Merge branch 'master' of /repos/git/net-next-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / ipmr.c
blob1aa498d7a0a5ae033f4949431548b57b80de62d6
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requrement to work with older peers.
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <linux/slab.h>
51 #include <net/net_namespace.h>
52 #include <net/ip.h>
53 #include <net/protocol.h>
54 #include <linux/skbuff.h>
55 #include <net/route.h>
56 #include <net/sock.h>
57 #include <net/icmp.h>
58 #include <net/udp.h>
59 #include <net/raw.h>
60 #include <linux/notifier.h>
61 #include <linux/if_arp.h>
62 #include <linux/netfilter_ipv4.h>
63 #include <net/ipip.h>
64 #include <net/checksum.h>
65 #include <net/netlink.h>
66 #include <net/fib_rules.h>
68 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
69 #define CONFIG_IP_PIMSM 1
70 #endif
72 struct mr_table {
73 struct list_head list;
74 #ifdef CONFIG_NET_NS
75 struct net *net;
76 #endif
77 u32 id;
78 struct sock *mroute_sk;
79 struct timer_list ipmr_expire_timer;
80 struct list_head mfc_unres_queue;
81 struct list_head mfc_cache_array[MFC_LINES];
82 struct vif_device vif_table[MAXVIFS];
83 int maxvif;
84 atomic_t cache_resolve_queue_len;
85 int mroute_do_assert;
86 int mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 int mroute_reg_vif_num;
89 #endif
92 struct ipmr_rule {
93 struct fib_rule common;
96 struct ipmr_result {
97 struct mr_table *mrt;
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101 Note that the changes are semaphored via rtnl_lock.
104 static DEFINE_RWLOCK(mrt_lock);
107 * Multicast router control variables
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
115 /* We return to original Alan's scheme. Hash table of resolved
116 entries is changed only in process context and protected
117 with weak lock mrt_lock. Queue of unresolved entries is protected
118 with strong spinlock mfc_unres_lock.
120 In this case data path is free of exclusive locks at all.
123 static struct kmem_cache *mrt_cachep __read_mostly;
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
127 struct sk_buff *skb, struct mfc_cache *cache,
128 int local);
129 static int ipmr_cache_report(struct mr_table *mrt,
130 struct sk_buff *pkt, vifi_t vifi, int assert);
131 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
132 struct mfc_cache *c, struct rtmsg *rtm);
133 static void ipmr_expire_process(unsigned long arg);
135 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
136 #define ipmr_for_each_table(mrt, net) \
137 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
139 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
141 struct mr_table *mrt;
143 ipmr_for_each_table(mrt, net) {
144 if (mrt->id == id)
145 return mrt;
147 return NULL;
150 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
151 struct mr_table **mrt)
153 struct ipmr_result res;
154 struct fib_lookup_arg arg = { .result = &res, };
155 int err;
157 err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
158 if (err < 0)
159 return err;
160 *mrt = res.mrt;
161 return 0;
164 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
165 int flags, struct fib_lookup_arg *arg)
167 struct ipmr_result *res = arg->result;
168 struct mr_table *mrt;
170 switch (rule->action) {
171 case FR_ACT_TO_TBL:
172 break;
173 case FR_ACT_UNREACHABLE:
174 return -ENETUNREACH;
175 case FR_ACT_PROHIBIT:
176 return -EACCES;
177 case FR_ACT_BLACKHOLE:
178 default:
179 return -EINVAL;
182 mrt = ipmr_get_table(rule->fr_net, rule->table);
183 if (mrt == NULL)
184 return -EAGAIN;
185 res->mrt = mrt;
186 return 0;
189 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
191 return 1;
194 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
195 FRA_GENERIC_POLICY,
198 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
199 struct fib_rule_hdr *frh, struct nlattr **tb)
201 return 0;
204 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
205 struct nlattr **tb)
207 return 1;
210 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
211 struct fib_rule_hdr *frh)
213 frh->dst_len = 0;
214 frh->src_len = 0;
215 frh->tos = 0;
216 return 0;
219 static struct fib_rules_ops ipmr_rules_ops_template = {
220 .family = FIB_RULES_IPMR,
221 .rule_size = sizeof(struct ipmr_rule),
222 .addr_size = sizeof(u32),
223 .action = ipmr_rule_action,
224 .match = ipmr_rule_match,
225 .configure = ipmr_rule_configure,
226 .compare = ipmr_rule_compare,
227 .default_pref = fib_default_rule_pref,
228 .fill = ipmr_rule_fill,
229 .nlgroup = RTNLGRP_IPV4_RULE,
230 .policy = ipmr_rule_policy,
231 .owner = THIS_MODULE,
234 static int __net_init ipmr_rules_init(struct net *net)
236 struct fib_rules_ops *ops;
237 struct mr_table *mrt;
238 int err;
240 ops = fib_rules_register(&ipmr_rules_ops_template, net);
241 if (IS_ERR(ops))
242 return PTR_ERR(ops);
244 INIT_LIST_HEAD(&net->ipv4.mr_tables);
246 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
247 if (mrt == NULL) {
248 err = -ENOMEM;
249 goto err1;
252 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
253 if (err < 0)
254 goto err2;
256 net->ipv4.mr_rules_ops = ops;
257 return 0;
259 err2:
260 kfree(mrt);
261 err1:
262 fib_rules_unregister(ops);
263 return err;
266 static void __net_exit ipmr_rules_exit(struct net *net)
268 struct mr_table *mrt, *next;
270 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list)
271 kfree(mrt);
272 fib_rules_unregister(net->ipv4.mr_rules_ops);
274 #else
275 #define ipmr_for_each_table(mrt, net) \
276 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
278 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
280 return net->ipv4.mrt;
283 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
284 struct mr_table **mrt)
286 *mrt = net->ipv4.mrt;
287 return 0;
290 static int __net_init ipmr_rules_init(struct net *net)
292 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
293 return net->ipv4.mrt ? 0 : -ENOMEM;
296 static void __net_exit ipmr_rules_exit(struct net *net)
298 kfree(net->ipv4.mrt);
300 #endif
302 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
304 struct mr_table *mrt;
305 unsigned int i;
307 mrt = ipmr_get_table(net, id);
308 if (mrt != NULL)
309 return mrt;
311 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
312 if (mrt == NULL)
313 return NULL;
314 write_pnet(&mrt->net, net);
315 mrt->id = id;
317 /* Forwarding cache */
318 for (i = 0; i < MFC_LINES; i++)
319 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
321 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
323 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
324 (unsigned long)mrt);
326 #ifdef CONFIG_IP_PIMSM
327 mrt->mroute_reg_vif_num = -1;
328 #endif
329 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
330 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
331 #endif
332 return mrt;
335 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
337 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
339 struct net *net = dev_net(dev);
341 dev_close(dev);
343 dev = __dev_get_by_name(net, "tunl0");
344 if (dev) {
345 const struct net_device_ops *ops = dev->netdev_ops;
346 struct ifreq ifr;
347 struct ip_tunnel_parm p;
349 memset(&p, 0, sizeof(p));
350 p.iph.daddr = v->vifc_rmt_addr.s_addr;
