mfd: New AB8500 driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blobc47373f01f89dfadd6114d03d3b1bbed15970142
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
70 #include "libata.h"
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78 const struct ata_port_operations ata_base_port_ops = {
79 .prereset = ata_std_prereset,
80 .postreset = ata_std_postreset,
81 .error_handler = ata_std_error_handler,
84 const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
87 .qc_defer = ata_std_qc_defer,
88 .hardreset = sata_std_hardreset,
91 static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94 static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
96 static void ata_dev_xfermask(struct ata_device *dev);
97 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
99 unsigned int ata_print_id = 1;
101 struct workqueue_struct *ata_aux_wq;
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 MODULE_AUTHOR("Jeff Garzik");
164 MODULE_DESCRIPTION("Library module for ATA devices");
165 MODULE_LICENSE("GPL");
166 MODULE_VERSION(DRV_VERSION);
169 static bool ata_sstatus_online(u32 sstatus)
171 return (sstatus & 0xf) == 0x3;
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
180 * LOCKING:
181 * Host lock or EH context.
183 * RETURNS:
184 * Pointer to the next link.
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 /* fall through */
215 case ATA_LITER_EDGE:
216 return NULL;
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
230 return NULL;
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
239 * LOCKING:
240 * Host lock or EH context.
242 * RETURNS:
243 * Pointer to the next device.
245 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
294 * LOCKING:
295 * Don't care.
297 * RETURNS:
298 * Pointer to the found physical link.
300 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 struct ata_port *ap = dev->link->ap;
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
312 * ata_force_cbl - force cable type according to libata.force
313 * @ap: ATA port of interest
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
321 * LOCKING:
322 * EH context.
324 void ata_force_cbl(struct ata_port *ap)
326 int i;
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
357 * LOCKING:
358 * EH context.
360 static void ata_force_link_limits(struct ata_link *link)
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
366 if (ata_is_host_link(link))
367 linkno += 15;
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
405 * LOCKING:
406 * EH context.
408 static void ata_force_xfermask(struct ata_device *dev)
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
429 if (!fe->param.xfer_mask)
430 continue;
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
459 * LOCKING:
460 * EH context.
462 static void ata_force_horkage(struct ata_device *dev)
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
498 * Determine ATAPI command type from @opcode.
500 * LOCKING:
501 * None.
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
506 int atapi_cmd_type(u8 opcode)
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
527 default:
528 return ATAPI_MISC;
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
535 * @pmp: Port multiplier port
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
542 * LOCKING:
543 * Inherited from caller.
545 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 * LOCKING:
584 * Inherited from caller.
587 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
605 static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
628 ATA_CMD_WRITE_EXT,
632 ATA_CMD_WRITE_FUA_EXT
636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
640 * Examine the device configuration and tf->flags to calculate
641 * the proper read/write commands and protocol to use.
643 * LOCKING:
644 * caller.
646 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 u8 cmd;
650 int index, fua, lba48, write;
652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
658 index = dev->multi_count ? 0 : 8;
659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
662 index = dev->multi_count ? 0 : 8;
663 } else {
664 tf->protocol = ATA_PROT_DMA;
665 index = 16;
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
673 return -1;
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
681 * LOCKING:
682 * None.
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
688 * RETURNS:
689 * Block address read from @tf.
691 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 u64 block = 0;
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
699 block |= (u64)tf->hob_lbal << 24;
700 } else
701 block |= (tf->device & 0xf) << 24;
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 return block;
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
734 * LOCKING:
735 * None.
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
740 * RETURNS:
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
745 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
792 tf->hob_nsect = (n_block >> 8) & 0xff;
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
804 tf->nsect = n_block & 0xff;
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
845 return 0;
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
857 * LOCKING:
858 * None.
860 * RETURNS:
861 * Packed xfer_mask.
863 unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
882 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 static const struct ata_xfer_ent {
894 int shift, bits;
895 u8 base;
896 } ata_xfer_tbl[] = {
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
900 { -1, },
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
910 * LOCKING:
911 * None.
913 * RETURNS:
914 * Matching XFER_* value, 0xff if no match found.
916 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
924 return 0xff;
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
931 * Return matching xfer_mask for @xfer_mode.
933 * LOCKING:
934 * None.
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
939 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
941 const struct ata_xfer_ent *ent;
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
947 return 0;
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
954 * Return matching xfer_shift for @xfer_mode.
956 * LOCKING:
957 * None.
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
962 int ata_xfer_mode2shift(unsigned long xfer_mode)
964 const struct ata_xfer_ent *ent;
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
976 * Determine string which represents the highest speed
977 * (highest bit in @modemask).
979 * LOCKING:
980 * None.
982 * RETURNS:
983 * Constant C string representing highest speed listed in
984 * @mode_mask, or the constant C string "<n/a>".
986 const char *ata_mode_string(unsigned long xfer_mask)
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
994 "PIO5",
995 "PIO6",
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
999 "MWDMA3",
1000 "MWDMA4",
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1010 int highbit;
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1015 return "<n/a>";
1018 static const char *sata_spd_string(unsigned int spd)
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1031 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1033 struct ata_link *link = dev->link;
1034 struct ata_port *ap = link->ap;
1035 u32 scontrol;
1036 unsigned int err_mask;
1037 int rc;
1040 * disallow DIPM for drivers which haven't set
1041 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1042 * phy ready will be set in the interrupt status on
1043 * state changes, which will cause some drivers to
1044 * think there are errors - additionally drivers will
1045 * need to disable hot plug.
1047 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1048 ap->pm_policy = NOT_AVAILABLE;
1049 return -EINVAL;
1053 * For DIPM, we will only enable it for the
1054 * min_power setting.
1056 * Why? Because Disks are too stupid to know that
1057 * If the host rejects a request to go to SLUMBER
1058 * they should retry at PARTIAL, and instead it
1059 * just would give up. So, for medium_power to
1060 * work at all, we need to only allow HIPM.
1062 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1063 if (rc)
1064 return rc;
1066 switch (policy) {
1067 case MIN_POWER:
1068 /* no restrictions on IPM transitions */
1069 scontrol &= ~(0x3 << 8);
1070 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1071 if (rc)
1072 return rc;
1074 /* enable DIPM */
1075 if (dev->flags & ATA_DFLAG_DIPM)
1076 err_mask = ata_dev_set_feature(dev,
1077 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1078 break;
1079 case MEDIUM_POWER:
1080 /* allow IPM to PARTIAL */
1081 scontrol &= ~(0x1 << 8);
1082 scontrol |= (0x2 << 8);
1083 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1084 if (rc)
1085 return rc;
1088 * we don't have to disable DIPM since IPM flags
1089 * disallow transitions to SLUMBER, which effectively
1090 * disable DIPM if it does not support PARTIAL
1092 break;
1093 case NOT_AVAILABLE:
1094 case MAX_PERFORMANCE:
1095 /* disable all IPM transitions */
1096 scontrol |= (0x3 << 8);
1097 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1098 if (rc)
1099 return rc;
1102 * we don't have to disable DIPM since IPM flags
1103 * disallow all transitions which effectively
1104 * disable DIPM anyway.
1106 break;
1109 /* FIXME: handle SET FEATURES failure */
1110 (void) err_mask;
1112 return 0;
1116 * ata_dev_enable_pm - enable SATA interface power management
1117 * @dev: device to enable power management
1118 * @policy: the link power management policy
1120 * Enable SATA Interface power management. This will enable
1121 * Device Interface Power Management (DIPM) for min_power
1122 * policy, and then call driver specific callbacks for
1123 * enabling Host Initiated Power management.
