ide: it821x in pass-through mode segfaults in 2.6.26-stable
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blob3b26a240ade94689cf4f8407dbd31d587185da9f
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/namei.h>
35 #include <asm/uaccess.h>
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 static int __link_path_walk(const char *name, struct nameidata *nd);
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
119 static int do_getname(const char __user *filename, char *page)
121 int retval;
122 unsigned long len = PATH_MAX;
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
141 char * getname(const char __user * filename)
143 char *tmp, *result;
145 result = ERR_PTR(-ENOMEM);
146 tmp = __getname();
147 if (tmp) {
148 int retval = do_getname(filename, tmp);
150 result = tmp;
151 if (retval < 0) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
156 audit_getname(result);
157 return result;
160 #ifdef CONFIG_AUDITSYSCALL
161 void putname(const char *name)
163 if (unlikely(!audit_dummy_context()))
164 audit_putname(name);
165 else
166 __putname(name);
168 EXPORT_SYMBOL(putname);
169 #endif
173 * generic_permission - check for access rights on a Posix-like filesystem
174 * @inode: inode to check access rights for
175 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
176 * @check_acl: optional callback to check for Posix ACLs
178 * Used to check for read/write/execute permissions on a file.
179 * We use "fsuid" for this, letting us set arbitrary permissions
180 * for filesystem access without changing the "normal" uids which
181 * are used for other things..
183 int generic_permission(struct inode *inode, int mask,
184 int (*check_acl)(struct inode *inode, int mask))
186 umode_t mode = inode->i_mode;
188 if (current->fsuid == inode->i_uid)
189 mode >>= 6;
190 else {
191 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
192 int error = check_acl(inode, mask);
193 if (error == -EACCES)
194 goto check_capabilities;
195 else if (error != -EAGAIN)
196 return error;
199 if (in_group_p(inode->i_gid))
200 mode >>= 3;
204 * If the DACs are ok we don't need any capability check.
206 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
207 return 0;
209 check_capabilities:
211 * Read/write DACs are always overridable.
212 * Executable DACs are overridable if at least one exec bit is set.
214 if (!(mask & MAY_EXEC) ||
215 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
216 if (capable(CAP_DAC_OVERRIDE))
217 return 0;
220 * Searching includes executable on directories, else just read.
222 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 if (capable(CAP_DAC_READ_SEARCH))
224 return 0;
226 return -EACCES;
229 int permission(struct inode *inode, int mask, struct nameidata *nd)
231 int retval, submask;
232 struct vfsmount *mnt = NULL;
234 if (nd)
235 mnt = nd->path.mnt;
237 if (mask & MAY_WRITE) {
238 umode_t mode = inode->i_mode;
241 * Nobody gets write access to a read-only fs.
243 if (IS_RDONLY(inode) &&
244 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
245 return -EROFS;
248 * Nobody gets write access to an immutable file.
250 if (IS_IMMUTABLE(inode))
251 return -EACCES;
254 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
256 * MAY_EXEC on regular files is denied if the fs is mounted
257 * with the "noexec" flag.
259 if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
260 return -EACCES;
263 /* Ordinary permission routines do not understand MAY_APPEND. */
264 submask = mask & ~MAY_APPEND;
265 if (inode->i_op && inode->i_op->permission) {
266 retval = inode->i_op->permission(inode, submask, nd);
267 if (!retval) {
269 * Exec permission on a regular file is denied if none
270 * of the execute bits are set.
272 * This check should be done by the ->permission()
273 * method.
275 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
276 !(inode->i_mode & S_IXUGO))
277 return -EACCES;
279 } else {
280 retval = generic_permission(inode, submask, NULL);
282 if (retval)
283 return retval;
285 retval = devcgroup_inode_permission(inode, mask);
286 if (retval)
287 return retval;
289 return security_inode_permission(inode, mask, nd);
293 * vfs_permission - check for access rights to a given path
294 * @nd: lookup result that describes the path
295 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
297 * Used to check for read/write/execute permissions on a path.
298 * We use "fsuid" for this, letting us set arbitrary permissions
299 * for filesystem access without changing the "normal" uids which
300 * are used for other things.
302 int vfs_permission(struct nameidata *nd, int mask)
304 return permission(nd->path.dentry->d_inode, mask, nd);
308 * file_permission - check for additional access rights to a given file
309 * @file: file to check access rights for
310 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
312 * Used to check for read/write/execute permissions on an already opened
313 * file.
315 * Note:
316 * Do not use this function in new code. All access checks should
317 * be done using vfs_permission().
319 int file_permission(struct file *file, int mask)
321 return permission(file->f_path.dentry->d_inode, mask, NULL);
325 * get_write_access() gets write permission for a file.
326 * put_write_access() releases this write permission.
327 * This is used for regular files.
328 * We cannot support write (and maybe mmap read-write shared) accesses and
329 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
330 * can have the following values:
331 * 0: no writers, no VM_DENYWRITE mappings
332 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
333 * > 0: (i_writecount) users are writing to the file.
335 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
336 * except for the cases where we don't hold i_writecount yet. Then we need to
337 * use {get,deny}_write_access() - these functions check the sign and refuse
338 * to do the change if sign is wrong. Exclusion between them is provided by
339 * the inode->i_lock spinlock.
342 int get_write_access(struct inode * inode)
344 spin_lock(&inode->i_lock);
345 if (atomic_read(&inode->i_writecount) < 0) {
346 spin_unlock(&inode->i_lock);
347 return -ETXTBSY;
349 atomic_inc(&inode->i_writecount);
350 spin_unlock(&inode->i_lock);
352 return 0;
355 int deny_write_access(struct file * file)
357 struct inode *inode = file->f_path.dentry->d_inode;
359 spin_lock(&inode->i_lock);
360 if (atomic_read(&inode->i_writecount) > 0) {
361 spin_unlock(&inode->i_lock);
362 return -ETXTBSY;
364 atomic_dec(&inode->i_writecount);
365 spin_unlock(&inode->i_lock);
367 return 0;
371 * path_get - get a reference to a path
372 * @path: path to get the reference to
374 * Given a path increment the reference count to the dentry and the vfsmount.
376 void path_get(struct path *path)
378 mntget(path->mnt);
379 dget(path->dentry);
381 EXPORT_SYMBOL(path_get);
384 * path_put - put a reference to a path
385 * @path: path to put the reference to
387 * Given a path decrement the reference count to the dentry and the vfsmount.
389 void path_put(struct path *path)
391 dput(path->dentry);
392 mntput(path->mnt);
394 EXPORT_SYMBOL(path_put);
397 * release_open_intent - free up open intent resources
398 * @nd: pointer to nameidata
400 void release_open_intent(struct nameidata *nd)
402 if (nd->intent.open.file->f_path.dentry == NULL)
403 put_filp(nd->intent.open.file);
404 else
405 fput(nd->intent.open.file);
408 static inline struct dentry *
409 do_revalidate(struct dentry *dentry, struct nameidata *nd)
411 int status = dentry->d_op->d_revalidate(dentry, nd);
412 if (unlikely(status <= 0)) {
414 * The dentry failed validation.
415 * If d_revalidate returned 0 attempt to invalidate
416 * the dentry otherwise d_revalidate is asking us
417 * to return a fail status.
419 if (!status) {
420 if (!d_invalidate(dentry)) {
421 dput(dentry);
422 dentry = NULL;
424 } else {
425 dput(dentry);
426 dentry = ERR_PTR(status);
429 return dentry;
433 * Internal lookup() using the new generic dcache.
434 * SMP-safe
436 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
438 struct dentry * dentry = __d_lookup(parent, name);
440 /* lockess __d_lookup may fail due to concurrent d_move()
441 * in some unrelated directory, so try with d_lookup
443 if (!dentry)
444 dentry = d_lookup(parent, name);
446 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
447 dentry = do_revalidate(dentry, nd);
449 return dentry;
453 * Short-cut version of permission(), for calling by
454 * path_walk(), when dcache lock is held. Combines parts
455 * of permission() and generic_permission(), and tests ONLY for
456 * MAY_EXEC permission.
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call permission() to do more
460 * complete permission check.
462 static int exec_permission_lite(struct inode *inode,
463 struct nameidata *nd)
465 umode_t mode = inode->i_mode;
467 if (inode->i_op && inode->i_op->permission)
468 return -EAGAIN;
470 if (current->fsuid == inode->i_uid)
471 mode >>= 6;
472 else if (in_group_p(inode->i_gid))
473 mode >>= 3;
475 if (mode & MAY_EXEC)
476 goto ok;
478 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
479 goto ok;
481 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
482 goto ok;
484 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
485 goto ok;
487 return -EACCES;
489 return security_inode_permission(inode, MAY_EXEC, nd);
493 * This is called when everything else fails, and we actually have
494 * to go to the low-level filesystem to find out what we should do..
496 * We get the directory semaphore, and after getting that we also
497 * make sure that nobody added the entry to the dcache in the meantime..
498 * SMP-safe
500 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
502 struct dentry * result;
503 struct inode *dir = parent->d_inode;
505 mutex_lock(&dir->i_mutex);
507 * First re-do the cached lookup just in case it was created
508 * while we waited for the directory semaphore..
510 * FIXME! This could use version numbering or similar to
511 * avoid unnecessary cache lookups.
513 * The "dcache_lock" is purely to protect the RCU list walker
514 * from concurrent renames at this point (we mustn't get false
515 * negatives from the RCU list walk here, unlike the optimistic
516 * fast walk).
