Move i386 part of core.c to x86/core.c.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / lguest / core.c
blob06869a2d3b40477c99f46ba1d79f86d9740d5627
1 /*P:400 This contains run_guest() which actually calls into the Host<->Guest
2 * Switcher and analyzes the return, such as determining if the Guest wants the
3 * Host to do something. This file also contains useful helper routines, and a
4 * couple of non-obvious setup and teardown pieces which were implemented after
5 * days of debugging pain. :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <asm/paravirt.h>
16 #include <asm/pgtable.h>
17 #include <asm/uaccess.h>
18 #include <asm/poll.h>
19 #include <asm/asm-offsets.h>
20 #include "lg.h"
23 static struct vm_struct *switcher_vma;
24 static struct page **switcher_page;
26 /* This One Big lock protects all inter-guest data structures. */
27 DEFINE_MUTEX(lguest_lock);
29 /*H:010 We need to set up the Switcher at a high virtual address. Remember the
30 * Switcher is a few hundred bytes of assembler code which actually changes the
31 * CPU to run the Guest, and then changes back to the Host when a trap or
32 * interrupt happens.
34 * The Switcher code must be at the same virtual address in the Guest as the
35 * Host since it will be running as the switchover occurs.
37 * Trying to map memory at a particular address is an unusual thing to do, so
38 * it's not a simple one-liner. */
39 static __init int map_switcher(void)
41 int i, err;
42 struct page **pagep;
45 * Map the Switcher in to high memory.
47 * It turns out that if we choose the address 0xFFC00000 (4MB under the
48 * top virtual address), it makes setting up the page tables really
49 * easy.
52 /* We allocate an array of "struct page"s. map_vm_area() wants the
53 * pages in this form, rather than just an array of pointers. */
54 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
55 GFP_KERNEL);
56 if (!switcher_page) {
57 err = -ENOMEM;
58 goto out;
61 /* Now we actually allocate the pages. The Guest will see these pages,
62 * so we make sure they're zeroed. */
63 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
64 unsigned long addr = get_zeroed_page(GFP_KERNEL);
65 if (!addr) {
66 err = -ENOMEM;
67 goto free_some_pages;
69 switcher_page[i] = virt_to_page(addr);
72 /* Now we reserve the "virtual memory area" we want: 0xFFC00000
73 * (SWITCHER_ADDR). We might not get it in theory, but in practice
74 * it's worked so far. */
75 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
76 VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
77 if (!switcher_vma) {
78 err = -ENOMEM;
79 printk("lguest: could not map switcher pages high\n");
80 goto free_pages;
83 /* This code actually sets up the pages we've allocated to appear at
84 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
85 * kind of pages we're mapping (kernel pages), and a pointer to our
86 * array of struct pages. It increments that pointer, but we don't
87 * care. */
88 pagep = switcher_page;
89 err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
90 if (err) {
91 printk("lguest: map_vm_area failed: %i\n", err);
92 goto free_vma;
95 /* Now the Switcher is mapped at the right address, we can't fail!
96 * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
97 memcpy(switcher_vma->addr, start_switcher_text,
98 end_switcher_text - start_switcher_text);
100 printk(KERN_INFO "lguest: mapped switcher at %p\n",
101 switcher_vma->addr);
102 /* And we succeeded... */
103 return 0;
105 free_vma:
106 vunmap(switcher_vma->addr);
107 free_pages:
108 i = TOTAL_SWITCHER_PAGES;
109 free_some_pages:
110 for (--i; i >= 0; i--)
111 __free_pages(switcher_page[i], 0);
112 kfree(switcher_page);
113 out:
114 return err;
116 /*:*/
118 /* Cleaning up the mapping when the module is unloaded is almost...
119 * too easy. */
120 static void unmap_switcher(void)
122 unsigned int i;
124 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
125 vunmap(switcher_vma->addr);
126 /* Now we just need to free the pages we copied the switcher into */
127 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
128 __free_pages(switcher_page[i], 0);
131 /*L:305
132 * Dealing With Guest Memory.
134 * When the Guest gives us (what it thinks is) a physical address, we can use
135 * the normal copy_from_user() & copy_to_user() on the corresponding place in
136 * the memory region allocated by the Launcher.