1125 * Locking: Caller.
1126 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1128 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1130 int rc = 0;
1131 struct ata_port *ap = dev->link->ap;
1133 /* set HIPM first, then DIPM */
1134 if (ap->ops->enable_pm)
1135 rc = ap->ops->enable_pm(ap, policy);
1136 if (rc)
1137 goto enable_pm_out;
1138 rc = ata_dev_set_dipm(dev, policy);
1140 enable_pm_out:
1141 if (rc)
1142 ap->pm_policy = MAX_PERFORMANCE;
1143 else
1144 ap->pm_policy = policy;
1145 return /* rc */; /* hopefully we can use 'rc' eventually */
1148 #ifdef CONFIG_PM
1150 * ata_dev_disable_pm - disable SATA interface power management
1151 * @dev: device to disable power management
1153 * Disable SATA Interface power management. This will disable
1154 * Device Interface Power Management (DIPM) without changing
1155 * policy, call driver specific callbacks for disabling Host
1156 * Initiated Power management.
1158 * Locking: Caller.
1159 * Returns: void
1161 static void ata_dev_disable_pm(struct ata_device *dev)
1163 struct ata_port *ap = dev->link->ap;
1165 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1166 if (ap->ops->disable_pm)
1167 ap->ops->disable_pm(ap);
1169 #endif /* CONFIG_PM */
1171 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1173 ap->pm_policy = policy;
1174 ap->link.eh_info.action |= ATA_EH_LPM;
1175 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1176 ata_port_schedule_eh(ap);
1179 #ifdef CONFIG_PM
1180 static void ata_lpm_enable(struct ata_host *host)
1182 struct ata_link *link;
1183 struct ata_port *ap;
1184 struct ata_device *dev;
1185 int i;
1187 for (i = 0; i < host->n_ports; i++) {
1188 ap = host->ports[i];
1189 ata_for_each_link(link, ap, EDGE) {
1190 ata_for_each_dev(dev, link, ALL)
1191 ata_dev_disable_pm(dev);
1196 static void ata_lpm_disable(struct ata_host *host)
1198 int i;
1200 for (i = 0; i < host->n_ports; i++) {
1201 struct ata_port *ap = host->ports[i];
1202 ata_lpm_schedule(ap, ap->pm_policy);
1205 #endif /* CONFIG_PM */
1208 * ata_dev_classify - determine device type based on ATA-spec signature
1209 * @tf: ATA taskfile register set for device to be identified
1211 * Determine from taskfile register contents whether a device is
1212 * ATA or ATAPI, as per "Signature and persistence" section
1213 * of ATA/PI spec (volume 1, sect 5.14).
1215 * LOCKING:
1216 * None.
1218 * RETURNS:
1219 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1220 * %ATA_DEV_UNKNOWN the event of failure.
1222 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1224 /* Apple's open source Darwin code hints that some devices only
1225 * put a proper signature into the LBA mid/high registers,
1226 * So, we only check those. It's sufficient for uniqueness.
1228 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1229 * signatures for ATA and ATAPI devices attached on SerialATA,
1230 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1231 * spec has never mentioned about using different signatures
1232 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1233 * Multiplier specification began to use 0x69/0x96 to identify
1234 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1235 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1236 * 0x69/0x96 shortly and described them as reserved for
1237 * SerialATA.
1239 * We follow the current spec and consider that 0x69/0x96
1240 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1241 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1242 * SEMB signature. This is worked around in
1243 * ata_dev_read_id().
1245 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1246 DPRINTK("found ATA device by sig\n");
1247 return ATA_DEV_ATA;
1250 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1251 DPRINTK("found ATAPI device by sig\n");
1252 return ATA_DEV_ATAPI;
1255 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1256 DPRINTK("found PMP device by sig\n");
1257 return ATA_DEV_PMP;
1260 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1261 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1262 return ATA_DEV_SEMB;
1265 DPRINTK("unknown device\n");
1266 return ATA_DEV_UNKNOWN;
1270 * ata_id_string - Convert IDENTIFY DEVICE page into string
1271 * @id: IDENTIFY DEVICE results we will examine
1272 * @s: string into which data is output
1273 * @ofs: offset into identify device page
1274 * @len: length of string to return. must be an even number.
1276 * The strings in the IDENTIFY DEVICE page are broken up into
1277 * 16-bit chunks. Run through the string, and output each
1278 * 8-bit chunk linearly, regardless of platform.
1280 * LOCKING:
1281 * caller.
1284 void ata_id_string(const u16 *id, unsigned char *s,
1285 unsigned int ofs, unsigned int len)
1287 unsigned int c;
1289 BUG_ON(len & 1);
1291 while (len > 0) {
1292 c = id[ofs] >> 8;
1293 *s = c;
1294 s++;
1296 c = id[ofs] & 0xff;
1297 *s = c;
1298 s++;
1300 ofs++;
1301 len -= 2;
1306 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1307 * @id: IDENTIFY DEVICE results we will examine
1308 * @s: string into which data is output
1309 * @ofs: offset into identify device page
1310 * @len: length of string to return. must be an odd number.
1312 * This function is identical to ata_id_string except that it
1313 * trims trailing spaces and terminates the resulting string with
1314 * null. @len must be actual maximum length (even number) + 1.
1316 * LOCKING:
1317 * caller.
1319 void ata_id_c_string(const u16 *id, unsigned char *s,
1320 unsigned int ofs, unsigned int len)
1322 unsigned char *p;
1324 ata_id_string(id, s, ofs, len - 1);
1326 p = s + strnlen(s, len - 1);
1327 while (p > s && p[-1] == ' ')
1328 p--;
1329 *p = '\0';
1332 static u64 ata_id_n_sectors(const u16 *id)
1334 if (ata_id_has_lba(id)) {
1335 if (ata_id_has_lba48(id))
1336 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1337 else
1338 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1339 } else {
1340 if (ata_id_current_chs_valid(id))
1341 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1342 id[ATA_ID_CUR_SECTORS];
1343 else
1344 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1345 id[ATA_ID_SECTORS];
1349 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1351 u64 sectors = 0;
1353 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1354 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1355 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1356 sectors |= (tf->lbah & 0xff) << 16;
1357 sectors |= (tf->lbam & 0xff) << 8;
1358 sectors |= (tf->lbal & 0xff);
1360 return sectors;
1363 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1365 u64 sectors = 0;
1367 sectors |= (tf->device & 0x0f) << 24;
1368 sectors |= (tf->lbah & 0xff) << 16;
1369 sectors |= (tf->lbam & 0xff) << 8;
1370 sectors |= (tf->lbal & 0xff);
1372 return sectors;
1376 * ata_read_native_max_address - Read native max address
1377 * @dev: target device
1378 * @max_sectors: out parameter for the result native max address
1380 * Perform an LBA48 or LBA28 native size query upon the device in
1381 * question.
1383 * RETURNS:
1384 * 0 on success, -EACCES if command is aborted by the drive.
1385 * -EIO on other errors.
1387 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1389 unsigned int err_mask;
1390 struct ata_taskfile tf;
1391 int lba48 = ata_id_has_lba48(dev->id);
1393 ata_tf_init(dev, &tf);
1395 /* always clear all address registers */
1396 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1398 if (lba48) {
1399 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1400 tf.flags |= ATA_TFLAG_LBA48;
1401 } else
1402 tf.command = ATA_CMD_READ_NATIVE_MAX;
1404 tf.protocol |= ATA_PROT_NODATA;
1405 tf.device |= ATA_LBA;
1407 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1408 if (err_mask) {
1409 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1410 "max address (err_mask=0x%x)\n", err_mask);
1411 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1412 return -EACCES;
1413 return -EIO;
1416 if (lba48)
1417 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1418 else
1419 *max_sectors = ata_tf_to_lba(&tf) + 1;
1420 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1421 (*max_sectors)--;
1422 return 0;
1426 * ata_set_max_sectors - Set max sectors
1427 * @dev: target device
1428 * @new_sectors: new max sectors value to set for the device
1430 * Set max sectors of @dev to @new_sectors.