518 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
520 result = d_lookup(parent, name);
521 if (!result) {
522 struct dentry *dentry;
524 /* Don't create child dentry for a dead directory. */
525 result = ERR_PTR(-ENOENT);
526 if (IS_DEADDIR(dir))
527 goto out_unlock;
529 dentry = d_alloc(parent, name);
530 result = ERR_PTR(-ENOMEM);
531 if (dentry) {
532 result = dir->i_op->lookup(dir, dentry, nd);
533 if (result)
534 dput(dentry);
535 else
536 result = dentry;
538 out_unlock:
539 mutex_unlock(&dir->i_mutex);
540 return result;
544 * Uhhuh! Nasty case: the cache was re-populated while
545 * we waited on the semaphore. Need to revalidate.
547 mutex_unlock(&dir->i_mutex);
548 if (result->d_op && result->d_op->d_revalidate) {
549 result = do_revalidate(result, nd);
550 if (!result)
551 result = ERR_PTR(-ENOENT);
553 return result;
556 static int __emul_lookup_dentry(const char *, struct nameidata *);
558 /* SMP-safe */
559 static __always_inline int
560 walk_init_root(const char *name, struct nameidata *nd)
562 struct fs_struct *fs = current->fs;
564 read_lock(&fs->lock);
565 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
566 nd->path = fs->altroot;
567 path_get(&fs->altroot);
568 read_unlock(&fs->lock);
569 if (__emul_lookup_dentry(name,nd))
570 return 0;
571 read_lock(&fs->lock);
573 nd->path = fs->root;
574 path_get(&fs->root);
575 read_unlock(&fs->lock);
576 return 1;
580 * Wrapper to retry pathname resolution whenever the underlying
581 * file system returns an ESTALE.
583 * Retry the whole path once, forcing real lookup requests
584 * instead of relying on the dcache.
586 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
588 struct path save = nd->path;
589 int result;
591 /* make sure the stuff we saved doesn't go away */
592 path_get(&save);
594 result = __link_path_walk(name, nd);
595 if (result == -ESTALE) {
596 /* nd->path had been dropped */
597 nd->path = save;
598 path_get(&nd->path);
599 nd->flags |= LOOKUP_REVAL;
600 result = __link_path_walk(name, nd);
603 path_put(&save);
605 return result;
608 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
610 int res = 0;
611 char *name;
612 if (IS_ERR(link))
613 goto fail;
615 if (*link == '/') {
616 path_put(&nd->path);
617 if (!walk_init_root(link, nd))
618 /* weird __emul_prefix() stuff did it */
619 goto out;
621 res = link_path_walk(link, nd);
622 out:
623 if (nd->depth || res || nd->last_type!=LAST_NORM)
624 return res;
626 * If it is an iterative symlinks resolution in open_namei() we
627 * have to copy the last component. And all that crap because of
628 * bloody create() on broken symlinks. Furrfu...
630 name = __getname();
631 if (unlikely(!name)) {
632 path_put(&nd->path);
633 return -ENOMEM;
635 strcpy(name, nd->last.name);
636 nd->last.name = name;
637 return 0;
638 fail:
639 path_put(&nd->path);
640 return PTR_ERR(link);
643 static void path_put_conditional(struct path *path, struct nameidata *nd)
645 dput(path->dentry);
646 if (path->mnt != nd->path.mnt)
647 mntput(path->mnt);
650 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
652 dput(nd->path.dentry);
653 if (nd->path.mnt != path->mnt)
654 mntput(nd->path.mnt);
655 nd->path.mnt = path->mnt;
656 nd->path.dentry = path->dentry;
659 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
661 int error;
662 void *cookie;
663 struct dentry *dentry = path->dentry;
665 touch_atime(path->mnt, dentry);
666 nd_set_link(nd, NULL);
668 if (path->mnt != nd->path.mnt) {
669 path_to_nameidata(path, nd);
670 dget(dentry);
672 mntget(path->mnt);
673 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
674 error = PTR_ERR(cookie);
675 if (!IS_ERR(cookie)) {
676 char *s = nd_get_link(nd);
677 error = 0;
678 if (s)
679 error = __vfs_follow_link(nd, s);
680 if (dentry->d_inode->i_op->put_link)
681 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
683 path_put(path);
685 return error;
689 * This limits recursive symlink follows to 8, while
690 * limiting consecutive symlinks to 40.
692 * Without that kind of total limit, nasty chains of consecutive
693 * symlinks can cause almost arbitrarily long lookups.
695 static inline int do_follow_link(struct path *path, struct nameidata *nd)
697 int err = -ELOOP;
698 if (current->link_count >= MAX_NESTED_LINKS)
699 goto loop;
700 if (current->total_link_count >= 40)
701 goto loop;
702 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
703 cond_resched();
704 err = security_inode_follow_link(path->dentry, nd);
705 if (err)
706 goto loop;
707 current->link_count++;
708 current->total_link_count++;
709 nd->depth++;
710 err = __do_follow_link(path, nd);
711 current->link_count--;
712 nd->depth--;
713 return err;
714 loop:
715 path_put_conditional(path, nd);
716 path_put(&nd->path);
717 return err;
720 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
722 struct vfsmount *parent;
723 struct dentry *mountpoint;
724 spin_lock(&vfsmount_lock);
725 parent=(*mnt)->mnt_parent;
726 if (parent == *mnt) {
727 spin_unlock(&vfsmount_lock);
728 return 0;
730 mntget(parent);
731 mountpoint=dget((*mnt)->mnt_mountpoint);
732 spin_unlock(&vfsmount_lock);
733 dput(*dentry);
734 *dentry = mountpoint;
735 mntput(*mnt);
736 *mnt = parent;
737 return 1;
740 /* no need for dcache_lock, as serialization is taken care in
741 * namespace.c
743 static int __follow_mount(struct path *path)
745 int res = 0;
746 while (d_mountpoint(path->dentry)) {
747 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
748 if (!mounted)
749 break;
750 dput(path->dentry);
751 if (res)
752 mntput(path->mnt);
753 path->mnt = mounted;
754 path->dentry = dget(mounted->mnt_root);
755 res = 1;
757 return res;
760 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
762 while (d_mountpoint(*dentry)) {
763 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
764 if (!mounted)
765 break;
766 dput(*dentry);
767 mntput(*mnt);
768 *mnt = mounted;
769 *dentry = dget(mounted->mnt_root);
773 /* no need for dcache_lock, as serialization is taken care in
774 * namespace.c
776 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
778 struct vfsmount *mounted;
780 mounted = lookup_mnt(*mnt, *dentry);
781 if (mounted) {
782 dput(*dentry);
783 mntput(*mnt);
784 *mnt = mounted;
785 *dentry = dget(mounted->mnt_root);
786 return 1;
788 return 0;
791 static __always_inline void follow_dotdot(struct nameidata *nd)
793 struct fs_struct *fs = current->fs;
795 while(1) {
796 struct vfsmount *parent;
797 struct dentry *old = nd->path.dentry;
799 read_lock(&fs->lock);
800 if (nd->path.dentry == fs->root.dentry &&
801 nd->path.mnt == fs->root.mnt) {
802 read_unlock(&fs->lock);
803 break;
805 read_unlock(&fs->lock);
806 spin_lock(&dcache_lock);
807 if (nd->path.dentry != nd->path.mnt->mnt_root) {
808 nd->path.dentry = dget(nd->path.dentry->d_parent);
809 spin_unlock(&dcache_lock);
810 dput(old);
811 break;
813 spin_unlock(&dcache_lock);
814 spin_lock(&vfsmount_lock);
815 parent = nd->path.mnt->mnt_parent;
816 if (parent == nd->path.mnt) {
817 spin_unlock(&vfsmount_lock);
818 break;
820 mntget(parent);
821 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
822 spin_unlock(&vfsmount_lock);
823 dput(old);
824 mntput(nd->path.mnt);
825 nd->path.mnt = parent;
827 follow_mount(&nd->path.mnt, &nd->path.dentry);
831 * It's more convoluted than I'd like it to be, but... it's still fairly
832 * small and for now I'd prefer to have fast path as straight as possible.
833 * It _is_ time-critical.
835 static int do_lookup(struct nameidata *nd, struct qstr *name,
836 struct path *path)
838 struct vfsmount *mnt = nd->path.mnt;
839 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
841 if (!dentry)
842 goto need_lookup;
843 if (dentry->d_op && dentry->d_op->d_revalidate)
844 goto need_revalidate;
845 done:
846 path->mnt = mnt;
847 path->dentry = dentry;
848 __follow_mount(path);
849 return 0;
851 need_lookup:
852 dentry = real_lookup(nd->path.dentry, name, nd);
853 if (IS_ERR(dentry))
854 goto fail;
855 goto done;
857 need_revalidate:
858 dentry = do_revalidate(dentry, nd);
859 if (!dentry)
860 goto need_lookup;
861 if (IS_ERR(dentry))
862 goto fail;
863 goto done;
865 fail:
866 return PTR_ERR(dentry);
870 * Name resolution.
871 * This is the basic name resolution function, turning a pathname into
872 * the final dentry. We expect 'base' to be positive and a directory.
874 * Returns 0 and nd will have valid dentry and mnt on success.
875 * Returns error and drops reference to input namei data on failure.