138 * But we can't trust the Guest: it might be trying to access the Launcher
139 * code. We have to check that the range is below the pfn_limit the Launcher
140 * gave us. We have to make sure that addr + len doesn't give us a false
141 * positive by overflowing, too. */
142 int lguest_address_ok(const struct lguest *lg,
143 unsigned long addr, unsigned long len)
145 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
148 /* This is a convenient routine to get a 32-bit value from the Guest (a very
149 * common operation). Here we can see how useful the kill_lguest() routine we
150 * met in the Launcher can be: we return a random value (0) instead of needing
151 * to return an error. */
152 u32 lgread_u32(struct lguest *lg, unsigned long addr)
154 u32 val = 0;
156 /* Don't let them access lguest binary. */
157 if (!lguest_address_ok(lg, addr, sizeof(val))
158 || get_user(val, (u32 *)(lg->mem_base + addr)) != 0)
159 kill_guest(lg, "bad read address %#lx: pfn_limit=%u membase=%p", addr, lg->pfn_limit, lg->mem_base);
160 return val;
163 /* Same thing for writing a value. */
164 void lgwrite_u32(struct lguest *lg, unsigned long addr, u32 val)
166 if (!lguest_address_ok(lg, addr, sizeof(val))
167 || put_user(val, (u32 *)(lg->mem_base + addr)) != 0)
168 kill_guest(lg, "bad write address %#lx", addr);
171 /* This routine is more generic, and copies a range of Guest bytes into a
172 * buffer. If the copy_from_user() fails, we fill the buffer with zeroes, so
173 * the caller doesn't end up using uninitialized kernel memory. */
174 void lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
176 if (!lguest_address_ok(lg, addr, bytes)
177 || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
178 /* copy_from_user should do this, but as we rely on it... */
179 memset(b, 0, bytes);
180 kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
184 /* Similarly, our generic routine to copy into a range of Guest bytes. */
185 void lgwrite(struct lguest *lg, unsigned long addr, const void *b,
186 unsigned bytes)
188 if (!lguest_address_ok(lg, addr, bytes)
189 || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
190 kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
192 /* (end of memory access helper routines) :*/
194 /*H:030 Let's jump straight to the the main loop which runs the Guest.
195 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
196 * going around and around until something interesting happens. */
197 int run_guest(struct lguest *lg, unsigned long __user *user)
199 /* We stop running once the Guest is dead. */
200 while (!lg->dead) {
201 /* First we run any hypercalls the Guest wants done: either in
202 * the hypercall ring in "struct lguest_data", or directly by
203 * using int 31 (LGUEST_TRAP_ENTRY). */
204 do_hypercalls(lg);
205 /* It's possible the Guest did a SEND_DMA hypercall to the
206 * Launcher, in which case we return from the read() now. */
207 if (lg->dma_is_pending) {
208 if (put_user(lg->pending_dma, user) ||
209 put_user(lg->pending_key, user+1))
210 return -EFAULT;
211 return sizeof(unsigned long)*2;
214 /* Check for signals */
215 if (signal_pending(current))
216 return -ERESTARTSYS;
218 /* If Waker set break_out, return to Launcher. */
219 if (lg->break_out)
220 return -EAGAIN;
222 /* Check if there are any interrupts which can be delivered
223 * now: if so, this sets up the hander to be executed when we
224 * next run the Guest. */
225 maybe_do_interrupt(lg);
227 /* All long-lived kernel loops need to check with this horrible
228 * thing called the freezer. If the Host is trying to suspend,
229 * it stops us. */
230 try_to_freeze();
232 /* Just make absolutely sure the Guest is still alive. One of
233 * those hypercalls could have been fatal, for example. */
234 if (lg->dead)
235 break;
237 /* If the Guest asked to be stopped, we sleep. The Guest's
238 * clock timer or LHCALL_BREAK from the Waker will wake us. */
239 if (lg->halted) {
240 set_current_state(TASK_INTERRUPTIBLE);
241 schedule();
242 continue;
245 /* OK, now we're ready to jump into the Guest. First we put up
246 * the "Do Not Disturb" sign: */
247 local_irq_disable();
249 /* Actually run the Guest until something happens. */
250 lguest_arch_run_guest(lg);
252 /* Now we're ready to be interrupted or moved to other CPUs */
253 local_irq_enable();
255 /* Now we deal with whatever happened to the Guest. */
256 lguest_arch_handle_trap(lg);
259 /* The Guest is dead => "No such file or directory" */
260 return -ENOENT;
263 /*H:000
264 * Welcome to the Host!
266 * By this point your brain has been tickled by the Guest code and numbed by
267 * the Launcher code; prepare for it to be stretched by the Host code. This is
268 * the heart. Let's begin at the initialization routine for the Host's lg
269 * module.
271 static int __init init(void)
273 int err;
275 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
276 if (paravirt_enabled()) {
277 printk("lguest is afraid of %s\n", pv_info.name);
278 return -EPERM;
281 /* First we put the Switcher up in very high virtual memory. */
282 err = map_switcher();
283 if (err)
284 return err;
286 /* Now we set up the pagetable implementation for the Guests. */
287 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
288 if (err) {
289 unmap_switcher();
290 return err;
293 /* The I/O subsystem needs some things initialized. */
294 lguest_io_init();
296 /* /dev/lguest needs to be registered. */
297 err = lguest_device_init();
298 if (err) {
299 free_pagetables();
300 unmap_switcher();
301 return err;
304 /* Finally we do some architecture-specific setup. */
305 lguest_arch_host_init();
307 /* All good! */
308 return 0;
311 /* Cleaning up is just the same code, backwards. With a little French. */
312 static void __exit fini(void)
314 lguest_device_remove();
315 free_pagetables();
316 unmap_switcher();
318 lguest_arch_host_fini();
320 /*:*/
322 /* The Host side of lguest can be a module. This is a nice way for people to
323 * play with it. */
324 module_init(init);
325 module_exit(fini);
326 MODULE_LICENSE("GPL");
327 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");