[media] gspca - ov519: Use the new video control mechanism
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / media / video / gspca / ov519.c
blob2417a7e70a42cb51f67d2eb84113d3b7731d6ab2
1 /**
2 * OV519 driver
4 * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr)
5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7 * This module is adapted from the ov51x-jpeg package, which itself
8 * was adapted from the ov511 driver.
10 * Original copyright for the ov511 driver is:
12 * Copyright (c) 1999-2006 Mark W. McClelland
13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14 * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17 * Changes by Claudio Matsuoka <claudio@conectiva.com>
19 * ov51x-jpeg original copyright is:
21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2 of the License, or
27 * any later version.
29 * This program is distributed in the hope that it will be useful,
30 * but WITHOUT ANY WARRANTY; without even the implied warranty of
31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32 * GNU General Public License for more details.
34 * You should have received a copy of the GNU General Public License
35 * along with this program; if not, write to the Free Software
36 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 #define MODULE_NAME "ov519"
41 #include <linux/input.h>
42 #include "gspca.h"
44 /* The jpeg_hdr is used by w996Xcf only */
45 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
46 #define CONEX_CAM
47 #include "jpeg.h"
49 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
50 MODULE_DESCRIPTION("OV519 USB Camera Driver");
51 MODULE_LICENSE("GPL");
53 /* global parameters */
54 static int frame_rate;
56 /* Number of times to retry a failed I2C transaction. Increase this if you
57 * are getting "Failed to read sensor ID..." */
58 static int i2c_detect_tries = 10;
60 /* controls */
61 enum e_ctrl {
62 BRIGHTNESS,
63 CONTRAST,
64 COLORS,
65 HFLIP,
66 VFLIP,
67 AUTOBRIGHT,
68 FREQ,
69 NCTRL /* number of controls */
72 /* ov519 device descriptor */
73 struct sd {
74 struct gspca_dev gspca_dev; /* !! must be the first item */
76 struct gspca_ctrl ctrls[NCTRL];
78 __u8 packet_nr;
80 char bridge;
81 #define BRIDGE_OV511 0
82 #define BRIDGE_OV511PLUS 1
83 #define BRIDGE_OV518 2
84 #define BRIDGE_OV518PLUS 3
85 #define BRIDGE_OV519 4
86 #define BRIDGE_OVFX2 5
87 #define BRIDGE_W9968CF 6
88 #define BRIDGE_MASK 7
90 char invert_led;
91 #define BRIDGE_INVERT_LED 8
93 char snapshot_pressed;
94 char snapshot_needs_reset;
96 /* Determined by sensor type */
97 __u8 sif;
99 __u8 quality;
100 #define QUALITY_MIN 50
101 #define QUALITY_MAX 70
102 #define QUALITY_DEF 50
104 __u8 stopped; /* Streaming is temporarily paused */
105 __u8 first_frame;
107 __u8 frame_rate; /* current Framerate */
108 __u8 clockdiv; /* clockdiv override */
110 char sensor; /* Type of image sensor chip (SEN_*) */
111 #define SEN_UNKNOWN 0
112 #define SEN_OV2610 1
113 #define SEN_OV3610 2
114 #define SEN_OV6620 3
115 #define SEN_OV6630 4
116 #define SEN_OV66308AF 5
117 #define SEN_OV7610 6
118 #define SEN_OV7620 7
119 #define SEN_OV7620AE 8
120 #define SEN_OV7640 9
121 #define SEN_OV7648 10
122 #define SEN_OV7670 11
123 #define SEN_OV76BE 12
124 #define SEN_OV8610 13
126 u8 sensor_addr;
127 int sensor_width;
128 int sensor_height;
129 int sensor_reg_cache[256];
131 u8 jpeg_hdr[JPEG_HDR_SZ];
134 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
135 the ov sensors which is already present here. When we have the time we
136 really should move the sensor drivers to v4l2 sub drivers. */
137 #include "w996Xcf.c"
139 /* V4L2 controls supported by the driver */
140 static void setbrightness(struct gspca_dev *gspca_dev);
141 static void setcontrast(struct gspca_dev *gspca_dev);
142 static void setcolors(struct gspca_dev *gspca_dev);
143 static void sethvflip(struct gspca_dev *gspca_dev);
144 static void setautobright(struct gspca_dev *gspca_dev);
145 static void setfreq(struct gspca_dev *gspca_dev);
146 static void setfreq_i(struct sd *sd);
148 static const struct ctrl sd_ctrls[] = {
149 [BRIGHTNESS] = {
151 .id = V4L2_CID_BRIGHTNESS,
152 .type = V4L2_CTRL_TYPE_INTEGER,
153 .name = "Brightness",
154 .minimum = 0,
155 .maximum = 255,
156 .step = 1,
157 .default_value = 127,
159 .set_control = setbrightness,
161 [CONTRAST] = {
163 .id = V4L2_CID_CONTRAST,
164 .type = V4L2_CTRL_TYPE_INTEGER,
165 .name = "Contrast",
166 .minimum = 0,
167 .maximum = 255,
168 .step = 1,
169 .default_value = 127,
171 .set_control = setcontrast,
173 [COLORS] = {
175 .id = V4L2_CID_SATURATION,
176 .type = V4L2_CTRL_TYPE_INTEGER,
177 .name = "Color",
178 .minimum = 0,
179 .maximum = 255,
180 .step = 1,
181 .default_value = 127,
183 .set_control = setcolors,
185 /* The flip controls work with ov7670 only */
186 [HFLIP] = {
188 .id = V4L2_CID_HFLIP,
189 .type = V4L2_CTRL_TYPE_BOOLEAN,
190 .name = "Mirror",
191 .minimum = 0,
192 .maximum = 1,
193 .step = 1,
194 .default_value = 0,
196 .set_control = sethvflip,
198 [VFLIP] = {
200 .id = V4L2_CID_VFLIP,
201 .type = V4L2_CTRL_TYPE_BOOLEAN,
202 .name = "Vflip",
203 .minimum = 0,
204 .maximum = 1,
205 .step = 1,
206 .default_value = 0,
208 .set_control = sethvflip,
210 [AUTOBRIGHT] = {
212 .id = V4L2_CID_AUTOBRIGHTNESS,
213 .type = V4L2_CTRL_TYPE_BOOLEAN,
214 .name = "Auto Brightness",
215 .minimum = 0,
216 .maximum = 1,
217 .step = 1,
218 .default_value = 1,
220 .set_control = setautobright,
222 [FREQ] = {
224 .id = V4L2_CID_POWER_LINE_FREQUENCY,
225 .type = V4L2_CTRL_TYPE_MENU,
226 .name = "Light frequency filter",
227 .minimum = 0,
228 .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */
229 .step = 1,
230 .default_value = 0,
232 .set_control = setfreq,
236 static const struct v4l2_pix_format ov519_vga_mode[] = {
237 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
238 .bytesperline = 320,
239 .sizeimage = 320 * 240 * 3 / 8 + 590,
240 .colorspace = V4L2_COLORSPACE_JPEG,
241 .priv = 1},
242 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
243 .bytesperline = 640,
244 .sizeimage = 640 * 480 * 3 / 8 + 590,
245 .colorspace = V4L2_COLORSPACE_JPEG,
246 .priv = 0},
248 static const struct v4l2_pix_format ov519_sif_mode[] = {
249 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
250 .bytesperline = 160,
251 .sizeimage = 160 * 120 * 3 / 8 + 590,
252 .colorspace = V4L2_COLORSPACE_JPEG,
253 .priv = 3},
254 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
255 .bytesperline = 176,
256 .sizeimage = 176 * 144 * 3 / 8 + 590,
257 .colorspace = V4L2_COLORSPACE_JPEG,
258 .priv = 1},
259 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
260 .bytesperline = 320,
261 .sizeimage = 320 * 240 * 3 / 8 + 590,
262 .colorspace = V4L2_COLORSPACE_JPEG,
263 .priv = 2},
264 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
265 .bytesperline = 352,
266 .sizeimage = 352 * 288 * 3 / 8 + 590,
267 .colorspace = V4L2_COLORSPACE_JPEG,
268 .priv = 0},
271 /* Note some of the sizeimage values for the ov511 / ov518 may seem
272 larger then necessary, however they need to be this big as the ov511 /
273 ov518 always fills the entire isoc frame, using 0 padding bytes when
274 it doesn't have any data. So with low framerates the amount of data
275 transfered can become quite large (libv4l will remove all the 0 padding
276 in userspace). */
277 static const struct v4l2_pix_format ov518_vga_mode[] = {
278 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
279 .bytesperline = 320,
280 .sizeimage = 320 * 240 * 3,
281 .colorspace = V4L2_COLORSPACE_JPEG,
282 .priv = 1},
283 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
284 .bytesperline = 640,
285 .sizeimage = 640 * 480 * 2,
286 .colorspace = V4L2_COLORSPACE_JPEG,
287 .priv = 0},
289 static const struct v4l2_pix_format ov518_sif_mode[] = {
290 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
291 .bytesperline = 160,
292 .sizeimage = 70000,
293 .colorspace = V4L2_COLORSPACE_JPEG,
294 .priv = 3},
295 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
296 .bytesperline = 176,
297 .sizeimage = 70000,
298 .colorspace = V4L2_COLORSPACE_JPEG,
299 .priv = 1},
300 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
301 .bytesperline = 320,
302 .sizeimage = 320 * 240 * 3,
303 .colorspace = V4L2_COLORSPACE_JPEG,
304 .priv = 2},
305 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
306 .bytesperline = 352,
307 .sizeimage = 352 * 288 * 3,
308 .colorspace = V4L2_COLORSPACE_JPEG,
309 .priv = 0},
312 static const struct v4l2_pix_format ov511_vga_mode[] = {
313 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
314 .bytesperline = 320,
315 .sizeimage = 320 * 240 * 3,
316 .colorspace = V4L2_COLORSPACE_JPEG,
317 .priv = 1},
318 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
319 .bytesperline = 640,
320 .sizeimage = 640 * 480 * 2,
321 .colorspace = V4L2_COLORSPACE_JPEG,
322 .priv = 0},
324 static const struct v4l2_pix_format ov511_sif_mode[] = {
325 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
326 .bytesperline = 160,
327 .sizeimage = 70000,
328 .colorspace = V4L2_COLORSPACE_JPEG,
329 .priv = 3},
330 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
331 .bytesperline = 176,
332 .sizeimage = 70000,
333 .colorspace = V4L2_COLORSPACE_JPEG,
334 .priv = 1},
335 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
336 .bytesperline = 320,
337 .sizeimage = 320 * 240 * 3,
338 .colorspace = V4L2_COLORSPACE_JPEG,
339 .priv = 2},
340 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
341 .bytesperline = 352,
342 .sizeimage = 352 * 288 * 3,
343 .colorspace = V4L2_COLORSPACE_JPEG,
344 .priv = 0},
347 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
348 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
349 .bytesperline = 320,
350 .sizeimage = 320 * 240,
351 .colorspace = V4L2_COLORSPACE_SRGB,
352 .priv = 1},
353 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
354 .bytesperline = 640,
355 .sizeimage = 640 * 480,
356 .colorspace = V4L2_COLORSPACE_SRGB,
357 .priv = 0},
359 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
360 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
361 .bytesperline = 160,
362 .sizeimage = 160 * 120,
363 .colorspace = V4L2_COLORSPACE_SRGB,
364 .priv = 3},
365 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
366 .bytesperline = 176,
367 .sizeimage = 176 * 144,
368 .colorspace = V4L2_COLORSPACE_SRGB,
369 .priv = 1},
370 {320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
371 .bytesperline = 320,
372 .sizeimage = 320 * 240,
373 .colorspace = V4L2_COLORSPACE_SRGB,
374 .priv = 2},
375 {352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
376 .bytesperline = 352,
377 .sizeimage = 352 * 288,
378 .colorspace = V4L2_COLORSPACE_SRGB,
379 .priv = 0},
381 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
382 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
383 .bytesperline = 1600,
384 .sizeimage = 1600 * 1200,
385 .colorspace = V4L2_COLORSPACE_SRGB},
387 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
388 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
389 .bytesperline = 640,
390 .sizeimage = 640 * 480,
391 .colorspace = V4L2_COLORSPACE_SRGB,
392 .priv = 1},
393 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
394 .bytesperline = 800,
395 .sizeimage = 800 * 600,
396 .colorspace = V4L2_COLORSPACE_SRGB,
397 .priv = 1},
398 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
399 .bytesperline = 1024,
400 .sizeimage = 1024 * 768,
401 .colorspace = V4L2_COLORSPACE_SRGB,
402 .priv = 1},
403 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
404 .bytesperline = 1600,
405 .sizeimage = 1600 * 1200,
406 .colorspace = V4L2_COLORSPACE_SRGB,
407 .priv = 0},
408 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
409 .bytesperline = 2048,
410 .sizeimage = 2048 * 1536,
411 .colorspace = V4L2_COLORSPACE_SRGB,
412 .priv = 0},
416 /* Registers common to OV511 / OV518 */
417 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */
418 #define R51x_SYS_RESET 0x50
419 /* Reset type flags */
420 #define OV511_RESET_OMNICE 0x08
421 #define R51x_SYS_INIT 0x53
422 #define R51x_SYS_SNAP 0x52
423 #define R51x_SYS_CUST_ID 0x5F
424 #define R51x_COMP_LUT_BEGIN 0x80
426 /* OV511 Camera interface register numbers */
427 #define R511_CAM_DELAY 0x10
428 #define R511_CAM_EDGE 0x11
429 #define R511_CAM_PXCNT 0x12
430 #define R511_CAM_LNCNT 0x13
431 #define R511_CAM_PXDIV 0x14
432 #define R511_CAM_LNDIV 0x15
433 #define R511_CAM_UV_EN 0x16
434 #define R511_CAM_LINE_MODE 0x17
435 #define R511_CAM_OPTS 0x18
437 #define R511_SNAP_FRAME 0x19
438 #define R511_SNAP_PXCNT 0x1A
439 #define R511_SNAP_LNCNT 0x1B
440 #define R511_SNAP_PXDIV 0x1C
441 #define R511_SNAP_LNDIV 0x1D
442 #define R511_SNAP_UV_EN 0x1E
443 #define R511_SNAP_UV_EN 0x1E
444 #define R511_SNAP_OPTS 0x1F
446 #define R511_DRAM_FLOW_CTL 0x20
447 #define R511_FIFO_OPTS 0x31
448 #define R511_I2C_CTL 0x40
449 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */
450 #define R511_COMP_EN 0x78
451 #define R511_COMP_LUT_EN 0x79
453 /* OV518 Camera interface register numbers */
454 #define R518_GPIO_OUT 0x56 /* OV518(+) only */
455 #define R518_GPIO_CTL 0x57 /* OV518(+) only */
457 /* OV519 Camera interface register numbers */
458 #define OV519_R10_H_SIZE 0x10
459 #define OV519_R11_V_SIZE 0x11
460 #define OV519_R12_X_OFFSETL 0x12
461 #define OV519_R13_X_OFFSETH 0x13
462 #define OV519_R14_Y_OFFSETL 0x14
463 #define OV519_R15_Y_OFFSETH 0x15
464 #define OV519_R16_DIVIDER 0x16
465 #define OV519_R20_DFR 0x20
466 #define OV519_R25_FORMAT 0x25
468 /* OV519 System Controller register numbers */
469 #define OV519_SYS_RESET1 0x51
470 #define OV519_SYS_EN_CLK1 0x54
472 #define OV519_GPIO_DATA_OUT0 0x71
473 #define OV519_GPIO_IO_CTRL0 0x72
475 #define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */
478 * The FX2 chip does not give us a zero length read at end of frame.
479 * It does, however, give a short read at the end of a frame, if
480 * necessary, rather than run two frames together.
482 * By choosing the right bulk transfer size, we are guaranteed to always
483 * get a short read for the last read of each frame. Frame sizes are
484 * always a composite number (width * height, or a multiple) so if we
485 * choose a prime number, we are guaranteed that the last read of a
486 * frame will be short.
488 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
489 * otherwise EOVERFLOW "babbling" errors occur. I have not been able
490 * to figure out why. [PMiller]
492 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
494 * It isn't enough to know the number of bytes per frame, in case we
495 * have data dropouts or buffer overruns (even though the FX2 double
496 * buffers, there are some pretty strict real time constraints for
497 * isochronous transfer for larger frame sizes).