877 static int __link_path_walk(const char *name, struct nameidata *nd)
879 struct path next;
880 struct inode *inode;
881 int err;
882 unsigned int lookup_flags = nd->flags;
884 while (*name=='/')
885 name++;
886 if (!*name)
887 goto return_reval;
889 inode = nd->path.dentry->d_inode;
890 if (nd->depth)
891 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
893 /* At this point we know we have a real path component. */
894 for(;;) {
895 unsigned long hash;
896 struct qstr this;
897 unsigned int c;
899 nd->flags |= LOOKUP_CONTINUE;
900 err = exec_permission_lite(inode, nd);
901 if (err == -EAGAIN)
902 err = vfs_permission(nd, MAY_EXEC);
903 if (err)
904 break;
906 this.name = name;
907 c = *(const unsigned char *)name;
909 hash = init_name_hash();
910 do {
911 name++;
912 hash = partial_name_hash(c, hash);
913 c = *(const unsigned char *)name;
914 } while (c && (c != '/'));
915 this.len = name - (const char *) this.name;
916 this.hash = end_name_hash(hash);
918 /* remove trailing slashes? */
919 if (!c)
920 goto last_component;
921 while (*++name == '/');
922 if (!*name)
923 goto last_with_slashes;
926 * "." and ".." are special - ".." especially so because it has
927 * to be able to know about the current root directory and
928 * parent relationships.
930 if (this.name[0] == '.') switch (this.len) {
931 default:
932 break;
933 case 2:
934 if (this.name[1] != '.')
935 break;
936 follow_dotdot(nd);
937 inode = nd->path.dentry->d_inode;
938 /* fallthrough */
939 case 1:
940 continue;
943 * See if the low-level filesystem might want
944 * to use its own hash..
946 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
947 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
948 &this);
949 if (err < 0)
950 break;
952 /* This does the actual lookups.. */
953 err = do_lookup(nd, &this, &next);
954 if (err)
955 break;
957 err = -ENOENT;
958 inode = next.dentry->d_inode;
959 if (!inode)
960 goto out_dput;
961 err = -ENOTDIR;
962 if (!inode->i_op)
963 goto out_dput;
965 if (inode->i_op->follow_link) {
966 err = do_follow_link(&next, nd);
967 if (err)
968 goto return_err;
969 err = -ENOENT;
970 inode = nd->path.dentry->d_inode;
971 if (!inode)
972 break;
973 err = -ENOTDIR;
974 if (!inode->i_op)
975 break;
976 } else
977 path_to_nameidata(&next, nd);
978 err = -ENOTDIR;
979 if (!inode->i_op->lookup)
980 break;
981 continue;
982 /* here ends the main loop */
984 last_with_slashes:
985 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
986 last_component:
987 /* Clear LOOKUP_CONTINUE iff it was previously unset */
988 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
989 if (lookup_flags & LOOKUP_PARENT)
990 goto lookup_parent;
991 if (this.name[0] == '.') switch (this.len) {
992 default:
993 break;
994 case 2:
995 if (this.name[1] != '.')
996 break;
997 follow_dotdot(nd);
998 inode = nd->path.dentry->d_inode;
999 /* fallthrough */
1000 case 1:
1001 goto return_reval;
1003 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
1004 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
1005 &this);
1006 if (err < 0)
1007 break;
1009 err = do_lookup(nd, &this, &next);
1010 if (err)
1011 break;
1012 inode = next.dentry->d_inode;
1013 if ((lookup_flags & LOOKUP_FOLLOW)
1014 && inode && inode->i_op && inode->i_op->follow_link) {
1015 err = do_follow_link(&next, nd);
1016 if (err)
1017 goto return_err;
1018 inode = nd->path.dentry->d_inode;
1019 } else
1020 path_to_nameidata(&next, nd);
1021 err = -ENOENT;
1022 if (!inode)
1023 break;
1024 if (lookup_flags & LOOKUP_DIRECTORY) {
1025 err = -ENOTDIR;
1026 if (!inode->i_op || !inode->i_op->lookup)
1027 break;
1029 goto return_base;
1030 lookup_parent:
1031 nd->last = this;
1032 nd->last_type = LAST_NORM;
1033 if (this.name[0] != '.')
1034 goto return_base;
1035 if (this.len == 1)
1036 nd->last_type = LAST_DOT;
1037 else if (this.len == 2 && this.name[1] == '.')
1038 nd->last_type = LAST_DOTDOT;
1039 else
1040 goto return_base;
1041 return_reval:
1043 * We bypassed the ordinary revalidation routines.
1044 * We may need to check the cached dentry for staleness.
1046 if (nd->path.dentry && nd->path.dentry->d_sb &&
1047 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1048 err = -ESTALE;
1049 /* Note: we do not d_invalidate() */
1050 if (!nd->path.dentry->d_op->d_revalidate(
1051 nd->path.dentry, nd))
1052 break;
1054 return_base:
1055 return 0;
1056 out_dput:
1057 path_put_conditional(&next, nd);
1058 break;
1060 path_put(&nd->path);
1061 return_err:
1062 return err;
1065 static int path_walk(const char *name, struct nameidata *nd)
1067 current->total_link_count = 0;
1068 return link_path_walk(name, nd);
1072 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1073 * everything is done. Returns 0 and drops input nd, if lookup failed;
1075 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1077 if (path_walk(name, nd))
1078 return 0; /* something went wrong... */
1080 if (!nd->path.dentry->d_inode ||
1081 S_ISDIR(nd->path.dentry->d_inode->i_mode)) {
1082 struct path old_path = nd->path;
1083 struct qstr last = nd->last;
1084 int last_type = nd->last_type;
1085 struct fs_struct *fs = current->fs;
1088 * NAME was not found in alternate root or it's a directory.
1089 * Try to find it in the normal root:
1091 nd->last_type = LAST_ROOT;
1092 read_lock(&fs->lock);
1093 nd->path = fs->root;
1094 path_get(&fs->root);
1095 read_unlock(&fs->lock);
1096 if (path_walk(name, nd) == 0) {
1097 if (nd->path.dentry->d_inode) {
1098 path_put(&old_path);
1099 return 1;
1101 path_put(&nd->path);
1103 nd->path = old_path;
1104 nd->last = last;
1105 nd->last_type = last_type;
1107 return 1;
1110 void set_fs_altroot(void)
1112 char *emul = __emul_prefix();
1113 struct nameidata nd;
1114 struct path path = {}, old_path;
1115 int err;
1116 struct fs_struct *fs = current->fs;
1118 if (!emul)
1119 goto set_it;
1120 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1121 if (!err)
1122 path = nd.path;
1123 set_it:
1124 write_lock(&fs->lock);
1125 old_path = fs->altroot;
1126 fs->altroot = path;
1127 write_unlock(&fs->lock);
1128 if (old_path.dentry)
1129 path_put(&old_path);
1132 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1133 static int do_path_lookup(int dfd, const char *name,
1134 unsigned int flags, struct nameidata *nd)
1136 int retval = 0;
1137 int fput_needed;
1138 struct file *file;
1139 struct fs_struct *fs = current->fs;
1141 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1142 nd->flags = flags;
1143 nd->depth = 0;
1145 if (*name=='/') {
1146 read_lock(&fs->lock);
1147 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
1148 nd->path = fs->altroot;
1149 path_get(&fs->altroot);
1150 read_unlock(&fs->lock);
1151 if (__emul_lookup_dentry(name,nd))
1152 goto out; /* found in altroot */
1153 read_lock(&fs->lock);
1155 nd->path = fs->root;
1156 path_get(&fs->root);
1157 read_unlock(&fs->lock);
1158 } else if (dfd == AT_FDCWD) {
1159 read_lock(&fs->lock);
1160 nd->path = fs->pwd;
1161 path_get(&fs->pwd);
1162 read_unlock(&fs->lock);
1163 } else {
1164 struct dentry *dentry;
1166 file = fget_light(dfd, &fput_needed);
1167 retval = -EBADF;
1168 if (!file)
1169 goto out_fail;
1171 dentry = file->f_path.dentry;
1173 retval = -ENOTDIR;
1174 if (!S_ISDIR(dentry->d_inode->i_mode))
1175 goto fput_fail;
1177 retval = file_permission(file, MAY_EXEC);
1178 if (retval)
1179 goto fput_fail;
1181 nd->path = file->f_path;
1182 path_get(&file->f_path);
1184 fput_light(file, fput_needed);
1187 retval = path_walk(name, nd);
1188 out:
1189 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1190 nd->path.dentry->d_inode))
1191 audit_inode(name, nd->path.dentry);
1192 out_fail:
1193 return retval;
1195 fput_fail:
1196 fput_light(file, fput_needed);
1197 goto out_fail;
1200 int path_lookup(const char *name, unsigned int flags,
1201 struct nameidata *nd)
1203 return do_path_lookup(AT_FDCWD, name, flags, nd);
1207 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1208 * @dentry: pointer to dentry of the base directory
1209 * @mnt: pointer to vfs mount of the base directory
1210 * @name: pointer to file name
1211 * @flags: lookup flags
1212 * @nd: pointer to nameidata
1214 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1215 const char *name, unsigned int flags,
1216 struct nameidata *nd)
1218 int retval;
1220 /* same as do_path_lookup */
1221 nd->last_type = LAST_ROOT;
1222 nd->flags = flags;
1223 nd->depth = 0;
1225 nd->path.dentry = dentry;
1226 nd->path.mnt = mnt;
1227 path_get(&nd->path);
1229 retval = path_walk(name, nd);
1230 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1231 nd->path.dentry->d_inode))
1232 audit_inode(name, nd->path.dentry);
1234 return retval;
1238 static int __path_lookup_intent_open(int dfd, const char *name,
1239 unsigned int lookup_flags, struct nameidata *nd,
1240 int open_flags, int create_mode)
1242 struct file *filp = get_empty_filp();
1243 int err;
1245 if (filp == NULL)
1246 return -ENFILE;
1247 nd->intent.open.file = filp;
1248 nd->intent.open.flags = open_flags;
1249 nd->intent.open.create_mode = create_mode;
1250 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1251 if (IS_ERR(nd->intent.open.file)) {
1252 if (err == 0) {
1253 err = PTR_ERR(nd->intent.open.file);
1254 path_put(&nd->path);
1256 } else if (err != 0)
1257 release_open_intent(nd);
1258 return err;
1262 * path_lookup_open - lookup a file path with open intent
1263 * @dfd: the directory to use as base, or AT_FDCWD
1264 * @name: pointer to file name
1265 * @lookup_flags: lookup intent flags
1266 * @nd: pointer to nameidata
1267 * @open_flags: open intent flags
1269 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1270 struct nameidata *nd, int open_flags)
1272 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1273 open_flags, 0);
1277 * path_lookup_create - lookup a file path with open + create intent
1278 * @dfd: the directory to use as base, or AT_FDCWD
1279 * @name: pointer to file name
1280 * @lookup_flags: lookup intent flags
1281 * @nd: pointer to nameidata
1282 * @open_flags: open intent flags
1283 * @create_mode: create intent flags
1285 static int path_lookup_create(int dfd, const char *name,
1286 unsigned int lookup_flags, struct nameidata *nd,
1287 int open_flags, int create_mode)
1289 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1290 nd, open_flags, create_mode);
1293 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1294 struct nameidata *nd, int open_flags)
1296 char *tmp = getname(name);
1297 int err = PTR_ERR(tmp);
1299 if (!IS_ERR(tmp)) {
1300 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1301 putname(tmp);
1303 return err;
1306 static struct dentry *__lookup_hash(struct qstr *name,
1307 struct dentry *base, struct nameidata *nd)
1309 struct dentry *dentry;
1310 struct inode *inode;
1311 int err;
1313 inode = base->d_inode;
1316 * See if the low-level filesystem might want
1317 * to use its own hash..