351 p.iph.saddr = v->vifc_lcl_addr.s_addr;
352 p.iph.version = 4;
353 p.iph.ihl = 5;
354 p.iph.protocol = IPPROTO_IPIP;
355 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
356 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
358 if (ops->ndo_do_ioctl) {
359 mm_segment_t oldfs = get_fs();
361 set_fs(KERNEL_DS);
362 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
363 set_fs(oldfs);
368 static
369 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
371 struct net_device *dev;
373 dev = __dev_get_by_name(net, "tunl0");
375 if (dev) {
376 const struct net_device_ops *ops = dev->netdev_ops;
377 int err;
378 struct ifreq ifr;
379 struct ip_tunnel_parm p;
380 struct in_device *in_dev;
382 memset(&p, 0, sizeof(p));
383 p.iph.daddr = v->vifc_rmt_addr.s_addr;
384 p.iph.saddr = v->vifc_lcl_addr.s_addr;
385 p.iph.version = 4;
386 p.iph.ihl = 5;
387 p.iph.protocol = IPPROTO_IPIP;
388 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
389 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
391 if (ops->ndo_do_ioctl) {
392 mm_segment_t oldfs = get_fs();
394 set_fs(KERNEL_DS);
395 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
396 set_fs(oldfs);
397 } else
398 err = -EOPNOTSUPP;
400 dev = NULL;
402 if (err == 0 &&
403 (dev = __dev_get_by_name(net, p.name)) != NULL) {
404 dev->flags |= IFF_MULTICAST;
406 in_dev = __in_dev_get_rtnl(dev);
407 if (in_dev == NULL)
408 goto failure;
410 ipv4_devconf_setall(in_dev);
411 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
413 if (dev_open(dev))
414 goto failure;
415 dev_hold(dev);
418 return dev;
420 failure:
421 /* allow the register to be completed before unregistering. */
422 rtnl_unlock();
423 rtnl_lock();
425 unregister_netdevice(dev);
426 return NULL;
429 #ifdef CONFIG_IP_PIMSM
431 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
433 struct net *net = dev_net(dev);
434 struct mr_table *mrt;
435 struct flowi fl = {
436 .oif = dev->ifindex,
437 .iif = skb->skb_iif,
438 .mark = skb->mark,
440 int err;
442 err = ipmr_fib_lookup(net, &fl, &mrt);
443 if (err < 0)
444 return err;
446 read_lock(&mrt_lock);
447 dev->stats.tx_bytes += skb->len;
448 dev->stats.tx_packets++;
449 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
450 read_unlock(&mrt_lock);
451 kfree_skb(skb);
452 return NETDEV_TX_OK;
455 static const struct net_device_ops reg_vif_netdev_ops = {
456 .ndo_start_xmit = reg_vif_xmit,
459 static void reg_vif_setup(struct net_device *dev)
461 dev->type = ARPHRD_PIMREG;
462 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
463 dev->flags = IFF_NOARP;
464 dev->netdev_ops = &reg_vif_netdev_ops,
465 dev->destructor = free_netdev;
466 dev->features |= NETIF_F_NETNS_LOCAL;
469 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
471 struct net_device *dev;
472 struct in_device *in_dev;
473 char name[IFNAMSIZ];
475 if (mrt->id == RT_TABLE_DEFAULT)
476 sprintf(name, "pimreg");
477 else
478 sprintf(name, "pimreg%u", mrt->id);
480 dev = alloc_netdev(0, name, reg_vif_setup);
482 if (dev == NULL)
483 return NULL;
485 dev_net_set(dev, net);
487 if (register_netdevice(dev)) {
488 free_netdev(dev);
489 return NULL;
491 dev->iflink = 0;
493 rcu_read_lock();
494 if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
495 rcu_read_unlock();
496 goto failure;
499 ipv4_devconf_setall(in_dev);
500 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
501 rcu_read_unlock();
503 if (dev_open(dev))
504 goto failure;
506 dev_hold(dev);
508 return dev;
510 failure:
511 /* allow the register to be completed before unregistering. */
512 rtnl_unlock();
513 rtnl_lock();
515 unregister_netdevice(dev);
516 return NULL;
518 #endif
521 * Delete a VIF entry
522 * @notify: Set to 1, if the caller is a notifier_call
525 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
526 struct list_head *head)
528 struct vif_device *v;
529 struct net_device *dev;
530 struct in_device *in_dev;
532 if (vifi < 0 || vifi >= mrt->maxvif)
533 return -EADDRNOTAVAIL;
535 v = &mrt->vif_table[vifi];
537 write_lock_bh(&mrt_lock);
538 dev = v->dev;
539 v->dev = NULL;
541 if (!dev) {
542 write_unlock_bh(&mrt_lock);
543 return -EADDRNOTAVAIL;
546 #ifdef CONFIG_IP_PIMSM
547 if (vifi == mrt->mroute_reg_vif_num)
548 mrt->mroute_reg_vif_num = -1;
549 #endif
551 if (vifi+1 == mrt->maxvif) {
552 int tmp;
553 for (tmp=vifi-1; tmp>=0; tmp--) {
554 if (VIF_EXISTS(mrt, tmp))
555 break;
557 mrt->maxvif = tmp+1;
560 write_unlock_bh(&mrt_lock);
562 dev_set_allmulti(dev, -1);
564 if ((in_dev = __in_dev_get_rtnl(dev)) != NULL) {
565 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
566 ip_rt_multicast_event(in_dev);
569 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER) && !notify)
570 unregister_netdevice_queue(dev, head);
572 dev_put(dev);
573 return 0;
576 static inline void ipmr_cache_free(struct mfc_cache *c)
578 kmem_cache_free(mrt_cachep, c);
581 /* Destroy an unresolved cache entry, killing queued skbs
582 and reporting error to netlink readers.
585 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
587 struct net *net = read_pnet(&mrt->net);
588 struct sk_buff *skb;
589 struct nlmsgerr *e;
591 atomic_dec(&mrt->cache_resolve_queue_len);
593 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
594 if (ip_hdr(skb)->version == 0) {
595 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
596 nlh->nlmsg_type = NLMSG_ERROR;
597 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
598 skb_trim(skb, nlh->nlmsg_len);
599 e = NLMSG_DATA(nlh);
600 e->error = -ETIMEDOUT;
601 memset(&e->msg, 0, sizeof(e->msg));
603 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
604 } else
605 kfree_skb(skb);
608 ipmr_cache_free(c);
612 /* Timer process for the unresolved queue. */
614 static void ipmr_expire_process(unsigned long arg)
616 struct mr_table *mrt = (struct mr_table *)arg;
617 unsigned long now;
618 unsigned long expires;
619 struct mfc_cache *c, *next;
621 if (!spin_trylock(&mfc_unres_lock)) {
622 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
623 return;
626 if (list_empty(&mrt->mfc_unres_queue))
627 goto out;
629 now = jiffies;
630 expires = 10*HZ;
632 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
633 if (time_after(c->mfc_un.unres.expires, now)) {
634 unsigned long interval = c->mfc_un.unres.expires - now;
635 if (interval < expires)
636 expires = interval;
637 continue;
640 list_del(&c->list);
641 ipmr_destroy_unres(mrt, c);
644 if (!list_empty(&mrt->mfc_unres_queue))
645 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
647 out:
648 spin_unlock(&mfc_unres_lock);
651 /* Fill oifs list. It is called under write locked mrt_lock. */
653 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
654 unsigned char *ttls)
656 int vifi;
658 cache->mfc_un.res.minvif = MAXVIFS;
659 cache->mfc_un.res.maxvif = 0;
660 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
662 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
663 if (VIF_EXISTS(mrt, vifi) &&
664 ttls[vifi] && ttls[vifi] < 255) {
665 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
666 if (cache->mfc_un.res.minvif > vifi)
667 cache->mfc_un.res.minvif = vifi;
668 if (cache->mfc_un.res.maxvif <= vifi)
669 cache->mfc_un.res.maxvif = vifi + 1;