499 #define OVFX2_BULK_SIZE (13 * 4096)
501 /* I2C registers */
502 #define R51x_I2C_W_SID 0x41
503 #define R51x_I2C_SADDR_3 0x42
504 #define R51x_I2C_SADDR_2 0x43
505 #define R51x_I2C_R_SID 0x44
506 #define R51x_I2C_DATA 0x45
507 #define R518_I2C_CTL 0x47 /* OV518(+) only */
508 #define OVFX2_I2C_ADDR 0x00
510 /* I2C ADDRESSES */
511 #define OV7xx0_SID 0x42
512 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */
513 #define OV8xx0_SID 0xa0
514 #define OV6xx0_SID 0xc0
516 /* OV7610 registers */
517 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */
518 #define OV7610_REG_BLUE 0x01 /* blue channel balance */
519 #define OV7610_REG_RED 0x02 /* red channel balance */
520 #define OV7610_REG_SAT 0x03 /* saturation */
521 #define OV8610_REG_HUE 0x04 /* 04 reserved */
522 #define OV7610_REG_CNT 0x05 /* Y contrast */
523 #define OV7610_REG_BRT 0x06 /* Y brightness */
524 #define OV7610_REG_COM_C 0x14 /* misc common regs */
525 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */
526 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */
527 #define OV7610_REG_COM_I 0x29 /* misc settings */
529 /* OV7670 registers */
530 #define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
531 #define OV7670_REG_BLUE 0x01 /* blue gain */
532 #define OV7670_REG_RED 0x02 /* red gain */
533 #define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
534 #define OV7670_REG_COM1 0x04 /* Control 1 */
535 #define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */
536 #define OV7670_REG_COM3 0x0c /* Control 3 */
537 #define OV7670_REG_COM4 0x0d /* Control 4 */
538 #define OV7670_REG_COM5 0x0e /* All "reserved" */
539 #define OV7670_REG_COM6 0x0f /* Control 6 */
540 #define OV7670_REG_AECH 0x10 /* More bits of AEC value */
541 #define OV7670_REG_CLKRC 0x11 /* Clock control */
542 #define OV7670_REG_COM7 0x12 /* Control 7 */
543 #define OV7670_COM7_FMT_VGA 0x00
544 #define OV7670_COM7_YUV 0x00 /* YUV */
545 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */
546 #define OV7670_COM7_FMT_MASK 0x38
547 #define OV7670_COM7_RESET 0x80 /* Register reset */
548 #define OV7670_REG_COM8 0x13 /* Control 8 */
549 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */
550 #define OV7670_COM8_AWB 0x02 /* White balance enable */
551 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */
552 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */
553 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */
554 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
555 #define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */
556 #define OV7670_REG_COM10 0x15 /* Control 10 */
557 #define OV7670_REG_HSTART 0x17 /* Horiz start high bits */
558 #define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */
559 #define OV7670_REG_VSTART 0x19 /* Vert start high bits */
560 #define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */
561 #define OV7670_REG_MVFP 0x1e /* Mirror / vflip */
562 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */
563 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */
564 #define OV7670_REG_AEW 0x24 /* AGC upper limit */
565 #define OV7670_REG_AEB 0x25 /* AGC lower limit */
566 #define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */
567 #define OV7670_REG_HREF 0x32 /* HREF pieces */
568 #define OV7670_REG_TSLB 0x3a /* lots of stuff */
569 #define OV7670_REG_COM11 0x3b /* Control 11 */
570 #define OV7670_COM11_EXP 0x02
571 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
572 #define OV7670_REG_COM12 0x3c /* Control 12 */
573 #define OV7670_REG_COM13 0x3d /* Control 13 */
574 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */
575 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */
576 #define OV7670_REG_COM14 0x3e /* Control 14 */
577 #define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */
578 #define OV7670_REG_COM15 0x40 /* Control 15 */
579 #define OV7670_COM15_R00FF 0xc0 /* 00 to FF */
580 #define OV7670_REG_COM16 0x41 /* Control 16 */
581 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */
582 #define OV7670_REG_BRIGHT 0x55 /* Brightness */
583 #define OV7670_REG_CONTRAS 0x56 /* Contrast control */
584 #define OV7670_REG_GFIX 0x69 /* Fix gain control */
585 #define OV7670_REG_RGB444 0x8c /* RGB 444 control */
586 #define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
587 #define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
588 #define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */
589 #define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
590 #define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
591 #define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
592 #define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
593 #define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
594 #define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */
596 struct ov_regvals {
597 __u8 reg;
598 __u8 val;
600 struct ov_i2c_regvals {
601 __u8 reg;
602 __u8 val;
605 /* Settings for OV2610 camera chip */
606 static const struct ov_i2c_regvals norm_2610[] =
608 { 0x12, 0x80 }, /* reset */
611 static const struct ov_i2c_regvals norm_3620b[] =
614 * From the datasheet: "Note that after writing to register COMH
615 * (0x12) to change the sensor mode, registers related to the
616 * sensor’s cropping window will be reset back to their default
617 * values."
619 * "wait 4096 external clock ... to make sure the sensor is
620 * stable and ready to access registers" i.e. 160us at 24MHz
623 { 0x12, 0x80 }, /* COMH reset */
624 { 0x12, 0x00 }, /* QXGA, master */
627 * 11 CLKRC "Clock Rate Control"
628 * [7] internal frequency doublers: on
629 * [6] video port mode: master
630 * [5:0] clock divider: 1
632 { 0x11, 0x80 },
635 * 13 COMI "Common Control I"
636 * = 192 (0xC0) 11000000
637 * COMI[7] "AEC speed selection"
638 * = 1 (0x01) 1....... "Faster AEC correction"
639 * COMI[6] "AEC speed step selection"
640 * = 1 (0x01) .1...... "Big steps, fast"
641 * COMI[5] "Banding filter on off"
642 * = 0 (0x00) ..0..... "Off"
643 * COMI[4] "Banding filter option"
644 * = 0 (0x00) ...0.... "Main clock is 48 MHz and
645 * the PLL is ON"
646 * COMI[3] "Reserved"
647 * = 0 (0x00) ....0...
648 * COMI[2] "AGC auto manual control selection"
649 * = 0 (0x00) .....0.. "Manual"
650 * COMI[1] "AWB auto manual control selection"
651 * = 0 (0x00) ......0. "Manual"
652 * COMI[0] "Exposure control"
653 * = 0 (0x00) .......0 "Manual"
655 { 0x13, 0xC0 },
658 * 09 COMC "Common Control C"
659 * = 8 (0x08) 00001000
660 * COMC[7:5] "Reserved"
661 * = 0 (0x00) 000.....
662 * COMC[4] "Sleep Mode Enable"
663 * = 0 (0x00) ...0.... "Normal mode"
664 * COMC[3:2] "Sensor sampling reset timing selection"
665 * = 2 (0x02) ....10.. "Longer reset time"
666 * COMC[1:0] "Output drive current select"
667 * = 0 (0x00) ......00 "Weakest"
669 { 0x09, 0x08 },
672 * 0C COMD "Common Control D"
673 * = 8 (0x08) 00001000
674 * COMD[7] "Reserved"
675 * = 0 (0x00) 0.......
676 * COMD[6] "Swap MSB and LSB at the output port"
677 * = 0 (0x00) .0...... "False"
678 * COMD[5:3] "Reserved"
679 * = 1 (0x01) ..001...
680 * COMD[2] "Output Average On Off"
681 * = 0 (0x00) .....0.. "Output Normal"
682 * COMD[1] "Sensor precharge voltage selection"
683 * = 0 (0x00) ......0. "Selects internal
684 * reference precharge
685 * voltage"
686 * COMD[0] "Snapshot option"
687 * = 0 (0x00) .......0 "Enable live video output
688 * after snapshot sequence"
690 { 0x0c, 0x08 },
693 * 0D COME "Common Control E"
694 * = 161 (0xA1) 10100001
695 * COME[7] "Output average option"
696 * = 1 (0x01) 1....... "Output average of 4 pixels"
697 * COME[6] "Anti-blooming control"
698 * = 0 (0x00) .0...... "Off"
699 * COME[5:3] "Reserved"
700 * = 4 (0x04) ..100...
701 * COME[2] "Clock output power down pin status"
702 * = 0 (0x00) .....0.. "Tri-state data output pin
703 * on power down"
704 * COME[1] "Data output pin status selection at power down"
705 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK,
706 * HREF, and CHSYNC pins on
707 * power down"
708 * COME[0] "Auto zero circuit select"
709 * = 1 (0x01) .......1 "On"
711 { 0x0d, 0xA1 },
714 * 0E COMF "Common Control F"
715 * = 112 (0x70) 01110000
716 * COMF[7] "System clock selection"
717 * = 0 (0x00) 0....... "Use 24 MHz system clock"
718 * COMF[6:4] "Reserved"
719 * = 7 (0x07) .111....
720 * COMF[3] "Manual auto negative offset canceling selection"
721 * = 0 (0x00) ....0... "Auto detect negative
722 * offset and cancel it"
723 * COMF[2:0] "Reserved"
724 * = 0 (0x00) .....000
726 { 0x0e, 0x70 },
729 * 0F COMG "Common Control G"
730 * = 66 (0x42) 01000010
731 * COMG[7] "Optical black output selection"
732 * = 0 (0x00) 0....... "Disable"
733 * COMG[6] "Black level calibrate selection"
734 * = 1 (0x01) .1...... "Use optical black pixels
735 * to calibrate"
736 * COMG[5:4] "Reserved"
737 * = 0 (0x00) ..00....
738 * COMG[3] "Channel offset adjustment"
739 * = 0 (0x00) ....0... "Disable offset adjustment"
740 * COMG[2] "ADC black level calibration option"
741 * = 0 (0x00) .....0.. "Use B/G line and G/R
742 * line to calibrate each
743 * channel's black level"
744 * COMG[1] "Reserved"
745 * = 1 (0x01) ......1.
746 * COMG[0] "ADC black level calibration enable"
747 * = 0 (0x00) .......0 "Disable"
749 { 0x0f, 0x42 },
752 * 14 COMJ "Common Control J"
753 * = 198 (0xC6) 11000110
754 * COMJ[7:6] "AGC gain ceiling"
755 * = 3 (0x03) 11...... "8x"
756 * COMJ[5:4] "Reserved"
757 * = 0 (0x00) ..00....
758 * COMJ[3] "Auto banding filter"
759 * = 0 (0x00) ....0... "Banding filter is always
760 * on off depending on
761 * COMI[5] setting"
762 * COMJ[2] "VSYNC drop option"
763 * = 1 (0x01) .....1.. "SYNC is dropped if frame
764 * data is dropped"
765 * COMJ[1] "Frame data drop"
766 * = 1 (0x01) ......1. "Drop frame data if
767 * exposure is not within
768 * tolerance. In AEC mode,
769 * data is normally dropped
770 * when data is out of
771 * range."
772 * COMJ[0] "Reserved"
773 * = 0 (0x00) .......0
775 { 0x14, 0xC6 },
778 * 15 COMK "Common Control K"
779 * = 2 (0x02) 00000010
780 * COMK[7] "CHSYNC pin output swap"
781 * = 0 (0x00) 0....... "CHSYNC"
782 * COMK[6] "HREF pin output swap"
783 * = 0 (0x00) .0...... "HREF"
784 * COMK[5] "PCLK output selection"
785 * = 0 (0x00) ..0..... "PCLK always output"
786 * COMK[4] "PCLK edge selection"
787 * = 0 (0x00) ...0.... "Data valid on falling edge"
788 * COMK[3] "HREF output polarity"
789 * = 0 (0x00) ....0... "positive"
790 * COMK[2] "Reserved"
791 * = 0 (0x00) .....0..
792 * COMK[1] "VSYNC polarity"
793 * = 1 (0x01) ......1. "negative"
794 * COMK[0] "HSYNC polarity"
795 * = 0 (0x00) .......0 "positive"
797 { 0x15, 0x02 },
800 * 33 CHLF "Current Control"
801 * = 9 (0x09) 00001001
802 * CHLF[7:6] "Sensor current control"
803 * = 0 (0x00) 00......
804 * CHLF[5] "Sensor current range control"
805 * = 0 (0x00) ..0..... "normal range"
806 * CHLF[4] "Sensor current"
807 * = 0 (0x00) ...0.... "normal current"
808 * CHLF[3] "Sensor buffer current control"
809 * = 1 (0x01) ....1... "half current"
810 * CHLF[2] "Column buffer current control"
811 * = 0 (0x00) .....0.. "normal current"
812 * CHLF[1] "Analog DSP current control"
813 * = 0 (0x00) ......0. "normal current"
814 * CHLF[1] "ADC current control"
815 * = 0 (0x00) ......0. "normal current"
817 { 0x33, 0x09 },
820 * 34 VBLM "Blooming Control"
821 * = 80 (0x50) 01010000
822 * VBLM[7] "Hard soft reset switch"
823 * = 0 (0x00) 0....... "Hard reset"
824 * VBLM[6:4] "Blooming voltage selection"
825 * = 5 (0x05) .101....
826 * VBLM[3:0] "Sensor current control"
827 * = 0 (0x00) ....0000
829 { 0x34, 0x50 },
832 * 36 VCHG "Sensor Precharge Voltage Control"
833 * = 0 (0x00) 00000000
834 * VCHG[7] "Reserved"
835 * = 0 (0x00) 0.......
836 * VCHG[6:4] "Sensor precharge voltage control"
837 * = 0 (0x00) .000....
838 * VCHG[3:0] "Sensor array common reference"
839 * = 0 (0x00) ....0000
841 { 0x36, 0x00 },
844 * 37 ADC "ADC Reference Control"
845 * = 4 (0x04) 00000100
846 * ADC[7:4] "Reserved"
847 * = 0 (0x00) 0000....
848 * ADC[3] "ADC input signal range"
849 * = 0 (0x00) ....0... "Input signal 1.0x"
850 * ADC[2:0] "ADC range control"
851 * = 4 (0x04) .....100
853 { 0x37, 0x04 },
856 * 38 ACOM "Analog Common Ground"
857 * = 82 (0x52) 01010010
858 * ACOM[7] "Analog gain control"
859 * = 0 (0x00) 0....... "Gain 1x"
860 * ACOM[6] "Analog black level calibration"
861 * = 1 (0x01) .1...... "On"
862 * ACOM[5:0] "Reserved"
863 * = 18 (0x12) ..010010
865 { 0x38, 0x52 },
868 * 3A FREFA "Internal Reference Adjustment"
869 * = 0 (0x00) 00000000
870 * FREFA[7:0] "Range"
871 * = 0 (0x00) 00000000
873 { 0x3a, 0x00 },
876 * 3C FVOPT "Internal Reference Adjustment"
877 * = 31 (0x1F) 00011111
878 * FVOPT[7:0] "Range"
879 * = 31 (0x1F) 00011111
881 { 0x3c, 0x1F },
884 * 44 Undocumented = 0 (0x00) 00000000
885 * 44[7:0] "It's a secret"
886 * = 0 (0x00) 00000000
888 { 0x44, 0x00 },
891 * 40 Undocumented = 0 (0x00) 00000000
892 * 40[7:0] "It's a secret"
893 * = 0 (0x00) 00000000
895 { 0x40, 0x00 },
898 * 41 Undocumented = 0 (0x00) 00000000
899 * 41[7:0] "It's a secret"
900 * = 0 (0x00) 00000000
902 { 0x41, 0x00 },
905 * 42 Undocumented = 0 (0x00) 00000000
906 * 42[7:0] "It's a secret"
907 * = 0 (0x00) 00000000
909 { 0x42, 0x00 },
912 * 43 Undocumented = 0 (0x00) 00000000
913 * 43[7:0] "It's a secret"
914 * = 0 (0x00) 00000000
916 { 0x43, 0x00 },
919 * 45 Undocumented = 128 (0x80) 10000000
920 * 45[7:0] "It's a secret"
921 * = 128 (0x80) 10000000
923 { 0x45, 0x80 },
926 * 48 Undocumented = 192 (0xC0) 11000000
927 * 48[7:0] "It's a secret"
928 * = 192 (0xC0) 11000000
930 { 0x48, 0xC0 },
933 * 49 Undocumented = 25 (0x19) 00011001
934 * 49[7:0] "It's a secret"
935 * = 25 (0x19) 00011001
937 { 0x49, 0x19 },
940 * 4B Undocumented = 128 (0x80) 10000000
941 * 4B[7:0] "It's a secret"
942 * = 128 (0x80) 10000000
944 { 0x4B, 0x80 },
947 * 4D Undocumented = 196 (0xC4) 11000100
948 * 4D[7:0] "It's a secret"
949 * = 196 (0xC4) 11000100
951 { 0x4D, 0xC4 },
954 * 35 VREF "Reference Voltage Control"
955 * = 76 (0x4C) 01001100
956 * VREF[7:5] "Column high reference control"
957 * = 2 (0x02) 010..... "higher voltage"
958 * VREF[4:2] "Column low reference control"
959 * = 3 (0x03) ...011.. "Highest voltage"
960 * VREF[1:0] "Reserved"
961 * = 0 (0x00) ......00
963 { 0x35, 0x4C },
966 * 3D Undocumented = 0 (0x00) 00000000
967 * 3D[7:0] "It's a secret"
968 * = 0 (0x00) 00000000
970 { 0x3D, 0x00 },
973 * 3E Undocumented = 0 (0x00) 00000000
974 * 3E[7:0] "It's a secret"
975 * = 0 (0x00) 00000000
977 { 0x3E, 0x00 },
980 * 3B FREFB "Internal Reference Adjustment"
981 * = 24 (0x18) 00011000
982 * FREFB[7:0] "Range"
983 * = 24 (0x18) 00011000
985 { 0x3b, 0x18 },
988 * 33 CHLF "Current Control"
989 * = 25 (0x19) 00011001
990 * CHLF[7:6] "Sensor current control"
991 * = 0 (0x00) 00......
992 * CHLF[5] "Sensor current range control"
993 * = 0 (0x00) ..0..... "normal range"
994 * CHLF[4] "Sensor current"
995 * = 1 (0x01) ...1.... "double current"
996 * CHLF[3] "Sensor buffer current control"
997 * = 1 (0x01) ....1... "half current"
998 * CHLF[2] "Column buffer current control"
999 * = 0 (0x00) .....0.. "normal current"
1000 * CHLF[1] "Analog DSP current control"
1001 * = 0 (0x00) ......0. "normal current"
1002 * CHLF[1] "ADC current control"
1003 * = 0 (0x00) ......0. "normal current"
1005 { 0x33, 0x19 },
1008 * 34 VBLM "Blooming Control"
1009 * = 90 (0x5A) 01011010
1010 * VBLM[7] "Hard soft reset switch"
1011 * = 0 (0x00) 0....... "Hard reset"
1012 * VBLM[6:4] "Blooming voltage selection"
1013 * = 5 (0x05) .101....
1014 * VBLM[3:0] "Sensor current control"
1015 * = 10 (0x0A) ....1010
1017 { 0x34, 0x5A },
1020 * 3B FREFB "Internal Reference Adjustment"
1021 * = 0 (0x00) 00000000
1022 * FREFB[7:0] "Range"
1023 * = 0 (0x00) 00000000
1025 { 0x3b, 0x00 },
1028 * 33 CHLF "Current Control"
1029 * = 9 (0x09) 00001001
1030 * CHLF[7:6] "Sensor current control"
1031 * = 0 (0x00) 00......
1032 * CHLF[5] "Sensor current range control"
1033 * = 0 (0x00) ..0..... "normal range"
1034 * CHLF[4] "Sensor current"
1035 * = 0 (0x00) ...0.... "normal current"
1036 * CHLF[3] "Sensor buffer current control"
1037 * = 1 (0x01) ....1... "half current"
1038 * CHLF[2] "Column buffer current control"
1039 * = 0 (0x00) .....0.. "normal current"
1040 * CHLF[1] "Analog DSP current control"
1041 * = 0 (0x00) ......0. "normal current"
1042 * CHLF[1] "ADC current control"
1043 * = 0 (0x00) ......0. "normal current"
1045 { 0x33, 0x09 },
1048 * 34 VBLM "Blooming Control"
1049 * = 80 (0x50) 01010000
1050 * VBLM[7] "Hard soft reset switch"
1051 * = 0 (0x00) 0....... "Hard reset"
1052 * VBLM[6:4] "Blooming voltage selection"
1053 * = 5 (0x05) .101....