1319 if (base->d_op && base->d_op->d_hash) {
1320 err = base->d_op->d_hash(base, name);
1321 dentry = ERR_PTR(err);
1322 if (err < 0)
1323 goto out;
1326 dentry = cached_lookup(base, name, nd);
1327 if (!dentry) {
1328 struct dentry *new;
1330 /* Don't create child dentry for a dead directory. */
1331 dentry = ERR_PTR(-ENOENT);
1332 if (IS_DEADDIR(inode))
1333 goto out;
1335 new = d_alloc(base, name);
1336 dentry = ERR_PTR(-ENOMEM);
1337 if (!new)
1338 goto out;
1339 dentry = inode->i_op->lookup(inode, new, nd);
1340 if (!dentry)
1341 dentry = new;
1342 else
1343 dput(new);
1345 out:
1346 return dentry;
1350 * Restricted form of lookup. Doesn't follow links, single-component only,
1351 * needs parent already locked. Doesn't follow mounts.
1352 * SMP-safe.
1354 static struct dentry *lookup_hash(struct nameidata *nd)
1356 int err;
1358 err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1359 if (err)
1360 return ERR_PTR(err);
1361 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1364 static int __lookup_one_len(const char *name, struct qstr *this,
1365 struct dentry *base, int len)
1367 unsigned long hash;
1368 unsigned int c;
1370 this->name = name;
1371 this->len = len;
1372 if (!len)
1373 return -EACCES;
1375 hash = init_name_hash();
1376 while (len--) {
1377 c = *(const unsigned char *)name++;
1378 if (c == '/' || c == '\0')
1379 return -EACCES;
1380 hash = partial_name_hash(c, hash);
1382 this->hash = end_name_hash(hash);
1383 return 0;
1387 * lookup_one_len - filesystem helper to lookup single pathname component
1388 * @name: pathname component to lookup
1389 * @base: base directory to lookup from
1390 * @len: maximum length @len should be interpreted to
1392 * Note that this routine is purely a helper for filesystem usage and should
1393 * not be called by generic code. Also note that by using this function the
1394 * nameidata argument is passed to the filesystem methods and a filesystem
1395 * using this helper needs to be prepared for that.
1397 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1399 int err;
1400 struct qstr this;
1402 err = __lookup_one_len(name, &this, base, len);
1403 if (err)
1404 return ERR_PTR(err);
1406 err = permission(base->d_inode, MAY_EXEC, NULL);
1407 if (err)
1408 return ERR_PTR(err);
1409 return __lookup_hash(&this, base, NULL);
1413 * lookup_one_noperm - bad hack for sysfs
1414 * @name: pathname component to lookup
1415 * @base: base directory to lookup from
1417 * This is a variant of lookup_one_len that doesn't perform any permission
1418 * checks. It's a horrible hack to work around the braindead sysfs
1419 * architecture and should not be used anywhere else.
1421 * DON'T USE THIS FUNCTION EVER, thanks.
1423 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1425 int err;
1426 struct qstr this;
1428 err = __lookup_one_len(name, &this, base, strlen(name));
1429 if (err)
1430 return ERR_PTR(err);
1431 return __lookup_hash(&this, base, NULL);
1434 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1435 struct nameidata *nd)
1437 char *tmp = getname(name);
1438 int err = PTR_ERR(tmp);
1440 if (!IS_ERR(tmp)) {
1441 err = do_path_lookup(dfd, tmp, flags, nd);
1442 putname(tmp);
1444 return err;
1447 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1449 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1453 * It's inline, so penalty for filesystems that don't use sticky bit is
1454 * minimal.
1456 static inline int check_sticky(struct inode *dir, struct inode *inode)
1458 if (!(dir->i_mode & S_ISVTX))
1459 return 0;
1460 if (inode->i_uid == current->fsuid)
1461 return 0;
1462 if (dir->i_uid == current->fsuid)
1463 return 0;
1464 return !capable(CAP_FOWNER);
1468 * Check whether we can remove a link victim from directory dir, check
1469 * whether the type of victim is right.
1470 * 1. We can't do it if dir is read-only (done in permission())
1471 * 2. We should have write and exec permissions on dir
1472 * 3. We can't remove anything from append-only dir
1473 * 4. We can't do anything with immutable dir (done in permission())
1474 * 5. If the sticky bit on dir is set we should either
1475 * a. be owner of dir, or
1476 * b. be owner of victim, or
1477 * c. have CAP_FOWNER capability
1478 * 6. If the victim is append-only or immutable we can't do antyhing with
1479 * links pointing to it.
1480 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1481 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1482 * 9. We can't remove a root or mountpoint.
1483 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1484 * nfs_async_unlink().
1486 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1488 int error;
1490 if (!victim->d_inode)
1491 return -ENOENT;
1493 BUG_ON(victim->d_parent->d_inode != dir);
1494 audit_inode_child(victim->d_name.name, victim, dir);
1496 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1497 if (error)
1498 return error;
1499 if (IS_APPEND(dir))
1500 return -EPERM;
1501 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1502 IS_IMMUTABLE(victim->d_inode))
1503 return -EPERM;
1504 if (isdir) {
1505 if (!S_ISDIR(victim->d_inode->i_mode))
1506 return -ENOTDIR;
1507 if (IS_ROOT(victim))
1508 return -EBUSY;
1509 } else if (S_ISDIR(victim->d_inode->i_mode))
1510 return -EISDIR;
1511 if (IS_DEADDIR(dir))
1512 return -ENOENT;
1513 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1514 return -EBUSY;
1515 return 0;
1518 /* Check whether we can create an object with dentry child in directory
1519 * dir.
1520 * 1. We can't do it if child already exists (open has special treatment for
1521 * this case, but since we are inlined it's OK)
1522 * 2. We can't do it if dir is read-only (done in permission())
1523 * 3. We should have write and exec permissions on dir
1524 * 4. We can't do it if dir is immutable (done in permission())
1526 static inline int may_create(struct inode *dir, struct dentry *child,
1527 struct nameidata *nd)
1529 if (child->d_inode)
1530 return -EEXIST;
1531 if (IS_DEADDIR(dir))
1532 return -ENOENT;
1533 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1537 * O_DIRECTORY translates into forcing a directory lookup.
1539 static inline int lookup_flags(unsigned int f)
1541 unsigned long retval = LOOKUP_FOLLOW;
1543 if (f & O_NOFOLLOW)
1544 retval &= ~LOOKUP_FOLLOW;
1546 if (f & O_DIRECTORY)
1547 retval |= LOOKUP_DIRECTORY;
1549 return retval;
1553 * p1 and p2 should be directories on the same fs.
1555 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1557 struct dentry *p;
1559 if (p1 == p2) {
1560 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1561 return NULL;
1564 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1566 for (p = p1; p->d_parent != p; p = p->d_parent) {
1567 if (p->d_parent == p2) {
1568 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1569 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1570 return p;
1574 for (p = p2; p->d_parent != p; p = p->d_parent) {
1575 if (p->d_parent == p1) {
1576 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1577 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1578 return p;
1582 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1583 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1584 return NULL;
1587 void unlock_rename(struct dentry *p1, struct dentry *p2)
1589 mutex_unlock(&p1->d_inode->i_mutex);
1590 if (p1 != p2) {
1591 mutex_unlock(&p2->d_inode->i_mutex);
1592 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1596 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1597 struct nameidata *nd)
1599 int error = may_create(dir, dentry, nd);
1601 if (error)
1602 return error;
1604 if (!dir->i_op || !dir->i_op->create)
1605 return -EACCES; /* shouldn't it be ENOSYS? */
1606 mode &= S_IALLUGO;
1607 mode |= S_IFREG;
1608 error = security_inode_create(dir, dentry, mode);
1609 if (error)
1610 return error;
1611 DQUOT_INIT(dir);
1612 error = dir->i_op->create(dir, dentry, mode, nd);
1613 if (!error)
1614 fsnotify_create(dir, dentry);
1615 return error;
1618 int may_open(struct nameidata *nd, int acc_mode, int flag)
1620 struct dentry *dentry = nd->path.dentry;
1621 struct inode *inode = dentry->d_inode;
1622 int error;
1624 if (!inode)
1625 return -ENOENT;
1627 if (S_ISLNK(inode->i_mode))
1628 return -ELOOP;
1630 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1631 return -EISDIR;
1634 * FIFO's, sockets and device files are special: they don't
1635 * actually live on the filesystem itself, and as such you
1636 * can write to them even if the filesystem is read-only.