1432 * RETURNS:
1433 * 0 on success, -EACCES if command is aborted or denied (due to
1434 * previous non-volatile SET_MAX) by the drive. -EIO on other
1435 * errors.
1437 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1439 unsigned int err_mask;
1440 struct ata_taskfile tf;
1441 int lba48 = ata_id_has_lba48(dev->id);
1443 new_sectors--;
1445 ata_tf_init(dev, &tf);
1447 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1449 if (lba48) {
1450 tf.command = ATA_CMD_SET_MAX_EXT;
1451 tf.flags |= ATA_TFLAG_LBA48;
1453 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1454 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1455 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1456 } else {
1457 tf.command = ATA_CMD_SET_MAX;
1459 tf.device |= (new_sectors >> 24) & 0xf;
1462 tf.protocol |= ATA_PROT_NODATA;
1463 tf.device |= ATA_LBA;
1465 tf.lbal = (new_sectors >> 0) & 0xff;
1466 tf.lbam = (new_sectors >> 8) & 0xff;
1467 tf.lbah = (new_sectors >> 16) & 0xff;
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1470 if (err_mask) {
1471 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1472 "max address (err_mask=0x%x)\n", err_mask);
1473 if (err_mask == AC_ERR_DEV &&
1474 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1475 return -EACCES;
1476 return -EIO;
1479 return 0;
1483 * ata_hpa_resize - Resize a device with an HPA set
1484 * @dev: Device to resize
1486 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1487 * it if required to the full size of the media. The caller must check
1488 * the drive has the HPA feature set enabled.
1490 * RETURNS:
1491 * 0 on success, -errno on failure.
1493 static int ata_hpa_resize(struct ata_device *dev)
1495 struct ata_eh_context *ehc = &dev->link->eh_context;
1496 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1497 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1498 u64 sectors = ata_id_n_sectors(dev->id);
1499 u64 native_sectors;
1500 int rc;
1502 /* do we need to do it? */
1503 if (dev->class != ATA_DEV_ATA ||
1504 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1505 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1506 return 0;
1508 /* read native max address */
1509 rc = ata_read_native_max_address(dev, &native_sectors);
1510 if (rc) {
1511 /* If device aborted the command or HPA isn't going to
1512 * be unlocked, skip HPA resizing.
1514 if (rc == -EACCES || !unlock_hpa) {
1515 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1516 "broken, skipping HPA handling\n");
1517 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1519 /* we can continue if device aborted the command */
1520 if (rc == -EACCES)
1521 rc = 0;
1524 return rc;
1526 dev->n_native_sectors = native_sectors;
1528 /* nothing to do? */
1529 if (native_sectors <= sectors || !unlock_hpa) {
1530 if (!print_info || native_sectors == sectors)
1531 return 0;
1533 if (native_sectors > sectors)
1534 ata_dev_printk(dev, KERN_INFO,
1535 "HPA detected: current %llu, native %llu\n",
1536 (unsigned long long)sectors,
1537 (unsigned long long)native_sectors);
1538 else if (native_sectors < sectors)
1539 ata_dev_printk(dev, KERN_WARNING,
1540 "native sectors (%llu) is smaller than "
1541 "sectors (%llu)\n",
1542 (unsigned long long)native_sectors,
1543 (unsigned long long)sectors);
1544 return 0;
1547 /* let's unlock HPA */
1548 rc = ata_set_max_sectors(dev, native_sectors);
1549 if (rc == -EACCES) {
1550 /* if device aborted the command, skip HPA resizing */
1551 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1552 "(%llu -> %llu), skipping HPA handling\n",
1553 (unsigned long long)sectors,
1554 (unsigned long long)native_sectors);
1555 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1556 return 0;
1557 } else if (rc)
1558 return rc;
1560 /* re-read IDENTIFY data */
1561 rc = ata_dev_reread_id(dev, 0);
1562 if (rc) {
1563 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1564 "data after HPA resizing\n");
1565 return rc;
1568 if (print_info) {
1569 u64 new_sectors = ata_id_n_sectors(dev->id);
1570 ata_dev_printk(dev, KERN_INFO,
1571 "HPA unlocked: %llu -> %llu, native %llu\n",
1572 (unsigned long long)sectors,
1573 (unsigned long long)new_sectors,
1574 (unsigned long long)native_sectors);
1577 return 0;
1581 * ata_dump_id - IDENTIFY DEVICE info debugging output
1582 * @id: IDENTIFY DEVICE page to dump
1584 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1585 * page.
1587 * LOCKING:
1588 * caller.
1591 static inline void ata_dump_id(const u16 *id)
1593 DPRINTK("49==0x%04x "
1594 "53==0x%04x "
1595 "63==0x%04x "
1596 "64==0x%04x "
1597 "75==0x%04x \n",
1598 id[49],
1599 id[53],
1600 id[63],
1601 id[64],
1602 id[75]);
1603 DPRINTK("80==0x%04x "
1604 "81==0x%04x "
1605 "82==0x%04x "
1606 "83==0x%04x "
1607 "84==0x%04x \n",
1608 id[80],
1609 id[81],
1610 id[82],
1611 id[83],
1612 id[84]);
1613 DPRINTK("88==0x%04x "
1614 "93==0x%04x\n",
1615 id[88],
1616 id[93]);
1620 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1621 * @id: IDENTIFY data to compute xfer mask from
1623 * Compute the xfermask for this device. This is not as trivial
1624 * as it seems if we must consider early devices correctly.
1626 * FIXME: pre IDE drive timing (do we care ?).
1628 * LOCKING:
1629 * None.
1631 * RETURNS:
1632 * Computed xfermask
1634 unsigned long ata_id_xfermask(const u16 *id)
1636 unsigned long pio_mask, mwdma_mask, udma_mask;
1638 /* Usual case. Word 53 indicates word 64 is valid */
1639 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1640 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1641 pio_mask <<= 3;
1642 pio_mask |= 0x7;
1643 } else {
1644 /* If word 64 isn't valid then Word 51 high byte holds
1645 * the PIO timing number for the maximum. Turn it into
1646 * a mask.
1648 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1649 if (mode < 5) /* Valid PIO range */
1650 pio_mask = (2 << mode) - 1;
1651 else
1652 pio_mask = 1;
1654 /* But wait.. there's more. Design your standards by
1655 * committee and you too can get a free iordy field to
1656 * process. However its the speeds not the modes that
1657 * are supported... Note drivers using the timing API
1658 * will get this right anyway
1662 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1664 if (ata_id_is_cfa(id)) {
1666 * Process compact flash extended modes
1668 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1669 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1671 if (pio)
1672 pio_mask |= (1 << 5);
1673 if (pio > 1)
1674 pio_mask |= (1 << 6);
1675 if (dma)
1676 mwdma_mask |= (1 << 3);
1677 if (dma > 1)
1678 mwdma_mask |= (1 << 4);
1681 udma_mask = 0;
1682 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1683 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1685 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1688 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1690 struct completion *waiting = qc->private_data;
1692 complete(waiting);
1696 * ata_exec_internal_sg - execute libata internal command
1697 * @dev: Device to which the command is sent
1698 * @tf: Taskfile registers for the command and the result
1699 * @cdb: CDB for packet command
1700 * @dma_dir: Data tranfer direction of the command
1701 * @sgl: sg list for the data buffer of the command
1702 * @n_elem: Number of sg entries
1703 * @timeout: Timeout in msecs (0 for default)
1705 * Executes libata internal command with timeout. @tf contains
1706 * command on entry and result on return. Timeout and error
1707 * conditions are reported via return value. No recovery action
1708 * is taken after a command times out. It's caller's duty to
1709 * clean up after timeout.