1054 * VBLM[3:0] "Sensor current control"
1055 * = 0 (0x00) ....0000
1057 { 0x34, 0x50 },
1060 * 12 COMH "Common Control H"
1061 * = 64 (0x40) 01000000
1062 * COMH[7] "SRST"
1063 * = 0 (0x00) 0....... "No-op"
1064 * COMH[6:4] "Resolution selection"
1065 * = 4 (0x04) .100.... "XGA"
1066 * COMH[3] "Master slave selection"
1067 * = 0 (0x00) ....0... "Master mode"
1068 * COMH[2] "Internal B/R channel option"
1069 * = 0 (0x00) .....0.. "B/R use same channel"
1070 * COMH[1] "Color bar test pattern"
1071 * = 0 (0x00) ......0. "Off"
1072 * COMH[0] "Reserved"
1073 * = 0 (0x00) .......0
1075 { 0x12, 0x40 },
1078 * 17 HREFST "Horizontal window start"
1079 * = 31 (0x1F) 00011111
1080 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1081 * = 31 (0x1F) 00011111
1083 { 0x17, 0x1F },
1086 * 18 HREFEND "Horizontal window end"
1087 * = 95 (0x5F) 01011111
1088 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1089 * = 95 (0x5F) 01011111
1091 { 0x18, 0x5F },
1094 * 19 VSTRT "Vertical window start"
1095 * = 0 (0x00) 00000000
1096 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1097 * = 0 (0x00) 00000000
1099 { 0x19, 0x00 },
1102 * 1A VEND "Vertical window end"
1103 * = 96 (0x60) 01100000
1104 * VEND[7:0] "Vertical Window End, 8 MSBs"
1105 * = 96 (0x60) 01100000
1107 { 0x1a, 0x60 },
1110 * 32 COMM "Common Control M"
1111 * = 18 (0x12) 00010010
1112 * COMM[7:6] "Pixel clock divide option"
1113 * = 0 (0x00) 00...... "/1"
1114 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1115 * = 2 (0x02) ..010...
1116 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1117 * = 2 (0x02) .....010
1119 { 0x32, 0x12 },
1122 * 03 COMA "Common Control A"
1123 * = 74 (0x4A) 01001010
1124 * COMA[7:4] "AWB Update Threshold"
1125 * = 4 (0x04) 0100....
1126 * COMA[3:2] "Vertical window end line control 2 LSBs"
1127 * = 2 (0x02) ....10..
1128 * COMA[1:0] "Vertical window start line control 2 LSBs"
1129 * = 2 (0x02) ......10
1131 { 0x03, 0x4A },
1134 * 11 CLKRC "Clock Rate Control"
1135 * = 128 (0x80) 10000000
1136 * CLKRC[7] "Internal frequency doublers on off seclection"
1137 * = 1 (0x01) 1....... "On"
1138 * CLKRC[6] "Digital video master slave selection"
1139 * = 0 (0x00) .0...... "Master mode, sensor
1140 * provides PCLK"
1141 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1142 * = 0 (0x00) ..000000
1144 { 0x11, 0x80 },
1147 * 12 COMH "Common Control H"
1148 * = 0 (0x00) 00000000
1149 * COMH[7] "SRST"
1150 * = 0 (0x00) 0....... "No-op"
1151 * COMH[6:4] "Resolution selection"
1152 * = 0 (0x00) .000.... "QXGA"
1153 * COMH[3] "Master slave selection"
1154 * = 0 (0x00) ....0... "Master mode"
1155 * COMH[2] "Internal B/R channel option"
1156 * = 0 (0x00) .....0.. "B/R use same channel"
1157 * COMH[1] "Color bar test pattern"
1158 * = 0 (0x00) ......0. "Off"
1159 * COMH[0] "Reserved"
1160 * = 0 (0x00) .......0
1162 { 0x12, 0x00 },
1165 * 12 COMH "Common Control H"
1166 * = 64 (0x40) 01000000
1167 * COMH[7] "SRST"
1168 * = 0 (0x00) 0....... "No-op"
1169 * COMH[6:4] "Resolution selection"
1170 * = 4 (0x04) .100.... "XGA"
1171 * COMH[3] "Master slave selection"
1172 * = 0 (0x00) ....0... "Master mode"
1173 * COMH[2] "Internal B/R channel option"
1174 * = 0 (0x00) .....0.. "B/R use same channel"
1175 * COMH[1] "Color bar test pattern"
1176 * = 0 (0x00) ......0. "Off"
1177 * COMH[0] "Reserved"
1178 * = 0 (0x00) .......0
1180 { 0x12, 0x40 },
1183 * 17 HREFST "Horizontal window start"
1184 * = 31 (0x1F) 00011111
1185 * HREFST[7:0] "Horizontal window start, 8 MSBs"
1186 * = 31 (0x1F) 00011111
1188 { 0x17, 0x1F },
1191 * 18 HREFEND "Horizontal window end"
1192 * = 95 (0x5F) 01011111
1193 * HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1194 * = 95 (0x5F) 01011111
1196 { 0x18, 0x5F },
1199 * 19 VSTRT "Vertical window start"
1200 * = 0 (0x00) 00000000
1201 * VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1202 * = 0 (0x00) 00000000
1204 { 0x19, 0x00 },
1207 * 1A VEND "Vertical window end"
1208 * = 96 (0x60) 01100000
1209 * VEND[7:0] "Vertical Window End, 8 MSBs"
1210 * = 96 (0x60) 01100000
1212 { 0x1a, 0x60 },
1215 * 32 COMM "Common Control M"
1216 * = 18 (0x12) 00010010
1217 * COMM[7:6] "Pixel clock divide option"
1218 * = 0 (0x00) 00...... "/1"
1219 * COMM[5:3] "Horizontal window end position, 3 LSBs"
1220 * = 2 (0x02) ..010...
1221 * COMM[2:0] "Horizontal window start position, 3 LSBs"
1222 * = 2 (0x02) .....010
1224 { 0x32, 0x12 },
1227 * 03 COMA "Common Control A"
1228 * = 74 (0x4A) 01001010
1229 * COMA[7:4] "AWB Update Threshold"
1230 * = 4 (0x04) 0100....
1231 * COMA[3:2] "Vertical window end line control 2 LSBs"
1232 * = 2 (0x02) ....10..
1233 * COMA[1:0] "Vertical window start line control 2 LSBs"
1234 * = 2 (0x02) ......10
1236 { 0x03, 0x4A },
1239 * 02 RED "Red Gain Control"
1240 * = 175 (0xAF) 10101111
1241 * RED[7] "Action"
1242 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1243 * RED[6:0] "Value"
1244 * = 47 (0x2F) .0101111
1246 { 0x02, 0xAF },
1249 * 2D ADDVSL "VSYNC Pulse Width"
1250 * = 210 (0xD2) 11010010
1251 * ADDVSL[7:0] "VSYNC pulse width, LSB"
1252 * = 210 (0xD2) 11010010
1254 { 0x2d, 0xD2 },
1257 * 00 GAIN = 24 (0x18) 00011000
1258 * GAIN[7:6] "Reserved"
1259 * = 0 (0x00) 00......
1260 * GAIN[5] "Double"
1261 * = 0 (0x00) ..0..... "False"
1262 * GAIN[4] "Double"
1263 * = 1 (0x01) ...1.... "True"
1264 * GAIN[3:0] "Range"
1265 * = 8 (0x08) ....1000
1267 { 0x00, 0x18 },
1270 * 01 BLUE "Blue Gain Control"
1271 * = 240 (0xF0) 11110000
1272 * BLUE[7] "Action"
1273 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1274 * BLUE[6:0] "Value"
1275 * = 112 (0x70) .1110000
1277 { 0x01, 0xF0 },
1280 * 10 AEC "Automatic Exposure Control"
1281 * = 10 (0x0A) 00001010
1282 * AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1283 * = 10 (0x0A) 00001010
1285 { 0x10, 0x0A },
1287 { 0xE1, 0x67 },
1288 { 0xE3, 0x03 },
1289 { 0xE4, 0x26 },
1290 { 0xE5, 0x3E },
1291 { 0xF8, 0x01 },
1292 { 0xFF, 0x01 },
1295 static const struct ov_i2c_regvals norm_6x20[] = {
1296 { 0x12, 0x80 }, /* reset */
1297 { 0x11, 0x01 },
1298 { 0x03, 0x60 },
1299 { 0x05, 0x7f }, /* For when autoadjust is off */
1300 { 0x07, 0xa8 },
1301 /* The ratio of 0x0c and 0x0d controls the white point */
1302 { 0x0c, 0x24 },
1303 { 0x0d, 0x24 },
1304 { 0x0f, 0x15 }, /* COMS */
1305 { 0x10, 0x75 }, /* AEC Exposure time */
1306 { 0x12, 0x24 }, /* Enable AGC */
1307 { 0x14, 0x04 },
1308 /* 0x16: 0x06 helps frame stability with moving objects */
1309 { 0x16, 0x06 },
1310 /* { 0x20, 0x30 }, * Aperture correction enable */
1311 { 0x26, 0xb2 }, /* BLC enable */
1312 /* 0x28: 0x05 Selects RGB format if RGB on */
1313 { 0x28, 0x05 },
1314 { 0x2a, 0x04 }, /* Disable framerate adjust */
1315 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */
1316 { 0x2d, 0x85 },
1317 { 0x33, 0xa0 }, /* Color Processing Parameter */
1318 { 0x34, 0xd2 }, /* Max A/D range */
1319 { 0x38, 0x8b },
1320 { 0x39, 0x40 },
1322 { 0x3c, 0x39 }, /* Enable AEC mode changing */
1323 { 0x3c, 0x3c }, /* Change AEC mode */
1324 { 0x3c, 0x24 }, /* Disable AEC mode changing */
1326 { 0x3d, 0x80 },
1327 /* These next two registers (0x4a, 0x4b) are undocumented.
1328 * They control the color balance */
1329 { 0x4a, 0x80 },
1330 { 0x4b, 0x80 },
1331 { 0x4d, 0xd2 }, /* This reduces noise a bit */
1332 { 0x4e, 0xc1 },
1333 { 0x4f, 0x04 },
1334 /* Do 50-53 have any effect? */
1335 /* Toggle 0x12[2] off and on here? */
1338 static const struct ov_i2c_regvals norm_6x30[] = {
1339 { 0x12, 0x80 }, /* Reset */
1340 { 0x00, 0x1f }, /* Gain */
1341 { 0x01, 0x99 }, /* Blue gain */
1342 { 0x02, 0x7c }, /* Red gain */
1343 { 0x03, 0xc0 }, /* Saturation */
1344 { 0x05, 0x0a }, /* Contrast */
1345 { 0x06, 0x95 }, /* Brightness */
1346 { 0x07, 0x2d }, /* Sharpness */
1347 { 0x0c, 0x20 },
1348 { 0x0d, 0x20 },
1349 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1350 { 0x0f, 0x05 },
1351 { 0x10, 0x9a },
1352 { 0x11, 0x00 }, /* Pixel clock = fastest */
1353 { 0x12, 0x24 }, /* Enable AGC and AWB */
1354 { 0x13, 0x21 },
1355 { 0x14, 0x80 },
1356 { 0x15, 0x01 },
1357 { 0x16, 0x03 },
1358 { 0x17, 0x38 },
1359 { 0x18, 0xea },
1360 { 0x19, 0x04 },
1361 { 0x1a, 0x93 },
1362 { 0x1b, 0x00 },
1363 { 0x1e, 0xc4 },
1364 { 0x1f, 0x04 },
1365 { 0x20, 0x20 },
1366 { 0x21, 0x10 },
1367 { 0x22, 0x88 },
1368 { 0x23, 0xc0 }, /* Crystal circuit power level */
1369 { 0x25, 0x9a }, /* Increase AEC black ratio */
1370 { 0x26, 0xb2 }, /* BLC enable */
1371 { 0x27, 0xa2 },
1372 { 0x28, 0x00 },
1373 { 0x29, 0x00 },
1374 { 0x2a, 0x84 }, /* 60 Hz power */
1375 { 0x2b, 0xa8 }, /* 60 Hz power */
1376 { 0x2c, 0xa0 },
1377 { 0x2d, 0x95 }, /* Enable auto-brightness */
1378 { 0x2e, 0x88 },
1379 { 0x33, 0x26 },
1380 { 0x34, 0x03 },
1381 { 0x36, 0x8f },
1382 { 0x37, 0x80 },
1383 { 0x38, 0x83 },
1384 { 0x39, 0x80 },
1385 { 0x3a, 0x0f },
1386 { 0x3b, 0x3c },
1387 { 0x3c, 0x1a },
1388 { 0x3d, 0x80 },
1389 { 0x3e, 0x80 },
1390 { 0x3f, 0x0e },
1391 { 0x40, 0x00 }, /* White bal */
1392 { 0x41, 0x00 }, /* White bal */
1393 { 0x42, 0x80 },
1394 { 0x43, 0x3f }, /* White bal */
1395 { 0x44, 0x80 },
1396 { 0x45, 0x20 },
1397 { 0x46, 0x20 },
1398 { 0x47, 0x80 },
1399 { 0x48, 0x7f },
1400 { 0x49, 0x00 },
1401 { 0x4a, 0x00 },
1402 { 0x4b, 0x80 },
1403 { 0x4c, 0xd0 },
1404 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1405 { 0x4e, 0x40 },
1406 { 0x4f, 0x07 }, /* UV avg., col. killer: max */
1407 { 0x50, 0xff },
1408 { 0x54, 0x23 }, /* Max AGC gain: 18dB */
1409 { 0x55, 0xff },
1410 { 0x56, 0x12 },
1411 { 0x57, 0x81 },
1412 { 0x58, 0x75 },
1413 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1414 { 0x5a, 0x2c },
1415 { 0x5b, 0x0f }, /* AWB chrominance levels */
1416 { 0x5c, 0x10 },
1417 { 0x3d, 0x80 },
1418 { 0x27, 0xa6 },
1419 { 0x12, 0x20 }, /* Toggle AWB */
1420 { 0x12, 0x24 },
1423 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1425 * Register 0x0f in the 7610 has the following effects:
1427 * 0x85 (AEC method 1): Best overall, good contrast range
1428 * 0x45 (AEC method 2): Very overexposed
1429 * 0xa5 (spec sheet default): Ok, but the black level is
1430 * shifted resulting in loss of contrast
1431 * 0x05 (old driver setting): very overexposed, too much
1432 * contrast
1434 static const struct ov_i2c_regvals norm_7610[] = {
1435 { 0x10, 0xff },
1436 { 0x16, 0x06 },
1437 { 0x28, 0x24 },
1438 { 0x2b, 0xac },
1439 { 0x12, 0x00 },
1440 { 0x38, 0x81 },
1441 { 0x28, 0x24 }, /* 0c */
1442 { 0x0f, 0x85 }, /* lg's setting */
1443 { 0x15, 0x01 },
1444 { 0x20, 0x1c },
1445 { 0x23, 0x2a },
1446 { 0x24, 0x10 },
1447 { 0x25, 0x8a },
1448 { 0x26, 0xa2 },
1449 { 0x27, 0xc2 },
1450 { 0x2a, 0x04 },
1451 { 0x2c, 0xfe },
1452 { 0x2d, 0x93 },
1453 { 0x30, 0x71 },
1454 { 0x31, 0x60 },
1455 { 0x32, 0x26 },
1456 { 0x33, 0x20 },
1457 { 0x34, 0x48 },
1458 { 0x12, 0x24 },
1459 { 0x11, 0x01 },
1460 { 0x0c, 0x24 },
1461 { 0x0d, 0x24 },
1464 static const struct ov_i2c_regvals norm_7620[] = {
1465 { 0x12, 0x80 }, /* reset */
1466 { 0x00, 0x00 }, /* gain */
1467 { 0x01, 0x80 }, /* blue gain */
1468 { 0x02, 0x80 }, /* red gain */
1469 { 0x03, 0xc0 }, /* OV7670_REG_VREF */
1470 { 0x06, 0x60 },
1471 { 0x07, 0x00 },
1472 { 0x0c, 0x24 },
1473 { 0x0c, 0x24 },
1474 { 0x0d, 0x24 },
1475 { 0x11, 0x01 },
1476 { 0x12, 0x24 },
1477 { 0x13, 0x01 },
1478 { 0x14, 0x84 },
1479 { 0x15, 0x01 },
1480 { 0x16, 0x03 },
1481 { 0x17, 0x2f },
1482 { 0x18, 0xcf },
1483 { 0x19, 0x06 },
1484 { 0x1a, 0xf5 },
1485 { 0x1b, 0x00 },
1486 { 0x20, 0x18 },
1487 { 0x21, 0x80 },
1488 { 0x22, 0x80 },
1489 { 0x23, 0x00 },
1490 { 0x26, 0xa2 },
1491 { 0x27, 0xea },
1492 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1493 { 0x29, 0x00 },
1494 { 0x2a, 0x10 },
1495 { 0x2b, 0x00 },
1496 { 0x2c, 0x88 },
1497 { 0x2d, 0x91 },
1498 { 0x2e, 0x80 },
1499 { 0x2f, 0x44 },
1500 { 0x60, 0x27 },
1501 { 0x61, 0x02 },
1502 { 0x62, 0x5f },
1503 { 0x63, 0xd5 },
1504 { 0x64, 0x57 },
1505 { 0x65, 0x83 },
1506 { 0x66, 0x55 },
1507 { 0x67, 0x92 },
1508 { 0x68, 0xcf },
1509 { 0x69, 0x76 },
1510 { 0x6a, 0x22 },
1511 { 0x6b, 0x00 },
1512 { 0x6c, 0x02 },
1513 { 0x6d, 0x44 },
1514 { 0x6e, 0x80 },
1515 { 0x6f, 0x1d },
1516 { 0x70, 0x8b },
1517 { 0x71, 0x00 },
1518 { 0x72, 0x14 },
1519 { 0x73, 0x54 },
1520 { 0x74, 0x00 },
1521 { 0x75, 0x8e },
1522 { 0x76, 0x00 },
1523 { 0x77, 0xff },
1524 { 0x78, 0x80 },
1525 { 0x79, 0x80 },
1526 { 0x7a, 0x80 },
1527 { 0x7b, 0xe2 },
1528 { 0x7c, 0x00 },
1531 /* 7640 and 7648. The defaults should be OK for most registers. */
1532 static const struct ov_i2c_regvals norm_7640[] = {
1533 { 0x12, 0x80 },
1534 { 0x12, 0x14 },
1537 /* 7670. Defaults taken from OmniVision provided data,
1538 * as provided by Jonathan Corbet of OLPC */
1539 static const struct ov_i2c_regvals norm_7670[] = {
1540 { OV7670_REG_COM7, OV7670_COM7_RESET },
1541 { OV7670_REG_TSLB, 0x04 }, /* OV */
1542 { OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1543 { OV7670_REG_CLKRC, 0x01 },
1545 * Set the hardware window. These values from OV don't entirely
1546 * make sense - hstop is less than hstart. But they work...