1638 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1639 flag &= ~O_TRUNC;
1640 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1641 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1642 return -EACCES;
1644 flag &= ~O_TRUNC;
1647 error = vfs_permission(nd, acc_mode);
1648 if (error)
1649 return error;
1651 * An append-only file must be opened in append mode for writing.
1653 if (IS_APPEND(inode)) {
1654 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1655 return -EPERM;
1656 if (flag & O_TRUNC)
1657 return -EPERM;
1660 /* O_NOATIME can only be set by the owner or superuser */
1661 if (flag & O_NOATIME)
1662 if (!is_owner_or_cap(inode))
1663 return -EPERM;
1666 * Ensure there are no outstanding leases on the file.
1668 error = break_lease(inode, flag);
1669 if (error)
1670 return error;
1672 if (flag & O_TRUNC) {
1673 error = get_write_access(inode);
1674 if (error)
1675 return error;
1678 * Refuse to truncate files with mandatory locks held on them.
1680 error = locks_verify_locked(inode);
1681 if (!error) {
1682 DQUOT_INIT(inode);
1684 error = do_truncate(dentry, 0,
1685 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1686 NULL);
1688 put_write_access(inode);
1689 if (error)
1690 return error;
1691 } else
1692 if (flag & FMODE_WRITE)
1693 DQUOT_INIT(inode);
1695 return 0;
1699 * Be careful about ever adding any more callers of this
1700 * function. Its flags must be in the namei format, not
1701 * what get passed to sys_open().
1703 static int __open_namei_create(struct nameidata *nd, struct path *path,
1704 int flag, int mode)
1706 int error;
1707 struct dentry *dir = nd->path.dentry;
1709 if (!IS_POSIXACL(dir->d_inode))
1710 mode &= ~current->fs->umask;
1711 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1712 mutex_unlock(&dir->d_inode->i_mutex);
1713 dput(nd->path.dentry);
1714 nd->path.dentry = path->dentry;
1715 if (error)
1716 return error;
1717 /* Don't check for write permission, don't truncate */
1718 return may_open(nd, 0, flag & ~O_TRUNC);
1722 * Note that while the flag value (low two bits) for sys_open means:
1723 * 00 - read-only
1724 * 01 - write-only
1725 * 10 - read-write
1726 * 11 - special
1727 * it is changed into
1728 * 00 - no permissions needed
1729 * 01 - read-permission
1730 * 10 - write-permission
1731 * 11 - read-write
1732 * for the internal routines (ie open_namei()/follow_link() etc)
1733 * This is more logical, and also allows the 00 "no perm needed"
1734 * to be used for symlinks (where the permissions are checked
1735 * later).
1738 static inline int open_to_namei_flags(int flag)
1740 if ((flag+1) & O_ACCMODE)
1741 flag++;
1742 return flag;
1745 static int open_will_write_to_fs(int flag, struct inode *inode)
1748 * We'll never write to the fs underlying
1749 * a device file.
1751 if (special_file(inode->i_mode))
1752 return 0;
1753 return (flag & O_TRUNC);
1757 * Note that the low bits of the passed in "open_flag"
1758 * are not the same as in the local variable "flag". See
1759 * open_to_namei_flags() for more details.
1761 struct file *do_filp_open(int dfd, const char *pathname,
1762 int open_flag, int mode)
1764 struct file *filp;
1765 struct nameidata nd;
1766 int acc_mode, error;
1767 struct path path;
1768 struct dentry *dir;
1769 int count = 0;
1770 int will_write;
1771 int flag = open_to_namei_flags(open_flag);
1773 acc_mode = ACC_MODE(flag);
1775 /* O_TRUNC implies we need access checks for write permissions */
1776 if (flag & O_TRUNC)
1777 acc_mode |= MAY_WRITE;
1779 /* Allow the LSM permission hook to distinguish append
1780 access from general write access. */
1781 if (flag & O_APPEND)
1782 acc_mode |= MAY_APPEND;
1785 * The simplest case - just a plain lookup.
1787 if (!(flag & O_CREAT)) {
1788 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1789 &nd, flag);
1790 if (error)
1791 return ERR_PTR(error);
1792 goto ok;
1796 * Create - we need to know the parent.
1798 error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1799 &nd, flag, mode);
1800 if (error)
1801 return ERR_PTR(error);
1804 * We have the parent and last component. First of all, check
1805 * that we are not asked to creat(2) an obvious directory - that
1806 * will not do.
1808 error = -EISDIR;
1809 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1810 goto exit;
1812 dir = nd.path.dentry;
1813 nd.flags &= ~LOOKUP_PARENT;
1814 mutex_lock(&dir->d_inode->i_mutex);
1815 path.dentry = lookup_hash(&nd);
1816 path.mnt = nd.path.mnt;
1818 do_last:
1819 error = PTR_ERR(path.dentry);
1820 if (IS_ERR(path.dentry)) {
1821 mutex_unlock(&dir->d_inode->i_mutex);
1822 goto exit;
1825 if (IS_ERR(nd.intent.open.file)) {
1826 error = PTR_ERR(nd.intent.open.file);
1827 goto exit_mutex_unlock;
1830 /* Negative dentry, just create the file */
1831 if (!path.dentry->d_inode) {
1833 * This write is needed to ensure that a
1834 * ro->rw transition does not occur between
1835 * the time when the file is created and when
1836 * a permanent write count is taken through
1837 * the 'struct file' in nameidata_to_filp().
1839 error = mnt_want_write(nd.path.mnt);
1840 if (error)
1841 goto exit_mutex_unlock;
1842 error = __open_namei_create(&nd, &path, flag, mode);
1843 if (error) {
1844 mnt_drop_write(nd.path.mnt);
1845 goto exit;
1847 filp = nameidata_to_filp(&nd, open_flag);
1848 mnt_drop_write(nd.path.mnt);
1849 return filp;
1853 * It already exists.
1855 mutex_unlock(&dir->d_inode->i_mutex);
1856 audit_inode(pathname, path.dentry);
1858 error = -EEXIST;
1859 if (flag & O_EXCL)
1860 goto exit_dput;
1862 if (__follow_mount(&path)) {
1863 error = -ELOOP;
1864 if (flag & O_NOFOLLOW)
1865 goto exit_dput;
1868 error = -ENOENT;
1869 if (!path.dentry->d_inode)
1870 goto exit_dput;
1871 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1872 goto do_link;
1874 path_to_nameidata(&path, &nd);
1875 error = -EISDIR;
1876 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1877 goto exit;
1880 * Consider:
1881 * 1. may_open() truncates a file
1882 * 2. a rw->ro mount transition occurs
1883 * 3. nameidata_to_filp() fails due to
1884 * the ro mount.
1885 * That would be inconsistent, and should
1886 * be avoided. Taking this mnt write here
1887 * ensures that (2) can not occur.
1889 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1890 if (will_write) {
1891 error = mnt_want_write(nd.path.mnt);
1892 if (error)
1893 goto exit;
1895 error = may_open(&nd, acc_mode, flag);
1896 if (error) {
1897 if (will_write)
1898 mnt_drop_write(nd.path.mnt);
1899 goto exit;
1901 filp = nameidata_to_filp(&nd, open_flag);
1903 * It is now safe to drop the mnt write
1904 * because the filp has had a write taken
1905 * on its behalf.
1907 if (will_write)
1908 mnt_drop_write(nd.path.mnt);
1909 return filp;
1911 exit_mutex_unlock:
1912 mutex_unlock(&dir->d_inode->i_mutex);
1913 exit_dput:
1914 path_put_conditional(&path, &nd);
1915 exit:
1916 if (!IS_ERR(nd.intent.open.file))
1917 release_open_intent(&nd);
1918 path_put(&nd.path);
1919 return ERR_PTR(error);
1921 do_link:
1922 error = -ELOOP;
1923 if (flag & O_NOFOLLOW)
1924 goto exit_dput;
1926 * This is subtle. Instead of calling do_follow_link() we do the
1927 * thing by hands. The reason is that this way we have zero link_count
1928 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1929 * After that we have the parent and last component, i.e.
1930 * we are in the same situation as after the first path_walk().
1931 * Well, almost - if the last component is normal we get its copy
1932 * stored in nd->last.name and we will have to putname() it when we
1933 * are done. Procfs-like symlinks just set LAST_BIND.
1935 nd.flags |= LOOKUP_PARENT;
1936 error = security_inode_follow_link(path.dentry, &nd);
1937 if (error)
1938 goto exit_dput;
1939 error = __do_follow_link(&path, &nd);
1940 if (error) {
1941 /* Does someone understand code flow here? Or it is only
1942 * me so stupid? Anathema to whoever designed this non-sense
1943 * with "intent.open".
