping
, index
);
1160 handle
= ext3_journal_start(inode
, needed_blocks
);
1161 if (IS_ERR(handle
)) {
1163 page_cache_release(page
);
1164 ret
= PTR_ERR(handle
);
1167 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1170 goto write_begin_failed
;
1172 if (ext3_should_journal_data(inode
)) {
1173 ret
= walk_page_buffers(handle
, page_buffers(page
),
1174 from
, to
, NULL
, do_journal_get_write_access
);
1178 ext3_journal_stop(handle
);
1180 page_cache_release(page
);
1182 if (ret
== -ENOSPC
&& ext3_should_retry_alloc(inode
->i_sb
, &retries
))
1189 int ext3_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1191 int err
= journal_dirty_data(handle
, bh
);
1193 ext3_journal_abort_handle(__func__
, __func__
,
1198 /* For write_end() in data=journal mode */
1199 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1201 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1203 set_buffer_uptodate(bh
);
1204 return ext3_journal_dirty_metadata(handle
, bh
);
1208 * Generic write_end handler for ordered and writeback ext3 journal modes.
1209 * We can't use generic_write_end, because that unlocks the page and we need to
1210 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1211 * after block_write_end.
1213 static int ext3_generic_write_end(struct file
*file
,
1214 struct address_space
*mapping
,
1215 loff_t pos
, unsigned len
, unsigned copied
,
1216 struct page
*page
, void *fsdata
)
1218 struct inode
*inode
= file
->f_mapping
->host
;
1220 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1222 if (pos
+copied
> inode
->i_size
) {
1223 i_size_write(inode
, pos
+copied
);
1224 mark_inode_dirty(inode
);
1231 * We need to pick up the new inode size which generic_commit_write gave us
1232 * `file' can be NULL - eg, when called from page_symlink().
1234 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1235 * buffers are managed internally.
1237 static int ext3_ordered_write_end(struct file
*file
,
1238 struct address_space
*mapping
,
1239 loff_t pos
, unsigned len
, unsigned copied
,
1240 struct page
*page
, void *fsdata
)
1242 handle_t
*handle
= ext3_journal_current_handle();
1243 struct inode
*inode
= file
->f_mapping
->host
;
1247 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1250 ret
= walk_page_buffers(handle
, page_buffers(page
),
1251 from
, to
, NULL
, ext3_journal_dirty_data
);
1255 * generic_write_end() will run mark_inode_dirty() if i_size
1256 * changes. So let's piggyback the i_disksize mark_inode_dirty
1261 new_i_size
= pos
+ copied
;
1262 if (new_i_size
> EXT3_I(inode
)->i_disksize
)
1263 EXT3_I(inode
)->i_disksize
= new_i_size
;
1264 ret2
= ext3_generic_write_end(file
, mapping
, pos
, len
, copied
,
1270 ret2
= ext3_journal_stop(handle
);
1274 page_cache_release(page
);
1276 return ret
? ret
: copied
;
1279 static int ext3_writeback_write_end(struct file
*file
,
1280 struct address_space
*mapping
,
1281 loff_t pos
, unsigned len
, unsigned copied
,
1282 struct page
*page
, void *fsdata
)
1284 handle_t
*handle
= ext3_journal_current_handle();
1285 struct inode
*inode
= file
->f_mapping
->host
;
1289 new_i_size
= pos
+ copied
;
1290 if (new_i_size
> EXT3_I(inode
)->i_disksize
)
1291 EXT3_I(inode
)->i_disksize
= new_i_size
;
1293 ret2
= ext3_generic_write_end(file
, mapping
, pos
, len
, copied
,
1299 ret2
= ext3_journal_stop(handle
);
1303 page_cache_release(page
);
1305 return ret
? ret
: copied
;
1308 static int ext3_journalled_write_end(struct file
*file
,
1309 struct address_space
*mapping
,
1310 loff_t pos
, unsigned len
, unsigned copied
,
1311 struct page
*page
, void *fsdata
)
1313 handle_t
*handle
= ext3_journal_current_handle();
1314 struct inode
*inode
= mapping
->host
;
1319 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1323 if (!PageUptodate(page
))
1325 page_zero_new_buffers(page
, from
+copied
, to
);
1328 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1329 to
, &partial
, write_end_fn
);
1331 SetPageUptodate(page
);
1332 if (pos
+copied
> inode
->i_size
)
1333 i_size_write(inode
, pos
+copied
);
1334 EXT3_I(inode
)->i_state
|= EXT3_STATE_JDATA
;
1335 if (inode
->i_size
> EXT3_I(inode
)->i_disksize
) {
1336 EXT3_I(inode
)->i_disksize
= inode
->i_size
;
1337 ret2
= ext3_mark_inode_dirty(handle
, inode
);
1342 ret2
= ext3_journal_stop(handle
);
1346 page_cache_release(page
);
1348 return ret
? ret
: copied
;
1352 * bmap() is special. It gets used by applications such as lilo and by
1353 * the swapper to find the on-disk block of a specific piece of data.
1355 * Naturally, this is dangerous if the block concerned is still in the
1356 * journal. If somebody makes a swapfile on an ext3 data-journaling
1357 * filesystem and enables swap, then they may get a nasty shock when the
1358 * data getting swapped to that swapfile suddenly gets overwritten by
1359 * the original zero's written out previously to the journal and
1360 * awaiting writeback in the kernel's buffer cache.
1362 * So, if we see any bmap calls here on a modified, data-journaled file,
1363 * take extra steps to flush any blocks which might be in the cache.
1365 static sector_t
ext3_bmap(struct address_space
*mapping
, sector_t block
)
1367 struct inode
*inode
= mapping
->host
;
1371 if (EXT3_I(inode
)->i_state
& EXT3_STATE_JDATA
) {
1373 * This is a REALLY heavyweight approach, but the use of
1374 * bmap on dirty files is expected to be extremely rare:
1375 * only if we run lilo or swapon on a freshly made file
1376 * do we expect this to happen.
1378 * (bmap requires CAP_SYS_RAWIO so this does not
1379 * represent an unprivileged user DOS attack --- we'd be
1380 * in trouble if mortal users could trigger this path at
1383 * NB. EXT3_STATE_JDATA is not set on files other than
1384 * regular files. If somebody wants to bmap a directory
1385 * or symlink and gets confused because the buffer
1386 * hasn't yet been flushed to disk, they deserve
1387 * everything they get.
1390 EXT3_I(inode
)->i_state
&= ~EXT3_STATE_JDATA
;
1391 journal
= EXT3_JOURNAL(inode
);
1392 journal_lock_updates(journal
);
1393 err
= journal_flush(journal
);
1394 journal_unlock_updates(journal
);
1400 return generic_block_bmap(mapping
,block
,ext3_get_block
);
1403 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1409 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1415 static int journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1417 if (buffer_mapped(bh
))
1418 return ext3_journal_dirty_data(handle
, bh
);
1423 * Note that we always start a transaction even if we're not journalling
1424 * data. This is to preserve ordering: any hole instantiation within
1425 * __block_write_full_page -> ext3_get_block() should be journalled
1426 * along with the data so we don't crash and then get metadata which
1427 * refers to old data.
1429 * In all journalling modes block_write_full_page() will start the I/O.
1433 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1438 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1440 * Same applies to ext3_get_block(). We will deadlock on various things like
1441 * lock_journal and i_truncate_mutex.
1443 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1446 * 16May01: If we're reentered then journal_current_handle() will be
1447 * non-zero. We simply *return*.
1449 * 1 July 2001: @@@ FIXME:
1450 * In journalled data mode, a data buffer may be metadata against the
1451 * current transaction. But the same file is part of a shared mapping
1452 * and someone does a writepage() on it.