1548 { OV7670_REG_HSTART, 0x13 },
1549 { OV7670_REG_HSTOP, 0x01 },
1550 { OV7670_REG_HREF, 0xb6 },
1551 { OV7670_REG_VSTART, 0x02 },
1552 { OV7670_REG_VSTOP, 0x7a },
1553 { OV7670_REG_VREF, 0x0a },
1555 { OV7670_REG_COM3, 0x00 },
1556 { OV7670_REG_COM14, 0x00 },
1557 /* Mystery scaling numbers */
1558 { 0x70, 0x3a },
1559 { 0x71, 0x35 },
1560 { 0x72, 0x11 },
1561 { 0x73, 0xf0 },
1562 { 0xa2, 0x02 },
1563 /* { OV7670_REG_COM10, 0x0 }, */
1565 /* Gamma curve values */
1566 { 0x7a, 0x20 },
1567 { 0x7b, 0x10 },
1568 { 0x7c, 0x1e },
1569 { 0x7d, 0x35 },
1570 { 0x7e, 0x5a },
1571 { 0x7f, 0x69 },
1572 { 0x80, 0x76 },
1573 { 0x81, 0x80 },
1574 { 0x82, 0x88 },
1575 { 0x83, 0x8f },
1576 { 0x84, 0x96 },
1577 { 0x85, 0xa3 },
1578 { 0x86, 0xaf },
1579 { 0x87, 0xc4 },
1580 { 0x88, 0xd7 },
1581 { 0x89, 0xe8 },
1583 /* AGC and AEC parameters. Note we start by disabling those features,
1584 then turn them only after tweaking the values. */
1585 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1586 | OV7670_COM8_AECSTEP
1587 | OV7670_COM8_BFILT },
1588 { OV7670_REG_GAIN, 0x00 },
1589 { OV7670_REG_AECH, 0x00 },
1590 { OV7670_REG_COM4, 0x40 }, /* magic reserved bit */
1591 { OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1592 { OV7670_REG_BD50MAX, 0x05 },
1593 { OV7670_REG_BD60MAX, 0x07 },
1594 { OV7670_REG_AEW, 0x95 },
1595 { OV7670_REG_AEB, 0x33 },
1596 { OV7670_REG_VPT, 0xe3 },
1597 { OV7670_REG_HAECC1, 0x78 },
1598 { OV7670_REG_HAECC2, 0x68 },
1599 { 0xa1, 0x03 }, /* magic */
1600 { OV7670_REG_HAECC3, 0xd8 },
1601 { OV7670_REG_HAECC4, 0xd8 },
1602 { OV7670_REG_HAECC5, 0xf0 },
1603 { OV7670_REG_HAECC6, 0x90 },
1604 { OV7670_REG_HAECC7, 0x94 },
1605 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1606 | OV7670_COM8_AECSTEP
1607 | OV7670_COM8_BFILT
1608 | OV7670_COM8_AGC
1609 | OV7670_COM8_AEC },
1611 /* Almost all of these are magic "reserved" values. */
1612 { OV7670_REG_COM5, 0x61 },
1613 { OV7670_REG_COM6, 0x4b },
1614 { 0x16, 0x02 },
1615 { OV7670_REG_MVFP, 0x07 },
1616 { 0x21, 0x02 },
1617 { 0x22, 0x91 },
1618 { 0x29, 0x07 },
1619 { 0x33, 0x0b },
1620 { 0x35, 0x0b },
1621 { 0x37, 0x1d },
1622 { 0x38, 0x71 },
1623 { 0x39, 0x2a },
1624 { OV7670_REG_COM12, 0x78 },
1625 { 0x4d, 0x40 },
1626 { 0x4e, 0x20 },
1627 { OV7670_REG_GFIX, 0x00 },
1628 { 0x6b, 0x4a },
1629 { 0x74, 0x10 },
1630 { 0x8d, 0x4f },
1631 { 0x8e, 0x00 },
1632 { 0x8f, 0x00 },
1633 { 0x90, 0x00 },
1634 { 0x91, 0x00 },
1635 { 0x96, 0x00 },
1636 { 0x9a, 0x00 },
1637 { 0xb0, 0x84 },
1638 { 0xb1, 0x0c },
1639 { 0xb2, 0x0e },
1640 { 0xb3, 0x82 },
1641 { 0xb8, 0x0a },
1643 /* More reserved magic, some of which tweaks white balance */
1644 { 0x43, 0x0a },
1645 { 0x44, 0xf0 },
1646 { 0x45, 0x34 },
1647 { 0x46, 0x58 },
1648 { 0x47, 0x28 },
1649 { 0x48, 0x3a },
1650 { 0x59, 0x88 },
1651 { 0x5a, 0x88 },
1652 { 0x5b, 0x44 },
1653 { 0x5c, 0x67 },
1654 { 0x5d, 0x49 },
1655 { 0x5e, 0x0e },
1656 { 0x6c, 0x0a },
1657 { 0x6d, 0x55 },
1658 { 0x6e, 0x11 },
1659 { 0x6f, 0x9f },
1660 /* "9e for advance AWB" */
1661 { 0x6a, 0x40 },
1662 { OV7670_REG_BLUE, 0x40 },
1663 { OV7670_REG_RED, 0x60 },
1664 { OV7670_REG_COM8, OV7670_COM8_FASTAEC
1665 | OV7670_COM8_AECSTEP
1666 | OV7670_COM8_BFILT
1667 | OV7670_COM8_AGC
1668 | OV7670_COM8_AEC
1669 | OV7670_COM8_AWB },
1671 /* Matrix coefficients */
1672 { 0x4f, 0x80 },
1673 { 0x50, 0x80 },
1674 { 0x51, 0x00 },
1675 { 0x52, 0x22 },
1676 { 0x53, 0x5e },
1677 { 0x54, 0x80 },
1678 { 0x58, 0x9e },
1680 { OV7670_REG_COM16, OV7670_COM16_AWBGAIN },
1681 { OV7670_REG_EDGE, 0x00 },
1682 { 0x75, 0x05 },
1683 { 0x76, 0xe1 },
1684 { 0x4c, 0x00 },
1685 { 0x77, 0x01 },
1686 { OV7670_REG_COM13, OV7670_COM13_GAMMA
1687 | OV7670_COM13_UVSAT
1688 | 2}, /* was 3 */
1689 { 0x4b, 0x09 },
1690 { 0xc9, 0x60 },
1691 { OV7670_REG_COM16, 0x38 },
1692 { 0x56, 0x40 },
1694 { 0x34, 0x11 },
1695 { OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1696 { 0xa4, 0x88 },
1697 { 0x96, 0x00 },
1698 { 0x97, 0x30 },
1699 { 0x98, 0x20 },
1700 { 0x99, 0x30 },
1701 { 0x9a, 0x84 },
1702 { 0x9b, 0x29 },
1703 { 0x9c, 0x03 },
1704 { 0x9d, 0x4c },
1705 { 0x9e, 0x3f },
1706 { 0x78, 0x04 },
1708 /* Extra-weird stuff. Some sort of multiplexor register */
1709 { 0x79, 0x01 },
1710 { 0xc8, 0xf0 },
1711 { 0x79, 0x0f },
1712 { 0xc8, 0x00 },
1713 { 0x79, 0x10 },
1714 { 0xc8, 0x7e },
1715 { 0x79, 0x0a },
1716 { 0xc8, 0x80 },
1717 { 0x79, 0x0b },
1718 { 0xc8, 0x01 },
1719 { 0x79, 0x0c },
1720 { 0xc8, 0x0f },
1721 { 0x79, 0x0d },
1722 { 0xc8, 0x20 },
1723 { 0x79, 0x09 },
1724 { 0xc8, 0x80 },
1725 { 0x79, 0x02 },
1726 { 0xc8, 0xc0 },
1727 { 0x79, 0x03 },
1728 { 0xc8, 0x40 },
1729 { 0x79, 0x05 },
1730 { 0xc8, 0x30 },
1731 { 0x79, 0x26 },
1734 static const struct ov_i2c_regvals norm_8610[] = {
1735 { 0x12, 0x80 },
1736 { 0x00, 0x00 },
1737 { 0x01, 0x80 },
1738 { 0x02, 0x80 },
1739 { 0x03, 0xc0 },
1740 { 0x04, 0x30 },
1741 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1742 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1743 { 0x0a, 0x86 },
1744 { 0x0b, 0xb0 },
1745 { 0x0c, 0x20 },
1746 { 0x0d, 0x20 },
1747 { 0x11, 0x01 },
1748 { 0x12, 0x25 },
1749 { 0x13, 0x01 },
1750 { 0x14, 0x04 },
1751 { 0x15, 0x01 }, /* Lin and Win think different about UV order */
1752 { 0x16, 0x03 },
1753 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1754 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1755 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1756 { 0x1a, 0xf5 },
1757 { 0x1b, 0x00 },
1758 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1759 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1760 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1761 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1762 { 0x26, 0xa2 },
1763 { 0x27, 0xea },
1764 { 0x28, 0x00 },
1765 { 0x29, 0x00 },
1766 { 0x2a, 0x80 },
1767 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1768 { 0x2c, 0xac },
1769 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1770 { 0x2e, 0x80 },
1771 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1772 { 0x4c, 0x00 },
1773 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1774 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1775 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1776 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1777 { 0x63, 0xff },
1778 { 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1779 * maybe thats wrong */
1780 { 0x65, 0x00 },
1781 { 0x66, 0x55 },
1782 { 0x67, 0xb0 },
1783 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1784 { 0x69, 0x02 },
1785 { 0x6a, 0x22 },
1786 { 0x6b, 0x00 },
1787 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1788 * deleting bit7 colors the first images red */
1789 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1790 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1791 { 0x6f, 0x01 },
1792 { 0x70, 0x8b },
1793 { 0x71, 0x00 },
1794 { 0x72, 0x14 },
1795 { 0x73, 0x54 },
1796 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1797 { 0x75, 0x0e },
1798 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1799 { 0x77, 0xff },
1800 { 0x78, 0x80 },
1801 { 0x79, 0x80 },
1802 { 0x7a, 0x80 },
1803 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1804 { 0x7c, 0x00 },
1805 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1806 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1807 { 0x7f, 0xfb },
1808 { 0x80, 0x28 },
1809 { 0x81, 0x00 },
1810 { 0x82, 0x23 },
1811 { 0x83, 0x0b },
1812 { 0x84, 0x00 },
1813 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1814 { 0x86, 0xc9 },
1815 { 0x87, 0x00 },
1816 { 0x88, 0x00 },
1817 { 0x89, 0x01 },
1818 { 0x12, 0x20 },
1819 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1822 static unsigned char ov7670_abs_to_sm(unsigned char v)
1824 if (v > 127)
1825 return v & 0x7f;
1826 return (128 - v) | 0x80;
1829 /* Write a OV519 register */
1830 static int reg_w(struct sd *sd, __u16 index, __u16 value)
1832 int ret, req = 0;
1834 switch (sd->bridge) {
1835 case BRIDGE_OV511:
1836 case BRIDGE_OV511PLUS:
1837 req = 2;
1838 break;
1839 case BRIDGE_OVFX2:
1840 req = 0x0a;
1841 /* fall through */
1842 case BRIDGE_W9968CF:
1843 ret = usb_control_msg(sd->gspca_dev.dev,
1844 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1845 req,
1846 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1847 value, index, NULL, 0, 500);
1848 goto leave;
1849 default:
1850 req = 1;
1853 sd->gspca_dev.usb_buf[0] = value;
1854 ret = usb_control_msg(sd->gspca_dev.dev,
1855 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1856 req,
1857 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1858 0, index,
1859 sd->gspca_dev.usb_buf, 1, 500);
1860 leave:
1861 if (ret < 0) {
1862 err("Write reg 0x%04x -> [0x%02x] failed",
1863 value, index);
1864 return ret;
1867 PDEBUG(D_USBO, "Write reg 0x%04x -> [0x%02x]", value, index);
1868 return 0;
1871 /* Read from a OV519 register, note not valid for the w9968cf!! */
1872 /* returns: negative is error, pos or zero is data */
1873 static int reg_r(struct sd *sd, __u16 index)
1875 int ret;
1876 int req;
1878 switch (sd->bridge) {
1879 case BRIDGE_OV511:
1880 case BRIDGE_OV511PLUS:
1881 req = 3;
1882 break;
1883 case BRIDGE_OVFX2:
1884 req = 0x0b;
1885 break;
1886 default:
1887 req = 1;
1890 ret = usb_control_msg(sd->gspca_dev.dev,
1891 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1892 req,
1893 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1894 0, index, sd->gspca_dev.usb_buf, 1, 500);
1896 if (ret >= 0) {
1897 ret = sd->gspca_dev.usb_buf[0];
1898 PDEBUG(D_USBI, "Read reg [0x%02X] -> 0x%04X", index, ret);
1899 } else
1900 err("Read reg [0x%02x] failed", index);
1902 return ret;
1905 /* Read 8 values from a OV519 register */
1906 static int reg_r8(struct sd *sd,
1907 __u16 index)
1909 int ret;
1911 ret = usb_control_msg(sd->gspca_dev.dev,
1912 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
1913 1, /* REQ_IO */
1914 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1915 0, index, sd->gspca_dev.usb_buf, 8, 500);
1917 if (ret >= 0)
1918 ret = sd->gspca_dev.usb_buf[0];
1919 else
1920 err("Read reg 8 [0x%02x] failed", index);
1922 return ret;
1926 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
1927 * the same position as 1's in "mask" are cleared and set to "value". Bits
1928 * that are in the same position as 0's in "mask" are preserved, regardless
1929 * of their respective state in "value".
1931 static int reg_w_mask(struct sd *sd,
1932 __u16 index,
1933 __u8 value,
1934 __u8 mask)
1936 int ret;
1937 __u8 oldval;
1939 if (mask != 0xff) {
1940 value &= mask; /* Enforce mask on value */
1941 ret = reg_r(sd, index);
1942 if (ret < 0)
1943 return ret;
1945 oldval = ret & ~mask; /* Clear the masked bits */
1946 value |= oldval; /* Set the desired bits */
1948 return reg_w(sd, index, value);
1952 * Writes multiple (n) byte value to a single register. Only valid with certain
1953 * registers (0x30 and 0xc4 - 0xce).
1955 static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n)
1957 int ret;
1959 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
1961 ret = usb_control_msg(sd->gspca_dev.dev,
1962 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
1963 1 /* REG_IO */,
1964 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
1965 0, index,
1966 sd->gspca_dev.usb_buf, n, 500);
1967 if (ret < 0) {
1968 err("Write reg32 [%02x] %08x failed", index, value);
1969 return ret;
1972 return 0;
1975 static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value)
1977 int rc, retries;
1979 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
1981 /* Three byte write cycle */
1982 for (retries = 6; ; ) {
1983 /* Select camera register */
1984 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
1985 if (rc < 0)
1986 return rc;
1988 /* Write "value" to I2C data port of OV511 */
1989 rc = reg_w(sd, R51x_I2C_DATA, value);
1990 if (rc < 0)
1991 return rc;
1993 /* Initiate 3-byte write cycle */
1994 rc = reg_w(sd, R511_I2C_CTL, 0x01);
1995 if (rc < 0)
1996 return rc;
1998 do {
1999 rc = reg_r(sd, R511_I2C_CTL);
2000 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2002 if (rc < 0)
2003 return rc;
2005 if ((rc & 2) == 0) /* Ack? */
2006 break;
2007 if (--retries < 0) {
2008 PDEBUG(D_USBO, "i2c write retries exhausted");
2009 return -1;
2013 return 0;
2016 static int ov511_i2c_r(struct sd *sd, __u8 reg)
2018 int rc, value, retries;
2020 /* Two byte write cycle */
2021 for (retries = 6; ; ) {
2022 /* Select camera register */
2023 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2024 if (rc < 0)
2025 return rc;
2027 /* Initiate 2-byte write cycle */
2028 rc = reg_w(sd, R511_I2C_CTL, 0x03);
2029 if (rc < 0)
2030 return rc;
2032 do {
2033 rc = reg_r(sd, R511_I2C_CTL);
2034 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2036 if (rc < 0)
2037 return rc;
2039 if ((rc & 2) == 0) /* Ack? */
2040 break;
2042 /* I2C abort */
2043 reg_w(sd, R511_I2C_CTL, 0x10);
2045 if (--retries < 0) {
2046 PDEBUG(D_USBI, "i2c write retries exhausted");
2047 return -1;
2051 /* Two byte read cycle */
2052 for (retries = 6; ; ) {
2053 /* Initiate 2-byte read cycle */
2054 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2055 if (rc < 0)
2056 return rc;
2058 do {
2059 rc = reg_r(sd, R511_I2C_CTL);
2060 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2062 if (rc < 0)
2063 return rc;
2065 if ((rc & 2) == 0) /* Ack? */
2066 break;
2068 /* I2C abort */
2069 rc = reg_w(sd, R511_I2C_CTL, 0x10);
2070 if (rc < 0)
2071 return rc;
2073 if (--retries < 0) {
2074 PDEBUG(D_USBI, "i2c read retries exhausted");
2075 return -1;
2079 value = reg_r(sd, R51x_I2C_DATA);
2081 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2083 /* This is needed to make i2c_w() work */
2084 rc = reg_w(sd, R511_I2C_CTL, 0x05);
2085 if (rc < 0)
2086 return rc;
2088 return value;
2092 * The OV518 I2C I/O procedure is different, hence, this function.
2093 * This is normally only called from i2c_w(). Note that this function
2094 * always succeeds regardless of whether the sensor is present and working.
2096 static int ov518_i2c_w(struct sd *sd,
2097 __u8 reg,
2098 __u8 value)
2100 int rc;
2102 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2104 /* Select camera register */
2105 rc = reg_w(sd, R51x_I2C_SADDR_3, reg);
2106 if (rc < 0)
2107 return rc;
2109 /* Write "value" to I2C data port of OV511 */
2110 rc = reg_w(sd, R51x_I2C_DATA, value);
2111 if (rc < 0)
2112 return rc;
2114 /* Initiate 3-byte write cycle */
2115 rc = reg_w(sd, R518_I2C_CTL, 0x01);
2116 if (rc < 0)
2117 return rc;
2119 /* wait for write complete */
2120 msleep(4);
2121 return reg_r8(sd, R518_I2C_CTL);
2125 * returns: negative is error, pos or zero is data
2127 * The OV518 I2C I/O procedure is different, hence, this function.
2128 * This is normally only called from i2c_r(). Note that this function
2129 * always succeeds regardless of whether the sensor is present and working.