1711 * LOCKING:
1712 * None. Should be called with kernel context, might sleep.
1714 * RETURNS:
1715 * Zero on success, AC_ERR_* mask on failure
1717 unsigned ata_exec_internal_sg(struct ata_device *dev,
1718 struct ata_taskfile *tf, const u8 *cdb,
1719 int dma_dir, struct scatterlist *sgl,
1720 unsigned int n_elem, unsigned long timeout)
1722 struct ata_link *link = dev->link;
1723 struct ata_port *ap = link->ap;
1724 u8 command = tf->command;
1725 int auto_timeout = 0;
1726 struct ata_queued_cmd *qc;
1727 unsigned int tag, preempted_tag;
1728 u32 preempted_sactive, preempted_qc_active;
1729 int preempted_nr_active_links;
1730 DECLARE_COMPLETION_ONSTACK(wait);
1731 unsigned long flags;
1732 unsigned int err_mask;
1733 int rc;
1735 spin_lock_irqsave(ap->lock, flags);
1737 /* no internal command while frozen */
1738 if (ap->pflags & ATA_PFLAG_FROZEN) {
1739 spin_unlock_irqrestore(ap->lock, flags);
1740 return AC_ERR_SYSTEM;
1743 /* initialize internal qc */
1745 /* XXX: Tag 0 is used for drivers with legacy EH as some
1746 * drivers choke if any other tag is given. This breaks
1747 * ata_tag_internal() test for those drivers. Don't use new
1748 * EH stuff without converting to it.
1750 if (ap->ops->error_handler)
1751 tag = ATA_TAG_INTERNAL;
1752 else
1753 tag = 0;
1755 if (test_and_set_bit(tag, &ap->qc_allocated))
1756 BUG();
1757 qc = __ata_qc_from_tag(ap, tag);
1759 qc->tag = tag;
1760 qc->scsicmd = NULL;
1761 qc->ap = ap;
1762 qc->dev = dev;
1763 ata_qc_reinit(qc);
1765 preempted_tag = link->active_tag;
1766 preempted_sactive = link->sactive;
1767 preempted_qc_active = ap->qc_active;
1768 preempted_nr_active_links = ap->nr_active_links;
1769 link->active_tag = ATA_TAG_POISON;
1770 link->sactive = 0;
1771 ap->qc_active = 0;
1772 ap->nr_active_links = 0;
1774 /* prepare & issue qc */
1775 qc->tf = *tf;
1776 if (cdb)
1777 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1778 qc->flags |= ATA_QCFLAG_RESULT_TF;
1779 qc->dma_dir = dma_dir;
1780 if (dma_dir != DMA_NONE) {
1781 unsigned int i, buflen = 0;
1782 struct scatterlist *sg;
1784 for_each_sg(sgl, sg, n_elem, i)
1785 buflen += sg->length;
1787 ata_sg_init(qc, sgl, n_elem);
1788 qc->nbytes = buflen;
1791 qc->private_data = &wait;
1792 qc->complete_fn = ata_qc_complete_internal;
1794 ata_qc_issue(qc);
1796 spin_unlock_irqrestore(ap->lock, flags);
1798 if (!timeout) {
1799 if (ata_probe_timeout)
1800 timeout = ata_probe_timeout * 1000;
1801 else {
1802 timeout = ata_internal_cmd_timeout(dev, command);
1803 auto_timeout = 1;
1807 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1809 ata_sff_flush_pio_task(ap);
1811 if (!rc) {
1812 spin_lock_irqsave(ap->lock, flags);
1814 /* We're racing with irq here. If we lose, the
1815 * following test prevents us from completing the qc
1816 * twice. If we win, the port is frozen and will be
1817 * cleaned up by ->post_internal_cmd().
1819 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1820 qc->err_mask |= AC_ERR_TIMEOUT;
1822 if (ap->ops->error_handler)
1823 ata_port_freeze(ap);
1824 else
1825 ata_qc_complete(qc);
1827 if (ata_msg_warn(ap))
1828 ata_dev_printk(dev, KERN_WARNING,
1829 "qc timeout (cmd 0x%x)\n", command);
1832 spin_unlock_irqrestore(ap->lock, flags);
1835 /* do post_internal_cmd */
1836 if (ap->ops->post_internal_cmd)
1837 ap->ops->post_internal_cmd(qc);
1839 /* perform minimal error analysis */
1840 if (qc->flags & ATA_QCFLAG_FAILED) {
1841 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1842 qc->err_mask |= AC_ERR_DEV;
1844 if (!qc->err_mask)
1845 qc->err_mask |= AC_ERR_OTHER;
1847 if (qc->err_mask & ~AC_ERR_OTHER)
1848 qc->err_mask &= ~AC_ERR_OTHER;
1851 /* finish up */
1852 spin_lock_irqsave(ap->lock, flags);
1854 *tf = qc->result_tf;
1855 err_mask = qc->err_mask;
1857 ata_qc_free(qc);
1858 link->active_tag = preempted_tag;
1859 link->sactive = preempted_sactive;
1860 ap->qc_active = preempted_qc_active;
1861 ap->nr_active_links = preempted_nr_active_links;
1863 spin_unlock_irqrestore(ap->lock, flags);
1865 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1866 ata_internal_cmd_timed_out(dev, command);
1868 return err_mask;
1872 * ata_exec_internal - execute libata internal command
1873 * @dev: Device to which the command is sent
1874 * @tf: Taskfile registers for the command and the result
1875 * @cdb: CDB for packet command
1876 * @dma_dir: Data tranfer direction of the command
1877 * @buf: Data buffer of the command
1878 * @buflen: Length of data buffer
1879 * @timeout: Timeout in msecs (0 for default)
1881 * Wrapper around ata_exec_internal_sg() which takes simple
1882 * buffer instead of sg list.
1884 * LOCKING:
1885 * None. Should be called with kernel context, might sleep.
1887 * RETURNS:
1888 * Zero on success, AC_ERR_* mask on failure
1890 unsigned ata_exec_internal(struct ata_device *dev,
1891 struct ata_taskfile *tf, const u8 *cdb,
1892 int dma_dir, void *buf, unsigned int buflen,
1893 unsigned long timeout)
1895 struct scatterlist *psg = NULL, sg;
1896 unsigned int n_elem = 0;
1898 if (dma_dir != DMA_NONE) {
1899 WARN_ON(!buf);
1900 sg_init_one(&sg, buf, buflen);
1901 psg = &sg;
1902 n_elem++;
1905 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1906 timeout);
1910 * ata_do_simple_cmd - execute simple internal command
1911 * @dev: Device to which the command is sent
1912 * @cmd: Opcode to execute
1914 * Execute a 'simple' command, that only consists of the opcode
1915 * 'cmd' itself, without filling any other registers
1917 * LOCKING:
1918 * Kernel thread context (may sleep).