1454 * We will move the buffer onto the async_data list, but *after* it has
1455 * been dirtied. So there's a small window where we have dirty data on
1458 * Note that this only applies to the last partial page in the file. The
1459 * bit which block_write_full_page() uses prepare/commit for. (That's
1460 * broken code anyway: it's wrong for msync()).
1462 * It's a rare case: affects the final partial page, for journalled data
1463 * where the file is subject to bith write() and writepage() in the same
1464 * transction. To fix it we'll need a custom block_write_full_page().
1465 * We'll probably need that anyway for journalling writepage() output.
1467 * We don't honour synchronous mounts for writepage(). That would be
1468 * disastrous. Any write() or metadata operation will sync the fs for
1471 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1472 * we don't need to open a transaction here.
1474 static int ext3_ordered_writepage(struct page
*page
,
1475 struct writeback_control
*wbc
)
1477 struct inode
*inode
= page
->mapping
->host
;
1478 struct buffer_head
*page_bufs
;
1479 handle_t
*handle
= NULL
;
1483 J_ASSERT(PageLocked(page
));
1486 * We give up here if we're reentered, because it might be for a
1487 * different filesystem.
1489 if (ext3_journal_current_handle())
1492 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1494 if (IS_ERR(handle
)) {
1495 ret
= PTR_ERR(handle
);
1499 if (!page_has_buffers(page
)) {
1500 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1501 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1503 page_bufs
= page_buffers(page
);
1504 walk_page_buffers(handle
, page_bufs
, 0,
1505 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1507 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1510 * The page can become unlocked at any point now, and
1511 * truncate can then come in and change things. So we
1512 * can't touch *page from now on. But *page_bufs is
1513 * safe due to elevated refcount.
1517 * And attach them to the current transaction. But only if
1518 * block_write_full_page() succeeded. Otherwise they are unmapped,
1519 * and generally junk.
1522 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1523 NULL
, journal_dirty_data_fn
);
1527 walk_page_buffers(handle
, page_bufs
, 0,
1528 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1529 err
= ext3_journal_stop(handle
);
1535 redirty_page_for_writepage(wbc
, page
);
1540 static int ext3_writeback_writepage(struct page
*page
,
1541 struct writeback_control
*wbc
)
1543 struct inode
*inode
= page
->mapping
->host
;
1544 handle_t
*handle
= NULL
;
1548 if (ext3_journal_current_handle())
1551 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1552 if (IS_ERR(handle
)) {
1553 ret
= PTR_ERR(handle
);
1557 if (test_opt(inode
->i_sb
, NOBH
) && ext3_should_writeback_data(inode
))
1558 ret
= nobh_writepage(page
, ext3_get_block
, wbc
);
1560 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1562 err
= ext3_journal_stop(handle
);
1568 redirty_page_for_writepage(wbc
, page
);
1573 static int ext3_journalled_writepage(struct page
*page
,
1574 struct writeback_control
*wbc
)
1576 struct inode
*inode
= page
->mapping
->host
;
1577 handle_t
*handle
= NULL
;
1581 if (ext3_journal_current_handle())
1584 handle
= ext3_journal_start(inode
, ext3_writepage_trans_blocks(inode
));
1585 if (IS_ERR(handle
)) {
1586 ret
= PTR_ERR(handle
);
1590 if (!page_has_buffers(page
) || PageChecked(page
)) {
1592 * It's mmapped pagecache. Add buffers and journal it. There
1593 * doesn't seem much point in redirtying the page here.
1595 ClearPageChecked(page
);
1596 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1599 ext3_journal_stop(handle
);
1602 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1603 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1605 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1606 PAGE_CACHE_SIZE
, NULL
, write_end_fn
);
1609 EXT3_I(inode
)->i_state
|= EXT3_STATE_JDATA
;
1613 * It may be a page full of checkpoint-mode buffers. We don't
1614 * really know unless we go poke around in the buffer_heads.
1615 * But block_write_full_page will do the right thing.
1617 ret
= block_write_full_page(page
, ext3_get_block
, wbc
);
1619 err
= ext3_journal_stop(handle
);
1626 redirty_page_for_writepage(wbc
, page
);
1632 static int ext3_readpage(struct file
*file
, struct page
*page
)
1634 return mpage_readpage(page
, ext3_get_block
);
1638 ext3_readpages(struct file
*file
, struct address_space
*mapping
,
1639 struct list_head
*pages
, unsigned nr_pages
)
1641 return mpage_readpages(mapping
, pages
, nr_pages
, ext3_get_block
);
1644 static void ext3_invalidatepage(struct page
*page
, unsigned long offset
)
1646 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1649 * If it's a full truncate we just forget about the pending dirtying
1652 ClearPageChecked(page
);
1654 journal_invalidatepage(journal
, page
, offset
);
1657 static int ext3_releasepage(struct page
*page
, gfp_t wait
)
1659 journal_t
*journal
= EXT3_JOURNAL(page
->mapping
->host
);
1661 WARN_ON(PageChecked(page
));
1662 if (!page_has_buffers(page
))
1664 return journal_try_to_free_buffers(journal
, page
, wait
);
1668 * If the O_DIRECT write will extend the file then add this inode to the
1669 * orphan list. So recovery will truncate it back to the original size
1670 * if the machine crashes during the write.
1672 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1673 * crashes then stale disk data _may_ be exposed inside the file. But current
1674 * VFS code falls back into buffered path in that case so we are safe.
1676 static ssize_t
ext3_direct_IO(int rw
, struct kiocb
*iocb
,
1677 const struct iovec
*iov
, loff_t offset
,
1678 unsigned long nr_segs
)
1680 struct file
*file
= iocb
->ki_filp
;
1681 struct inode
*inode
= file
->f_mapping
->host
;
1682 struct ext3_inode_info
*ei
= EXT3_I(inode
);
1686 size_t count
= iov_length(iov
, nr_segs
);
1689 loff_t final_size
= offset
+ count
;
1691 if (final_size
> inode
->i_size
) {
1692 /* Credits for sb + inode write */
1693 handle
= ext3_journal_start(inode
, 2);
1694 if (IS_ERR(handle
)) {
1695 ret
= PTR_ERR(handle
);
1698 ret
= ext3_orphan_add(handle
, inode
);
1700 ext3_journal_stop(handle
);
1704 ei
->i_disksize
= inode
->i_size
;
1705 ext3_journal_stop(handle
);
1709 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1711 ext3_get_block
, NULL
);
1716 /* Credits for sb + inode write */
1717 handle
= ext3_journal_start(inode
, 2);
1718 if (IS_ERR(handle
)) {
1719 /* This is really bad luck. We've written the data
1720 * but cannot extend i_size. Bail out and pretend
1721 * the write failed... */
1722 ret
= PTR_ERR(handle
);
1726 ext3_orphan_del(handle
, inode
);
1728 loff_t end
= offset
+ ret
;
1729 if (end
> inode
->i_size
) {
1730 ei
->i_disksize
= end
;
1731 i_size_write(inode
, end
);
1733 * We're going to return a positive `ret'
1734 * here due to non-zero-length I/O, so there's
1735 * no way of reporting error returns from
1736 * ext3_mark_inode_dirty() to userspace. So
1739 ext3_mark_inode_dirty(handle
, inode
);
1742 err
= ext3_journal_stop(handle
);
1751 * Pages can be marked dirty completely asynchronously from ext3's journalling
1752 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1753 * much here because ->set_page_dirty is called under VFS locks. The page is
1754 * not necessarily locked.
1756 * We cannot just dirty the page and leave attached buffers clean, because the
1757 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1758 * or jbddirty because all the journalling code will explode.
1760 * So what we do is to mark the page "pending dirty" and next time writepage
1761 * is called, propagate that into the buffers appropriately.