674 static int vif_add(struct net *net, struct mr_table *mrt,
675 struct vifctl *vifc, int mrtsock)
677 int vifi = vifc->vifc_vifi;
678 struct vif_device *v = &mrt->vif_table[vifi];
679 struct net_device *dev;
680 struct in_device *in_dev;
681 int err;
683 /* Is vif busy ? */
684 if (VIF_EXISTS(mrt, vifi))
685 return -EADDRINUSE;
687 switch (vifc->vifc_flags) {
688 #ifdef CONFIG_IP_PIMSM
689 case VIFF_REGISTER:
691 * Special Purpose VIF in PIM
692 * All the packets will be sent to the daemon
694 if (mrt->mroute_reg_vif_num >= 0)
695 return -EADDRINUSE;
696 dev = ipmr_reg_vif(net, mrt);
697 if (!dev)
698 return -ENOBUFS;
699 err = dev_set_allmulti(dev, 1);
700 if (err) {
701 unregister_netdevice(dev);
702 dev_put(dev);
703 return err;
705 break;
706 #endif
707 case VIFF_TUNNEL:
708 dev = ipmr_new_tunnel(net, vifc);
709 if (!dev)
710 return -ENOBUFS;
711 err = dev_set_allmulti(dev, 1);
712 if (err) {
713 ipmr_del_tunnel(dev, vifc);
714 dev_put(dev);
715 return err;
717 break;
719 case VIFF_USE_IFINDEX:
720 case 0:
721 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
722 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
723 if (dev && dev->ip_ptr == NULL) {
724 dev_put(dev);
725 return -EADDRNOTAVAIL;
727 } else
728 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
730 if (!dev)
731 return -EADDRNOTAVAIL;
732 err = dev_set_allmulti(dev, 1);
733 if (err) {
734 dev_put(dev);
735 return err;
737 break;
738 default:
739 return -EINVAL;
742 if ((in_dev = __in_dev_get_rtnl(dev)) == NULL) {
743 dev_put(dev);
744 return -EADDRNOTAVAIL;
746 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
747 ip_rt_multicast_event(in_dev);
750 * Fill in the VIF structures
752 v->rate_limit = vifc->vifc_rate_limit;
753 v->local = vifc->vifc_lcl_addr.s_addr;
754 v->remote = vifc->vifc_rmt_addr.s_addr;
755 v->flags = vifc->vifc_flags;
756 if (!mrtsock)
757 v->flags |= VIFF_STATIC;
758 v->threshold = vifc->vifc_threshold;
759 v->bytes_in = 0;
760 v->bytes_out = 0;
761 v->pkt_in = 0;
762 v->pkt_out = 0;
763 v->link = dev->ifindex;
764 if (v->flags&(VIFF_TUNNEL|VIFF_REGISTER))
765 v->link = dev->iflink;
767 /* And finish update writing critical data */
768 write_lock_bh(&mrt_lock);
769 v->dev = dev;
770 #ifdef CONFIG_IP_PIMSM
771 if (v->flags&VIFF_REGISTER)
772 mrt->mroute_reg_vif_num = vifi;
773 #endif
774 if (vifi+1 > mrt->maxvif)
775 mrt->maxvif = vifi+1;
776 write_unlock_bh(&mrt_lock);
777 return 0;
780 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
781 __be32 origin,
782 __be32 mcastgrp)
784 int line = MFC_HASH(mcastgrp, origin);
785 struct mfc_cache *c;
787 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
788 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
789 return c;
791 return NULL;
795 * Allocate a multicast cache entry
797 static struct mfc_cache *ipmr_cache_alloc(void)
799 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
800 if (c == NULL)
801 return NULL;
802 c->mfc_un.res.minvif = MAXVIFS;
803 return c;
806 static struct mfc_cache *ipmr_cache_alloc_unres(void)
808 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
809 if (c == NULL)
810 return NULL;
811 skb_queue_head_init(&c->mfc_un.unres.unresolved);
812 c->mfc_un.unres.expires = jiffies + 10*HZ;
813 return c;
817 * A cache entry has gone into a resolved state from queued
820 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
821 struct mfc_cache *uc, struct mfc_cache *c)
823 struct sk_buff *skb;
824 struct nlmsgerr *e;
827 * Play the pending entries through our router
830 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
831 if (ip_hdr(skb)->version == 0) {
832 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
834 if (ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
835 nlh->nlmsg_len = (skb_tail_pointer(skb) -
836 (u8 *)nlh);
837 } else {
838 nlh->nlmsg_type = NLMSG_ERROR;
839 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
840 skb_trim(skb, nlh->nlmsg_len);
841 e = NLMSG_DATA(nlh);
842 e->error = -EMSGSIZE;
843 memset(&e->msg, 0, sizeof(e->msg));
846 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
847 } else
848 ip_mr_forward(net, mrt, skb, c, 0);
853 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
854 * expects the following bizarre scheme.
856 * Called under mrt_lock.
859 static int ipmr_cache_report(struct mr_table *mrt,
860 struct sk_buff *pkt, vifi_t vifi, int assert)
862 struct sk_buff *skb;
863 const int ihl = ip_hdrlen(pkt);
864 struct igmphdr *igmp;
865 struct igmpmsg *msg;
866 int ret;
868 #ifdef CONFIG_IP_PIMSM
869 if (assert == IGMPMSG_WHOLEPKT)
870 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
871 else
872 #endif
873 skb = alloc_skb(128, GFP_ATOMIC);
875 if (!skb)
876 return -ENOBUFS;
878 #ifdef CONFIG_IP_PIMSM
879 if (assert == IGMPMSG_WHOLEPKT) {
880 /* Ugly, but we have no choice with this interface.
881 Duplicate old header, fix ihl, length etc.
882 And all this only to mangle msg->im_msgtype and
883 to set msg->im_mbz to "mbz" :-)
885 skb_push(skb, sizeof(struct iphdr));
886 skb_reset_network_header(skb);
887 skb_reset_transport_header(skb);
888 msg = (struct igmpmsg *)skb_network_header(skb);
889 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
890 msg->im_msgtype = IGMPMSG_WHOLEPKT;
891 msg->im_mbz = 0;
892 msg->im_vif = mrt->mroute_reg_vif_num;
893 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
894 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
895 sizeof(struct iphdr));
896 } else
897 #endif
901 * Copy the IP header
904 skb->network_header = skb->tail;
905 skb_put(skb, ihl);
906 skb_copy_to_linear_data(skb, pkt->data, ihl);
907 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
908 msg = (struct igmpmsg *)skb_network_header(skb);
909 msg->im_vif = vifi;
910 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
913 * Add our header
916 igmp=(struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
917 igmp->type =
918 msg->im_msgtype = assert;
919 igmp->code = 0;
920 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
921 skb->transport_header = skb->network_header;
924 if (mrt->mroute_sk == NULL) {
925 kfree_skb(skb);
926 return -EINVAL;
930 * Deliver to mrouted
932 ret = sock_queue_rcv_skb(mrt->mroute_sk, skb);
933 if (ret < 0) {
934 if (net_ratelimit())
935 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
936 kfree_skb(skb);
939 return ret;
943 * Queue a packet for resolution. It gets locked cache entry!
946 static int
947 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
949 bool found = false;
950 int err;
951 struct mfc_cache *c;
952 const struct iphdr *iph = ip_hdr(skb);
954 spin_lock_bh(&mfc_unres_lock);
955 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
956 if (c->mfc_mcastgrp == iph->daddr &&
957 c->mfc_origin == iph->saddr) {
958 found = true;
959 break;
963 if (!found) {
965 * Create a new entry if allowable
968 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
969 (c = ipmr_cache_alloc_unres()) == NULL) {
970 spin_unlock_bh(&mfc_unres_lock);
972 kfree_skb(skb);
973 return -ENOBUFS;
977 * Fill in the new cache entry
979 c->mfc_parent = -1;
980 c->mfc_origin = iph->saddr;
981 c->mfc_mcastgrp = iph->daddr;
984 * Reflect first query at mrouted.