1920 * RETURNS:
1921 * Zero on success, AC_ERR_* mask on failure
1923 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1925 struct ata_taskfile tf;
1927 ata_tf_init(dev, &tf);
1929 tf.command = cmd;
1930 tf.flags |= ATA_TFLAG_DEVICE;
1931 tf.protocol = ATA_PROT_NODATA;
1933 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1937 * ata_pio_need_iordy - check if iordy needed
1938 * @adev: ATA device
1940 * Check if the current speed of the device requires IORDY. Used
1941 * by various controllers for chip configuration.
1943 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1945 /* Don't set IORDY if we're preparing for reset. IORDY may
1946 * lead to controller lock up on certain controllers if the
1947 * port is not occupied. See bko#11703 for details.
1949 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1950 return 0;
1951 /* Controller doesn't support IORDY. Probably a pointless
1952 * check as the caller should know this.
1954 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1955 return 0;
1956 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1957 if (ata_id_is_cfa(adev->id)
1958 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1959 return 0;
1960 /* PIO3 and higher it is mandatory */
1961 if (adev->pio_mode > XFER_PIO_2)
1962 return 1;
1963 /* We turn it on when possible */
1964 if (ata_id_has_iordy(adev->id))
1965 return 1;
1966 return 0;
1970 * ata_pio_mask_no_iordy - Return the non IORDY mask
1971 * @adev: ATA device
1973 * Compute the highest mode possible if we are not using iordy. Return
1974 * -1 if no iordy mode is available.
1976 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1978 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1979 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1980 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1981 /* Is the speed faster than the drive allows non IORDY ? */
1982 if (pio) {
1983 /* This is cycle times not frequency - watch the logic! */
1984 if (pio > 240) /* PIO2 is 240nS per cycle */
1985 return 3 << ATA_SHIFT_PIO;
1986 return 7 << ATA_SHIFT_PIO;
1989 return 3 << ATA_SHIFT_PIO;
1993 * ata_do_dev_read_id - default ID read method
1994 * @dev: device
1995 * @tf: proposed taskfile
1996 * @id: data buffer
1998 * Issue the identify taskfile and hand back the buffer containing
1999 * identify data. For some RAID controllers and for pre ATA devices
2000 * this function is wrapped or replaced by the driver
2002 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2003 struct ata_taskfile *tf, u16 *id)
2005 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2006 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2010 * ata_dev_read_id - Read ID data from the specified device
2011 * @dev: target device
2012 * @p_class: pointer to class of the target device (may be changed)
2013 * @flags: ATA_READID_* flags
2014 * @id: buffer to read IDENTIFY data into
2016 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2017 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2018 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2019 * for pre-ATA4 drives.
2021 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2022 * now we abort if we hit that case.
2024 * LOCKING:
2025 * Kernel thread context (may sleep)
2027 * RETURNS:
2028 * 0 on success, -errno otherwise.
2030 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2031 unsigned int flags, u16 *id)
2033 struct ata_port *ap = dev->link->ap;
2034 unsigned int class = *p_class;
2035 struct ata_taskfile tf;
2036 unsigned int err_mask = 0;
2037 const char *reason;
2038 bool is_semb = class == ATA_DEV_SEMB;
2039 int may_fallback = 1, tried_spinup = 0;
2040 int rc;
2042 if (ata_msg_ctl(ap))
2043 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2045 retry:
2046 ata_tf_init(dev, &tf);
2048 switch (class) {
2049 case ATA_DEV_SEMB:
2050 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2051 case ATA_DEV_ATA:
2052 tf.command = ATA_CMD_ID_ATA;
2053 break;
2054 case ATA_DEV_ATAPI:
2055 tf.command = ATA_CMD_ID_ATAPI;
2056 break;
2057 default:
2058 rc = -ENODEV;
2059 reason = "unsupported class";
2060 goto err_out;
2063 tf.protocol = ATA_PROT_PIO;
2065 /* Some devices choke if TF registers contain garbage. Make
2066 * sure those are properly initialized.
2068 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2070 /* Device presence detection is unreliable on some
2071 * controllers. Always poll IDENTIFY if available.
2073 tf.flags |= ATA_TFLAG_POLLING;
2075 if (ap->ops->read_id)
2076 err_mask = ap->ops->read_id(dev, &tf, id);
2077 else
2078 err_mask = ata_do_dev_read_id(dev, &tf, id);
2080 if (err_mask) {
2081 if (err_mask & AC_ERR_NODEV_HINT) {
2082 ata_dev_printk(dev, KERN_DEBUG,
2083 "NODEV after polling detection\n");
2084 return -ENOENT;
2087 if (is_semb) {
2088 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2089 "device w/ SEMB sig, disabled\n");
2090 /* SEMB is not supported yet */
2091 *p_class = ATA_DEV_SEMB_UNSUP;
2092 return 0;
2095 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2096 /* Device or controller might have reported
2097 * the wrong device class. Give a shot at the
2098 * other IDENTIFY if the current one is
2099 * aborted by the device.
2101 if (may_fallback) {
2102 may_fallback = 0;
2104 if (class == ATA_DEV_ATA)
2105 class = ATA_DEV_ATAPI;
2106 else
2107 class = ATA_DEV_ATA;
2108 goto retry;
2111 /* Control reaches here iff the device aborted
2112 * both flavors of IDENTIFYs which happens
2113 * sometimes with phantom devices.
2115 ata_dev_printk(dev, KERN_DEBUG,
2116 "both IDENTIFYs aborted, assuming NODEV\n");
2117 return -ENOENT;
2120 rc = -EIO;
2121 reason = "I/O error";
2122 goto err_out;
2125 /* Falling back doesn't make sense if ID data was read
2126 * successfully at least once.
2128 may_fallback = 0;
2130 swap_buf_le16(id, ATA_ID_WORDS);
2132 /* sanity check */
2133 rc = -EINVAL;
2134 reason = "device reports invalid type";
2136 if (class == ATA_DEV_ATA) {
2137 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2138 goto err_out;
2139 } else {
2140 if (ata_id_is_ata(id))
2141 goto err_out;
2144 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2145 tried_spinup = 1;
2147 * Drive powered-up in standby mode, and requires a specific
2148 * SET_FEATURES spin-up subcommand before it will accept
2149 * anything other than the original IDENTIFY command.
2151 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2152 if (err_mask && id[2] != 0x738c) {
2153 rc = -EIO;
2154 reason = "SPINUP failed";
2155 goto err_out;
2158 * If the drive initially returned incomplete IDENTIFY info,
2159 * we now must reissue the IDENTIFY command.
2161 if (id[2] == 0x37c8)
2162 goto retry;
2165 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2167 * The exact sequence expected by certain pre-ATA4 drives is:
2168 * SRST RESET
2169 * IDENTIFY (optional in early ATA)
2170 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2171 * anything else..
2172 * Some drives were very specific about that exact sequence.
2174 * Note that ATA4 says lba is mandatory so the second check
2175 * should never trigger.
2177 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2178 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2179 if (err_mask) {
2180 rc = -EIO;
2181 reason = "INIT_DEV_PARAMS failed";
2182 goto err_out;
2185 /* current CHS translation info (id[53-58]) might be
2186 * changed. reread the identify device info.
2188 flags &= ~ATA_READID_POSTRESET;
2189 goto retry;
2193 *p_class = class;
2195 return 0;
2197 err_out:
2198 if (ata_msg_warn(ap))
2199 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2200 "(%s, err_mask=0x%x)\n", reason, err_mask);
2201 return rc;
2204 static int ata_do_link_spd_horkage(struct ata_device *dev)
2206 struct ata_link *plink = ata_dev_phys_link(dev);
2207 u32 target, target_limit;
2209 if (!sata_scr_valid(plink))
2210 return 0;
2212 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2213 target = 1;
2214 else
2215 return 0;
2217 target_limit = (1 << target) - 1;
2219 /* if already on stricter limit, no need to push further */
2220 if (plink->sata_spd_limit <= target_limit)
2221 return 0;
2223 plink->sata_spd_limit = target_limit;
2225 /* Request another EH round by returning -EAGAIN if link is
2226 * going faster than the target speed. Forward progress is
2227 * guaranteed by setting sata_spd_limit to target_limit above.