1763 static int ext3_journalled_set_page_dirty(struct page
*page
)
1765 SetPageChecked(page
);
1766 return __set_page_dirty_nobuffers(page
);
1769 static const struct address_space_operations ext3_ordered_aops
= {
1770 .readpage
= ext3_readpage
,
1771 .readpages
= ext3_readpages
,
1772 .writepage
= ext3_ordered_writepage
,
1773 .sync_page
= block_sync_page
,
1774 .write_begin
= ext3_write_begin
,
1775 .write_end
= ext3_ordered_write_end
,
1777 .invalidatepage
= ext3_invalidatepage
,
1778 .releasepage
= ext3_releasepage
,
1779 .direct_IO
= ext3_direct_IO
,
1780 .migratepage
= buffer_migrate_page
,
1783 static const struct address_space_operations ext3_writeback_aops
= {
1784 .readpage
= ext3_readpage
,
1785 .readpages
= ext3_readpages
,
1786 .writepage
= ext3_writeback_writepage
,
1787 .sync_page
= block_sync_page
,
1788 .write_begin
= ext3_write_begin
,
1789 .write_end
= ext3_writeback_write_end
,
1791 .invalidatepage
= ext3_invalidatepage
,
1792 .releasepage
= ext3_releasepage
,
1793 .direct_IO
= ext3_direct_IO
,
1794 .migratepage
= buffer_migrate_page
,
1797 static const struct address_space_operations ext3_journalled_aops
= {
1798 .readpage
= ext3_readpage
,
1799 .readpages
= ext3_readpages
,
1800 .writepage
= ext3_journalled_writepage
,
1801 .sync_page
= block_sync_page
,
1802 .write_begin
= ext3_write_begin
,
1803 .write_end
= ext3_journalled_write_end
,
1804 .set_page_dirty
= ext3_journalled_set_page_dirty
,
1806 .invalidatepage
= ext3_invalidatepage
,
1807 .releasepage
= ext3_releasepage
,
1810 void ext3_set_aops(struct inode
*inode
)
1812 if (ext3_should_order_data(inode
))
1813 inode
->i_mapping
->a_ops
= &ext3_ordered_aops
;
1814 else if (ext3_should_writeback_data(inode
))
1815 inode
->i_mapping
->a_ops
= &ext3_writeback_aops
;
1817 inode
->i_mapping
->a_ops
= &ext3_journalled_aops
;
1821 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1822 * up to the end of the block which corresponds to `from'.
1823 * This required during truncate. We need to physically zero the tail end
1824 * of that block so it doesn't yield old data if the file is later grown.
1826 static int ext3_block_truncate_page(handle_t
*handle
, struct page
*page
,
1827 struct address_space
*mapping
, loff_t from
)
1829 ext3_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1830 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1831 unsigned blocksize
, iblock
, length
, pos
;
1832 struct inode
*inode
= mapping
->host
;
1833 struct buffer_head
*bh
;
1836 blocksize
= inode
->i_sb
->s_blocksize
;
1837 length
= blocksize
- (offset
& (blocksize
- 1));
1838 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1841 * For "nobh" option, we can only work if we don't need to
1842 * read-in the page - otherwise we create buffers to do the IO.
1844 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1845 ext3_should_writeback_data(inode
) && PageUptodate(page
)) {
1846 zero_user(page
, offset
, length
);
1847 set_page_dirty(page
);
1851 if (!page_has_buffers(page
))
1852 create_empty_buffers(page
, blocksize
, 0);
1854 /* Find the buffer that contains "offset" */
1855 bh
= page_buffers(page
);
1857 while (offset
>= pos
) {
1858 bh
= bh
->b_this_page
;
1864 if (buffer_freed(bh
)) {
1865 BUFFER_TRACE(bh
, "freed: skip");
1869 if (!buffer_mapped(bh
)) {
1870 BUFFER_TRACE(bh
, "unmapped");
1871 ext3_get_block(inode
, iblock
, bh
, 0);
1872 /* unmapped? It's a hole - nothing to do */
1873 if (!buffer_mapped(bh
)) {
1874 BUFFER_TRACE(bh
, "still unmapped");
1879 /* Ok, it's mapped. Make sure it's up-to-date */
1880 if (PageUptodate(page
))
1881 set_buffer_uptodate(bh
);
1883 if (!buffer_uptodate(bh
)) {
1885 ll_rw_block(READ
, 1, &bh
);
1887 /* Uhhuh. Read error. Complain and punt. */
1888 if (!buffer_uptodate(bh
))
1892 if (ext3_should_journal_data(inode
)) {
1893 BUFFER_TRACE(bh
, "get write access");
1894 err
= ext3_journal_get_write_access(handle
, bh
);
1899 zero_user(page
, offset
, length
);
1900 BUFFER_TRACE(bh
, "zeroed end of block");
1903 if (ext3_should_journal_data(inode
)) {
1904 err
= ext3_journal_dirty_metadata(handle
, bh
);
1906 if (ext3_should_order_data(inode
))
1907 err
= ext3_journal_dirty_data(handle
, bh
);
1908 mark_buffer_dirty(bh
);
1913 page_cache_release(page
);
1918 * Probably it should be a library function... search for first non-zero word
1919 * or memcmp with zero_page, whatever is better for particular architecture.
1922 static inline int all_zeroes(__le32
*p
, __le32
*q
)
1931 * ext3_find_shared - find the indirect blocks for partial truncation.
1932 * @inode: inode in question
1933 * @depth: depth of the affected branch
1934 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1935 * @chain: place to store the pointers to partial indirect blocks
1936 * @top: place to the (detached) top of branch
1938 * This is a helper function used by ext3_truncate().
1940 * When we do truncate() we may have to clean the ends of several
1941 * indirect blocks but leave the blocks themselves alive. Block is
1942 * partially truncated if some data below the new i_size is refered
1943 * from it (and it is on the path to the first completely truncated
1944 * data block, indeed). We have to free the top of that path along
1945 * with everything to the right of the path. Since no allocation
1946 * past the truncation point is possible until ext3_truncate()
1947 * finishes, we may safely do the latter, but top of branch may
1948 * require special attention - pageout below the truncation point
1949 * might try to populate it.
1951 * We atomically detach the top of branch from the tree, store the
1952 * block number of its root in *@top, pointers to buffer_heads of
1953 * partially truncated blocks - in @chain[].bh and pointers to
1954 * their last elements that should not be removed - in
1955 * @chain[].p. Return value is the pointer to last filled element
1958 * The work left to caller to do the actual freeing of subtrees:
1959 * a) free the subtree starting from *@top
1960 * b) free the subtrees whose roots are stored in
1961 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1962 * c) free the subtrees growing from the inode past the @chain[0].
1963 * (no partially truncated stuff there). */
1965 static Indirect
*ext3_find_shared(struct inode
*inode
, int depth
,
1966 int offsets
[4], Indirect chain
[4], __le32
*top
)
1968 Indirect
*partial
, *p
;
1972 /* Make k index the deepest non-null offest + 1 */
1973 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
1975 partial
= ext3_get_branch(inode
, k
, offsets
, chain
, &err
);
1976 /* Writer: pointers */
1978 partial
= chain
+ k
-1;
1980 * If the branch acquired continuation since we've looked at it -
1981 * fine, it should all survive and (new) top doesn't belong to us.
1983 if (!partial
->key
&& *partial
->p
)
1986 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
1989 * OK, we've found the last block that must survive. The rest of our
1990 * branch should be detached before unlocking. However, if that rest
1991 * of branch is all ours and does not grow immediately from the inode
1992 * it's easier to cheat and just decrement partial->p.