1945 release_open_intent(&nd);
1946 return ERR_PTR(error);
1948 nd.flags &= ~LOOKUP_PARENT;
1949 if (nd.last_type == LAST_BIND)
1950 goto ok;
1951 error = -EISDIR;
1952 if (nd.last_type != LAST_NORM)
1953 goto exit;
1954 if (nd.last.name[nd.last.len]) {
1955 __putname(nd.last.name);
1956 goto exit;
1958 error = -ELOOP;
1959 if (count++==32) {
1960 __putname(nd.last.name);
1961 goto exit;
1963 dir = nd.path.dentry;
1964 mutex_lock(&dir->d_inode->i_mutex);
1965 path.dentry = lookup_hash(&nd);
1966 path.mnt = nd.path.mnt;
1967 __putname(nd.last.name);
1968 goto do_last;
1972 * filp_open - open file and return file pointer
1974 * @filename: path to open
1975 * @flags: open flags as per the open(2) second argument
1976 * @mode: mode for the new file if O_CREAT is set, else ignored
1978 * This is the helper to open a file from kernelspace if you really
1979 * have to. But in generally you should not do this, so please move
1980 * along, nothing to see here..
1982 struct file *filp_open(const char *filename, int flags, int mode)
1984 return do_filp_open(AT_FDCWD, filename, flags, mode);
1986 EXPORT_SYMBOL(filp_open);
1989 * lookup_create - lookup a dentry, creating it if it doesn't exist
1990 * @nd: nameidata info
1991 * @is_dir: directory flag
1993 * Simple function to lookup and return a dentry and create it
1994 * if it doesn't exist. Is SMP-safe.
1996 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1998 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2000 struct dentry *dentry = ERR_PTR(-EEXIST);
2002 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2004 * Yucky last component or no last component at all?
2005 * (foo/., foo/.., /////)
2007 if (nd->last_type != LAST_NORM)
2008 goto fail;
2009 nd->flags &= ~LOOKUP_PARENT;
2010 nd->flags |= LOOKUP_CREATE;
2011 nd->intent.open.flags = O_EXCL;
2014 * Do the final lookup.
2016 dentry = lookup_hash(nd);
2017 if (IS_ERR(dentry))
2018 goto fail;
2020 if (dentry->d_inode)
2021 goto eexist;
2023 * Special case - lookup gave negative, but... we had foo/bar/
2024 * From the vfs_mknod() POV we just have a negative dentry -
2025 * all is fine. Let's be bastards - you had / on the end, you've
2026 * been asking for (non-existent) directory. -ENOENT for you.
2028 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2029 dput(dentry);
2030 dentry = ERR_PTR(-ENOENT);
2032 return dentry;
2033 eexist:
2034 dput(dentry);
2035 dentry = ERR_PTR(-EEXIST);
2036 fail:
2037 return dentry;
2039 EXPORT_SYMBOL_GPL(lookup_create);
2041 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2043 int error = may_create(dir, dentry, NULL);
2045 if (error)
2046 return error;
2048 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2049 return -EPERM;
2051 if (!dir->i_op || !dir->i_op->mknod)
2052 return -EPERM;
2054 error = devcgroup_inode_mknod(mode, dev);
2055 if (error)
2056 return error;
2058 error = security_inode_mknod(dir, dentry, mode, dev);
2059 if (error)
2060 return error;
2062 DQUOT_INIT(dir);
2063 error = dir->i_op->mknod(dir, dentry, mode, dev);
2064 if (!error)
2065 fsnotify_create(dir, dentry);
2066 return error;
2069 static int may_mknod(mode_t mode)
2071 switch (mode & S_IFMT) {
2072 case S_IFREG:
2073 case S_IFCHR:
2074 case S_IFBLK:
2075 case S_IFIFO:
2076 case S_IFSOCK:
2077 case 0: /* zero mode translates to S_IFREG */
2078 return 0;
2079 case S_IFDIR:
2080 return -EPERM;
2081 default:
2082 return -EINVAL;
2086 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
2087 unsigned dev)
2089 int error = 0;
2090 char * tmp;
2091 struct dentry * dentry;
2092 struct nameidata nd;
2094 if (S_ISDIR(mode))
2095 return -EPERM;
2096 tmp = getname(filename);
2097 if (IS_ERR(tmp))
2098 return PTR_ERR(tmp);
2100 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2101 if (error)
2102 goto out;
2103 dentry = lookup_create(&nd, 0);
2104 if (IS_ERR(dentry)) {
2105 error = PTR_ERR(dentry);
2106 goto out_unlock;
2108 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2109 mode &= ~current->fs->umask;
2110 error = may_mknod(mode);
2111 if (error)
2112 goto out_dput;
2113 error = mnt_want_write(nd.path.mnt);
2114 if (error)
2115 goto out_dput;
2116 switch (mode & S_IFMT) {
2117 case 0: case S_IFREG:
2118 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2119 break;
2120 case S_IFCHR: case S_IFBLK:
2121 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2122 new_decode_dev(dev));
2123 break;
2124 case S_IFIFO: case S_IFSOCK:
2125 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2126 break;
2128 mnt_drop_write(nd.path.mnt);
2129 out_dput:
2130 dput(dentry);
2131 out_unlock:
2132 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2133 path_put(&nd.path);
2134 out:
2135 putname(tmp);
2137 return error;
2140 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2142 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2145 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2147 int error = may_create(dir, dentry, NULL);
2149 if (error)
2150 return error;
2152 if (!dir->i_op || !dir->i_op->mkdir)
2153 return -EPERM;
2155 mode &= (S_IRWXUGO|S_ISVTX);
2156 error = security_inode_mkdir(dir, dentry, mode);
2157 if (error)
2158 return error;
2160 DQUOT_INIT(dir);
2161 error = dir->i_op->mkdir(dir, dentry, mode);
2162 if (!error)
2163 fsnotify_mkdir(dir, dentry);
2164 return error;
2167 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2169 int error = 0;
2170 char * tmp;
2171 struct dentry *dentry;
2172 struct nameidata nd;
2174 tmp = getname(pathname);
2175 error = PTR_ERR(tmp);
2176 if (IS_ERR(tmp))
2177 goto out_err;
2179 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2180 if (error)
2181 goto out;
2182 dentry = lookup_create(&nd, 1);
2183 error = PTR_ERR(dentry);
2184 if (IS_ERR(dentry))
2185 goto out_unlock;
2187 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2188 mode &= ~current->fs->umask;
2189 error = mnt_want_write(nd.path.mnt);
2190 if (error)
2191 goto out_dput;
2192 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2193 mnt_drop_write(nd.path.mnt);
2194 out_dput:
2195 dput(dentry);
2196 out_unlock:
2197 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2198 path_put(&nd.path);
2199 out:
2200 putname(tmp);
2201 out_err:
2202 return error;
2205 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2207 return sys_mkdirat(AT_FDCWD, pathname, mode);
2211 * We try to drop the dentry early: we should have
2212 * a usage count of 2 if we're the only user of this
2213 * dentry, and if that is true (possibly after pruning
2214 * the dcache), then we drop the dentry now.
2216 * A low-level filesystem can, if it choses, legally
2217 * do a
2219 * if (!d_unhashed(dentry))
2220 * return -EBUSY;
2222 * if it cannot handle the case of removing a directory
2223 * that is still in use by something else..
2225 void dentry_unhash(struct dentry *dentry)
2227 dget(dentry);
2228 shrink_dcache_parent(dentry);
2229 spin_lock(&dcache_lock);
2230 spin_lock(&dentry->d_lock);
2231 if (atomic_read(&dentry->d_count) == 2)
2232 __d_drop(dentry);
2233 spin_unlock(&dentry->d_lock);
2234 spin_unlock(&dcache_lock);
2237 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2239 int error = may_delete(dir, dentry, 1);
2241 if (error)
2242 return error;
2244 if (!dir->i_op || !dir->i_op->rmdir)
2245 return -EPERM;
2247 DQUOT_INIT(dir);
2249 mutex_lock(&dentry->d_inode->i_mutex);
2250 dentry_unhash(dentry);
2251 if (d_mountpoint(dentry))
2252 error = -EBUSY;
2253 else {
2254 error = security_inode_rmdir(dir, dentry);
2255 if (!error) {
2256 error = dir->i_op->rmdir(dir, dentry);
2257 if (!error)
2258 dentry->d_inode->i_flags |= S_DEAD;
2261 mutex_unlock(&dentry->d_inode->i_mutex);
2262 if (!error) {
2263 d_delete(dentry);
2265 dput(dentry);
2267 return error;
2270 static long do_rmdir(int dfd, const char __user *pathname)
2272 int error = 0;
2273 char * name;
2274 struct dentry *dentry;
2275 struct nameidata nd;
2277 name = getname(pathname);
2278 if(IS_ERR(name))
2279 return PTR_ERR(name);
2281 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2282 if (error)
2283 goto exit;
2285 switch(nd.last_type) {
2286 case LAST_DOTDOT:
2287 error = -ENOTEMPTY;
2288 goto exit1;
2289 case LAST_DOT:
2290 error = -EINVAL;
2291 goto exit1;
2292 case LAST_ROOT:
2293 error = -EBUSY;
2294 goto exit1;
2296 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2297 dentry = lookup_hash(&nd);
2298 error = PTR_ERR(dentry);
2299 if (IS_ERR(dentry))
2300 goto exit2;
2301 error = mnt_want_write(nd.path.mnt);
2302 if (error)
2303 goto exit3;
2304 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2305 mnt_drop_write(nd.path.mnt);
2306 exit3:
2307 dput(dentry);
2308 exit2:
2309 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2310 exit1:
2311 path_put(&nd.path);
2312 exit:
2313 putname(name);
2314 return error;
2317 asmlinkage long sys_rmdir(const char __user *pathname)
2319 return do_rmdir(AT_FDCWD, pathname);
2322 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2324 int error = may_delete(dir, dentry, 0);
2326 if (error)
2327 return error;
2329 if (!dir->i_op || !dir->i_op->unlink)
2330 return -EPERM;
2332 DQUOT_INIT(dir);
2334 mutex_lock(&dentry->d_inode->i_mutex);
2335 if (d_mountpoint(dentry))
2336 error = -EBUSY;
2337 else {
2338 error = security_inode_unlink(dir, dentry);
2339 if (!error)
2340 error = dir->i_op->unlink(dir, dentry);
2342 mutex_unlock(&dentry->d_inode->i_mutex);
2344 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2345 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2346 fsnotify_link_count(dentry->d_inode);
2347 d_delete(dentry);
2350 return error;
2354 * Make sure that the actual truncation of the file will occur outside its
2355 * directory's i_mutex. Truncate can take a long time if there is a lot of
2356 * writeout happening, and we don't want to prevent access to the directory
2357 * while waiting on the I/O.