986 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
987 if (err < 0) {
988 /* If the report failed throw the cache entry
989 out - Brad Parker
991 spin_unlock_bh(&mfc_unres_lock);
993 ipmr_cache_free(c);
994 kfree_skb(skb);
995 return err;
998 atomic_inc(&mrt->cache_resolve_queue_len);
999 list_add(&c->list, &mrt->mfc_unres_queue);
1001 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1005 * See if we can append the packet
1007 if (c->mfc_un.unres.unresolved.qlen>3) {
1008 kfree_skb(skb);
1009 err = -ENOBUFS;
1010 } else {
1011 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1012 err = 0;
1015 spin_unlock_bh(&mfc_unres_lock);
1016 return err;
1020 * MFC cache manipulation by user space mroute daemon
1023 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1025 int line;
1026 struct mfc_cache *c, *next;
1028 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1030 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1031 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1032 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1033 write_lock_bh(&mrt_lock);
1034 list_del(&c->list);
1035 write_unlock_bh(&mrt_lock);
1037 ipmr_cache_free(c);
1038 return 0;
1041 return -ENOENT;
1044 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1045 struct mfcctl *mfc, int mrtsock)
1047 bool found = false;
1048 int line;
1049 struct mfc_cache *uc, *c;
1051 if (mfc->mfcc_parent >= MAXVIFS)
1052 return -ENFILE;
1054 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1056 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1057 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1058 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1059 found = true;
1060 break;
1064 if (found) {
1065 write_lock_bh(&mrt_lock);
1066 c->mfc_parent = mfc->mfcc_parent;
1067 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1068 if (!mrtsock)
1069 c->mfc_flags |= MFC_STATIC;
1070 write_unlock_bh(&mrt_lock);
1071 return 0;
1074 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1075 return -EINVAL;
1077 c = ipmr_cache_alloc();
1078 if (c == NULL)
1079 return -ENOMEM;
1081 c->mfc_origin = mfc->mfcc_origin.s_addr;
1082 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1083 c->mfc_parent = mfc->mfcc_parent;
1084 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1085 if (!mrtsock)
1086 c->mfc_flags |= MFC_STATIC;
1088 write_lock_bh(&mrt_lock);
1089 list_add(&c->list, &mrt->mfc_cache_array[line]);
1090 write_unlock_bh(&mrt_lock);
1093 * Check to see if we resolved a queued list. If so we
1094 * need to send on the frames and tidy up.
1096 found = false;
1097 spin_lock_bh(&mfc_unres_lock);
1098 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1099 if (uc->mfc_origin == c->mfc_origin &&
1100 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1101 list_del(&uc->list);
1102 atomic_dec(&mrt->cache_resolve_queue_len);
1103 found = true;
1104 break;
1107 if (list_empty(&mrt->mfc_unres_queue))
1108 del_timer(&mrt->ipmr_expire_timer);
1109 spin_unlock_bh(&mfc_unres_lock);
1111 if (found) {
1112 ipmr_cache_resolve(net, mrt, uc, c);
1113 ipmr_cache_free(uc);
1115 return 0;
1119 * Close the multicast socket, and clear the vif tables etc
1122 static void mroute_clean_tables(struct mr_table *mrt)
1124 int i;
1125 LIST_HEAD(list);
1126 struct mfc_cache *c, *next;
1129 * Shut down all active vif entries
1131 for (i = 0; i < mrt->maxvif; i++) {
1132 if (!(mrt->vif_table[i].flags&VIFF_STATIC))
1133 vif_delete(mrt, i, 0, &list);
1135 unregister_netdevice_many(&list);
1138 * Wipe the cache
1140 for (i = 0; i < MFC_LINES; i++) {
1141 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1142 if (c->mfc_flags&MFC_STATIC)
1143 continue;
1144 write_lock_bh(&mrt_lock);
1145 list_del(&c->list);
1146 write_unlock_bh(&mrt_lock);
1148 ipmr_cache_free(c);
1152 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1153 spin_lock_bh(&mfc_unres_lock);
1154 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1155 list_del(&c->list);
1156 ipmr_destroy_unres(mrt, c);
1158 spin_unlock_bh(&mfc_unres_lock);
1162 static void mrtsock_destruct(struct sock *sk)
1164 struct net *net = sock_net(sk);
1165 struct mr_table *mrt;
1167 rtnl_lock();
1168 ipmr_for_each_table(mrt, net) {
1169 if (sk == mrt->mroute_sk) {
1170 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1172 write_lock_bh(&mrt_lock);
1173 mrt->mroute_sk = NULL;
1174 write_unlock_bh(&mrt_lock);
1176 mroute_clean_tables(mrt);
1179 rtnl_unlock();
1183 * Socket options and virtual interface manipulation. The whole
1184 * virtual interface system is a complete heap, but unfortunately
1185 * that's how BSD mrouted happens to think. Maybe one day with a proper
1186 * MOSPF/PIM router set up we can clean this up.
1189 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1191 int ret;
1192 struct vifctl vif;
1193 struct mfcctl mfc;
1194 struct net *net = sock_net(sk);
1195 struct mr_table *mrt;
1197 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1198 if (mrt == NULL)
1199 return -ENOENT;
1201 if (optname != MRT_INIT) {
1202 if (sk != mrt->mroute_sk && !capable(CAP_NET_ADMIN))
1203 return -EACCES;
1206 switch (optname) {
1207 case MRT_INIT:
1208 if (sk->sk_type != SOCK_RAW ||
1209 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1210 return -EOPNOTSUPP;
1211 if (optlen != sizeof(int))
1212 return -ENOPROTOOPT;
1214 rtnl_lock();
1215 if (mrt->mroute_sk) {
1216 rtnl_unlock();
1217 return -EADDRINUSE;
1220 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1221 if (ret == 0) {
1222 write_lock_bh(&mrt_lock);
1223 mrt->mroute_sk = sk;
1224 write_unlock_bh(&mrt_lock);
1226 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228 rtnl_unlock();
1229 return ret;
1230 case MRT_DONE:
1231 if (sk != mrt->mroute_sk)
1232 return -EACCES;
1233 return ip_ra_control(sk, 0, NULL);
1234 case MRT_ADD_VIF:
1235 case MRT_DEL_VIF:
1236 if (optlen != sizeof(vif))
1237 return -EINVAL;
1238 if (copy_from_user(&vif, optval, sizeof(vif)))
1239 return -EFAULT;
1240 if (vif.vifc_vifi >= MAXVIFS)
1241 return -ENFILE;
1242 rtnl_lock();
1243 if (optname == MRT_ADD_VIF) {
1244 ret = vif_add(net, mrt, &vif, sk == mrt->mroute_sk);
1245 } else {
1246 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1248 rtnl_unlock();
1249 return ret;
1252 * Manipulate the forwarding caches. These live
1253 * in a sort of kernel/user symbiosis.
1255 case MRT_ADD_MFC:
1256 case MRT_DEL_MFC:
1257 if (optlen != sizeof(mfc))
1258 return -EINVAL;
1259 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1260 return -EFAULT;
1261 rtnl_lock();
1262 if (optname == MRT_DEL_MFC)
1263 ret = ipmr_mfc_delete(mrt, &mfc);
1264 else
1265 ret = ipmr_mfc_add(net, mrt, &mfc, sk == mrt->mroute_sk);
1266 rtnl_unlock();
1267 return ret;
1269 * Control PIM assert.