2131 static int ov518_i2c_r(struct sd *sd, __u8 reg)
2133 int rc, value;
2135 /* Select camera register */
2136 rc = reg_w(sd, R51x_I2C_SADDR_2, reg);
2137 if (rc < 0)
2138 return rc;
2140 /* Initiate 2-byte write cycle */
2141 rc = reg_w(sd, R518_I2C_CTL, 0x03);
2142 if (rc < 0)
2143 return rc;
2145 /* Initiate 2-byte read cycle */
2146 rc = reg_w(sd, R518_I2C_CTL, 0x05);
2147 if (rc < 0)
2148 return rc;
2149 value = reg_r(sd, R51x_I2C_DATA);
2150 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value);
2151 return value;
2154 static int ovfx2_i2c_w(struct sd *sd, __u8 reg, __u8 value)
2156 int ret;
2158 ret = usb_control_msg(sd->gspca_dev.dev,
2159 usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2160 0x02,
2161 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2162 (__u16)value, (__u16)reg, NULL, 0, 500);
2164 if (ret < 0) {
2165 err("i2c 0x%02x -> [0x%02x] failed", value, reg);
2166 return ret;
2169 PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg);
2170 return 0;
2173 static int ovfx2_i2c_r(struct sd *sd, __u8 reg)
2175 int ret;
2177 ret = usb_control_msg(sd->gspca_dev.dev,
2178 usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2179 0x03,
2180 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2181 0, (__u16)reg, sd->gspca_dev.usb_buf, 1, 500);
2183 if (ret >= 0) {
2184 ret = sd->gspca_dev.usb_buf[0];
2185 PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, ret);
2186 } else
2187 err("i2c read [0x%02x] failed", reg);
2189 return ret;
2192 static int i2c_w(struct sd *sd, __u8 reg, __u8 value)
2194 int ret = -1;
2196 if (sd->sensor_reg_cache[reg] == value)
2197 return 0;
2199 switch (sd->bridge) {
2200 case BRIDGE_OV511:
2201 case BRIDGE_OV511PLUS:
2202 ret = ov511_i2c_w(sd, reg, value);
2203 break;
2204 case BRIDGE_OV518:
2205 case BRIDGE_OV518PLUS:
2206 case BRIDGE_OV519:
2207 ret = ov518_i2c_w(sd, reg, value);
2208 break;
2209 case BRIDGE_OVFX2:
2210 ret = ovfx2_i2c_w(sd, reg, value);
2211 break;
2212 case BRIDGE_W9968CF:
2213 ret = w9968cf_i2c_w(sd, reg, value);
2214 break;
2217 if (ret >= 0) {
2218 /* Up on sensor reset empty the register cache */
2219 if (reg == 0x12 && (value & 0x80))
2220 memset(sd->sensor_reg_cache, -1,
2221 sizeof(sd->sensor_reg_cache));
2222 else
2223 sd->sensor_reg_cache[reg] = value;
2226 return ret;
2229 static int i2c_r(struct sd *sd, __u8 reg)
2231 int ret = -1;
2233 if (sd->sensor_reg_cache[reg] != -1)
2234 return sd->sensor_reg_cache[reg];
2236 switch (sd->bridge) {
2237 case BRIDGE_OV511:
2238 case BRIDGE_OV511PLUS:
2239 ret = ov511_i2c_r(sd, reg);
2240 break;
2241 case BRIDGE_OV518:
2242 case BRIDGE_OV518PLUS:
2243 case BRIDGE_OV519:
2244 ret = ov518_i2c_r(sd, reg);
2245 break;
2246 case BRIDGE_OVFX2:
2247 ret = ovfx2_i2c_r(sd, reg);
2248 break;
2249 case BRIDGE_W9968CF:
2250 ret = w9968cf_i2c_r(sd, reg);
2251 break;
2254 if (ret >= 0)
2255 sd->sensor_reg_cache[reg] = ret;
2257 return ret;
2260 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2261 * the same position as 1's in "mask" are cleared and set to "value". Bits
2262 * that are in the same position as 0's in "mask" are preserved, regardless
2263 * of their respective state in "value".
2265 static int i2c_w_mask(struct sd *sd,
2266 __u8 reg,
2267 __u8 value,
2268 __u8 mask)
2270 int rc;
2271 __u8 oldval;
2273 value &= mask; /* Enforce mask on value */
2274 rc = i2c_r(sd, reg);
2275 if (rc < 0)
2276 return rc;
2277 oldval = rc & ~mask; /* Clear the masked bits */
2278 value |= oldval; /* Set the desired bits */
2279 return i2c_w(sd, reg, value);
2282 /* Temporarily stops OV511 from functioning. Must do this before changing
2283 * registers while the camera is streaming */
2284 static inline int ov51x_stop(struct sd *sd)
2286 PDEBUG(D_STREAM, "stopping");
2287 sd->stopped = 1;
2288 switch (sd->bridge) {
2289 case BRIDGE_OV511:
2290 case BRIDGE_OV511PLUS:
2291 return reg_w(sd, R51x_SYS_RESET, 0x3d);
2292 case BRIDGE_OV518:
2293 case BRIDGE_OV518PLUS:
2294 return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2295 case BRIDGE_OV519:
2296 return reg_w(sd, OV519_SYS_RESET1, 0x0f);
2297 case BRIDGE_OVFX2:
2298 return reg_w_mask(sd, 0x0f, 0x00, 0x02);
2299 case BRIDGE_W9968CF:
2300 return reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2303 return 0;
2306 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2307 * actually stopped (for performance). */
2308 static inline int ov51x_restart(struct sd *sd)
2310 int rc;
2312 PDEBUG(D_STREAM, "restarting");
2313 if (!sd->stopped)
2314 return 0;
2315 sd->stopped = 0;
2317 /* Reinitialize the stream */
2318 switch (sd->bridge) {
2319 case BRIDGE_OV511:
2320 case BRIDGE_OV511PLUS:
2321 return reg_w(sd, R51x_SYS_RESET, 0x00);
2322 case BRIDGE_OV518:
2323 case BRIDGE_OV518PLUS:
2324 rc = reg_w(sd, 0x2f, 0x80);
2325 if (rc < 0)
2326 return rc;
2327 return reg_w(sd, R51x_SYS_RESET, 0x00);
2328 case BRIDGE_OV519:
2329 return reg_w(sd, OV519_SYS_RESET1, 0x00);
2330 case BRIDGE_OVFX2:
2331 return reg_w_mask(sd, 0x0f, 0x02, 0x02);
2332 case BRIDGE_W9968CF:
2333 return reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2336 return 0;
2339 static int ov51x_set_slave_ids(struct sd *sd, __u8 slave);
2341 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2342 * is synchronized. Returns <0 on failure.
2344 static int init_ov_sensor(struct sd *sd, __u8 slave)
2346 int i;
2348 if (ov51x_set_slave_ids(sd, slave) < 0)
2349 return -EIO;
2351 /* Reset the sensor */
2352 if (i2c_w(sd, 0x12, 0x80) < 0)
2353 return -EIO;
2355 /* Wait for it to initialize */
2356 msleep(150);
2358 for (i = 0; i < i2c_detect_tries; i++) {
2359 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2360 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2361 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2362 return 0;
2365 /* Reset the sensor */
2366 if (i2c_w(sd, 0x12, 0x80) < 0)
2367 return -EIO;
2368 /* Wait for it to initialize */
2369 msleep(150);
2370 /* Dummy read to sync I2C */
2371 if (i2c_r(sd, 0x00) < 0)
2372 return -EIO;
2374 return -EIO;
2377 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2378 * and the read slave will be set to (slave + 1).
2379 * This should not be called from outside the i2c I/O functions.
2380 * Sets I2C read and write slave IDs. Returns <0 for error
2382 static int ov51x_set_slave_ids(struct sd *sd,
2383 __u8 slave)
2385 int rc;
2387 switch (sd->bridge) {
2388 case BRIDGE_OVFX2:
2389 return reg_w(sd, OVFX2_I2C_ADDR, slave);
2390 case BRIDGE_W9968CF:
2391 sd->sensor_addr = slave;
2392 return 0;
2395 rc = reg_w(sd, R51x_I2C_W_SID, slave);
2396 if (rc < 0)
2397 return rc;
2398 return reg_w(sd, R51x_I2C_R_SID, slave + 1);
2401 static int write_regvals(struct sd *sd,
2402 const struct ov_regvals *regvals,
2403 int n)
2405 int rc;
2407 while (--n >= 0) {
2408 rc = reg_w(sd, regvals->reg, regvals->val);
2409 if (rc < 0)
2410 return rc;
2411 regvals++;
2413 return 0;
2416 static int write_i2c_regvals(struct sd *sd,
2417 const struct ov_i2c_regvals *regvals,
2418 int n)
2420 int rc;
2422 while (--n >= 0) {
2423 rc = i2c_w(sd, regvals->reg, regvals->val);
2424 if (rc < 0)
2425 return rc;
2426 regvals++;
2428 return 0;
2431 /****************************************************************************
2433 * OV511 and sensor configuration
2435 ***************************************************************************/
2437 /* This initializes the OV2x10 / OV3610 / OV3620 */
2438 static int ov_hires_configure(struct sd *sd)
2440 int high, low;
2442 if (sd->bridge != BRIDGE_OVFX2) {
2443 err("error hires sensors only supported with ovfx2");
2444 return -1;
2447 PDEBUG(D_PROBE, "starting ov hires configuration");
2449 /* Detect sensor (sub)type */
2450 high = i2c_r(sd, 0x0a);
2451 low = i2c_r(sd, 0x0b);
2452 /* info("%x, %x", high, low); */
2453 if (high == 0x96 && low == 0x40) {
2454 PDEBUG(D_PROBE, "Sensor is an OV2610");
2455 sd->sensor = SEN_OV2610;
2456 } else if (high == 0x36 && (low & 0x0f) == 0x00) {
2457 PDEBUG(D_PROBE, "Sensor is an OV3610");
2458 sd->sensor = SEN_OV3610;
2459 } else {
2460 err("Error unknown sensor type: 0x%02x%02x",
2461 high, low);
2462 return -1;
2465 /* Set sensor-specific vars */
2466 return 0;
2470 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2471 * the same register settings as the OV8610, since they are very similar.
2473 static int ov8xx0_configure(struct sd *sd)
2475 int rc;
2477 PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2479 /* Detect sensor (sub)type */
2480 rc = i2c_r(sd, OV7610_REG_COM_I);
2481 if (rc < 0) {
2482 PDEBUG(D_ERR, "Error detecting sensor type");
2483 return -1;
2485 if ((rc & 3) == 1) {
2486 sd->sensor = SEN_OV8610;
2487 } else {
2488 err("Unknown image sensor version: %d", rc & 3);
2489 return -1;
2492 /* Set sensor-specific vars */
2493 return 0;
2496 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2497 * the same register settings as the OV7610, since they are very similar.
2499 static int ov7xx0_configure(struct sd *sd)
2501 int rc, high, low;
2504 PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2506 /* Detect sensor (sub)type */
2507 rc = i2c_r(sd, OV7610_REG_COM_I);
2509 /* add OV7670 here
2510 * it appears to be wrongly detected as a 7610 by default */
2511 if (rc < 0) {
2512 PDEBUG(D_ERR, "Error detecting sensor type");
2513 return -1;
2515 if ((rc & 3) == 3) {
2516 /* quick hack to make OV7670s work */
2517 high = i2c_r(sd, 0x0a);
2518 low = i2c_r(sd, 0x0b);
2519 /* info("%x, %x", high, low); */
2520 if (high == 0x76 && low == 0x73) {
2521 PDEBUG(D_PROBE, "Sensor is an OV7670");
2522 sd->sensor = SEN_OV7670;
2523 } else {
2524 PDEBUG(D_PROBE, "Sensor is an OV7610");
2525 sd->sensor = SEN_OV7610;
2527 } else if ((rc & 3) == 1) {
2528 /* I don't know what's different about the 76BE yet. */
2529 if (i2c_r(sd, 0x15) & 1) {
2530 PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2531 sd->sensor = SEN_OV7620AE;
2532 } else {
2533 PDEBUG(D_PROBE, "Sensor is an OV76BE");
2534 sd->sensor = SEN_OV76BE;
2536 } else if ((rc & 3) == 0) {
2537 /* try to read product id registers */
2538 high = i2c_r(sd, 0x0a);
2539 if (high < 0) {
2540 PDEBUG(D_ERR, "Error detecting camera chip PID");
2541 return high;
2543 low = i2c_r(sd, 0x0b);
2544 if (low < 0) {
2545 PDEBUG(D_ERR, "Error detecting camera chip VER");
2546 return low;
2548 if (high == 0x76) {
2549 switch (low) {
2550 case 0x30:
2551 err("Sensor is an OV7630/OV7635");
2552 err("7630 is not supported by this driver");
2553 return -1;
2554 case 0x40:
2555 PDEBUG(D_PROBE, "Sensor is an OV7645");
2556 sd->sensor = SEN_OV7640; /* FIXME */
2557 break;
2558 case 0x45:
2559 PDEBUG(D_PROBE, "Sensor is an OV7645B");
2560 sd->sensor = SEN_OV7640; /* FIXME */
2561 break;
2562 case 0x48:
2563 PDEBUG(D_PROBE, "Sensor is an OV7648");
2564 sd->sensor = SEN_OV7648;
2565 break;
2566 default:
2567 PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low);
2568 return -1;
2570 } else {
2571 PDEBUG(D_PROBE, "Sensor is an OV7620");
2572 sd->sensor = SEN_OV7620;
2574 } else {
2575 err("Unknown image sensor version: %d", rc & 3);
2576 return -1;
2579 /* Set sensor-specific vars */
2580 return 0;
2583 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2584 static int ov6xx0_configure(struct sd *sd)
2586 int rc;
2587 PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2589 /* Detect sensor (sub)type */
2590 rc = i2c_r(sd, OV7610_REG_COM_I);
2591 if (rc < 0) {
2592 PDEBUG(D_ERR, "Error detecting sensor type");
2593 return -1;
2596 /* Ugh. The first two bits are the version bits, but
2597 * the entire register value must be used. I guess OVT
2598 * underestimated how many variants they would make. */
2599 switch (rc) {
2600 case 0x00:
2601 sd->sensor = SEN_OV6630;
2602 warn("WARNING: Sensor is an OV66308. Your camera may have");
2603 warn("been misdetected in previous driver versions.");
2604 break;
2605 case 0x01:
2606 sd->sensor = SEN_OV6620;
2607 PDEBUG(D_PROBE, "Sensor is an OV6620");
2608 break;
2609 case 0x02:
2610 sd->sensor = SEN_OV6630;
2611 PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2612 break;
2613 case 0x03:
2614 sd->sensor = SEN_OV66308AF;
2615 PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2616 break;
2617 case 0x90:
2618 sd->sensor = SEN_OV6630;
2619 warn("WARNING: Sensor is an OV66307. Your camera may have");
2620 warn("been misdetected in previous driver versions.");
2621 break;
2622 default:
2623 err("FATAL: Unknown sensor version: 0x%02x", rc);
2624 return -1;
2627 /* Set sensor-specific vars */
2628 sd->sif = 1;
2630 return 0;
2633 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2634 static void ov51x_led_control(struct sd *sd, int on)
2636 if (sd->invert_led)
2637 on = !on;
2639 switch (sd->bridge) {
2640 /* OV511 has no LED control */
2641 case BRIDGE_OV511PLUS:
2642 reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0);
2643 break;
2644 case BRIDGE_OV518:
2645 case BRIDGE_OV518PLUS:
2646 reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02);
2647 break;
2648 case BRIDGE_OV519:
2649 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */
2650 break;
2654 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2656 struct sd *sd = (struct sd *) gspca_dev;
2658 if (!sd->snapshot_needs_reset)
2659 return;
2661 /* Note it is important that we clear sd->snapshot_needs_reset,
2662 before actually clearing the snapshot state in the bridge
2663 otherwise we might race with the pkt_scan interrupt handler */
2664 sd->snapshot_needs_reset = 0;
2666 switch (sd->bridge) {
2667 case BRIDGE_OV511:
2668 case BRIDGE_OV511PLUS:
2669 reg_w(sd, R51x_SYS_SNAP, 0x02);
2670 reg_w(sd, R51x_SYS_SNAP, 0x00);
2671 break;
2672 case BRIDGE_OV518:
2673 case BRIDGE_OV518PLUS:
2674 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2675 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2676 break;
2677 case BRIDGE_OV519:
2678 reg_w(sd, R51x_SYS_RESET, 0x40);
2679 reg_w(sd, R51x_SYS_RESET, 0x00);
2680 break;
2684 static int ov51x_upload_quan_tables(struct sd *sd)
2686 const unsigned char yQuanTable511[] = {
2687 0, 1, 1, 2, 2, 3, 3, 4,
2688 1, 1, 1, 2, 2, 3, 4, 4,
2689 1, 1, 2, 2, 3, 4, 4, 4,
2690 2, 2, 2, 3, 4, 4, 4, 4,
2691 2, 2, 3, 4, 4, 5, 5, 5,
2692 3, 3, 4, 4, 5, 5, 5, 5,
2693 3, 4, 4, 4, 5, 5, 5, 5,
2694 4, 4, 4, 4, 5, 5, 5, 5
2697 const unsigned char uvQuanTable511[] = {
2698 0, 2, 2, 3, 4, 4, 4, 4,
2699 2, 2, 2, 4, 4, 4, 4, 4,
2700 2, 2, 3, 4, 4, 4, 4, 4,
2701 3, 4, 4, 4, 4, 4, 4, 4,
2702 4, 4, 4, 4, 4, 4, 4, 4,
2703 4, 4, 4, 4, 4, 4, 4, 4,
2704 4, 4, 4, 4, 4, 4, 4, 4,
2705 4, 4, 4, 4, 4, 4, 4, 4
2708 /* OV518 quantization tables are 8x4 (instead of 8x8) */
2709 const unsigned char yQuanTable518[] = {
2710 5, 4, 5, 6, 6, 7, 7, 7,
2711 5, 5, 5, 5, 6, 7, 7, 7,
2712 6, 6, 6, 6, 7, 7, 7, 8,
2713 7, 7, 6, 7, 7, 7, 8, 8
2716 const unsigned char uvQuanTable518[] = {
2717 6, 6, 6, 7, 7, 7, 7, 7,
2718 6, 6, 6, 7, 7, 7, 7, 7,
2719 6, 6, 6, 7, 7, 7, 7, 8,
2720 7, 7, 7, 7, 7, 7, 8, 8
2723 const unsigned char *pYTable, *pUVTable;
2724 unsigned char val0, val1;
2725 int i, size, rc, reg = R51x_COMP_LUT_BEGIN;
2727 PDEBUG(D_PROBE, "Uploading quantization tables");
2729 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2730 pYTable = yQuanTable511;
2731 pUVTable = uvQuanTable511;
2732 size = 32;
2733 } else {
2734 pYTable = yQuanTable518;
2735 pUVTable = uvQuanTable518;
2736 size = 16;
2739 for (i = 0; i < size; i++) {
2740 val0 = *pYTable++;