2229 if (plink->sata_spd > target) {
2230 ata_dev_printk(dev, KERN_INFO,
2231 "applying link speed limit horkage to %s\n",
2232 sata_spd_string(target));
2233 return -EAGAIN;
2235 return 0;
2238 static inline u8 ata_dev_knobble(struct ata_device *dev)
2240 struct ata_port *ap = dev->link->ap;
2242 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2243 return 0;
2245 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2248 static int ata_dev_config_ncq(struct ata_device *dev,
2249 char *desc, size_t desc_sz)
2251 struct ata_port *ap = dev->link->ap;
2252 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2253 unsigned int err_mask;
2254 char *aa_desc = "";
2256 if (!ata_id_has_ncq(dev->id)) {
2257 desc[0] = '\0';
2258 return 0;
2260 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2261 snprintf(desc, desc_sz, "NCQ (not used)");
2262 return 0;
2264 if (ap->flags & ATA_FLAG_NCQ) {
2265 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2266 dev->flags |= ATA_DFLAG_NCQ;
2269 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2270 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2271 ata_id_has_fpdma_aa(dev->id)) {
2272 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2273 SATA_FPDMA_AA);
2274 if (err_mask) {
2275 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2276 "(error_mask=0x%x)\n", err_mask);
2277 if (err_mask != AC_ERR_DEV) {
2278 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2279 return -EIO;
2281 } else
2282 aa_desc = ", AA";
2285 if (hdepth >= ddepth)
2286 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2287 else
2288 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2289 ddepth, aa_desc);
2290 return 0;
2294 * ata_dev_configure - Configure the specified ATA/ATAPI device
2295 * @dev: Target device to configure
2297 * Configure @dev according to @dev->id. Generic and low-level
2298 * driver specific fixups are also applied.
2300 * LOCKING:
2301 * Kernel thread context (may sleep)
2303 * RETURNS:
2304 * 0 on success, -errno otherwise
2306 int ata_dev_configure(struct ata_device *dev)
2308 struct ata_port *ap = dev->link->ap;
2309 struct ata_eh_context *ehc = &dev->link->eh_context;
2310 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2311 const u16 *id = dev->id;
2312 unsigned long xfer_mask;
2313 char revbuf[7]; /* XYZ-99\0 */
2314 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2315 char modelbuf[ATA_ID_PROD_LEN+1];
2316 int rc;
2318 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2319 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2320 __func__);
2321 return 0;
2324 if (ata_msg_probe(ap))
2325 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2327 /* set horkage */
2328 dev->horkage |= ata_dev_blacklisted(dev);
2329 ata_force_horkage(dev);
2331 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2332 ata_dev_printk(dev, KERN_INFO,
2333 "unsupported device, disabling\n");
2334 ata_dev_disable(dev);
2335 return 0;
2338 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2339 dev->class == ATA_DEV_ATAPI) {
2340 ata_dev_printk(dev, KERN_WARNING,
2341 "WARNING: ATAPI is %s, device ignored.\n",
2342 atapi_enabled ? "not supported with this driver"
2343 : "disabled");
2344 ata_dev_disable(dev);
2345 return 0;
2348 rc = ata_do_link_spd_horkage(dev);
2349 if (rc)
2350 return rc;
2352 /* let ACPI work its magic */
2353 rc = ata_acpi_on_devcfg(dev);
2354 if (rc)
2355 return rc;
2357 /* massage HPA, do it early as it might change IDENTIFY data */
2358 rc = ata_hpa_resize(dev);
2359 if (rc)
2360 return rc;
2362 /* print device capabilities */
2363 if (ata_msg_probe(ap))
2364 ata_dev_printk(dev, KERN_DEBUG,
2365 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2366 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2367 __func__,
2368 id[49], id[82], id[83], id[84],
2369 id[85], id[86], id[87], id[88]);
2371 /* initialize to-be-configured parameters */
2372 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2373 dev->max_sectors = 0;
2374 dev->cdb_len = 0;
2375 dev->n_sectors = 0;
2376 dev->cylinders = 0;
2377 dev->heads = 0;
2378 dev->sectors = 0;
2379 dev->multi_count = 0;
2382 * common ATA, ATAPI feature tests
2385 /* find max transfer mode; for printk only */
2386 xfer_mask = ata_id_xfermask(id);
2388 if (ata_msg_probe(ap))
2389 ata_dump_id(id);
2391 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2392 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2393 sizeof(fwrevbuf));
2395 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2396 sizeof(modelbuf));
2398 /* ATA-specific feature tests */
2399 if (dev->class == ATA_DEV_ATA) {
2400 if (ata_id_is_cfa(id)) {
2401 /* CPRM may make this media unusable */
2402 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2403 ata_dev_printk(dev, KERN_WARNING,
2404 "supports DRM functions and may "
2405 "not be fully accessable.\n");
2406 snprintf(revbuf, 7, "CFA");
2407 } else {
2408 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2409 /* Warn the user if the device has TPM extensions */
2410 if (ata_id_has_tpm(id))
2411 ata_dev_printk(dev, KERN_WARNING,
2412 "supports DRM functions and may "
2413 "not be fully accessable.\n");
2416 dev->n_sectors = ata_id_n_sectors(id);
2418 /* get current R/W Multiple count setting */
2419 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2420 unsigned int max = dev->id[47] & 0xff;
2421 unsigned int cnt = dev->id[59] & 0xff;
2422 /* only recognize/allow powers of two here */
2423 if (is_power_of_2(max) && is_power_of_2(cnt))
2424 if (cnt <= max)
2425 dev->multi_count = cnt;
2428 if (ata_id_has_lba(id)) {
2429 const char *lba_desc;
2430 char ncq_desc[24];
2432 lba_desc = "LBA";
2433 dev->flags |= ATA_DFLAG_LBA;
2434 if (ata_id_has_lba48(id)) {
2435 dev->flags |= ATA_DFLAG_LBA48;
2436 lba_desc = "LBA48";
2438 if (dev->n_sectors >= (1UL << 28) &&
2439 ata_id_has_flush_ext(id))
2440 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2443 /* config NCQ */
2444 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2445 if (rc)
2446 return rc;
2448 /* print device info to dmesg */
2449 if (ata_msg_drv(ap) && print_info) {
2450 ata_dev_printk(dev, KERN_INFO,
2451 "%s: %s, %s, max %s\n",
2452 revbuf, modelbuf, fwrevbuf,
2453 ata_mode_string(xfer_mask));
2454 ata_dev_printk(dev, KERN_INFO,
2455 "%Lu sectors, multi %u: %s %s\n",
2456 (unsigned long long)dev->n_sectors,
2457 dev->multi_count, lba_desc, ncq_desc);
2459 } else {
2460 /* CHS */
2462 /* Default translation */
2463 dev->cylinders = id[1];
2464 dev->heads = id[3];
2465 dev->sectors = id[6];
2467 if (ata_id_current_chs_valid(id)) {
2468 /* Current CHS translation is valid. */
2469 dev->cylinders = id[54];
2470 dev->heads = id[55];
2471 dev->sectors = id[56];
2474 /* print device info to dmesg */
2475 if (ata_msg_drv(ap) && print_info) {
2476 ata_dev_printk(dev, KERN_INFO,
2477 "%s: %s, %s, max %s\n",
2478 revbuf, modelbuf, fwrevbuf,
2479 ata_mode_string(xfer_mask));
2480 ata_dev_printk(dev, KERN_INFO,
2481 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2482 (unsigned long long)dev->n_sectors,
2483 dev->multi_count, dev->cylinders,
2484 dev->heads, dev->sectors);
2488 dev->cdb_len = 16;
2491 /* ATAPI-specific feature tests */
2492 else if (dev->class == ATA_DEV_ATAPI) {
2493 const char *cdb_intr_string = "";
2494 const char *atapi_an_string = "";
2495 const char *dma_dir_string = "";
2496 u32 sntf;
2498 rc = atapi_cdb_len(id);
2499 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2500 if (ata_msg_warn(ap))
2501 ata_dev_printk(dev, KERN_WARNING,
2502 "unsupported CDB len\n");
2503 rc = -EINVAL;
2504 goto err_out_nosup;
2506 dev->cdb_len = (unsigned int) rc;
2508 /* Enable ATAPI AN if both the host and device have
2509 * the support. If PMP is attached, SNTF is required
2510 * to enable ATAPI AN to discern between PHY status
2511 * changed notifications and ATAPI ANs.