1271 case MRT_ASSERT:
1273 int v;
1274 if (get_user(v,(int __user *)optval))
1275 return -EFAULT;
1276 mrt->mroute_do_assert = (v) ? 1 : 0;
1277 return 0;
1279 #ifdef CONFIG_IP_PIMSM
1280 case MRT_PIM:
1282 int v;
1284 if (get_user(v,(int __user *)optval))
1285 return -EFAULT;
1286 v = (v) ? 1 : 0;
1288 rtnl_lock();
1289 ret = 0;
1290 if (v != mrt->mroute_do_pim) {
1291 mrt->mroute_do_pim = v;
1292 mrt->mroute_do_assert = v;
1294 rtnl_unlock();
1295 return ret;
1297 #endif
1298 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1299 case MRT_TABLE:
1301 u32 v;
1303 if (optlen != sizeof(u32))
1304 return -EINVAL;
1305 if (get_user(v, (u32 __user *)optval))
1306 return -EFAULT;
1307 if (sk == mrt->mroute_sk)
1308 return -EBUSY;
1310 rtnl_lock();
1311 ret = 0;
1312 if (!ipmr_new_table(net, v))
1313 ret = -ENOMEM;
1314 raw_sk(sk)->ipmr_table = v;
1315 rtnl_unlock();
1316 return ret;
1318 #endif
1320 * Spurious command, or MRT_VERSION which you cannot
1321 * set.
1323 default:
1324 return -ENOPROTOOPT;
1329 * Getsock opt support for the multicast routing system.
1332 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1334 int olr;
1335 int val;
1336 struct net *net = sock_net(sk);
1337 struct mr_table *mrt;
1339 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1340 if (mrt == NULL)
1341 return -ENOENT;
1343 if (optname != MRT_VERSION &&
1344 #ifdef CONFIG_IP_PIMSM
1345 optname!=MRT_PIM &&
1346 #endif
1347 optname!=MRT_ASSERT)
1348 return -ENOPROTOOPT;
1350 if (get_user(olr, optlen))
1351 return -EFAULT;
1353 olr = min_t(unsigned int, olr, sizeof(int));
1354 if (olr < 0)
1355 return -EINVAL;
1357 if (put_user(olr, optlen))
1358 return -EFAULT;
1359 if (optname == MRT_VERSION)
1360 val = 0x0305;
1361 #ifdef CONFIG_IP_PIMSM
1362 else if (optname == MRT_PIM)
1363 val = mrt->mroute_do_pim;
1364 #endif
1365 else
1366 val = mrt->mroute_do_assert;
1367 if (copy_to_user(optval, &val, olr))
1368 return -EFAULT;
1369 return 0;
1373 * The IP multicast ioctl support routines.
1376 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1378 struct sioc_sg_req sr;
1379 struct sioc_vif_req vr;
1380 struct vif_device *vif;
1381 struct mfc_cache *c;
1382 struct net *net = sock_net(sk);
1383 struct mr_table *mrt;
1385 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1386 if (mrt == NULL)
1387 return -ENOENT;
1389 switch (cmd) {
1390 case SIOCGETVIFCNT:
1391 if (copy_from_user(&vr, arg, sizeof(vr)))
1392 return -EFAULT;
1393 if (vr.vifi >= mrt->maxvif)
1394 return -EINVAL;
1395 read_lock(&mrt_lock);
1396 vif = &mrt->vif_table[vr.vifi];
1397 if (VIF_EXISTS(mrt, vr.vifi)) {
1398 vr.icount = vif->pkt_in;
1399 vr.ocount = vif->pkt_out;
1400 vr.ibytes = vif->bytes_in;
1401 vr.obytes = vif->bytes_out;
1402 read_unlock(&mrt_lock);
1404 if (copy_to_user(arg, &vr, sizeof(vr)))
1405 return -EFAULT;
1406 return 0;
1408 read_unlock(&mrt_lock);
1409 return -EADDRNOTAVAIL;
1410 case SIOCGETSGCNT:
1411 if (copy_from_user(&sr, arg, sizeof(sr)))
1412 return -EFAULT;
1414 read_lock(&mrt_lock);
1415 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1416 if (c) {
1417 sr.pktcnt = c->mfc_un.res.pkt;
1418 sr.bytecnt = c->mfc_un.res.bytes;
1419 sr.wrong_if = c->mfc_un.res.wrong_if;
1420 read_unlock(&mrt_lock);
1422 if (copy_to_user(arg, &sr, sizeof(sr)))
1423 return -EFAULT;
1424 return 0;
1426 read_unlock(&mrt_lock);
1427 return -EADDRNOTAVAIL;
1428 default:
1429 return -ENOIOCTLCMD;
1434 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1436 struct net_device *dev = ptr;
1437 struct net *net = dev_net(dev);
1438 struct mr_table *mrt;
1439 struct vif_device *v;
1440 int ct;
1441 LIST_HEAD(list);
1443 if (event != NETDEV_UNREGISTER)
1444 return NOTIFY_DONE;
1446 ipmr_for_each_table(mrt, net) {
1447 v = &mrt->vif_table[0];
1448 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1449 if (v->dev == dev)
1450 vif_delete(mrt, ct, 1, &list);
1453 unregister_netdevice_many(&list);
1454 return NOTIFY_DONE;
1458 static struct notifier_block ip_mr_notifier = {
1459 .notifier_call = ipmr_device_event,
1463 * Encapsulate a packet by attaching a valid IPIP header to it.
1464 * This avoids tunnel drivers and other mess and gives us the speed so
1465 * important for multicast video.
1468 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1470 struct iphdr *iph;
1471 struct iphdr *old_iph = ip_hdr(skb);
1473 skb_push(skb, sizeof(struct iphdr));
1474 skb->transport_header = skb->network_header;
1475 skb_reset_network_header(skb);
1476 iph = ip_hdr(skb);
1478 iph->version = 4;
1479 iph->tos = old_iph->tos;
1480 iph->ttl = old_iph->ttl;
1481 iph->frag_off = 0;
1482 iph->daddr = daddr;
1483 iph->saddr = saddr;
1484 iph->protocol = IPPROTO_IPIP;
1485 iph->ihl = 5;
1486 iph->tot_len = htons(skb->len);
1487 ip_select_ident(iph, skb_dst(skb), NULL);
1488 ip_send_check(iph);
1490 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1491 nf_reset(skb);
1494 static inline int ipmr_forward_finish(struct sk_buff *skb)
1496 struct ip_options * opt = &(IPCB(skb)->opt);
1498 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1500 if (unlikely(opt->optlen))
1501 ip_forward_options(skb);
1503 return dst_output(skb);
1507 * Processing handlers for ipmr_forward
1510 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1511 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1513 const struct iphdr *iph = ip_hdr(skb);
1514 struct vif_device *vif = &mrt->vif_table[vifi];
1515 struct net_device *dev;
1516 struct rtable *rt;
1517 int encap = 0;
1519 if (vif->dev == NULL)
1520 goto out_free;
1522 #ifdef CONFIG_IP_PIMSM
1523 if (vif->flags & VIFF_REGISTER) {
1524 vif->pkt_out++;
1525 vif->bytes_out += skb->len;
1526 vif->dev->stats.tx_bytes += skb->len;
1527 vif->dev->stats.tx_packets++;
1528 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1529 goto out_free;
1531 #endif
1533 if (vif->flags&VIFF_TUNNEL) {
1534 struct flowi fl = { .oif = vif->link,
1535 .nl_u = { .ip4_u =
1536 { .daddr = vif->remote,
1537 .saddr = vif->local,
1538 .tos = RT_TOS(iph->tos) } },
1539 .proto = IPPROTO_IPIP };
1540 if (ip_route_output_key(net, &rt, &fl))
1541 goto out_free;
1542 encap = sizeof(struct iphdr);
1543 } else {
1544 struct flowi fl = { .oif = vif->link,
1545 .nl_u = { .ip4_u =
1546 { .daddr = iph->daddr,
1547 .tos = RT_TOS(iph->tos) } },
1548 .proto = IPPROTO_IPIP };
1549 if (ip_route_output_key(net, &rt, &fl))
1550 goto out_free;
1553 dev = rt->u.dst.dev;
1555 if (skb->len+encap > dst_mtu(&rt->u.dst) && (ntohs(iph->frag_off) & IP_DF)) {
1556 /* Do not fragment multicasts. Alas, IPv4 does not
1557 allow to send ICMP, so that packets will disappear
1558 to blackhole.