2359 static long do_unlinkat(int dfd, const char __user *pathname)
2361 int error = 0;
2362 char * name;
2363 struct dentry *dentry;
2364 struct nameidata nd;
2365 struct inode *inode = NULL;
2367 name = getname(pathname);
2368 if(IS_ERR(name))
2369 return PTR_ERR(name);
2371 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2372 if (error)
2373 goto exit;
2374 error = -EISDIR;
2375 if (nd.last_type != LAST_NORM)
2376 goto exit1;
2377 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2378 dentry = lookup_hash(&nd);
2379 error = PTR_ERR(dentry);
2380 if (!IS_ERR(dentry)) {
2381 /* Why not before? Because we want correct error value */
2382 if (nd.last.name[nd.last.len])
2383 goto slashes;
2384 inode = dentry->d_inode;
2385 if (inode)
2386 atomic_inc(&inode->i_count);
2387 error = mnt_want_write(nd.path.mnt);
2388 if (error)
2389 goto exit2;
2390 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2391 mnt_drop_write(nd.path.mnt);
2392 exit2:
2393 dput(dentry);
2395 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2396 if (inode)
2397 iput(inode); /* truncate the inode here */
2398 exit1:
2399 path_put(&nd.path);
2400 exit:
2401 putname(name);
2402 return error;
2404 slashes:
2405 error = !dentry->d_inode ? -ENOENT :
2406 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2407 goto exit2;
2410 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2412 if ((flag & ~AT_REMOVEDIR) != 0)
2413 return -EINVAL;
2415 if (flag & AT_REMOVEDIR)
2416 return do_rmdir(dfd, pathname);
2418 return do_unlinkat(dfd, pathname);
2421 asmlinkage long sys_unlink(const char __user *pathname)
2423 return do_unlinkat(AT_FDCWD, pathname);
2426 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2428 int error = may_create(dir, dentry, NULL);
2430 if (error)
2431 return error;
2433 if (!dir->i_op || !dir->i_op->symlink)
2434 return -EPERM;
2436 error = security_inode_symlink(dir, dentry, oldname);
2437 if (error)
2438 return error;
2440 DQUOT_INIT(dir);
2441 error = dir->i_op->symlink(dir, dentry, oldname);
2442 if (!error)
2443 fsnotify_create(dir, dentry);
2444 return error;
2447 asmlinkage long sys_symlinkat(const char __user *oldname,
2448 int newdfd, const char __user *newname)
2450 int error = 0;
2451 char * from;
2452 char * to;
2453 struct dentry *dentry;
2454 struct nameidata nd;
2456 from = getname(oldname);
2457 if(IS_ERR(from))
2458 return PTR_ERR(from);
2459 to = getname(newname);
2460 error = PTR_ERR(to);
2461 if (IS_ERR(to))
2462 goto out_putname;
2464 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2465 if (error)
2466 goto out;
2467 dentry = lookup_create(&nd, 0);
2468 error = PTR_ERR(dentry);
2469 if (IS_ERR(dentry))
2470 goto out_unlock;
2472 error = mnt_want_write(nd.path.mnt);
2473 if (error)
2474 goto out_dput;
2475 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from, S_IALLUGO);
2476 mnt_drop_write(nd.path.mnt);
2477 out_dput:
2478 dput(dentry);
2479 out_unlock:
2480 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2481 path_put(&nd.path);
2482 out:
2483 putname(to);
2484 out_putname:
2485 putname(from);
2486 return error;
2489 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2491 return sys_symlinkat(oldname, AT_FDCWD, newname);
2494 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2496 struct inode *inode = old_dentry->d_inode;
2497 int error;
2499 if (!inode)
2500 return -ENOENT;
2502 error = may_create(dir, new_dentry, NULL);
2503 if (error)
2504 return error;
2506 if (dir->i_sb != inode->i_sb)
2507 return -EXDEV;
2510 * A link to an append-only or immutable file cannot be created.
2512 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2513 return -EPERM;
2514 if (!dir->i_op || !dir->i_op->link)
2515 return -EPERM;
2516 if (S_ISDIR(old_dentry->d_inode->i_mode))
2517 return -EPERM;
2519 error = security_inode_link(old_dentry, dir, new_dentry);
2520 if (error)
2521 return error;
2523 mutex_lock(&old_dentry->d_inode->i_mutex);
2524 DQUOT_INIT(dir);
2525 error = dir->i_op->link(old_dentry, dir, new_dentry);
2526 mutex_unlock(&old_dentry->d_inode->i_mutex);
2527 if (!error)
2528 fsnotify_link(dir, old_dentry->d_inode, new_dentry);
2529 return error;
2533 * Hardlinks are often used in delicate situations. We avoid
2534 * security-related surprises by not following symlinks on the
2535 * newname. --KAB
2537 * We don't follow them on the oldname either to be compatible
2538 * with linux 2.0, and to avoid hard-linking to directories
2539 * and other special files. --ADM
2541 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2542 int newdfd, const char __user *newname,
2543 int flags)
2545 struct dentry *new_dentry;
2546 struct nameidata nd, old_nd;
2547 int error;
2548 char * to;
2550 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2551 return -EINVAL;
2553 to = getname(newname);
2554 if (IS_ERR(to))
2555 return PTR_ERR(to);
2557 error = __user_walk_fd(olddfd, oldname,
2558 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2559 &old_nd);
2560 if (error)
2561 goto exit;
2562 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2563 if (error)
2564 goto out;
2565 error = -EXDEV;
2566 if (old_nd.path.mnt != nd.path.mnt)
2567 goto out_release;
2568 new_dentry = lookup_create(&nd, 0);
2569 error = PTR_ERR(new_dentry);
2570 if (IS_ERR(new_dentry))
2571 goto out_unlock;
2572 error = mnt_want_write(nd.path.mnt);
2573 if (error)
2574 goto out_dput;
2575 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2576 mnt_drop_write(nd.path.mnt);
2577 out_dput:
2578 dput(new_dentry);
2579 out_unlock:
2580 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2581 out_release:
2582 path_put(&nd.path);
2583 out:
2584 path_put(&old_nd.path);
2585 exit:
2586 putname(to);
2588 return error;
2591 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2593 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2597 * The worst of all namespace operations - renaming directory. "Perverted"
2598 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2599 * Problems:
2600 * a) we can get into loop creation. Check is done in is_subdir().
2601 * b) race potential - two innocent renames can create a loop together.
2602 * That's where 4.4 screws up. Current fix: serialization on
2603 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2604 * story.
2605 * c) we have to lock _three_ objects - parents and victim (if it exists).
2606 * And that - after we got ->i_mutex on parents (until then we don't know
2607 * whether the target exists). Solution: try to be smart with locking
2608 * order for inodes. We rely on the fact that tree topology may change
2609 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2610 * move will be locked. Thus we can rank directories by the tree
2611 * (ancestors first) and rank all non-directories after them.
2612 * That works since everybody except rename does "lock parent, lookup,
2613 * lock child" and rename is under ->s_vfs_rename_mutex.
2614 * HOWEVER, it relies on the assumption that any object with ->lookup()
2615 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2616 * we'd better make sure that there's no link(2) for them.
2617 * d) some filesystems don't support opened-but-unlinked directories,
2618 * either because of layout or because they are not ready to deal with
2619 * all cases correctly. The latter will be fixed (taking this sort of
2620 * stuff into VFS), but the former is not going away. Solution: the same
2621 * trick as in rmdir().
2622 * e) conversion from fhandle to dentry may come in the wrong moment - when
2623 * we are removing the target. Solution: we will have to grab ->i_mutex
2624 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2625 * ->i_mutex on parents, which works but leads to some truely excessive
2626 * locking].
2628 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2629 struct inode *new_dir, struct dentry *new_dentry)
2631 int error = 0;
2632 struct inode *target;
2635 * If we are going to change the parent - check write permissions,
2636 * we'll need to flip '..'.