2741 val1 = *pYTable++;
2742 val0 &= 0x0f;
2743 val1 &= 0x0f;
2744 val0 |= val1 << 4;
2745 rc = reg_w(sd, reg, val0);
2746 if (rc < 0)
2747 return rc;
2749 val0 = *pUVTable++;
2750 val1 = *pUVTable++;
2751 val0 &= 0x0f;
2752 val1 &= 0x0f;
2753 val0 |= val1 << 4;
2754 rc = reg_w(sd, reg + size, val0);
2755 if (rc < 0)
2756 return rc;
2758 reg++;
2761 return 0;
2764 /* This initializes the OV511/OV511+ and the sensor */
2765 static int ov511_configure(struct gspca_dev *gspca_dev)
2767 struct sd *sd = (struct sd *) gspca_dev;
2768 int rc;
2770 /* For 511 and 511+ */
2771 const struct ov_regvals init_511[] = {
2772 { R51x_SYS_RESET, 0x7f },
2773 { R51x_SYS_INIT, 0x01 },
2774 { R51x_SYS_RESET, 0x7f },
2775 { R51x_SYS_INIT, 0x01 },
2776 { R51x_SYS_RESET, 0x3f },
2777 { R51x_SYS_INIT, 0x01 },
2778 { R51x_SYS_RESET, 0x3d },
2781 const struct ov_regvals norm_511[] = {
2782 { R511_DRAM_FLOW_CTL, 0x01 },
2783 { R51x_SYS_SNAP, 0x00 },
2784 { R51x_SYS_SNAP, 0x02 },
2785 { R51x_SYS_SNAP, 0x00 },
2786 { R511_FIFO_OPTS, 0x1f },
2787 { R511_COMP_EN, 0x00 },
2788 { R511_COMP_LUT_EN, 0x03 },
2791 const struct ov_regvals norm_511_p[] = {
2792 { R511_DRAM_FLOW_CTL, 0xff },
2793 { R51x_SYS_SNAP, 0x00 },
2794 { R51x_SYS_SNAP, 0x02 },
2795 { R51x_SYS_SNAP, 0x00 },
2796 { R511_FIFO_OPTS, 0xff },
2797 { R511_COMP_EN, 0x00 },
2798 { R511_COMP_LUT_EN, 0x03 },
2801 const struct ov_regvals compress_511[] = {
2802 { 0x70, 0x1f },
2803 { 0x71, 0x05 },
2804 { 0x72, 0x06 },
2805 { 0x73, 0x06 },
2806 { 0x74, 0x14 },
2807 { 0x75, 0x03 },
2808 { 0x76, 0x04 },
2809 { 0x77, 0x04 },
2812 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2814 rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2815 if (rc < 0)
2816 return rc;
2818 switch (sd->bridge) {
2819 case BRIDGE_OV511:
2820 rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2821 if (rc < 0)
2822 return rc;
2823 break;
2824 case BRIDGE_OV511PLUS:
2825 rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2826 if (rc < 0)
2827 return rc;
2828 break;
2831 /* Init compression */
2832 rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
2833 if (rc < 0)
2834 return rc;
2836 rc = ov51x_upload_quan_tables(sd);
2837 if (rc < 0) {
2838 PDEBUG(D_ERR, "Error uploading quantization tables");
2839 return rc;
2842 return 0;
2845 /* This initializes the OV518/OV518+ and the sensor */
2846 static int ov518_configure(struct gspca_dev *gspca_dev)
2848 struct sd *sd = (struct sd *) gspca_dev;
2849 int rc;
2851 /* For 518 and 518+ */
2852 const struct ov_regvals init_518[] = {
2853 { R51x_SYS_RESET, 0x40 },
2854 { R51x_SYS_INIT, 0xe1 },
2855 { R51x_SYS_RESET, 0x3e },
2856 { R51x_SYS_INIT, 0xe1 },
2857 { R51x_SYS_RESET, 0x00 },
2858 { R51x_SYS_INIT, 0xe1 },
2859 { 0x46, 0x00 },
2860 { 0x5d, 0x03 },
2863 const struct ov_regvals norm_518[] = {
2864 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2865 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2866 { 0x31, 0x0f },
2867 { 0x5d, 0x03 },
2868 { 0x24, 0x9f },
2869 { 0x25, 0x90 },
2870 { 0x20, 0x00 },
2871 { 0x51, 0x04 },
2872 { 0x71, 0x19 },
2873 { 0x2f, 0x80 },
2876 const struct ov_regvals norm_518_p[] = {
2877 { R51x_SYS_SNAP, 0x02 }, /* Reset */
2878 { R51x_SYS_SNAP, 0x01 }, /* Enable */
2879 { 0x31, 0x0f },
2880 { 0x5d, 0x03 },
2881 { 0x24, 0x9f },
2882 { 0x25, 0x90 },
2883 { 0x20, 0x60 },
2884 { 0x51, 0x02 },
2885 { 0x71, 0x19 },
2886 { 0x40, 0xff },
2887 { 0x41, 0x42 },
2888 { 0x46, 0x00 },
2889 { 0x33, 0x04 },
2890 { 0x21, 0x19 },
2891 { 0x3f, 0x10 },
2892 { 0x2f, 0x80 },
2895 /* First 5 bits of custom ID reg are a revision ID on OV518 */
2896 PDEBUG(D_PROBE, "Device revision %d",
2897 0x1F & reg_r(sd, R51x_SYS_CUST_ID));
2899 rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518));
2900 if (rc < 0)
2901 return rc;
2903 /* Set LED GPIO pin to output mode */
2904 rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
2905 if (rc < 0)
2906 return rc;
2908 switch (sd->bridge) {
2909 case BRIDGE_OV518:
2910 rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
2911 if (rc < 0)
2912 return rc;
2913 break;
2914 case BRIDGE_OV518PLUS:
2915 rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
2916 if (rc < 0)
2917 return rc;
2918 break;
2921 rc = ov51x_upload_quan_tables(sd);
2922 if (rc < 0) {
2923 PDEBUG(D_ERR, "Error uploading quantization tables");
2924 return rc;
2927 rc = reg_w(sd, 0x2f, 0x80);
2928 if (rc < 0)
2929 return rc;
2931 return 0;
2934 static int ov519_configure(struct sd *sd)
2936 static const struct ov_regvals init_519[] = {
2937 { 0x5a, 0x6d }, /* EnableSystem */
2938 { 0x53, 0x9b },
2939 { 0x54, 0xff }, /* set bit2 to enable jpeg */
2940 { 0x5d, 0x03 },
2941 { 0x49, 0x01 },
2942 { 0x48, 0x00 },
2943 /* Set LED pin to output mode. Bit 4 must be cleared or sensor
2944 * detection will fail. This deserves further investigation. */
2945 { OV519_GPIO_IO_CTRL0, 0xee },
2946 { 0x51, 0x0f }, /* SetUsbInit */
2947 { 0x51, 0x00 },
2948 { 0x22, 0x00 },
2949 /* windows reads 0x55 at this point*/
2952 return write_regvals(sd, init_519, ARRAY_SIZE(init_519));
2955 static int ovfx2_configure(struct sd *sd)
2957 static const struct ov_regvals init_fx2[] = {
2958 { 0x00, 0x60 },
2959 { 0x02, 0x01 },
2960 { 0x0f, 0x1d },
2961 { 0xe9, 0x82 },
2962 { 0xea, 0xc7 },
2963 { 0xeb, 0x10 },
2964 { 0xec, 0xf6 },
2967 sd->stopped = 1;
2969 return write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
2972 /* this function is called at probe time */
2973 static int sd_config(struct gspca_dev *gspca_dev,
2974 const struct usb_device_id *id)
2976 struct sd *sd = (struct sd *) gspca_dev;
2977 struct cam *cam = &gspca_dev->cam;
2978 int ret = 0;
2980 sd->bridge = id->driver_info & BRIDGE_MASK;
2981 sd->invert_led = id->driver_info & BRIDGE_INVERT_LED;
2983 switch (sd->bridge) {
2984 case BRIDGE_OV511:
2985 case BRIDGE_OV511PLUS:
2986 ret = ov511_configure(gspca_dev);
2987 break;
2988 case BRIDGE_OV518:
2989 case BRIDGE_OV518PLUS:
2990 ret = ov518_configure(gspca_dev);
2991 break;
2992 case BRIDGE_OV519:
2993 ret = ov519_configure(sd);
2994 break;
2995 case BRIDGE_OVFX2:
2996 ret = ovfx2_configure(sd);
2997 cam->bulk_size = OVFX2_BULK_SIZE;
2998 cam->bulk_nurbs = MAX_NURBS;
2999 cam->bulk = 1;
3000 break;
3001 case BRIDGE_W9968CF:
3002 ret = w9968cf_configure(sd);
3003 cam->reverse_alts = 1;
3004 break;
3007 if (ret)
3008 goto error;
3010 ov51x_led_control(sd, 0); /* turn LED off */
3012 /* The OV519 must be more aggressive about sensor detection since
3013 * I2C write will never fail if the sensor is not present. We have
3014 * to try to initialize the sensor to detect its presence */
3016 /* Test for 76xx */
3017 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3018 if (ov7xx0_configure(sd) < 0) {
3019 PDEBUG(D_ERR, "Failed to configure OV7xx0");
3020 goto error;
3022 /* Test for 6xx0 */
3023 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3024 if (ov6xx0_configure(sd) < 0) {
3025 PDEBUG(D_ERR, "Failed to configure OV6xx0");
3026 goto error;
3028 /* Test for 8xx0 */
3029 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3030 if (ov8xx0_configure(sd) < 0) {
3031 PDEBUG(D_ERR, "Failed to configure OV8xx0");
3032 goto error;
3034 /* Test for 3xxx / 2xxx */
3035 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3036 if (ov_hires_configure(sd) < 0) {
3037 PDEBUG(D_ERR, "Failed to configure high res OV");
3038 goto error;
3040 } else {
3041 err("Can't determine sensor slave IDs");
3042 goto error;
3045 switch (sd->bridge) {
3046 case BRIDGE_OV511:
3047 case BRIDGE_OV511PLUS:
3048 if (!sd->sif) {
3049 cam->cam_mode = ov511_vga_mode;
3050 cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3051 } else {
3052 cam->cam_mode = ov511_sif_mode;
3053 cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3055 break;
3056 case BRIDGE_OV518:
3057 case BRIDGE_OV518PLUS:
3058 if (!sd->sif) {
3059 cam->cam_mode = ov518_vga_mode;
3060 cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3061 } else {
3062 cam->cam_mode = ov518_sif_mode;
3063 cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3065 break;
3066 case BRIDGE_OV519:
3067 if (!sd->sif) {
3068 cam->cam_mode = ov519_vga_mode;
3069 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3070 } else {
3071 cam->cam_mode = ov519_sif_mode;
3072 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3074 break;
3075 case BRIDGE_OVFX2:
3076 if (sd->sensor == SEN_OV2610) {
3077 cam->cam_mode = ovfx2_ov2610_mode;
3078 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3079 } else if (sd->sensor == SEN_OV3610) {
3080 cam->cam_mode = ovfx2_ov3610_mode;
3081 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3082 } else if (!sd->sif) {
3083 cam->cam_mode = ov519_vga_mode;
3084 cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3085 } else {
3086 cam->cam_mode = ov519_sif_mode;
3087 cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3089 break;
3090 case BRIDGE_W9968CF:
3091 cam->cam_mode = w9968cf_vga_mode;
3092 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3093 if (sd->sif)
3094 cam->nmodes--;
3096 /* w9968cf needs initialisation once the sensor is known */
3097 if (w9968cf_init(sd) < 0)
3098 goto error;
3099 break;
3101 gspca_dev->cam.ctrls = sd->ctrls;
3102 if (sd->sensor == SEN_OV7670)
3103 gspca_dev->ctrl_dis = 1 << COLORS;
3104 else
3105 gspca_dev->ctrl_dis = (1 << HFLIP) | (1 << VFLIP);
3106 sd->quality = QUALITY_DEF;
3107 if (sd->sensor == SEN_OV7640 ||
3108 sd->sensor == SEN_OV7648)
3109 gspca_dev->ctrl_dis |= (1 << AUTOBRIGHT) | (1 << CONTRAST);
3110 if (sd->sensor == SEN_OV7670)
3111 gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT;
3112 /* OV8610 Frequency filter control should work but needs testing */
3113 if (sd->sensor == SEN_OV8610)
3114 gspca_dev->ctrl_dis |= 1 << FREQ;
3115 /* No controls for the OV2610/OV3610 */
3116 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
3117 gspca_dev->ctrl_dis |= (1 << NCTRL) - 1;
3119 return 0;
3120 error:
3121 PDEBUG(D_ERR, "OV519 Config failed");
3122 return -EBUSY;
3125 /* this function is called at probe and resume time */
3126 static int sd_init(struct gspca_dev *gspca_dev)
3128 struct sd *sd = (struct sd *) gspca_dev;
3130 /* initialize the sensor */
3131 switch (sd->sensor) {
3132 case SEN_OV2610:
3133 if (write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610)))
3134 return -EIO;
3135 /* Enable autogain, autoexpo, awb, bandfilter */
3136 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3137 return -EIO;
3138 break;
3139 case SEN_OV3610:
3140 if (write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b)))
3141 return -EIO;
3142 /* Enable autogain, autoexpo, awb, bandfilter */
3143 if (i2c_w_mask(sd, 0x13, 0x27, 0x27) < 0)
3144 return -EIO;
3145 break;
3146 case SEN_OV6620:
3147 if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)))
3148 return -EIO;
3149 break;
3150 case SEN_OV6630:
3151 case SEN_OV66308AF:
3152 sd->ctrls[CONTRAST].def = 200;
3153 /* The default is too low for the ov6630 */
3154 if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)))
3155 return -EIO;
3156 break;
3157 default:
3158 /* case SEN_OV7610: */
3159 /* case SEN_OV76BE: */
3160 if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)))
3161 return -EIO;
3162 if (i2c_w_mask(sd, 0x0e, 0x00, 0x40))
3163 return -EIO;
3164 break;
3165 case SEN_OV7620:
3166 case SEN_OV7620AE:
3167 if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)))
3168 return -EIO;
3169 break;
3170 case SEN_OV7640:
3171 case SEN_OV7648:
3172 if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)))
3173 return -EIO;
3174 break;
3175 case SEN_OV7670:
3176 sd->ctrls[FREQ].max = 3; /* auto */
3177 sd->ctrls[FREQ].def = 3;
3178 if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)))
3179 return -EIO;
3180 break;
3181 case SEN_OV8610:
3182 if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)))
3183 return -EIO;
3184 break;
3186 return 0;
3189 /* Set up the OV511/OV511+ with the given image parameters.
3191 * Do not put any sensor-specific code in here (including I2C I/O functions)
3193 static int ov511_mode_init_regs(struct sd *sd)
3195 int hsegs, vsegs, packet_size, fps, needed;
3196 int interlaced = 0;
3197 struct usb_host_interface *alt;
3198 struct usb_interface *intf;
3200 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3201 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3202 if (!alt) {
3203 err("Couldn't get altsetting");
3204 return -EIO;
3207 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3208 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3210 reg_w(sd, R511_CAM_UV_EN, 0x01);
3211 reg_w(sd, R511_SNAP_UV_EN, 0x01);
3212 reg_w(sd, R511_SNAP_OPTS, 0x03);
3214 /* Here I'm assuming that snapshot size == image size.
3215 * I hope that's always true. --claudio
3217 hsegs = (sd->gspca_dev.width >> 3) - 1;
3218 vsegs = (sd->gspca_dev.height >> 3) - 1;
3220 reg_w(sd, R511_CAM_PXCNT, hsegs);
3221 reg_w(sd, R511_CAM_LNCNT, vsegs);
3222 reg_w(sd, R511_CAM_PXDIV, 0x00);
3223 reg_w(sd, R511_CAM_LNDIV, 0x00);
3225 /* YUV420, low pass filter on */
3226 reg_w(sd, R511_CAM_OPTS, 0x03);
3228 /* Snapshot additions */
3229 reg_w(sd, R511_SNAP_PXCNT, hsegs);
3230 reg_w(sd, R511_SNAP_LNCNT, vsegs);
3231 reg_w(sd, R511_SNAP_PXDIV, 0x00);
3232 reg_w(sd, R511_SNAP_LNDIV, 0x00);
3234 /******** Set the framerate ********/
3235 if (frame_rate > 0)
3236 sd->frame_rate = frame_rate;
3238 switch (sd->sensor) {
3239 case SEN_OV6620:
3240 /* No framerate control, doesn't like higher rates yet */
3241 sd->clockdiv = 3;
3242 break;
3244 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3245 for more sensors we need to do this for them too */
3246 case SEN_OV7620:
3247 case SEN_OV7620AE:
3248 case SEN_OV7640:
3249 case SEN_OV7648:
3250 case SEN_OV76BE:
3251 if (sd->gspca_dev.width == 320)
3252 interlaced = 1;
3253 /* Fall through */
3254 case SEN_OV6630:
3255 case SEN_OV7610:
3256 case SEN_OV7670:
3257 switch (sd->frame_rate) {
3258 case 30:
3259 case 25:
3260 /* Not enough bandwidth to do 640x480 @ 30 fps */
3261 if (sd->gspca_dev.width != 640) {
3262 sd->clockdiv = 0;
3263 break;
3265 /* Fall through for 640x480 case */
3266 default:
3267 /* case 20: */
3268 /* case 15: */
3269 sd->clockdiv = 1;
3270 break;
3271 case 10:
3272 sd->clockdiv = 2;
3273 break;
3274 case 5:
3275 sd->clockdiv = 5;
3276 break;
3278 if (interlaced) {
3279 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3280 /* Higher then 10 does not work */
3281 if (sd->clockdiv > 10)
3282 sd->clockdiv = 10;
3284 break;
3286 case SEN_OV8610:
3287 /* No framerate control ?? */
3288 sd->clockdiv = 0;
3289 break;
3292 /* Check if we have enough bandwidth to disable compression */
3293 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3294 needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3295 /* 1400 is a conservative estimate of the max nr of isoc packets/sec */
3296 if (needed > 1400 * packet_size) {
3297 /* Enable Y and UV quantization and compression */
3298 reg_w(sd, R511_COMP_EN, 0x07);
3299 reg_w(sd, R511_COMP_LUT_EN, 0x03);
3300 } else {
3301 reg_w(sd, R511_COMP_EN, 0x06);
3302 reg_w(sd, R511_COMP_LUT_EN, 0x00);
3305 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3306 reg_w(sd, R51x_SYS_RESET, 0);
3308 return 0;
3311 /* Sets up the OV518/OV518+ with the given image parameters
3313 * OV518 needs a completely different approach, until we can figure out what
3314 * the individual registers do. Also, only 15 FPS is supported now.