2513 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2514 (!sata_pmp_attached(ap) ||
2515 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2516 unsigned int err_mask;
2518 /* issue SET feature command to turn this on */
2519 err_mask = ata_dev_set_feature(dev,
2520 SETFEATURES_SATA_ENABLE, SATA_AN);
2521 if (err_mask)
2522 ata_dev_printk(dev, KERN_ERR,
2523 "failed to enable ATAPI AN "
2524 "(err_mask=0x%x)\n", err_mask);
2525 else {
2526 dev->flags |= ATA_DFLAG_AN;
2527 atapi_an_string = ", ATAPI AN";
2531 if (ata_id_cdb_intr(dev->id)) {
2532 dev->flags |= ATA_DFLAG_CDB_INTR;
2533 cdb_intr_string = ", CDB intr";
2536 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2537 dev->flags |= ATA_DFLAG_DMADIR;
2538 dma_dir_string = ", DMADIR";
2541 /* print device info to dmesg */
2542 if (ata_msg_drv(ap) && print_info)
2543 ata_dev_printk(dev, KERN_INFO,
2544 "ATAPI: %s, %s, max %s%s%s%s\n",
2545 modelbuf, fwrevbuf,
2546 ata_mode_string(xfer_mask),
2547 cdb_intr_string, atapi_an_string,
2548 dma_dir_string);
2551 /* determine max_sectors */
2552 dev->max_sectors = ATA_MAX_SECTORS;
2553 if (dev->flags & ATA_DFLAG_LBA48)
2554 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2556 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2557 if (ata_id_has_hipm(dev->id))
2558 dev->flags |= ATA_DFLAG_HIPM;
2559 if (ata_id_has_dipm(dev->id))
2560 dev->flags |= ATA_DFLAG_DIPM;
2563 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2564 200 sectors */
2565 if (ata_dev_knobble(dev)) {
2566 if (ata_msg_drv(ap) && print_info)
2567 ata_dev_printk(dev, KERN_INFO,
2568 "applying bridge limits\n");
2569 dev->udma_mask &= ATA_UDMA5;
2570 dev->max_sectors = ATA_MAX_SECTORS;
2573 if ((dev->class == ATA_DEV_ATAPI) &&
2574 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2575 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2576 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2579 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2580 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2581 dev->max_sectors);
2583 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2584 dev->horkage |= ATA_HORKAGE_IPM;
2586 /* reset link pm_policy for this port to no pm */
2587 ap->pm_policy = MAX_PERFORMANCE;
2590 if (ap->ops->dev_config)
2591 ap->ops->dev_config(dev);
2593 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2594 /* Let the user know. We don't want to disallow opens for
2595 rescue purposes, or in case the vendor is just a blithering
2596 idiot. Do this after the dev_config call as some controllers
2597 with buggy firmware may want to avoid reporting false device
2598 bugs */
2600 if (print_info) {
2601 ata_dev_printk(dev, KERN_WARNING,
2602 "Drive reports diagnostics failure. This may indicate a drive\n");
2603 ata_dev_printk(dev, KERN_WARNING,
2604 "fault or invalid emulation. Contact drive vendor for information.\n");
2608 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2609 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2610 "firmware update to be fully functional.\n");
2611 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2612 "or visit http://ata.wiki.kernel.org.\n");
2615 return 0;
2617 err_out_nosup:
2618 if (ata_msg_probe(ap))
2619 ata_dev_printk(dev, KERN_DEBUG,
2620 "%s: EXIT, err\n", __func__);
2621 return rc;
2625 * ata_cable_40wire - return 40 wire cable type
2626 * @ap: port
2628 * Helper method for drivers which want to hardwire 40 wire cable
2629 * detection.
2632 int ata_cable_40wire(struct ata_port *ap)
2634 return ATA_CBL_PATA40;
2638 * ata_cable_80wire - return 80 wire cable type
2639 * @ap: port
2641 * Helper method for drivers which want to hardwire 80 wire cable
2642 * detection.
2645 int ata_cable_80wire(struct ata_port *ap)
2647 return ATA_CBL_PATA80;
2651 * ata_cable_unknown - return unknown PATA cable.
2652 * @ap: port
2654 * Helper method for drivers which have no PATA cable detection.
2657 int ata_cable_unknown(struct ata_port *ap)
2659 return ATA_CBL_PATA_UNK;
2663 * ata_cable_ignore - return ignored PATA cable.
2664 * @ap: port
2666 * Helper method for drivers which don't use cable type to limit
2667 * transfer mode.
2669 int ata_cable_ignore(struct ata_port *ap)
2671 return ATA_CBL_PATA_IGN;
2675 * ata_cable_sata - return SATA cable type
2676 * @ap: port
2678 * Helper method for drivers which have SATA cables
2681 int ata_cable_sata(struct ata_port *ap)
2683 return ATA_CBL_SATA;
2687 * ata_bus_probe - Reset and probe ATA bus
2688 * @ap: Bus to probe
2690 * Master ATA bus probing function. Initiates a hardware-dependent
2691 * bus reset, then attempts to identify any devices found on
2692 * the bus.
2694 * LOCKING:
2695 * PCI/etc. bus probe sem.
2697 * RETURNS:
2698 * Zero on success, negative errno otherwise.
2701 int ata_bus_probe(struct ata_port *ap)
2703 unsigned int classes[ATA_MAX_DEVICES];
2704 int tries[ATA_MAX_DEVICES];
2705 int rc;
2706 struct ata_device *dev;
2708 ata_for_each_dev(dev, &ap->link, ALL)
2709 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2711 retry:
2712 ata_for_each_dev(dev, &ap->link, ALL) {
2713 /* If we issue an SRST then an ATA drive (not ATAPI)
2714 * may change configuration and be in PIO0 timing. If
2715 * we do a hard reset (or are coming from power on)
2716 * this is true for ATA or ATAPI. Until we've set a
2717 * suitable controller mode we should not touch the
2718 * bus as we may be talking too fast.
2720 dev->pio_mode = XFER_PIO_0;
2722 /* If the controller has a pio mode setup function
2723 * then use it to set the chipset to rights. Don't
2724 * touch the DMA setup as that will be dealt with when
2725 * configuring devices.