1561 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1562 ip_rt_put(rt);
1563 goto out_free;
1566 encap += LL_RESERVED_SPACE(dev) + rt->u.dst.header_len;
1568 if (skb_cow(skb, encap)) {
1569 ip_rt_put(rt);
1570 goto out_free;
1573 vif->pkt_out++;
1574 vif->bytes_out += skb->len;
1576 skb_dst_drop(skb);
1577 skb_dst_set(skb, &rt->u.dst);
1578 ip_decrease_ttl(ip_hdr(skb));
1580 /* FIXME: forward and output firewalls used to be called here.
1581 * What do we do with netfilter? -- RR */
1582 if (vif->flags & VIFF_TUNNEL) {
1583 ip_encap(skb, vif->local, vif->remote);
1584 /* FIXME: extra output firewall step used to be here. --RR */
1585 vif->dev->stats.tx_packets++;
1586 vif->dev->stats.tx_bytes += skb->len;
1589 IPCB(skb)->flags |= IPSKB_FORWARDED;
1592 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1593 * not only before forwarding, but after forwarding on all output
1594 * interfaces. It is clear, if mrouter runs a multicasting
1595 * program, it should receive packets not depending to what interface
1596 * program is joined.
1597 * If we will not make it, the program will have to join on all
1598 * interfaces. On the other hand, multihoming host (or router, but
1599 * not mrouter) cannot join to more than one interface - it will
1600 * result in receiving multiple packets.
1602 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1603 ipmr_forward_finish);
1604 return;
1606 out_free:
1607 kfree_skb(skb);
1608 return;
1611 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1613 int ct;
1615 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1616 if (mrt->vif_table[ct].dev == dev)
1617 break;
1619 return ct;
1622 /* "local" means that we should preserve one skb (for local delivery) */
1624 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1625 struct sk_buff *skb, struct mfc_cache *cache,
1626 int local)
1628 int psend = -1;
1629 int vif, ct;
1631 vif = cache->mfc_parent;
1632 cache->mfc_un.res.pkt++;
1633 cache->mfc_un.res.bytes += skb->len;
1636 * Wrong interface: drop packet and (maybe) send PIM assert.
1638 if (mrt->vif_table[vif].dev != skb->dev) {
1639 int true_vifi;
1641 if (skb_rtable(skb)->fl.iif == 0) {
1642 /* It is our own packet, looped back.
1643 Very complicated situation...
1645 The best workaround until routing daemons will be
1646 fixed is not to redistribute packet, if it was
1647 send through wrong interface. It means, that
1648 multicast applications WILL NOT work for
1649 (S,G), which have default multicast route pointing
1650 to wrong oif. In any case, it is not a good
1651 idea to use multicasting applications on router.
1653 goto dont_forward;
1656 cache->mfc_un.res.wrong_if++;
1657 true_vifi = ipmr_find_vif(mrt, skb->dev);
1659 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1660 /* pimsm uses asserts, when switching from RPT to SPT,
1661 so that we cannot check that packet arrived on an oif.
1662 It is bad, but otherwise we would need to move pretty
1663 large chunk of pimd to kernel. Ough... --ANK
1665 (mrt->mroute_do_pim ||
1666 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1667 time_after(jiffies,
1668 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1669 cache->mfc_un.res.last_assert = jiffies;
1670 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1672 goto dont_forward;
1675 mrt->vif_table[vif].pkt_in++;
1676 mrt->vif_table[vif].bytes_in += skb->len;
1679 * Forward the frame
1681 for (ct = cache->mfc_un.res.maxvif-1; ct >= cache->mfc_un.res.minvif; ct--) {
1682 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1683 if (psend != -1) {
1684 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1685 if (skb2)
1686 ipmr_queue_xmit(net, mrt, skb2, cache,
1687 psend);
1689 psend = ct;
1692 if (psend != -1) {
1693 if (local) {
1694 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1695 if (skb2)
1696 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1697 } else {
1698 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1699 return 0;
1703 dont_forward:
1704 if (!local)
1705 kfree_skb(skb);
1706 return 0;
1711 * Multicast packets for forwarding arrive here
1714 int ip_mr_input(struct sk_buff *skb)
1716 struct mfc_cache *cache;
1717 struct net *net = dev_net(skb->dev);
1718 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1719 struct mr_table *mrt;
1720 int err;
1722 /* Packet is looped back after forward, it should not be
1723 forwarded second time, but still can be delivered locally.
1725 if (IPCB(skb)->flags&IPSKB_FORWARDED)
1726 goto dont_forward;
1728 err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt);
1729 if (err < 0)
1730 return err;
1732 if (!local) {
1733 if (IPCB(skb)->opt.router_alert) {
1734 if (ip_call_ra_chain(skb))
1735 return 0;
1736 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP){
1737 /* IGMPv1 (and broken IGMPv2 implementations sort of
1738 Cisco IOS <= 11.2(8)) do not put router alert
1739 option to IGMP packets destined to routable
1740 groups. It is very bad, because it means
1741 that we can forward NO IGMP messages.