1994 if (p
== chain
+ k
- 1 && p
> chain
) {
1998 /* Nope, don't do this in ext3. Must leave the tree intact */
2005 while(partial
> p
) {
2006 brelse(partial
->bh
);
2014 * Zero a number of block pointers in either an inode or an indirect block.
2015 * If we restart the transaction we must again get write access to the
2016 * indirect block for further modification.
2018 * We release `count' blocks on disk, but (last - first) may be greater
2019 * than `count' because there can be holes in there.
2021 static void ext3_clear_blocks(handle_t
*handle
, struct inode
*inode
,
2022 struct buffer_head
*bh
, ext3_fsblk_t block_to_free
,
2023 unsigned long count
, __le32
*first
, __le32
*last
)
2026 if (try_to_extend_transaction(handle
, inode
)) {
2028 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2029 ext3_journal_dirty_metadata(handle
, bh
);
2031 ext3_mark_inode_dirty(handle
, inode
);
2032 ext3_journal_test_restart(handle
, inode
);
2034 BUFFER_TRACE(bh
, "retaking write access");
2035 ext3_journal_get_write_access(handle
, bh
);
2040 * Any buffers which are on the journal will be in memory. We find
2041 * them on the hash table so journal_revoke() will run journal_forget()
2042 * on them. We've already detached each block from the file, so
2043 * bforget() in journal_forget() should be safe.
2045 * AKPM: turn on bforget in journal_forget()!!!
2047 for (p
= first
; p
< last
; p
++) {
2048 u32 nr
= le32_to_cpu(*p
);
2050 struct buffer_head
*bh
;
2053 bh
= sb_find_get_block(inode
->i_sb
, nr
);
2054 ext3_forget(handle
, 0, inode
, bh
, nr
);
2058 ext3_free_blocks(handle
, inode
, block_to_free
, count
);
2062 * ext3_free_data - free a list of data blocks
2063 * @handle: handle for this transaction
2064 * @inode: inode we are dealing with
2065 * @this_bh: indirect buffer_head which contains *@first and *@last
2066 * @first: array of block numbers
2067 * @last: points immediately past the end of array
2069 * We are freeing all blocks refered from that array (numbers are stored as
2070 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2072 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2073 * blocks are contiguous then releasing them at one time will only affect one
2074 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2075 * actually use a lot of journal space.
2077 * @this_bh will be %NULL if @first and @last point into the inode's direct
2080 static void ext3_free_data(handle_t
*handle
, struct inode
*inode
,
2081 struct buffer_head
*this_bh
,
2082 __le32
*first
, __le32
*last
)
2084 ext3_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2085 unsigned long count
= 0; /* Number of blocks in the run */
2086 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2089 ext3_fsblk_t nr
; /* Current block # */
2090 __le32
*p
; /* Pointer into inode/ind
2091 for current block */
2094 if (this_bh
) { /* For indirect block */
2095 BUFFER_TRACE(this_bh
, "get_write_access");
2096 err
= ext3_journal_get_write_access(handle
, this_bh
);
2097 /* Important: if we can't update the indirect pointers
2098 * to the blocks, we can't free them. */
2103 for (p
= first
; p
< last
; p
++) {
2104 nr
= le32_to_cpu(*p
);
2106 /* accumulate blocks to free if they're contiguous */
2109 block_to_free_p
= p
;
2111 } else if (nr
== block_to_free
+ count
) {
2114 ext3_clear_blocks(handle
, inode
, this_bh
,
2116 count
, block_to_free_p
, p
);
2118 block_to_free_p
= p
;
2125 ext3_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2126 count
, block_to_free_p
, p
);
2129 BUFFER_TRACE(this_bh
, "call ext3_journal_dirty_metadata");
2130 ext3_journal_dirty_metadata(handle
, this_bh
);
2135 * ext3_free_branches - free an array of branches
2136 * @handle: JBD handle for this transaction
2137 * @inode: inode we are dealing with
2138 * @parent_bh: the buffer_head which contains *@first and *@last
2139 * @first: array of block numbers
2140 * @last: pointer immediately past the end of array
2141 * @depth: depth of the branches to free
2143 * We are freeing all blocks refered from these branches (numbers are
2144 * stored as little-endian 32-bit) and updating @inode->i_blocks
2147 static void ext3_free_branches(handle_t
*handle
, struct inode
*inode
,
2148 struct buffer_head
*parent_bh
,
2149 __le32
*first
, __le32
*last
, int depth
)
2154 if (is_handle_aborted(handle
))
2158 struct buffer_head
*bh
;
2159 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2161 while (--p
>= first
) {
2162 nr
= le32_to_cpu(*p
);
2164 continue; /* A hole */
2166 /* Go read the buffer for the next level down */
2167 bh
= sb_bread(inode
->i_sb
, nr
);
2170 * A read failure? Report error and clear slot
2174 ext3_error(inode
->i_sb
, "ext3_free_branches",
2175 "Read failure, inode=%lu, block="E3FSBLK
,
2180 /* This zaps the entire block. Bottom up. */
2181 BUFFER_TRACE(bh
, "free child branches");
2182 ext3_free_branches(handle
, inode
, bh
,
2183 (__le32
*)bh
->b_data
,
2184 (__le32
*)bh
->b_data
+ addr_per_block
,
2188 * We've probably journalled the indirect block several
2189 * times during the truncate. But it's no longer
2190 * needed and we now drop it from the transaction via
2193 * That's easy if it's exclusively part of this
2194 * transaction. But if it's part of the committing
2195 * transaction then journal_forget() will simply
2196 * brelse() it. That means that if the underlying
2197 * block is reallocated in ext3_get_block(),
2198 * unmap_underlying_metadata() will find this block
2199 * and will try to get rid of it. damn, damn.
2201 * If this block has already been committed to the
2202 * journal, a revoke record will be written. And
2203 * revoke records must be emitted *before* clearing
2204 * this block's bit in the bitmaps.
2206 ext3_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2209 * Everything below this this pointer has been
2210 * released. Now let this top-of-subtree go.
2212 * We want the freeing of this indirect block to be
2213 * atomic in the journal with the updating of the
2214 * bitmap block which owns it. So make some room in
2217 * We zero the parent pointer *after* freeing its
2218 * pointee in the bitmaps, so if extend_transaction()
2219 * for some reason fails to put the bitmap changes and
2220 * the release into the same transaction, recovery
2221 * will merely complain about releasing a free block,
2222 * rather than leaking blocks.
2224 if (is_handle_aborted(handle
))
2226 if (try_to_extend_transaction(handle
, inode
)) {
2227 ext3_mark_inode_dirty(handle
, inode
);
2228 ext3_journal_test_restart(handle
, inode
);
2231 ext3_free_blocks(handle
, inode
, nr
, 1);
2235 * The block which we have just freed is
2236 * pointed to by an indirect block: journal it
2238 BUFFER_TRACE(parent_bh
, "get_write_access");
2239 if (!ext3_journal_get_write_access(handle
,
2242 BUFFER_TRACE(parent_bh
,
2243 "call ext3_journal_dirty_metadata");
2244 ext3_journal_dirty_metadata(handle
,
2250 /* We have reached the bottom of the tree. */
2251 BUFFER_TRACE(parent_bh
, "free data blocks");
2252 ext3_free_data(handle
, inode
, parent_bh
, first
, last
);
2259 * We block out ext3_get_block() block instantiations across the entire
2260 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2261 * simultaneously on behalf of the same inode.
2263 * As we work through the truncate and commmit bits of it to the journal there
2264 * is one core, guiding principle: the file's tree must always be consistent on
2265 * disk. We must be able to restart the truncate after a crash.