2638 if (new_dir != old_dir) {
2639 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2640 if (error)
2641 return error;
2644 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2645 if (error)
2646 return error;
2648 target = new_dentry->d_inode;
2649 if (target) {
2650 mutex_lock(&target->i_mutex);
2651 dentry_unhash(new_dentry);
2653 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2654 error = -EBUSY;
2655 else
2656 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2657 if (target) {
2658 if (!error)
2659 target->i_flags |= S_DEAD;
2660 mutex_unlock(&target->i_mutex);
2661 if (d_unhashed(new_dentry))
2662 d_rehash(new_dentry);
2663 dput(new_dentry);
2665 if (!error)
2666 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2667 d_move(old_dentry,new_dentry);
2668 return error;
2671 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2672 struct inode *new_dir, struct dentry *new_dentry)
2674 struct inode *target;
2675 int error;
2677 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2678 if (error)
2679 return error;
2681 dget(new_dentry);
2682 target = new_dentry->d_inode;
2683 if (target)
2684 mutex_lock(&target->i_mutex);
2685 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2686 error = -EBUSY;
2687 else
2688 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2689 if (!error) {
2690 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2691 d_move(old_dentry, new_dentry);
2693 if (target)
2694 mutex_unlock(&target->i_mutex);
2695 dput(new_dentry);
2696 return error;
2699 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2700 struct inode *new_dir, struct dentry *new_dentry)
2702 int error;
2703 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2704 const char *old_name;
2706 if (old_dentry->d_inode == new_dentry->d_inode)
2707 return 0;
2709 error = may_delete(old_dir, old_dentry, is_dir);
2710 if (error)
2711 return error;
2713 if (!new_dentry->d_inode)
2714 error = may_create(new_dir, new_dentry, NULL);
2715 else
2716 error = may_delete(new_dir, new_dentry, is_dir);
2717 if (error)
2718 return error;
2720 if (!old_dir->i_op || !old_dir->i_op->rename)
2721 return -EPERM;
2723 DQUOT_INIT(old_dir);
2724 DQUOT_INIT(new_dir);
2726 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2728 if (is_dir)
2729 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2730 else
2731 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2732 if (!error) {
2733 const char *new_name = old_dentry->d_name.name;
2734 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2735 new_dentry->d_inode, old_dentry);
2737 fsnotify_oldname_free(old_name);
2739 return error;
2742 static int do_rename(int olddfd, const char *oldname,
2743 int newdfd, const char *newname)
2745 int error = 0;
2746 struct dentry * old_dir, * new_dir;
2747 struct dentry * old_dentry, *new_dentry;
2748 struct dentry * trap;
2749 struct nameidata oldnd, newnd;
2751 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2752 if (error)
2753 goto exit;
2755 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2756 if (error)
2757 goto exit1;
2759 error = -EXDEV;
2760 if (oldnd.path.mnt != newnd.path.mnt)
2761 goto exit2;
2763 old_dir = oldnd.path.dentry;
2764 error = -EBUSY;
2765 if (oldnd.last_type != LAST_NORM)
2766 goto exit2;
2768 new_dir = newnd.path.dentry;
2769 if (newnd.last_type != LAST_NORM)
2770 goto exit2;
2772 trap = lock_rename(new_dir, old_dir);
2774 old_dentry = lookup_hash(&oldnd);
2775 error = PTR_ERR(old_dentry);
2776 if (IS_ERR(old_dentry))
2777 goto exit3;
2778 /* source must exist */
2779 error = -ENOENT;
2780 if (!old_dentry->d_inode)
2781 goto exit4;
2782 /* unless the source is a directory trailing slashes give -ENOTDIR */
2783 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2784 error = -ENOTDIR;
2785 if (oldnd.last.name[oldnd.last.len])
2786 goto exit4;
2787 if (newnd.last.name[newnd.last.len])
2788 goto exit4;
2790 /* source should not be ancestor of target */
2791 error = -EINVAL;
2792 if (old_dentry == trap)
2793 goto exit4;
2794 new_dentry = lookup_hash(&newnd);
2795 error = PTR_ERR(new_dentry);
2796 if (IS_ERR(new_dentry))
2797 goto exit4;
2798 /* target should not be an ancestor of source */
2799 error = -ENOTEMPTY;
2800 if (new_dentry == trap)
2801 goto exit5;
2803 error = mnt_want_write(oldnd.path.mnt);
2804 if (error)
2805 goto exit5;
2806 error = vfs_rename(old_dir->d_inode, old_dentry,
2807 new_dir->d_inode, new_dentry);
2808 mnt_drop_write(oldnd.path.mnt);
2809 exit5:
2810 dput(new_dentry);
2811 exit4:
2812 dput(old_dentry);
2813 exit3:
2814 unlock_rename(new_dir, old_dir);
2815 exit2:
2816 path_put(&newnd.path);
2817 exit1:
2818 path_put(&oldnd.path);
2819 exit:
2820 return error;
2823 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2824 int newdfd, const char __user *newname)
2826 int error;
2827 char * from;
2828 char * to;
2830 from = getname(oldname);
2831 if(IS_ERR(from))
2832 return PTR_ERR(from);
2833 to = getname(newname);
2834 error = PTR_ERR(to);
2835 if (!IS_ERR(to)) {
2836 error = do_rename(olddfd, from, newdfd, to);
2837 putname(to);
2839 putname(from);
2840 return error;
2843 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2845 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2848 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2850 int len;
2852 len = PTR_ERR(link);
2853 if (IS_ERR(link))
2854 goto out;
2856 len = strlen(link);
2857 if (len > (unsigned) buflen)
2858 len = buflen;
2859 if (copy_to_user(buffer, link, len))
2860 len = -EFAULT;
2861 out:
2862 return len;
2866 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2867 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2868 * using) it for any given inode is up to filesystem.
2870 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2872 struct nameidata nd;
2873 void *cookie;
2874 int res;
2876 nd.depth = 0;
2877 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2878 if (IS_ERR(cookie))
2879 return PTR_ERR(cookie);
2881 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2882 if (dentry->d_inode->i_op->put_link)
2883 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2884 return res;
2887 int vfs_follow_link(struct nameidata *nd, const char *link)
2889 return __vfs_follow_link(nd, link);
2892 /* get the link contents into pagecache */
2893 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2895 struct page * page;
2896 struct address_space *mapping = dentry->d_inode->i_mapping;
2897 page = read_mapping_page(mapping, 0, NULL);
2898 if (IS_ERR(page))
2899 return (char*)page;
2900 *ppage = page;
2901 return kmap(page);
2904 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2906 struct page *page = NULL;
2907 char *s = page_getlink(dentry, &page);
2908 int res = vfs_readlink(dentry,buffer,buflen,s);
2909 if (page) {
2910 kunmap(page);
2911 page_cache_release(page);
2913 return res;
2916 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2918 struct page *page = NULL;
2919 nd_set_link(nd, page_getlink(dentry, &page));
2920 return page;
2923 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2925 struct page *page = cookie;
2927 if (page) {
2928 kunmap(page);
2929 page_cache_release(page);
2933 int __page_symlink(struct inode *inode, const char *symname, int len,
2934 gfp_t gfp_mask)
2936 struct address_space *mapping = inode->i_mapping;
2937 struct page *page;
2938 void *fsdata;
2939 int err;
2940 char *kaddr;
2942 retry:
2943 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2944 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2945 if (err)
2946 goto fail;
2948 kaddr = kmap_atomic(page, KM_USER0);
2949 memcpy(kaddr, symname, len-1);
2950 kunmap_atomic(kaddr, KM_USER0);
2952 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2953 page, fsdata);
2954 if (err < 0)
2955 goto fail;
2956 if (err < len-1)
2957 goto retry;
2959 mark_inode_dirty(inode);
2960 return 0;
2961 fail:
2962 return err;
2965 int page_symlink(struct inode *inode, const char *symname, int len)
2967 return __page_symlink(inode, symname, len,
2968 mapping_gfp_mask(inode->i_mapping));
2971 const struct inode_operations page_symlink_inode_operations = {
2972 .readlink = generic_readlink,
2973 .follow_link = page_follow_link_light,
2974 .put_link = page_put_link,
2977 EXPORT_SYMBOL(__user_walk);
2978 EXPORT_SYMBOL(__user_walk_fd);
2979 EXPORT_SYMBOL(follow_down);
2980 EXPORT_SYMBOL(follow_up);
2981 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2982 EXPORT_SYMBOL(getname);
2983 EXPORT_SYMBOL(lock_rename);
2984 EXPORT_SYMBOL(lookup_one_len);
2985 EXPORT_SYMBOL(page_follow_link_light);
2986 EXPORT_SYMBOL(page_put_link);
2987 EXPORT_SYMBOL(page_readlink);
2988 EXPORT_SYMBOL(__page_symlink);
2989 EXPORT_SYMBOL(page_symlink);
2990 EXPORT_SYMBOL(page_symlink_inode_operations);
2991 EXPORT_SYMBOL(path_lookup);
2992 EXPORT_SYMBOL(vfs_path_lookup);
2993 EXPORT_SYMBOL(permission);
2994 EXPORT_SYMBOL(vfs_permission);
2995 EXPORT_SYMBOL(file_permission);
2996 EXPORT_SYMBOL(unlock_rename);
2997 EXPORT_SYMBOL(vfs_create);
2998 EXPORT_SYMBOL(vfs_follow_link);
2999 EXPORT_SYMBOL(vfs_link);
3000 EXPORT_SYMBOL(vfs_mkdir);
3001 EXPORT_SYMBOL(vfs_mknod);
3002 EXPORT_SYMBOL(generic_permission);
3003 EXPORT_SYMBOL(vfs_readlink);
3004 EXPORT_SYMBOL(vfs_rename);
3005 EXPORT_SYMBOL(vfs_rmdir);
3006 EXPORT_SYMBOL(vfs_symlink);
3007 EXPORT_SYMBOL(vfs_unlink);
3008 EXPORT_SYMBOL(dentry_unhash);
3009 EXPORT_SYMBOL(generic_readlink);