3316 * Do not put any sensor-specific code in here (including I2C I/O functions)
3318 static int ov518_mode_init_regs(struct sd *sd)
3320 int hsegs, vsegs, packet_size;
3321 struct usb_host_interface *alt;
3322 struct usb_interface *intf;
3324 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3325 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3326 if (!alt) {
3327 err("Couldn't get altsetting");
3328 return -EIO;
3331 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3332 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3334 /******** Set the mode ********/
3336 reg_w(sd, 0x2b, 0);
3337 reg_w(sd, 0x2c, 0);
3338 reg_w(sd, 0x2d, 0);
3339 reg_w(sd, 0x2e, 0);
3340 reg_w(sd, 0x3b, 0);
3341 reg_w(sd, 0x3c, 0);
3342 reg_w(sd, 0x3d, 0);
3343 reg_w(sd, 0x3e, 0);
3345 if (sd->bridge == BRIDGE_OV518) {
3346 /* Set 8-bit (YVYU) input format */
3347 reg_w_mask(sd, 0x20, 0x08, 0x08);
3349 /* Set 12-bit (4:2:0) output format */
3350 reg_w_mask(sd, 0x28, 0x80, 0xf0);
3351 reg_w_mask(sd, 0x38, 0x80, 0xf0);
3352 } else {
3353 reg_w(sd, 0x28, 0x80);
3354 reg_w(sd, 0x38, 0x80);
3357 hsegs = sd->gspca_dev.width / 16;
3358 vsegs = sd->gspca_dev.height / 4;
3360 reg_w(sd, 0x29, hsegs);
3361 reg_w(sd, 0x2a, vsegs);
3363 reg_w(sd, 0x39, hsegs);
3364 reg_w(sd, 0x3a, vsegs);
3366 /* Windows driver does this here; who knows why */
3367 reg_w(sd, 0x2f, 0x80);
3369 /******** Set the framerate ********/
3370 sd->clockdiv = 1;
3372 /* Mode independent, but framerate dependent, regs */
3373 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3374 reg_w(sd, 0x51, 0x04);
3375 reg_w(sd, 0x22, 0x18);
3376 reg_w(sd, 0x23, 0xff);
3378 if (sd->bridge == BRIDGE_OV518PLUS) {
3379 switch (sd->sensor) {
3380 case SEN_OV7620AE:
3381 if (sd->gspca_dev.width == 320) {
3382 reg_w(sd, 0x20, 0x00);
3383 reg_w(sd, 0x21, 0x19);
3384 } else {
3385 reg_w(sd, 0x20, 0x60);
3386 reg_w(sd, 0x21, 0x1f);
3388 break;
3389 case SEN_OV7620:
3390 reg_w(sd, 0x20, 0x00);
3391 reg_w(sd, 0x21, 0x19);
3392 break;
3393 default:
3394 reg_w(sd, 0x21, 0x19);
3396 } else
3397 reg_w(sd, 0x71, 0x17); /* Compression-related? */
3399 /* FIXME: Sensor-specific */
3400 /* Bit 5 is what matters here. Of course, it is "reserved" */
3401 i2c_w(sd, 0x54, 0x23);
3403 reg_w(sd, 0x2f, 0x80);
3405 if (sd->bridge == BRIDGE_OV518PLUS) {
3406 reg_w(sd, 0x24, 0x94);
3407 reg_w(sd, 0x25, 0x90);
3408 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3409 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */
3410 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */
3411 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */
3412 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */
3413 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */
3414 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */
3415 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */
3416 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */
3417 } else {
3418 reg_w(sd, 0x24, 0x9f);
3419 reg_w(sd, 0x25, 0x90);
3420 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */
3421 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */
3422 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */
3423 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */
3424 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */
3425 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */
3426 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */
3427 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */
3428 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */
3431 reg_w(sd, 0x2f, 0x80);
3433 return 0;
3437 /* Sets up the OV519 with the given image parameters
3439 * OV519 needs a completely different approach, until we can figure out what
3440 * the individual registers do.
3442 * Do not put any sensor-specific code in here (including I2C I/O functions)
3444 static int ov519_mode_init_regs(struct sd *sd)
3446 static const struct ov_regvals mode_init_519_ov7670[] = {
3447 { 0x5d, 0x03 }, /* Turn off suspend mode */
3448 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3449 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3450 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3451 { 0xa3, 0x18 },
3452 { 0xa4, 0x04 },
3453 { 0xa5, 0x28 },
3454 { 0x37, 0x00 }, /* SetUsbInit */
3455 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3456 /* Enable both fields, YUV Input, disable defect comp (why?) */
3457 { 0x20, 0x0c },
3458 { 0x21, 0x38 },
3459 { 0x22, 0x1d },
3460 { 0x17, 0x50 }, /* undocumented */
3461 { 0x37, 0x00 }, /* undocumented */
3462 { 0x40, 0xff }, /* I2C timeout counter */
3463 { 0x46, 0x00 }, /* I2C clock prescaler */
3464 { 0x59, 0x04 }, /* new from windrv 090403 */
3465 { 0xff, 0x00 }, /* undocumented */
3466 /* windows reads 0x55 at this point, why? */
3469 static const struct ov_regvals mode_init_519[] = {
3470 { 0x5d, 0x03 }, /* Turn off suspend mode */
3471 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */
3472 { 0x54, 0x0f }, /* bit2 (jpeg enable) */
3473 { 0xa2, 0x20 }, /* a2-a5 are undocumented */
3474 { 0xa3, 0x18 },
3475 { 0xa4, 0x04 },
3476 { 0xa5, 0x28 },
3477 { 0x37, 0x00 }, /* SetUsbInit */
3478 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */
3479 /* Enable both fields, YUV Input, disable defect comp (why?) */
3480 { 0x22, 0x1d },
3481 { 0x17, 0x50 }, /* undocumented */
3482 { 0x37, 0x00 }, /* undocumented */
3483 { 0x40, 0xff }, /* I2C timeout counter */
3484 { 0x46, 0x00 }, /* I2C clock prescaler */
3485 { 0x59, 0x04 }, /* new from windrv 090403 */
3486 { 0xff, 0x00 }, /* undocumented */
3487 /* windows reads 0x55 at this point, why? */
3490 /******** Set the mode ********/
3491 if (sd->sensor != SEN_OV7670) {
3492 if (write_regvals(sd, mode_init_519,
3493 ARRAY_SIZE(mode_init_519)))
3494 return -EIO;
3495 if (sd->sensor == SEN_OV7640 ||
3496 sd->sensor == SEN_OV7648) {
3497 /* Select 8-bit input mode */
3498 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3500 } else {
3501 if (write_regvals(sd, mode_init_519_ov7670,
3502 ARRAY_SIZE(mode_init_519_ov7670)))
3503 return -EIO;
3506 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4);
3507 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3);
3508 if (sd->sensor == SEN_OV7670 &&
3509 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3510 reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3511 else if (sd->sensor == SEN_OV7648 &&
3512 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3513 reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3514 else
3515 reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3516 reg_w(sd, OV519_R13_X_OFFSETH, 0x00);
3517 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00);
3518 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00);
3519 reg_w(sd, OV519_R16_DIVIDER, 0x00);
3520 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */
3521 reg_w(sd, 0x26, 0x00); /* Undocumented */
3523 /******** Set the framerate ********/
3524 if (frame_rate > 0)
3525 sd->frame_rate = frame_rate;
3527 /* FIXME: These are only valid at the max resolution. */
3528 sd->clockdiv = 0;
3529 switch (sd->sensor) {
3530 case SEN_OV7640:
3531 case SEN_OV7648:
3532 switch (sd->frame_rate) {
3533 default:
3534 /* case 30: */
3535 reg_w(sd, 0xa4, 0x0c);
3536 reg_w(sd, 0x23, 0xff);
3537 break;
3538 case 25:
3539 reg_w(sd, 0xa4, 0x0c);
3540 reg_w(sd, 0x23, 0x1f);
3541 break;
3542 case 20:
3543 reg_w(sd, 0xa4, 0x0c);
3544 reg_w(sd, 0x23, 0x1b);
3545 break;
3546 case 15:
3547 reg_w(sd, 0xa4, 0x04);
3548 reg_w(sd, 0x23, 0xff);
3549 sd->clockdiv = 1;
3550 break;
3551 case 10:
3552 reg_w(sd, 0xa4, 0x04);
3553 reg_w(sd, 0x23, 0x1f);
3554 sd->clockdiv = 1;
3555 break;
3556 case 5:
3557 reg_w(sd, 0xa4, 0x04);
3558 reg_w(sd, 0x23, 0x1b);
3559 sd->clockdiv = 1;
3560 break;
3562 break;
3563 case SEN_OV8610:
3564 switch (sd->frame_rate) {
3565 default: /* 15 fps */
3566 /* case 15: */
3567 reg_w(sd, 0xa4, 0x06);
3568 reg_w(sd, 0x23, 0xff);
3569 break;
3570 case 10:
3571 reg_w(sd, 0xa4, 0x06);
3572 reg_w(sd, 0x23, 0x1f);
3573 break;
3574 case 5:
3575 reg_w(sd, 0xa4, 0x06);
3576 reg_w(sd, 0x23, 0x1b);
3577 break;
3579 break;
3580 case SEN_OV7670: /* guesses, based on 7640 */
3581 PDEBUG(D_STREAM, "Setting framerate to %d fps",
3582 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3583 reg_w(sd, 0xa4, 0x10);
3584 switch (sd->frame_rate) {
3585 case 30:
3586 reg_w(sd, 0x23, 0xff);
3587 break;
3588 case 20:
3589 reg_w(sd, 0x23, 0x1b);
3590 break;
3591 default:
3592 /* case 15: */
3593 reg_w(sd, 0x23, 0xff);
3594 sd->clockdiv = 1;
3595 break;
3597 break;
3599 return 0;
3602 static int mode_init_ov_sensor_regs(struct sd *sd)
3604 struct gspca_dev *gspca_dev;
3605 int qvga, xstart, xend, ystart, yend;
3606 __u8 v;
3608 gspca_dev = &sd->gspca_dev;
3609 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3611 /******** Mode (VGA/QVGA) and sensor specific regs ********/
3612 switch (sd->sensor) {
3613 case SEN_OV2610:
3614 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3615 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3616 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3617 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3618 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3619 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3620 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3621 return 0;
3622 case SEN_OV3610:
3623 if (qvga) {
3624 xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3625 ystart = (776 - gspca_dev->height) / 2;
3626 } else {
3627 xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3628 ystart = (1544 - gspca_dev->height) / 2;
3630 xend = xstart + gspca_dev->width;
3631 yend = ystart + gspca_dev->height;
3632 /* Writing to the COMH register resets the other windowing regs
3633 to their default values, so we must do this first. */
3634 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3635 i2c_w_mask(sd, 0x32,
3636 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3637 0x3f);
3638 i2c_w_mask(sd, 0x03,
3639 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3640 0x0f);
3641 i2c_w(sd, 0x17, xstart >> 4);
3642 i2c_w(sd, 0x18, xend >> 4);
3643 i2c_w(sd, 0x19, ystart >> 3);
3644 i2c_w(sd, 0x1a, yend >> 3);
3645 return 0;
3646 case SEN_OV8610:
3647 /* For OV8610 qvga means qsvga */
3648 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3649 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3650 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3651 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3652 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3653 break;
3654 case SEN_OV7610:
3655 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3656 i2c_w(sd, 0x35, qvga?0x1e:0x9e);
3657 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3658 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3659 break;
3660 case SEN_OV7620:
3661 case SEN_OV7620AE:
3662 case SEN_OV76BE:
3663 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3664 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3665 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3666 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3667 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3668 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3669 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3670 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3671 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3672 if (sd->sensor == SEN_OV76BE)
3673 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3674 break;
3675 case SEN_OV7640:
3676 case SEN_OV7648:
3677 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3678 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3679 /* Setting this undocumented bit in qvga mode removes a very
3680 annoying vertical shaking of the image */
3681 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3682 /* Unknown */
3683 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3684 /* Allow higher automatic gain (to allow higher framerates) */
3685 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3686 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3687 break;
3688 case SEN_OV7670:
3689 /* set COM7_FMT_VGA or COM7_FMT_QVGA
3690 * do we need to set anything else?
3691 * HSTART etc are set in set_ov_sensor_window itself */
3692 i2c_w_mask(sd, OV7670_REG_COM7,
3693 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3694 OV7670_COM7_FMT_MASK);
3695 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3696 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB,
3697 OV7670_COM8_AWB);
3698 if (qvga) { /* QVGA from ov7670.c by
3699 * Jonathan Corbet */
3700 xstart = 164;
3701 xend = 28;
3702 ystart = 14;
3703 yend = 494;
3704 } else { /* VGA */
3705 xstart = 158;
3706 xend = 14;
3707 ystart = 10;
3708 yend = 490;
3710 /* OV7670 hardware window registers are split across
3711 * multiple locations */
3712 i2c_w(sd, OV7670_REG_HSTART, xstart >> 3);
3713 i2c_w(sd, OV7670_REG_HSTOP, xend >> 3);
3714 v = i2c_r(sd, OV7670_REG_HREF);
3715 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
3716 msleep(10); /* need to sleep between read and write to
3717 * same reg! */
3718 i2c_w(sd, OV7670_REG_HREF, v);
3720 i2c_w(sd, OV7670_REG_VSTART, ystart >> 2);
3721 i2c_w(sd, OV7670_REG_VSTOP, yend >> 2);
3722 v = i2c_r(sd, OV7670_REG_VREF);
3723 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
3724 msleep(10); /* need to sleep between read and write to
3725 * same reg! */
3726 i2c_w(sd, OV7670_REG_VREF, v);
3727 break;
3728 case SEN_OV6620:
3729 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3730 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3731 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3732 break;
3733 case SEN_OV6630:
3734 case SEN_OV66308AF:
3735 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3736 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3737 break;
3738 default:
3739 return -EINVAL;
3742 /******** Clock programming ********/
3743 i2c_w(sd, 0x11, sd->clockdiv);
3745 return 0;
3748 static void sethvflip(struct gspca_dev *gspca_dev)
3750 struct sd *sd = (struct sd *) gspca_dev;
3752 if (sd->sensor != SEN_OV7670)
3753 return;
3754 if (sd->gspca_dev.streaming)
3755 ov51x_stop(sd);
3756 i2c_w_mask(sd, OV7670_REG_MVFP,
3757 OV7670_MVFP_MIRROR * sd->ctrls[HFLIP].val
3758 | OV7670_MVFP_VFLIP * sd->ctrls[VFLIP].val,
3759 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
3760 if (sd->gspca_dev.streaming)
3761 ov51x_restart(sd);
3764 static int set_ov_sensor_window(struct sd *sd)
3766 struct gspca_dev *gspca_dev;
3767 int qvga, crop;
3768 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
3769 int ret;
3771 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */
3772 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610 ||
3773 sd->sensor == SEN_OV7670)
3774 return mode_init_ov_sensor_regs(sd);
3776 gspca_dev = &sd->gspca_dev;
3777 qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1;
3778 crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2;
3780 /* The different sensor ICs handle setting up of window differently.