2267 * The file's tree may be transiently inconsistent in memory (although it
2268 * probably isn't), but whenever we close off and commit a journal transaction,
2269 * the contents of (the filesystem + the journal) must be consistent and
2270 * restartable. It's pretty simple, really: bottom up, right to left (although
2271 * left-to-right works OK too).
2273 * Note that at recovery time, journal replay occurs *before* the restart of
2274 * truncate against the orphan inode list.
2276 * The committed inode has the new, desired i_size (which is the same as
2277 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2278 * that this inode's truncate did not complete and it will again call
2279 * ext3_truncate() to have another go. So there will be instantiated blocks
2280 * to the right of the truncation point in a crashed ext3 filesystem. But
2281 * that's fine - as long as they are linked from the inode, the post-crash
2282 * ext3_truncate() run will find them and release them.
2284 void ext3_truncate(struct inode
*inode
)
2287 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2288 __le32
*i_data
= ei
->i_data
;
2289 int addr_per_block
= EXT3_ADDR_PER_BLOCK(inode
->i_sb
);
2290 struct address_space
*mapping
= inode
->i_mapping
;
2297 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2300 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
2301 S_ISLNK(inode
->i_mode
)))
2303 if (ext3_inode_is_fast_symlink(inode
))
2305 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2309 * We have to lock the EOF page here, because lock_page() nests
2310 * outside journal_start().
2312 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2313 /* Block boundary? Nothing to do */
2316 page
= grab_cache_page(mapping
,
2317 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2322 handle
= start_transaction(inode
);
2323 if (IS_ERR(handle
)) {
2325 clear_highpage(page
);
2326 flush_dcache_page(page
);
2328 page_cache_release(page
);
2330 return; /* AKPM: return what? */
2333 last_block
= (inode
->i_size
+ blocksize
-1)
2334 >> EXT3_BLOCK_SIZE_BITS(inode
->i_sb
);
2337 ext3_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2339 n
= ext3_block_to_path(inode
, last_block
, offsets
, NULL
);
2341 goto out_stop
; /* error */
2344 * OK. This truncate is going to happen. We add the inode to the
2345 * orphan list, so that if this truncate spans multiple transactions,
2346 * and we crash, we will resume the truncate when the filesystem
2347 * recovers. It also marks the inode dirty, to catch the new size.
2349 * Implication: the file must always be in a sane, consistent
2350 * truncatable state while each transaction commits.
2352 if (ext3_orphan_add(handle
, inode
))
2356 * The orphan list entry will now protect us from any crash which
2357 * occurs before the truncate completes, so it is now safe to propagate
2358 * the new, shorter inode size (held for now in i_size) into the
2359 * on-disk inode. We do this via i_disksize, which is the value which
2360 * ext3 *really* writes onto the disk inode.
2362 ei
->i_disksize
= inode
->i_size
;
2365 * From here we block out all ext3_get_block() callers who want to
2366 * modify the block allocation tree.
2368 mutex_lock(&ei
->truncate_mutex
);
2370 if (n
== 1) { /* direct blocks */
2371 ext3_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2372 i_data
+ EXT3_NDIR_BLOCKS
);
2376 partial
= ext3_find_shared(inode
, n
, offsets
, chain
, &nr
);
2377 /* Kill the top of shared branch (not detached) */
2379 if (partial
== chain
) {
2380 /* Shared branch grows from the inode */
2381 ext3_free_branches(handle
, inode
, NULL
,
2382 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2385 * We mark the inode dirty prior to restart,
2386 * and prior to stop. No need for it here.
2389 /* Shared branch grows from an indirect block */
2390 BUFFER_TRACE(partial
->bh
, "get_write_access");
2391 ext3_free_branches(handle
, inode
, partial
->bh
,
2393 partial
->p
+1, (chain
+n
-1) - partial
);
2396 /* Clear the ends of indirect blocks on the shared branch */
2397 while (partial
> chain
) {
2398 ext3_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2399 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2400 (chain
+n
-1) - partial
);
2401 BUFFER_TRACE(partial
->bh
, "call brelse");
2402 brelse (partial
->bh
);
2406 /* Kill the remaining (whole) subtrees */
2407 switch (offsets
[0]) {
2409 nr
= i_data
[EXT3_IND_BLOCK
];
2411 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2412 i_data
[EXT3_IND_BLOCK
] = 0;
2414 case EXT3_IND_BLOCK
:
2415 nr
= i_data
[EXT3_DIND_BLOCK
];
2417 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2418 i_data
[EXT3_DIND_BLOCK
] = 0;
2420 case EXT3_DIND_BLOCK
:
2421 nr
= i_data
[EXT3_TIND_BLOCK
];
2423 ext3_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2424 i_data
[EXT3_TIND_BLOCK
] = 0;
2426 case EXT3_TIND_BLOCK
:
2430 ext3_discard_reservation(inode
);
2432 mutex_unlock(&ei
->truncate_mutex
);
2433 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
2434 ext3_mark_inode_dirty(handle
, inode
);
2437 * In a multi-transaction truncate, we only make the final transaction
2444 * If this was a simple ftruncate(), and the file will remain alive
2445 * then we need to clear up the orphan record which we created above.
2446 * However, if this was a real unlink then we were called by
2447 * ext3_delete_inode(), and we allow that function to clean up the
2448 * orphan info for us.
2451 ext3_orphan_del(handle
, inode
);
2453 ext3_journal_stop(handle
);
2456 static ext3_fsblk_t
ext3_get_inode_block(struct super_block
*sb
,
2457 unsigned long ino
, struct ext3_iloc
*iloc
)
2459 unsigned long block_group
;
2460 unsigned long offset
;
2462 struct ext3_group_desc
*gdp
;
2464 if (!ext3_valid_inum(sb
, ino
)) {
2466 * This error is already checked for in namei.c unless we are
2467 * looking at an NFS filehandle, in which case no error
2473 block_group
= (ino
- 1) / EXT3_INODES_PER_GROUP(sb
);
2474 gdp
= ext3_get_group_desc(sb
, block_group
, NULL
);
2478 * Figure out the offset within the block group inode table
2480 offset
= ((ino
- 1) % EXT3_INODES_PER_GROUP(sb
)) *
2481 EXT3_INODE_SIZE(sb
);
2482 block
= le32_to_cpu(gdp
->bg_inode_table
) +
2483 (offset
>> EXT3_BLOCK_SIZE_BITS(sb
));
2485 iloc
->block_group
= block_group
;
2486 iloc
->offset
= offset
& (EXT3_BLOCK_SIZE(sb
) - 1);
2491 * ext3_get_inode_loc returns with an extra refcount against the inode's
2492 * underlying buffer_head on success. If 'in_mem' is true, we have all
2493 * data in memory that is needed to recreate the on-disk version of this
2496 static int __ext3_get_inode_loc(struct inode
*inode
,
2497 struct ext3_iloc
*iloc
, int in_mem
)
2500 struct buffer_head
*bh
;
2502 block
= ext3_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2506 bh
= sb_getblk(inode
->i_sb
, block
);
2508 ext3_error (inode
->i_sb
, "ext3_get_inode_loc",
2509 "unable to read inode block - "
2510 "inode=%lu, block="E3FSBLK
,
2511 inode
->i_ino
, block
);
2514 if (!buffer_uptodate(bh
)) {
2516 if (buffer_uptodate(bh
)) {
2517 /* someone brought it uptodate while we waited */
2523 * If we have all information of the inode in memory and this
2524 * is the only valid inode in the block, we need not read the
2528 struct buffer_head
*bitmap_bh
;
2529 struct ext3_group_desc
*desc
;
2530 int inodes_per_buffer
;
2531 int inode_offset
, i
;
2535 block_group
= (inode
->i_ino
- 1) /
2536 EXT3_INODES_PER_GROUP(inode
->i_sb
);
2537 inodes_per_buffer
= bh
->b_size
/
2538 EXT3_INODE_SIZE(inode
->i_sb
);
2539 inode_offset
= ((inode
->i_ino
- 1) %
2540 EXT3_INODES_PER_GROUP(inode
->i_sb
));
2541 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2543 /* Is the inode bitmap in cache? */
2544 desc
= ext3_get_group_desc(inode
->i_sb
,
2549 bitmap_bh
= sb_getblk(inode
->i_sb
,
2550 le32_to_cpu(desc
->bg_inode_bitmap
));
2555 * If the inode bitmap isn't in cache then the
2556 * optimisation may end up performing two reads instead
2557 * of one, so skip it.