1743 read_lock(&mrt_lock);
1744 if (mrt->mroute_sk) {
1745 nf_reset(skb);
1746 raw_rcv(mrt->mroute_sk, skb);
1747 read_unlock(&mrt_lock);
1748 return 0;
1750 read_unlock(&mrt_lock);
1754 read_lock(&mrt_lock);
1755 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1758 * No usable cache entry
1760 if (cache == NULL) {
1761 int vif;
1763 if (local) {
1764 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1765 ip_local_deliver(skb);
1766 if (skb2 == NULL) {
1767 read_unlock(&mrt_lock);
1768 return -ENOBUFS;
1770 skb = skb2;
1773 vif = ipmr_find_vif(mrt, skb->dev);
1774 if (vif >= 0) {
1775 int err = ipmr_cache_unresolved(mrt, vif, skb);
1776 read_unlock(&mrt_lock);
1778 return err;
1780 read_unlock(&mrt_lock);
1781 kfree_skb(skb);
1782 return -ENODEV;
1785 ip_mr_forward(net, mrt, skb, cache, local);
1787 read_unlock(&mrt_lock);
1789 if (local)
1790 return ip_local_deliver(skb);
1792 return 0;
1794 dont_forward:
1795 if (local)
1796 return ip_local_deliver(skb);
1797 kfree_skb(skb);
1798 return 0;
1801 #ifdef CONFIG_IP_PIMSM
1802 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1803 unsigned int pimlen)
1805 struct net_device *reg_dev = NULL;
1806 struct iphdr *encap;
1808 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1810 Check that:
1811 a. packet is really destinted to a multicast group
1812 b. packet is not a NULL-REGISTER
1813 c. packet is not truncated
1815 if (!ipv4_is_multicast(encap->daddr) ||
1816 encap->tot_len == 0 ||
1817 ntohs(encap->tot_len) + pimlen > skb->len)
1818 return 1;
1820 read_lock(&mrt_lock);
1821 if (mrt->mroute_reg_vif_num >= 0)
1822 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1823 if (reg_dev)
1824 dev_hold(reg_dev);
1825 read_unlock(&mrt_lock);
1827 if (reg_dev == NULL)
1828 return 1;
1830 skb->mac_header = skb->network_header;
1831 skb_pull(skb, (u8*)encap - skb->data);
1832 skb_reset_network_header(skb);
1833 skb->dev = reg_dev;
1834 skb->protocol = htons(ETH_P_IP);
1835 skb->ip_summed = 0;
1836 skb->pkt_type = PACKET_HOST;
1837 skb_dst_drop(skb);
1838 reg_dev->stats.rx_bytes += skb->len;
1839 reg_dev->stats.rx_packets++;
1840 nf_reset(skb);
1841 netif_rx(skb);
1842 dev_put(reg_dev);
1844 return 0;
1846 #endif
1848 #ifdef CONFIG_IP_PIMSM_V1
1850 * Handle IGMP messages of PIMv1
1853 int pim_rcv_v1(struct sk_buff * skb)
1855 struct igmphdr *pim;
1856 struct net *net = dev_net(skb->dev);
1857 struct mr_table *mrt;
1859 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1860 goto drop;
1862 pim = igmp_hdr(skb);
1864 if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1865 goto drop;
1867 if (!mrt->mroute_do_pim ||
1868 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1869 goto drop;
1871 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1872 drop:
1873 kfree_skb(skb);
1875 return 0;
1877 #endif
1879 #ifdef CONFIG_IP_PIMSM_V2
1880 static int pim_rcv(struct sk_buff * skb)
1882 struct pimreghdr *pim;
1883 struct net *net = dev_net(skb->dev);
1884 struct mr_table *mrt;
1886 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1887 goto drop;
1889 pim = (struct pimreghdr *)skb_transport_header(skb);
1890 if (pim->type != ((PIM_VERSION<<4)|(PIM_REGISTER)) ||
1891 (pim->flags&PIM_NULL_REGISTER) ||
1892 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1893 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1894 goto drop;
1896 if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1897 goto drop;
1899 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1900 drop:
1901 kfree_skb(skb);
1903 return 0;
1905 #endif
1907 static int
1908 ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mfc_cache *c,
1909 struct rtmsg *rtm)
1911 int ct;
1912 struct rtnexthop *nhp;
1913 u8 *b = skb_tail_pointer(skb);
1914 struct rtattr *mp_head;
1916 /* If cache is unresolved, don't try to parse IIF and OIF */
1917 if (c->mfc_parent > MAXVIFS)
1918 return -ENOENT;
1920 if (VIF_EXISTS(mrt, c->mfc_parent))
1921 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
1923 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
1925 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
1926 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
1927 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
1928 goto rtattr_failure;
1929 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
1930 nhp->rtnh_flags = 0;
1931 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
1932 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
1933 nhp->rtnh_len = sizeof(*nhp);
1936 mp_head->rta_type = RTA_MULTIPATH;
1937 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
1938 rtm->rtm_type = RTN_MULTICAST;
1939 return 1;
1941 rtattr_failure:
1942 nlmsg_trim(skb, b);
1943 return -EMSGSIZE;
1946 int ipmr_get_route(struct net *net,
1947 struct sk_buff *skb, struct rtmsg *rtm, int nowait)
1949 int err;
1950 struct mr_table *mrt;
1951 struct mfc_cache *cache;
1952 struct rtable *rt = skb_rtable(skb);
1954 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
1955 if (mrt == NULL)
1956 return -ENOENT;
1958 read_lock(&mrt_lock);
1959 cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
1961 if (cache == NULL) {
1962 struct sk_buff *skb2;
1963 struct iphdr *iph;
1964 struct net_device *dev;
1965 int vif;
1967 if (nowait) {
1968 read_unlock(&mrt_lock);
1969 return -EAGAIN;
1972 dev = skb->dev;
1973 if (dev == NULL || (vif = ipmr_find_vif(mrt, dev)) < 0) {
1974 read_unlock(&mrt_lock);
1975 return -ENODEV;
1977 skb2 = skb_clone(skb, GFP_ATOMIC);
1978 if (!skb2) {
1979 read_unlock(&mrt_lock);
1980 return -ENOMEM;
1983 skb_push(skb2, sizeof(struct iphdr));
1984 skb_reset_network_header(skb2);
1985 iph = ip_hdr(skb2);
1986 iph->ihl = sizeof(struct iphdr) >> 2;
1987 iph->saddr = rt->rt_src;
1988 iph->daddr = rt->rt_dst;
1989 iph->version = 0;
1990 err = ipmr_cache_unresolved(mrt, vif, skb2);
1991 read_unlock(&mrt_lock);
1992 return err;
1995 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
1996 cache->mfc_flags |= MFC_NOTIFY;
1997 err = ipmr_fill_mroute(mrt, skb, cache, rtm);
1998 read_unlock(&mrt_lock);
1999 return err;
2002 #ifdef CONFIG_PROC_FS
2004 * The /proc interfaces to multicast routing /proc/ip_mr_cache /proc/ip_mr_vif
2006 struct ipmr_vif_iter {
2007 struct seq_net_private p;
2008 struct mr_table *mrt;
2009 int ct;
2012 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2013 struct ipmr_vif_iter *iter,
2014 loff_t pos)
2016 struct mr_table *mrt = iter->mrt;
2018 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2019 if (!VIF_EXISTS(mrt, iter->ct))
2020 continue;
2021 if (pos-- == 0)
2022 return &mrt->vif_table[iter->ct];
2024 return NULL;
2027 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2028 __acquires(mrt_lock)
2030 struct ipmr_vif_iter *iter = seq->private;
2031 struct net *net = seq_file_net(seq);
2032 struct mr_table *mrt;
2034 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2035 if (mrt == NULL)
2036 return ERR_PTR(-ENOENT);
2038 iter->mrt = mrt;
2040 read_lock(&mrt_lock);
2041 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2042 : SEQ_START_TOKEN;
2045 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2047 struct ipmr_vif_iter *iter = seq->private;
2048 struct net *net = seq_file_net(seq);
2049 struct mr_table *mrt = iter->mrt;
2051 ++*pos;
2052 if (v == SEQ_START_TOKEN)
2053 return ipmr_vif_seq_idx(net, iter, 0);
2055 while (++iter->ct < mrt->maxvif) {
2056 if (!VIF_EXISTS(mrt, iter->ct))
2057 continue;
2058 return &mrt->vif_table[iter->ct];
2060 return NULL;