3781 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
3782 switch (sd->sensor) {
3783 case SEN_OV8610:
3784 hwsbase = 0x1e;
3785 hwebase = 0x1e;
3786 vwsbase = 0x02;
3787 vwebase = 0x02;
3788 break;
3789 case SEN_OV7610:
3790 case SEN_OV76BE:
3791 hwsbase = 0x38;
3792 hwebase = 0x3a;
3793 vwsbase = vwebase = 0x05;
3794 break;
3795 case SEN_OV6620:
3796 case SEN_OV6630:
3797 case SEN_OV66308AF:
3798 hwsbase = 0x38;
3799 hwebase = 0x3a;
3800 vwsbase = 0x05;
3801 vwebase = 0x06;
3802 if (sd->sensor == SEN_OV66308AF && qvga)
3803 /* HDG: this fixes U and V getting swapped */
3804 hwsbase++;
3805 if (crop) {
3806 hwsbase += 8;
3807 hwebase += 8;
3808 vwsbase += 11;
3809 vwebase += 11;
3811 break;
3812 case SEN_OV7620:
3813 case SEN_OV7620AE:
3814 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */
3815 hwebase = 0x2f;
3816 vwsbase = vwebase = 0x05;
3817 break;
3818 case SEN_OV7640:
3819 case SEN_OV7648:
3820 hwsbase = 0x1a;
3821 hwebase = 0x1a;
3822 vwsbase = vwebase = 0x03;
3823 break;
3824 default:
3825 return -EINVAL;
3828 switch (sd->sensor) {
3829 case SEN_OV6620:
3830 case SEN_OV6630:
3831 case SEN_OV66308AF:
3832 if (qvga) { /* QCIF */
3833 hwscale = 0;
3834 vwscale = 0;
3835 } else { /* CIF */
3836 hwscale = 1;
3837 vwscale = 1; /* The datasheet says 0;
3838 * it's wrong */
3840 break;
3841 case SEN_OV8610:
3842 if (qvga) { /* QSVGA */
3843 hwscale = 1;
3844 vwscale = 1;
3845 } else { /* SVGA */
3846 hwscale = 2;
3847 vwscale = 2;
3849 break;
3850 default: /* SEN_OV7xx0 */
3851 if (qvga) { /* QVGA */
3852 hwscale = 1;
3853 vwscale = 0;
3854 } else { /* VGA */
3855 hwscale = 2;
3856 vwscale = 1;
3860 ret = mode_init_ov_sensor_regs(sd);
3861 if (ret < 0)
3862 return ret;
3864 i2c_w(sd, 0x17, hwsbase);
3865 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
3866 i2c_w(sd, 0x19, vwsbase);
3867 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
3869 return 0;
3872 /* -- start the camera -- */
3873 static int sd_start(struct gspca_dev *gspca_dev)
3875 struct sd *sd = (struct sd *) gspca_dev;
3876 int ret = 0;
3878 /* Default for most bridges, allow bridge_mode_init_regs to override */
3879 sd->sensor_width = sd->gspca_dev.width;
3880 sd->sensor_height = sd->gspca_dev.height;
3882 switch (sd->bridge) {
3883 case BRIDGE_OV511:
3884 case BRIDGE_OV511PLUS:
3885 ret = ov511_mode_init_regs(sd);
3886 break;
3887 case BRIDGE_OV518:
3888 case BRIDGE_OV518PLUS:
3889 ret = ov518_mode_init_regs(sd);
3890 break;
3891 case BRIDGE_OV519:
3892 ret = ov519_mode_init_regs(sd);
3893 break;
3894 /* case BRIDGE_OVFX2: nothing to do */
3895 case BRIDGE_W9968CF:
3896 ret = w9968cf_mode_init_regs(sd);
3897 break;
3899 if (ret < 0)
3900 goto out;
3902 ret = set_ov_sensor_window(sd);
3903 if (ret < 0)
3904 goto out;
3906 setcontrast(gspca_dev);
3907 setbrightness(gspca_dev);
3908 setcolors(gspca_dev);
3909 sethvflip(gspca_dev);
3910 setautobright(gspca_dev);
3911 setfreq_i(sd);
3913 /* Force clear snapshot state in case the snapshot button was
3914 pressed while we weren't streaming */
3915 sd->snapshot_needs_reset = 1;
3916 sd_reset_snapshot(gspca_dev);
3917 sd->snapshot_pressed = 0;
3919 sd->first_frame = 3;
3921 ret = ov51x_restart(sd);
3922 if (ret < 0)
3923 goto out;
3924 ov51x_led_control(sd, 1);
3925 return 0;
3926 out:
3927 PDEBUG(D_ERR, "camera start error:%d", ret);
3928 return ret;
3931 static void sd_stopN(struct gspca_dev *gspca_dev)
3933 struct sd *sd = (struct sd *) gspca_dev;
3935 ov51x_stop(sd);
3936 ov51x_led_control(sd, 0);
3939 static void sd_stop0(struct gspca_dev *gspca_dev)
3941 struct sd *sd = (struct sd *) gspca_dev;
3943 if (sd->bridge == BRIDGE_W9968CF)
3944 w9968cf_stop0(sd);
3947 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
3949 struct sd *sd = (struct sd *) gspca_dev;
3951 if (sd->snapshot_pressed != state) {
3952 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
3953 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
3954 input_sync(gspca_dev->input_dev);
3955 #endif
3956 if (state)
3957 sd->snapshot_needs_reset = 1;
3959 sd->snapshot_pressed = state;
3960 } else {
3961 /* On the ov511 / ov519 we need to reset the button state
3962 multiple times, as resetting does not work as long as the
3963 button stays pressed */
3964 switch (sd->bridge) {
3965 case BRIDGE_OV511:
3966 case BRIDGE_OV511PLUS:
3967 case BRIDGE_OV519:
3968 if (state)
3969 sd->snapshot_needs_reset = 1;
3970 break;
3975 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
3976 u8 *in, /* isoc packet */
3977 int len) /* iso packet length */
3979 struct sd *sd = (struct sd *) gspca_dev;
3981 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
3982 * byte non-zero. The EOF packet has image width/height in the
3983 * 10th and 11th bytes. The 9th byte is given as follows:
3985 * bit 7: EOF
3986 * 6: compression enabled
3987 * 5: 422/420/400 modes
3988 * 4: 422/420/400 modes
3989 * 3: 1
3990 * 2: snapshot button on
3991 * 1: snapshot frame
3992 * 0: even/odd field
3994 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
3995 (in[8] & 0x08)) {
3996 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
3997 if (in[8] & 0x80) {
3998 /* Frame end */
3999 if ((in[9] + 1) * 8 != gspca_dev->width ||
4000 (in[10] + 1) * 8 != gspca_dev->height) {
4001 PDEBUG(D_ERR, "Invalid frame size, got: %dx%d,"
4002 " requested: %dx%d\n",
4003 (in[9] + 1) * 8, (in[10] + 1) * 8,
4004 gspca_dev->width, gspca_dev->height);
4005 gspca_dev->last_packet_type = DISCARD_PACKET;
4006 return;
4008 /* Add 11 byte footer to frame, might be usefull */
4009 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4010 return;
4011 } else {
4012 /* Frame start */
4013 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4014 sd->packet_nr = 0;
4018 /* Ignore the packet number */
4019 len--;
4021 /* intermediate packet */
4022 gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4025 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4026 u8 *data, /* isoc packet */
4027 int len) /* iso packet length */
4029 struct sd *sd = (struct sd *) gspca_dev;
4031 /* A false positive here is likely, until OVT gives me
4032 * the definitive SOF/EOF format */
4033 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4034 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4035 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4036 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4037 sd->packet_nr = 0;
4040 if (gspca_dev->last_packet_type == DISCARD_PACKET)
4041 return;
4043 /* Does this device use packet numbers ? */
4044 if (len & 7) {
4045 len--;
4046 if (sd->packet_nr == data[len])
4047 sd->packet_nr++;
4048 /* The last few packets of the frame (which are all 0's
4049 except that they may contain part of the footer), are
4050 numbered 0 */
4051 else if (sd->packet_nr == 0 || data[len]) {
4052 PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)",
4053 (int)data[len], (int)sd->packet_nr);
4054 gspca_dev->last_packet_type = DISCARD_PACKET;
4055 return;
4059 /* intermediate packet */
4060 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4063 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4064 u8 *data, /* isoc packet */
4065 int len) /* iso packet length */
4067 /* Header of ov519 is 16 bytes:
4068 * Byte Value Description
4069 * 0 0xff magic
4070 * 1 0xff magic
4071 * 2 0xff magic
4072 * 3 0xXX 0x50 = SOF, 0x51 = EOF
4073 * 9 0xXX 0x01 initial frame without data,
4074 * 0x00 standard frame with image
4075 * 14 Lo in EOF: length of image data / 8
4076 * 15 Hi
4079 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4080 switch (data[3]) {
4081 case 0x50: /* start of frame */
4082 /* Don't check the button state here, as the state
4083 usually (always ?) changes at EOF and checking it
4084 here leads to unnecessary snapshot state resets. */
4085 #define HDRSZ 16
4086 data += HDRSZ;
4087 len -= HDRSZ;
4088 #undef HDRSZ
4089 if (data[0] == 0xff || data[1] == 0xd8)
4090 gspca_frame_add(gspca_dev, FIRST_PACKET,
4091 data, len);
4092 else
4093 gspca_dev->last_packet_type = DISCARD_PACKET;
4094 return;
4095 case 0x51: /* end of frame */
4096 ov51x_handle_button(gspca_dev, data[11] & 1);
4097 if (data[9] != 0)
4098 gspca_dev->last_packet_type = DISCARD_PACKET;
4099 gspca_frame_add(gspca_dev, LAST_PACKET,
4100 NULL, 0);
4101 return;
4105 /* intermediate packet */
4106 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4109 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4110 u8 *data, /* isoc packet */
4111 int len) /* iso packet length */
4113 struct sd *sd = (struct sd *) gspca_dev;
4115 gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4117 /* A short read signals EOF */
4118 if (len < OVFX2_BULK_SIZE) {
4119 /* If the frame is short, and it is one of the first ones
4120 the sensor and bridge are still syncing, so drop it. */
4121 if (sd->first_frame) {
4122 sd->first_frame--;
4123 if (gspca_dev->image_len <
4124 sd->gspca_dev.width * sd->gspca_dev.height)
4125 gspca_dev->last_packet_type = DISCARD_PACKET;
4127 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4128 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4132 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4133 u8 *data, /* isoc packet */
4134 int len) /* iso packet length */
4136 struct sd *sd = (struct sd *) gspca_dev;
4138 switch (sd->bridge) {
4139 case BRIDGE_OV511:
4140 case BRIDGE_OV511PLUS:
4141 ov511_pkt_scan(gspca_dev, data, len);
4142 break;
4143 case BRIDGE_OV518:
4144 case BRIDGE_OV518PLUS:
4145 ov518_pkt_scan(gspca_dev, data, len);
4146 break;
4147 case BRIDGE_OV519:
4148 ov519_pkt_scan(gspca_dev, data, len);
4149 break;
4150 case BRIDGE_OVFX2:
4151 ovfx2_pkt_scan(gspca_dev, data, len);
4152 break;
4153 case BRIDGE_W9968CF:
4154 w9968cf_pkt_scan(gspca_dev, data, len);
4155 break;
4159 /* -- management routines -- */
4161 static void setbrightness(struct gspca_dev *gspca_dev)
4163 struct sd *sd = (struct sd *) gspca_dev;
4164 int val;
4166 val = sd->ctrls[BRIGHTNESS].val;
4167 switch (sd->sensor) {
4168 case SEN_OV8610:
4169 case SEN_OV7610:
4170 case SEN_OV76BE:
4171 case SEN_OV6620:
4172 case SEN_OV6630:
4173 case SEN_OV66308AF:
4174 case SEN_OV7640:
4175 case SEN_OV7648:
4176 i2c_w(sd, OV7610_REG_BRT, val);
4177 break;
4178 case SEN_OV7620:
4179 case SEN_OV7620AE:
4180 /* 7620 doesn't like manual changes when in auto mode */
4181 if (!sd->ctrls[AUTOBRIGHT].val)
4182 i2c_w(sd, OV7610_REG_BRT, val);
4183 break;
4184 case SEN_OV7670:
4185 /*win trace
4186 * i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */
4187 i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val));
4188 break;
4192 static void setcontrast(struct gspca_dev *gspca_dev)
4194 struct sd *sd = (struct sd *) gspca_dev;
4195 int val;
4197 val = sd->ctrls[CONTRAST].val;
4198 switch (sd->sensor) {
4199 case SEN_OV7610:
4200 case SEN_OV6620:
4201 i2c_w(sd, OV7610_REG_CNT, val);
4202 break;
4203 case SEN_OV6630:
4204 case SEN_OV66308AF:
4205 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4206 break;
4207 case SEN_OV8610: {
4208 static const __u8 ctab[] = {
4209 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4212 /* Use Y gamma control instead. Bit 0 enables it. */
4213 i2c_w(sd, 0x64, ctab[val >> 5]);
4214 break;
4216 case SEN_OV7620:
4217 case SEN_OV7620AE: {
4218 static const __u8 ctab[] = {
4219 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4220 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4223 /* Use Y gamma control instead. Bit 0 enables it. */
4224 i2c_w(sd, 0x64, ctab[val >> 4]);
4225 break;
4227 case SEN_OV7670:
4228 /* check that this isn't just the same as ov7610 */
4229 i2c_w(sd, OV7670_REG_CONTRAS, val >> 1);
4230 break;
4234 static void setcolors(struct gspca_dev *gspca_dev)
4236 struct sd *sd = (struct sd *) gspca_dev;
4237 int val;
4239 val = sd->ctrls[COLORS].val;
4240 switch (sd->sensor) {
4241 case SEN_OV8610:
4242 case SEN_OV7610:
4243 case SEN_OV76BE:
4244 case SEN_OV6620:
4245 case SEN_OV6630:
4246 case SEN_OV66308AF:
4247 i2c_w(sd, OV7610_REG_SAT, val);
4248 break;
4249 case SEN_OV7620:
4250 case SEN_OV7620AE:
4251 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4252 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4253 if (rc < 0)
4254 goto out; */
4255 i2c_w(sd, OV7610_REG_SAT, val);
4256 break;
4257 case SEN_OV7640:
4258 case SEN_OV7648:
4259 i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4260 break;
4261 case SEN_OV7670:
4262 /* supported later once I work out how to do it
4263 * transparently fail now! */
4264 /* set REG_COM13 values for UV sat auto mode */
4265 break;
4269 static void setautobright(struct gspca_dev *gspca_dev)
4271 struct sd *sd = (struct sd *) gspca_dev;
4273 if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7648 ||
4274 sd->sensor == SEN_OV7670 ||
4275 sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4276 return;
4278 i2c_w_mask(sd, 0x2d, sd->ctrls[AUTOBRIGHT].val ? 0x10 : 0x00, 0x10);
4281 static void setfreq_i(struct sd *sd)
4283 if (sd->sensor == SEN_OV2610 || sd->sensor == SEN_OV3610)
4284 return;
4286 if (sd->sensor == SEN_OV7670) {
4287 switch (sd->ctrls[FREQ].val) {
4288 case 0: /* Banding filter disabled */
4289 i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT);
4290 break;
4291 case 1: /* 50 hz */
4292 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4293 OV7670_COM8_BFILT);
4294 i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18);
4295 break;
4296 case 2: /* 60 hz */
4297 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4298 OV7670_COM8_BFILT);
4299 i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18);
4300 break;
4301 case 3: /* Auto hz */
4302 i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT,
4303 OV7670_COM8_BFILT);
4304 i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO,
4305 0x18);
4306 break;
4308 } else {
4309 switch (sd->ctrls[FREQ].val) {
4310 case 0: /* Banding filter disabled */
4311 i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4312 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4313 break;
4314 case 1: /* 50 hz (filter on and framerate adj) */
4315 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4316 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4317 /* 20 fps -> 16.667 fps */
4318 if (sd->sensor == SEN_OV6620 ||
4319 sd->sensor == SEN_OV6630 ||
4320 sd->sensor == SEN_OV66308AF)
4321 i2c_w(sd, 0x2b, 0x5e);
4322 else
4323 i2c_w(sd, 0x2b, 0xac);
4324 break;
4325 case 2: /* 60 hz (filter on, ...) */
4326 i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4327 if (sd->sensor == SEN_OV6620 ||
4328 sd->sensor == SEN_OV6630 ||
4329 sd->sensor == SEN_OV66308AF) {
4330 /* 20 fps -> 15 fps */
4331 i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4332 i2c_w(sd, 0x2b, 0xa8);
4333 } else {
4334 /* no framerate adj. */
4335 i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4337 break;
4341 static void setfreq(struct gspca_dev *gspca_dev)
4343 struct sd *sd = (struct sd *) gspca_dev;
4345 setfreq_i(sd);
4347 /* Ugly but necessary */
4348 if (sd->bridge == BRIDGE_W9968CF)
4349 w9968cf_set_crop_window(sd);
4352 static int sd_querymenu(struct gspca_dev *gspca_dev,
4353 struct v4l2_querymenu *menu)
4355 struct sd *sd = (struct sd *) gspca_dev;
4357 switch (menu->id) {
4358 case V4L2_CID_POWER_LINE_FREQUENCY:
4359 switch (menu->index) {
4360 case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
4361 strcpy((char *) menu->name, "NoFliker");
4362 return 0;
4363 case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
4364 strcpy((char *) menu->name, "50 Hz");
4365 return 0;
4366 case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
4367 strcpy((char *) menu->name, "60 Hz");
4368 return 0;
4369 case 3:
4370 if (sd->sensor != SEN_OV7670)
4371 return -EINVAL;
4373 strcpy((char *) menu->name, "Automatic");
4374 return 0;
4376 break;
4378 return -EINVAL;
4381 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4382 struct v4l2_jpegcompression *jcomp)
4384 struct sd *sd = (struct sd *) gspca_dev;
4386 if (sd->bridge != BRIDGE_W9968CF)
4387 return -EINVAL;
4389 memset(jcomp, 0, sizeof *jcomp);
4390 jcomp->quality = sd->quality;
4391 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4392 V4L2_JPEG_MARKER_DRI;
4393 return 0;
4396 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4397 struct v4l2_jpegcompression *jcomp)
4399 struct sd *sd = (struct sd *) gspca_dev;
4401 if (sd->bridge != BRIDGE_W9968CF)
4402 return -EINVAL;
4404 if (gspca_dev->streaming)
4405 return -EBUSY;
4407 if (jcomp->quality < QUALITY_MIN)
4408 sd->quality = QUALITY_MIN;
4409 else if (jcomp->quality > QUALITY_MAX)
4410 sd->quality = QUALITY_MAX;
4411 else
4412 sd->quality = jcomp->quality;
4414 /* Return resulting jcomp params to app */
4415 sd_get_jcomp(gspca_dev, jcomp);
4417 return 0;
4420 /* sub-driver description */
4421 static const struct sd_desc sd_desc = {
4422 .name = MODULE_NAME,
4423 .ctrls = sd_ctrls,
4424 .nctrls = ARRAY_SIZE(sd_ctrls),
4425 .config = sd_config,
4426 .init = sd_init,
4427 .start = sd_start,
4428 .stopN = sd_stopN,
4429 .stop0 = sd_stop0,
4430 .pkt_scan = sd_pkt_scan,
4431 .dq_callback = sd_reset_snapshot,
4432 .querymenu = sd_querymenu,
4433 .get_jcomp = sd_get_jcomp,
4434 .set_jcomp = sd_set_jcomp,
4435 #if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
4436 .other_input = 1,
4437 #endif
4440 /* -- module initialisation -- */
4441 static const __devinitdata struct usb_device_id device_table[] = {
4442 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4443 {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 },
4444 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4445 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4446 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4447 {USB_DEVICE(0x041e, 0x4064),
4448 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4449 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4450 {USB_DEVICE(0x041e, 0x4068),
4451 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4452 {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 },
4453 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4454 {USB_DEVICE(0x054c, 0x0155),
4455 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4456 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4457 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4458 {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 },
4459 {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 },
4460 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4461 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4462 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4463 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4464 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4465 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4466 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4467 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4468 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4469 {USB_DEVICE(0x8020, 0xEF04), .driver_info = BRIDGE_OVFX2 },
4473 MODULE_DEVICE_TABLE(usb, device_table);
4475 /* -- device connect -- */
4476 static int sd_probe(struct usb_interface *intf,
4477 const struct usb_device_id *id)
4479 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4480 THIS_MODULE);
4483 static struct usb_driver sd_driver = {
4484 .name = MODULE_NAME,
4485 .id_table = device_table,
4486 .probe = sd_probe,
4487 .disconnect = gspca_disconnect,
4488 #ifdef CONFIG_PM
4489 .suspend = gspca_suspend,
4490 .resume = gspca_resume,
4491 #endif
4494 /* -- module insert / remove -- */
4495 static int __init sd_mod_init(void)
4497 return usb_register(&sd_driver);
4499 static void __exit sd_mod_exit(void)
4501 usb_deregister(&sd_driver);
4504 module_init(sd_mod_init);
4505 module_exit(sd_mod_exit);
4507 module_param(frame_rate, int, 0644);
4508 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");