2559 if (!buffer_uptodate(bitmap_bh
)) {
2563 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2564 if (i
== inode_offset
)
2566 if (ext3_test_bit(i
, bitmap_bh
->b_data
))
2570 if (i
== start
+ inodes_per_buffer
) {
2571 /* all other inodes are free, so skip I/O */
2572 memset(bh
->b_data
, 0, bh
->b_size
);
2573 set_buffer_uptodate(bh
);
2581 * There are other valid inodes in the buffer, this inode
2582 * has in-inode xattrs, or we don't have this inode in memory.
2583 * Read the block from disk.
2586 bh
->b_end_io
= end_buffer_read_sync
;
2587 submit_bh(READ_META
, bh
);
2589 if (!buffer_uptodate(bh
)) {
2590 ext3_error(inode
->i_sb
, "ext3_get_inode_loc",
2591 "unable to read inode block - "
2592 "inode=%lu, block="E3FSBLK
,
2593 inode
->i_ino
, block
);
2603 int ext3_get_inode_loc(struct inode
*inode
, struct ext3_iloc
*iloc
)
2605 /* We have all inode data except xattrs in memory here. */
2606 return __ext3_get_inode_loc(inode
, iloc
,
2607 !(EXT3_I(inode
)->i_state
& EXT3_STATE_XATTR
));
2610 void ext3_set_inode_flags(struct inode
*inode
)
2612 unsigned int flags
= EXT3_I(inode
)->i_flags
;
2614 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2615 if (flags
& EXT3_SYNC_FL
)
2616 inode
->i_flags
|= S_SYNC
;
2617 if (flags
& EXT3_APPEND_FL
)
2618 inode
->i_flags
|= S_APPEND
;
2619 if (flags
& EXT3_IMMUTABLE_FL
)
2620 inode
->i_flags
|= S_IMMUTABLE
;
2621 if (flags
& EXT3_NOATIME_FL
)
2622 inode
->i_flags
|= S_NOATIME
;
2623 if (flags
& EXT3_DIRSYNC_FL
)
2624 inode
->i_flags
|= S_DIRSYNC
;
2627 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2628 void ext3_get_inode_flags(struct ext3_inode_info
*ei
)
2630 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2632 ei
->i_flags
&= ~(EXT3_SYNC_FL
|EXT3_APPEND_FL
|
2633 EXT3_IMMUTABLE_FL
|EXT3_NOATIME_FL
|EXT3_DIRSYNC_FL
);
2635 ei
->i_flags
|= EXT3_SYNC_FL
;
2636 if (flags
& S_APPEND
)
2637 ei
->i_flags
|= EXT3_APPEND_FL
;
2638 if (flags
& S_IMMUTABLE
)
2639 ei
->i_flags
|= EXT3_IMMUTABLE_FL
;
2640 if (flags
& S_NOATIME
)
2641 ei
->i_flags
|= EXT3_NOATIME_FL
;
2642 if (flags
& S_DIRSYNC
)
2643 ei
->i_flags
|= EXT3_DIRSYNC_FL
;
2646 struct inode
*ext3_iget(struct super_block
*sb
, unsigned long ino
)
2648 struct ext3_iloc iloc
;
2649 struct ext3_inode
*raw_inode
;
2650 struct ext3_inode_info
*ei
;
2651 struct buffer_head
*bh
;
2652 struct inode
*inode
;
2656 inode
= iget_locked(sb
, ino
);
2658 return ERR_PTR(-ENOMEM
);
2659 if (!(inode
->i_state
& I_NEW
))
2663 #ifdef CONFIG_EXT3_FS_POSIX_ACL
2664 ei
->i_acl
= EXT3_ACL_NOT_CACHED
;
2665 ei
->i_default_acl
= EXT3_ACL_NOT_CACHED
;
2667 ei
->i_block_alloc_info
= NULL
;
2669 ret
= __ext3_get_inode_loc(inode
, &iloc
, 0);
2673 raw_inode
= ext3_raw_inode(&iloc
);
2674 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2675 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2676 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2677 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2678 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2679 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2681 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2682 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2683 inode
->i_atime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_atime
);
2684 inode
->i_ctime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_ctime
);
2685 inode
->i_mtime
.tv_sec
= (signed)le32_to_cpu(raw_inode
->i_mtime
);
2686 inode
->i_atime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= 0;
2689 ei
->i_dir_start_lookup
= 0;
2690 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2691 /* We now have enough fields to check if the inode was active or not.
2692 * This is needed because nfsd might try to access dead inodes
2693 * the test is that same one that e2fsck uses
2694 * NeilBrown 1999oct15
2696 if (inode
->i_nlink
== 0) {
2697 if (inode
->i_mode
== 0 ||
2698 !(EXT3_SB(inode
->i_sb
)->s_mount_state
& EXT3_ORPHAN_FS
)) {
2699 /* this inode is deleted */
2704 /* The only unlinked inodes we let through here have
2705 * valid i_mode and are being read by the orphan
2706 * recovery code: that's fine, we're about to complete
2707 * the process of deleting those. */
2709 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2710 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2711 #ifdef EXT3_FRAGMENTS
2712 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2713 ei
->i_frag_no
= raw_inode
->i_frag
;
2714 ei
->i_frag_size
= raw_inode
->i_fsize
;
2716 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2717 if (!S_ISREG(inode
->i_mode
)) {
2718 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2721 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2723 ei
->i_disksize
= inode
->i_size
;
2724 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2725 ei
->i_block_group
= iloc
.block_group
;
2727 * NOTE! The in-memory inode i_data array is in little-endian order
2728 * even on big-endian machines: we do NOT byteswap the block numbers!
2730 for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2731 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2732 INIT_LIST_HEAD(&ei
->i_orphan
);
2734 if (inode
->i_ino
>= EXT3_FIRST_INO(inode
->i_sb
) + 1 &&
2735 EXT3_INODE_SIZE(inode
->i_sb
) > EXT3_GOOD_OLD_INODE_SIZE
) {
2737 * When mke2fs creates big inodes it does not zero out
2738 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2739 * so ignore those first few inodes.