2063 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2064 __releases(mrt_lock)
2066 read_unlock(&mrt_lock);
2069 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2071 struct ipmr_vif_iter *iter = seq->private;
2072 struct mr_table *mrt = iter->mrt;
2074 if (v == SEQ_START_TOKEN) {
2075 seq_puts(seq,
2076 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2077 } else {
2078 const struct vif_device *vif = v;
2079 const char *name = vif->dev ? vif->dev->name : "none";
2081 seq_printf(seq,
2082 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2083 vif - mrt->vif_table,
2084 name, vif->bytes_in, vif->pkt_in,
2085 vif->bytes_out, vif->pkt_out,
2086 vif->flags, vif->local, vif->remote);
2088 return 0;
2091 static const struct seq_operations ipmr_vif_seq_ops = {
2092 .start = ipmr_vif_seq_start,
2093 .next = ipmr_vif_seq_next,
2094 .stop = ipmr_vif_seq_stop,
2095 .show = ipmr_vif_seq_show,
2098 static int ipmr_vif_open(struct inode *inode, struct file *file)
2100 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2101 sizeof(struct ipmr_vif_iter));
2104 static const struct file_operations ipmr_vif_fops = {
2105 .owner = THIS_MODULE,
2106 .open = ipmr_vif_open,
2107 .read = seq_read,
2108 .llseek = seq_lseek,
2109 .release = seq_release_net,
2112 struct ipmr_mfc_iter {
2113 struct seq_net_private p;
2114 struct mr_table *mrt;
2115 struct list_head *cache;
2116 int ct;
2120 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2121 struct ipmr_mfc_iter *it, loff_t pos)
2123 struct mr_table *mrt = it->mrt;
2124 struct mfc_cache *mfc;
2126 read_lock(&mrt_lock);
2127 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2128 it->cache = &mrt->mfc_cache_array[it->ct];
2129 list_for_each_entry(mfc, it->cache, list)
2130 if (pos-- == 0)
2131 return mfc;
2133 read_unlock(&mrt_lock);
2135 spin_lock_bh(&mfc_unres_lock);
2136 it->cache = &mrt->mfc_unres_queue;
2137 list_for_each_entry(mfc, it->cache, list)
2138 if (pos-- == 0)
2139 return mfc;
2140 spin_unlock_bh(&mfc_unres_lock);
2142 it->cache = NULL;
2143 return NULL;
2147 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2149 struct ipmr_mfc_iter *it = seq->private;
2150 struct net *net = seq_file_net(seq);
2151 struct mr_table *mrt;
2153 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2154 if (mrt == NULL)
2155 return ERR_PTR(-ENOENT);
2157 it->mrt = mrt;
2158 it->cache = NULL;
2159 it->ct = 0;
2160 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2161 : SEQ_START_TOKEN;
2164 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2166 struct mfc_cache *mfc = v;
2167 struct ipmr_mfc_iter *it = seq->private;
2168 struct net *net = seq_file_net(seq);
2169 struct mr_table *mrt = it->mrt;
2171 ++*pos;
2173 if (v == SEQ_START_TOKEN)
2174 return ipmr_mfc_seq_idx(net, seq->private, 0);
2176 if (mfc->list.next != it->cache)
2177 return list_entry(mfc->list.next, struct mfc_cache, list);
2179 if (it->cache == &mrt->mfc_unres_queue)
2180 goto end_of_list;
2182 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2184 while (++it->ct < MFC_LINES) {
2185 it->cache = &mrt->mfc_cache_array[it->ct];
2186 if (list_empty(it->cache))
2187 continue;
2188 return list_first_entry(it->cache, struct mfc_cache, list);
2191 /* exhausted cache_array, show unresolved */
2192 read_unlock(&mrt_lock);
2193 it->cache = &mrt->mfc_unres_queue;
2194 it->ct = 0;
2196 spin_lock_bh(&mfc_unres_lock);
2197 if (!list_empty(it->cache))
2198 return list_first_entry(it->cache, struct mfc_cache, list);
2200 end_of_list:
2201 spin_unlock_bh(&mfc_unres_lock);
2202 it->cache = NULL;
2204 return NULL;
2207 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2209 struct ipmr_mfc_iter *it = seq->private;
2210 struct mr_table *mrt = it->mrt;
2212 if (it->cache == &mrt->mfc_unres_queue)
2213 spin_unlock_bh(&mfc_unres_lock);
2214 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2215 read_unlock(&mrt_lock);
2218 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2220 int n;
2222 if (v == SEQ_START_TOKEN) {
2223 seq_puts(seq,
2224 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2225 } else {
2226 const struct mfc_cache *mfc = v;
2227 const struct ipmr_mfc_iter *it = seq->private;
2228 const struct mr_table *mrt = it->mrt;
2230 seq_printf(seq, "%08lX %08lX %-3hd",
2231 (unsigned long) mfc->mfc_mcastgrp,
2232 (unsigned long) mfc->mfc_origin,
2233 mfc->mfc_parent);
2235 if (it->cache != &mrt->mfc_unres_queue) {
2236 seq_printf(seq, " %8lu %8lu %8lu",
2237 mfc->mfc_un.res.pkt,
2238 mfc->mfc_un.res.bytes,
2239 mfc->mfc_un.res.wrong_if);
2240 for (n = mfc->mfc_un.res.minvif;
2241 n < mfc->mfc_un.res.maxvif; n++ ) {
2242 if (VIF_EXISTS(mrt, n) &&
2243 mfc->mfc_un.res.ttls[n] < 255)
2244 seq_printf(seq,
2245 " %2d:%-3d",
2246 n, mfc->mfc_un.res.ttls[n]);
2248 } else {
2249 /* unresolved mfc_caches don't contain
2250 * pkt, bytes and wrong_if values
2252 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2254 seq_putc(seq, '\n');
2256 return 0;
2259 static const struct seq_operations ipmr_mfc_seq_ops = {
2260 .start = ipmr_mfc_seq_start,
2261 .next = ipmr_mfc_seq_next,
2262 .stop = ipmr_mfc_seq_stop,
2263 .show = ipmr_mfc_seq_show,
2266 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2268 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2269 sizeof(struct ipmr_mfc_iter));
2272 static const struct file_operations ipmr_mfc_fops = {
2273 .owner = THIS_MODULE,
2274 .open = ipmr_mfc_open,
2275 .read = seq_read,
2276 .llseek = seq_lseek,
2277 .release = seq_release_net,
2279 #endif
2281 #ifdef CONFIG_IP_PIMSM_V2
2282 static const struct net_protocol pim_protocol = {
2283 .handler = pim_rcv,
2284 .netns_ok = 1,
2286 #endif
2290 * Setup for IP multicast routing
2292 static int __net_init ipmr_net_init(struct net *net)
2294 int err;
2296 err = ipmr_rules_init(net);
2297 if (err < 0)
2298 goto fail;
2300 #ifdef CONFIG_PROC_FS
2301 err = -ENOMEM;
2302 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2303 goto proc_vif_fail;
2304 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2305 goto proc_cache_fail;
2306 #endif
2307 return 0;
2309 #ifdef CONFIG_PROC_FS
2310 proc_cache_fail:
2311 proc_net_remove(net, "ip_mr_vif");
2312 proc_vif_fail:
2313 ipmr_rules_exit(net);
2314 #endif
2315 fail:
2316 return err;
2319 static void __net_exit ipmr_net_exit(struct net *net)
2321 #ifdef CONFIG_PROC_FS
2322 proc_net_remove(net, "ip_mr_cache");
2323 proc_net_remove(net, "ip_mr_vif");
2324 #endif
2325 ipmr_rules_exit(net);
2328 static struct pernet_operations ipmr_net_ops = {
2329 .init = ipmr_net_init,
2330 .exit = ipmr_net_exit,
2333 int __init ip_mr_init(void)
2335 int err;
2337 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2338 sizeof(struct mfc_cache),
2339 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2340 NULL);
2341 if (!mrt_cachep)
2342 return -ENOMEM;
2344 err = register_pernet_subsys(&ipmr_net_ops);
2345 if (err)
2346 goto reg_pernet_fail;
2348 err = register_netdevice_notifier(&ip_mr_notifier);
2349 if (err)
2350 goto reg_notif_fail;
2351 #ifdef CONFIG_IP_PIMSM_V2
2352 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2353 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2354 err = -EAGAIN;
2355 goto add_proto_fail;
2357 #endif
2358 return 0;
2360 #ifdef CONFIG_IP_PIMSM_V2
2361 add_proto_fail:
2362 unregister_netdevice_notifier(&ip_mr_notifier);
2363 #endif
2364 reg_notif_fail:
2365 unregister_pernet_subsys(&ipmr_net_ops);
2366 reg_pernet_fail:
2367 kmem_cache_destroy(mrt_cachep);
2368 return err;