2741 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2742 if (EXT3_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2743 EXT3_INODE_SIZE(inode
->i_sb
)) {
2748 if (ei
->i_extra_isize
== 0) {
2749 /* The extra space is currently unused. Use it. */
2750 ei
->i_extra_isize
= sizeof(struct ext3_inode
) -
2751 EXT3_GOOD_OLD_INODE_SIZE
;
2753 __le32
*magic
= (void *)raw_inode
+
2754 EXT3_GOOD_OLD_INODE_SIZE
+
2756 if (*magic
== cpu_to_le32(EXT3_XATTR_MAGIC
))
2757 ei
->i_state
|= EXT3_STATE_XATTR
;
2760 ei
->i_extra_isize
= 0;
2762 if (S_ISREG(inode
->i_mode
)) {
2763 inode
->i_op
= &ext3_file_inode_operations
;
2764 inode
->i_fop
= &ext3_file_operations
;
2765 ext3_set_aops(inode
);
2766 } else if (S_ISDIR(inode
->i_mode
)) {
2767 inode
->i_op
= &ext3_dir_inode_operations
;
2768 inode
->i_fop
= &ext3_dir_operations
;
2769 } else if (S_ISLNK(inode
->i_mode
)) {
2770 if (ext3_inode_is_fast_symlink(inode
))
2771 inode
->i_op
= &ext3_fast_symlink_inode_operations
;
2773 inode
->i_op
= &ext3_symlink_inode_operations
;
2774 ext3_set_aops(inode
);
2777 inode
->i_op
= &ext3_special_inode_operations
;
2778 if (raw_inode
->i_block
[0])
2779 init_special_inode(inode
, inode
->i_mode
,
2780 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2782 init_special_inode(inode
, inode
->i_mode
,
2783 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2786 ext3_set_inode_flags(inode
);
2787 unlock_new_inode(inode
);
2792 return ERR_PTR(ret
);
2796 * Post the struct inode info into an on-disk inode location in the
2797 * buffer-cache. This gobbles the caller's reference to the
2798 * buffer_head in the inode location struct.
2800 * The caller must have write access to iloc->bh.
2802 static int ext3_do_update_inode(handle_t
*handle
,
2803 struct inode
*inode
,
2804 struct ext3_iloc
*iloc
)
2806 struct ext3_inode
*raw_inode
= ext3_raw_inode(iloc
);
2807 struct ext3_inode_info
*ei
= EXT3_I(inode
);
2808 struct buffer_head
*bh
= iloc
->bh
;
2809 int err
= 0, rc
, block
;
2811 /* For fields not not tracking in the in-memory inode,
2812 * initialise them to zero for new inodes. */
2813 if (ei
->i_state
& EXT3_STATE_NEW
)
2814 memset(raw_inode
, 0, EXT3_SB(inode
->i_sb
)->s_inode_size
);
2816 ext3_get_inode_flags(ei
);
2817 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2818 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2819 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2820 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2822 * Fix up interoperability with old kernels. Otherwise, old inodes get
2823 * re-used with the upper 16 bits of the uid/gid intact
2826 raw_inode
->i_uid_high
=
2827 cpu_to_le16(high_16_bits(inode
->i_uid
));
2828 raw_inode
->i_gid_high
=
2829 cpu_to_le16(high_16_bits(inode
->i_gid
));
2831 raw_inode
->i_uid_high
= 0;
2832 raw_inode
->i_gid_high
= 0;
2835 raw_inode
->i_uid_low
=
2836 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2837 raw_inode
->i_gid_low
=
2838 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2839 raw_inode
->i_uid_high
= 0;
2840 raw_inode
->i_gid_high
= 0;
2842 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
2843 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
2844 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
2845 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
2846 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
2847 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
2848 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
2849 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
2850 #ifdef EXT3_FRAGMENTS
2851 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
2852 raw_inode
->i_frag
= ei
->i_frag_no
;
2853 raw_inode
->i_fsize
= ei
->i_frag_size
;
2855 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
2856 if (!S_ISREG(inode
->i_mode
)) {
2857 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
2859 raw_inode
->i_size_high
=
2860 cpu_to_le32(ei
->i_disksize
>> 32);
2861 if (ei
->i_disksize
> 0x7fffffffULL
) {
2862 struct super_block
*sb
= inode
->i_sb
;
2863 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb
,
2864 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
) ||
2865 EXT3_SB(sb
)->s_es
->s_rev_level
==
2866 cpu_to_le32(EXT3_GOOD_OLD_REV
)) {
2867 /* If this is the first large file
2868 * created, add a flag to the superblock.
2870 err
= ext3_journal_get_write_access(handle
,
2871 EXT3_SB(sb
)->s_sbh
);
2874 ext3_update_dynamic_rev(sb
);
2875 EXT3_SET_RO_COMPAT_FEATURE(sb
,
2876 EXT3_FEATURE_RO_COMPAT_LARGE_FILE
);
2879 err
= ext3_journal_dirty_metadata(handle
,
2880 EXT3_SB(sb
)->s_sbh
);
2884 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
2885 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
2886 if (old_valid_dev(inode
->i_rdev
)) {
2887 raw_inode
->i_block
[0] =
2888 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
2889 raw_inode
->i_block
[1] = 0;
2891 raw_inode
->i_block
[0] = 0;
2892 raw_inode
->i_block
[1] =
2893 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
2894 raw_inode
->i_block
[2] = 0;
2896 } else for (block
= 0; block
< EXT3_N_BLOCKS
; block
++)
2897 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
2899 if (ei
->i_extra_isize
)
2900 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
2902 BUFFER_TRACE(bh
, "call ext3_journal_dirty_metadata");
2903 rc
= ext3_journal_dirty_metadata(handle
, bh
);
2906 ei
->i_state
&= ~EXT3_STATE_NEW
;
2910 ext3_std_error(inode
->i_sb
, err
);
2915 * ext3_write_inode()
2917 * We are called from a few places:
2919 * - Within generic_file_write() for O_SYNC files.
2920 * Here, there will be no transaction running. We wait for any running
2921 * trasnaction to commit.
2923 * - Within sys_sync(), kupdate and such.
2924 * We wait on commit, if tol to.
2926 * - Within prune_icache() (PF_MEMALLOC == true)
2927 * Here we simply return. We can't afford to block kswapd on the
2930 * In all cases it is actually safe for us to return without doing anything,
2931 * because the inode has been copied into a raw inode buffer in
2932 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2935 * Note that we are absolutely dependent upon all inode dirtiers doing the
2936 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2937 * which we are interested.
2939 * It would be a bug for them to not do this. The code:
2941 * mark_inode_dirty(inode)
2943 * inode->i_size = expr;
2945 * is in error because a kswapd-driven write_inode() could occur while
2946 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2947 * will no longer be on the superblock's dirty inode list.
2949 int ext3_write_inode(struct inode
*inode
, int wait
)
2951 if (current
->flags
& PF_MEMALLOC
)
2954 if (ext3_journal_current_handle()) {
2955 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2963 return ext3_force_commit(inode
->i_sb
);
2969 * Called from notify_change.
2971 * We want to trap VFS attempts to truncate the file as soon as
2972 * possible. In particular, we want to make sure that when the VFS
2973 * shrinks i_size, we put the inode on the orphan list and modify
2974 * i_disksize immediately, so that during the subsequent flushing of
2975 * dirty pages and freeing of disk blocks, we can guarantee that any
2976 * commit will leave the blocks being flushed in an unused state on
2977 * disk. (On recovery, the inode will get truncated and the blocks will
2978 * be freed, so we have a strong guarantee that no future commit will
2979 * leave these blocks visible to the user.)
2981 * Called with inode->sem down.
2983 int ext3_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2985 struct inode
*inode
= dentry
->d_inode
;
2987 const unsigned int ia_valid
= attr
->ia_valid
;
2989 error
= inode_change_ok(inode
, attr
);
2993 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
2994 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
2997 /* (user+group)*(old+new) structure, inode write (sb,
2998 * inode block, ? - but truncate inode update has it) */
2999 handle
= ext3_journal_start(inode
, 2*(EXT3_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
3000 EXT3_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
3001 if (IS_ERR(handle
)) {
3002 error
= PTR_ERR(handle
);
3005 error
= DQUOT_TRANSFER(inode
, attr
) ? -EDQUOT
: 0;
3007 ext3_journal_stop(handle
);
3010 /* Update corresponding info in inode so that everything is in
3011 * one transaction */
3012 if (attr
->ia_valid
& ATTR_UID
)
3013 inode
->i_uid
= attr
->ia_uid
;
3014 if (attr
->ia_valid
& ATTR_GID
)
3015 inode
->i_gid
= attr
->ia_gid
;
3016 error
= ext3_mark_inode_dirty(handle
, inode
);
3017 ext3_journal_stop(handle
);
3020 if (S_ISREG(inode
->i_mode
) &&
3021 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
3024 handle
= ext3_journal_start(inode
, 3);
3025 if (IS_ERR(handle
)) {
3026 error
= PTR_ERR(handle
);
3030 error
= ext3_orphan_add(handle
, inode
);
3031 EXT3_I(inode
)->i_disksize
= attr
->ia_size
;
3032 rc
= ext3_mark_inode_dirty(handle
, inode
);
3035 ext3_journal_stop(handle
);
3038 rc
= inode_setattr(inode
, attr
);
3040 /* If inode_setattr's call to ext3_truncate failed to get a
3041 * transaction handle at all, we need to clean up the in-core
3042 * orphan list manually. */
3044 ext3_orphan_del(NULL
, inode
);
3046 if (!rc
&& (ia_valid
& ATTR_MODE
))
3047 rc
= ext3_acl_chmod(inode
);
3050 ext3_std_error(inode
->i_sb
, error
);
3058 * How many blocks doth make a writepage()?
3060 * With N blocks per page, it may be:
3065 * N+5 bitmap blocks (from the above)
3066 * N+5 group descriptor summary blocks
3069 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3071 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3073 * With ordered or writeback data it's the same, less the N data blocks.
3075 * If the inode's direct blocks can hold an integral number of pages then a
3076 * page cannot straddle two indirect blocks, and we can only touch one indirect
3077 * and dindirect block, and the "5" above becomes "3".
3079 * This still overestimates under most circumstances. If we were to pass the
3080 * start and end offsets in here as well we could do block_to_path() on each
3081 * block and work out the exact number of indirects which are touched. Pah.
3084 static int ext3_writepage_trans_blocks(struct inode
*inode
)
3086 int bpp
= ext3_journal_blocks_per_page(inode
);
3087 int indirects
= (EXT3_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3090 if (ext3_should_journal_data(inode
))
3091 ret
= 3 * (bpp
+ indirects
) + 2;
3093 ret
= 2 * (bpp
+ indirects
) + 2;
3096 /* We know that structure was already allocated during DQUOT_INIT so
3097 * we will be updating only the data blocks + inodes */
3098 ret
+= 2*EXT3_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
3105 * The caller must have previously called ext3_reserve_inode_write().
3106 * Give this, we know that the caller already has write access to iloc->bh.
3108 int ext3_mark_iloc_dirty(handle_t
*handle
,
3109 struct inode
*inode
, struct ext3_iloc
*iloc
)
3113 /* the do_update_inode consumes one bh->b_count */
3116 /* ext3_do_update_inode() does journal_dirty_metadata */
3117 err
= ext3_do_update_inode(handle
, inode
, iloc
);
3123 * On success, We end up with an outstanding reference count against
3124 * iloc->bh. This _must_ be cleaned up later.
3128 ext3_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3129 struct ext3_iloc
*iloc
)
3133 err
= ext3_get_inode_loc(inode
, iloc
);
3135 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3136 err
= ext3_journal_get_write_access(handle
, iloc
->bh
);
3143 ext3_std_error(inode
->i_sb
, err
);
3148 * What we do here is to mark the in-core inode as clean with respect to inode
3149 * dirtiness (it may still be data-dirty).
3150 * This means that the in-core inode may be reaped by prune_icache
3151 * without having to perform any I/O. This is a very good thing,
3152 * because *any* task may call prune_icache - even ones which
3153 * have a transaction open against a different journal.
3155 * Is this cheating? Not really. Sure, we haven't written the
3156 * inode out, but prune_icache isn't a user-visible syncing function.
3157 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3158 * we start and wait on commits.
3160 * Is this efficient/effective? Well, we're being nice to the system
3161 * by cleaning up our inodes proactively so they can be reaped
3162 * without I/O. But we are potentially leaving up to five seconds'
3163 * worth of inodes floating about which prune_icache wants us to
3164 * write out. One way to fix that would be to get prune_icache()
3165 * to do a write_super() to free up some memory. It has the desired
3168 int ext3_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3170 struct ext3_iloc iloc
;
3174 err
= ext3_reserve_inode_write(handle
, inode
, &iloc
);
3176 err
= ext3_mark_iloc_dirty(handle
, inode
, &iloc
);
3181 * ext3_dirty_inode() is called from __mark_inode_dirty()
3183 * We're really interested in the case where a file is being extended.
3184 * i_size has been changed by generic_commit_write() and we thus need
3185 * to include the updated inode in the current transaction.
3187 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3188 * are allocated to the file.
3190 * If the inode is marked synchronous, we don't honour that here - doing
3191 * so would cause a commit on atime updates, which we don't bother doing.
3192 * We handle synchronous inodes at the highest possible level.
3194 void ext3_dirty_inode(struct inode
*inode
)
3196 handle_t
*current_handle
= ext3_journal_current_handle();
3199 handle
= ext3_journal_start(inode
, 2);
3202 if (current_handle
&&
3203 current_handle
->h_transaction
!= handle
->h_transaction
) {
3204 /* This task has a transaction open against a different fs */
3205 printk(KERN_EMERG
"%s: transactions do not match!\n",
3208 jbd_debug(5, "marking dirty. outer handle=%p\n",
3210 ext3_mark_inode_dirty(handle
, inode
);
3212 ext3_journal_stop(handle
);
3219 * Bind an inode's backing buffer_head into this transaction, to prevent
3220 * it from being flushed to disk early. Unlike
3221 * ext3_reserve_inode_write, this leaves behind no bh reference and
3222 * returns no iloc structure, so the caller needs to repeat the iloc
3223 * lookup to mark the inode dirty later.
3225 static int ext3_pin_inode(handle_t
*handle
, struct inode
*inode
)
3227 struct ext3_iloc iloc
;
3231 err
= ext3_get_inode_loc(inode
, &iloc
);
3233 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3234 err
= journal_get_write_access(handle
, iloc
.bh
);
3236 err
= ext3_journal_dirty_metadata(handle
,
3241 ext3_std_error(inode
->i_sb
, err
);
3246 int ext3_change_inode_journal_flag(struct inode
*inode
, int val
)
3253 * We have to be very careful here: changing a data block's
3254 * journaling status dynamically is dangerous. If we write a
3255 * data block to the journal, change the status and then delete
3256 * that block, we risk forgetting to revoke the old log record
3257 * from the journal and so a subsequent replay can corrupt data.
3258 * So, first we make sure that the journal is empty and that
3259 * nobody is changing anything.
3262 journal
= EXT3_JOURNAL(inode
);
3263 if (is_journal_aborted(journal
))
3266 journal_lock_updates(journal
);
3267 journal_flush(journal
);
3270 * OK, there are no updates running now, and all cached data is
3271 * synced to disk. We are now in a completely consistent state
3272 * which doesn't have anything in the journal, and we know that
3273 * no filesystem updates are running, so it is safe to modify
3274 * the inode's in-core data-journaling state flag now.
3278 EXT3_I(inode
)->i_flags
|= EXT3_JOURNAL_DATA_FL
;
3280 EXT3_I(inode
)->i_flags
&= ~EXT3_JOURNAL_DATA_FL
;
3281 ext3_set_aops(inode
);
3283 journal_unlock_updates(journal
);
3285 /* Finally we can mark the inode as dirty. */
3287 handle
= ext3_journal_start(inode
, 1);
3289 return PTR_ERR(handle
);
3291 err
= ext3_mark_inode_dirty(handle
, inode
);
3293 ext3_journal_stop(handle
);
3294 ext3_std_error(inode
->i_sb
, err
);