2727 if (ap->ops->set_piomode)
2728 ap->ops->set_piomode(ap, dev);
2731 /* reset and determine device classes */
2732 ap->ops->phy_reset(ap);
2734 ata_for_each_dev(dev, &ap->link, ALL) {
2735 if (dev->class != ATA_DEV_UNKNOWN)
2736 classes[dev->devno] = dev->class;
2737 else
2738 classes[dev->devno] = ATA_DEV_NONE;
2740 dev->class = ATA_DEV_UNKNOWN;
2743 /* read IDENTIFY page and configure devices. We have to do the identify
2744 specific sequence bass-ackwards so that PDIAG- is released by
2745 the slave device */
2747 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2748 if (tries[dev->devno])
2749 dev->class = classes[dev->devno];
2751 if (!ata_dev_enabled(dev))
2752 continue;
2754 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2755 dev->id);
2756 if (rc)
2757 goto fail;
2760 /* Now ask for the cable type as PDIAG- should have been released */
2761 if (ap->ops->cable_detect)
2762 ap->cbl = ap->ops->cable_detect(ap);
2764 /* We may have SATA bridge glue hiding here irrespective of
2765 * the reported cable types and sensed types. When SATA
2766 * drives indicate we have a bridge, we don't know which end
2767 * of the link the bridge is which is a problem.
2769 ata_for_each_dev(dev, &ap->link, ENABLED)
2770 if (ata_id_is_sata(dev->id))
2771 ap->cbl = ATA_CBL_SATA;
2773 /* After the identify sequence we can now set up the devices. We do
2774 this in the normal order so that the user doesn't get confused */
2776 ata_for_each_dev(dev, &ap->link, ENABLED) {
2777 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2778 rc = ata_dev_configure(dev);
2779 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2780 if (rc)
2781 goto fail;
2784 /* configure transfer mode */
2785 rc = ata_set_mode(&ap->link, &dev);
2786 if (rc)
2787 goto fail;
2789 ata_for_each_dev(dev, &ap->link, ENABLED)
2790 return 0;
2792 return -ENODEV;
2794 fail:
2795 tries[dev->devno]--;
2797 switch (rc) {
2798 case -EINVAL:
2799 /* eeek, something went very wrong, give up */
2800 tries[dev->devno] = 0;
2801 break;
2803 case -ENODEV:
2804 /* give it just one more chance */
2805 tries[dev->devno] = min(tries[dev->devno], 1);
2806 case -EIO:
2807 if (tries[dev->devno] == 1) {
2808 /* This is the last chance, better to slow
2809 * down than lose it.
2811 sata_down_spd_limit(&ap->link, 0);
2812 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2816 if (!tries[dev->devno])
2817 ata_dev_disable(dev);
2819 goto retry;
2823 * sata_print_link_status - Print SATA link status
2824 * @link: SATA link to printk link status about
2826 * This function prints link speed and status of a SATA link.
2828 * LOCKING:
2829 * None.
2831 static void sata_print_link_status(struct ata_link *link)
2833 u32 sstatus, scontrol, tmp;
2835 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2836 return;
2837 sata_scr_read(link, SCR_CONTROL, &scontrol);
2839 if (ata_phys_link_online(link)) {
2840 tmp = (sstatus >> 4) & 0xf;
2841 ata_link_printk(link, KERN_INFO,
2842 "SATA link up %s (SStatus %X SControl %X)\n",
2843 sata_spd_string(tmp), sstatus, scontrol);
2844 } else {
2845 ata_link_printk(link, KERN_INFO,
2846 "SATA link down (SStatus %X SControl %X)\n",
2847 sstatus, scontrol);
2852 * ata_dev_pair - return other device on cable
2853 * @adev: device
2855 * Obtain the other device on the same cable, or if none is
2856 * present NULL is returned
2859 struct ata_device *ata_dev_pair(struct ata_device *adev)
2861 struct ata_link *link = adev->link;
2862 struct ata_device *pair = &link->device[1 - adev->devno];
2863 if (!ata_dev_enabled(pair))
2864 return NULL;
2865 return pair;
2869 * sata_down_spd_limit - adjust SATA spd limit downward
2870 * @link: Link to adjust SATA spd limit for
2871 * @spd_limit: Additional limit
2873 * Adjust SATA spd limit of @link downward. Note that this
2874 * function only adjusts the limit. The change must be applied
2875 * using sata_set_spd().
2877 * If @spd_limit is non-zero, the speed is limited to equal to or
2878 * lower than @spd_limit if such speed is supported. If
2879 * @spd_limit is slower than any supported speed, only the lowest
2880 * supported speed is allowed.
2882 * LOCKING:
2883 * Inherited from caller.
2885 * RETURNS:
2886 * 0 on success, negative errno on failure
2888 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2890 u32 sstatus, spd, mask;
2891 int rc, bit;
2893 if (!sata_scr_valid(link))
2894 return -EOPNOTSUPP;
2896 /* If SCR can be read, use it to determine the current SPD.
2897 * If not, use cached value in link->sata_spd.
2899 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2900 if (rc == 0 && ata_sstatus_online(sstatus))
2901 spd = (sstatus >> 4) & 0xf;
2902 else
2903 spd = link->sata_spd;
2905 mask = link->sata_spd_limit;
2906 if (mask <= 1)
2907 return -EINVAL;
2909 /* unconditionally mask off the highest bit */
2910 bit = fls(mask) - 1;
2911 mask &= ~(1 << bit);
2913 /* Mask off all speeds higher than or equal to the current
2914 * one. Force 1.5Gbps if current SPD is not available.
2916 if (spd > 1)
2917 mask &= (1 << (spd - 1)) - 1;
2918 else
2919 mask &= 1;
2921 /* were we already at the bottom? */
2922 if (!mask)
2923 return -EINVAL;
2925 if (spd_limit) {
2926 if (mask & ((1 << spd_limit) - 1))
2927 mask &= (1 << spd_limit) - 1;
2928 else {
2929 bit = ffs(mask) - 1;
2930 mask = 1 << bit;
2934 link->sata_spd_limit = mask;
2936 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2937 sata_spd_string(fls(mask)));
2939 return 0;
2942 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2944 struct ata_link *host_link = &link->ap->link;
2945 u32 limit, target, spd;
2947 limit = link->sata_spd_limit;
2949 /* Don't configure downstream link faster than upstream link.
2950 * It doesn't speed up anything and some PMPs choke on such
2951 * configuration.
2953 if (!ata_is_host_link(link) && host_link->sata_spd)
2954 limit &= (1 << host_link->sata_spd) - 1;
2956 if (limit == UINT_MAX)
2957 target = 0;
2958 else
2959 target = fls(limit);
2961 spd = (*scontrol >> 4) & 0xf;
2962 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2964 return spd != target;
2968 * sata_set_spd_needed - is SATA spd configuration needed
2969 * @link: Link in question
2971 * Test whether the spd limit in SControl matches
2972 * @link->sata_spd_limit. This function is used to determine
2973 * whether hardreset is necessary to apply SATA spd
2974 * configuration.
2976 * LOCKING:
2977 * Inherited from caller.
2979 * RETURNS:
2980 * 1 if SATA spd configuration is needed, 0 otherwise.
2982 static int sata_set_spd_needed(struct ata_link *link)
2984 u32 scontrol;
2986 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2987 return 1;
2989 return __sata_set_spd_needed(link, &scontrol);
2993 * sata_set_spd - set SATA spd according to spd limit
2994 * @link: Link to set SATA spd for
2996 * Set SATA spd of @link according to sata_spd_limit.
2998 * LOCKING:
2999 * Inherited from caller.
3001 * RETURNS:
3002 * 0 if spd doesn't need to be changed, 1 if spd has been
3003 * changed. Negative errno if SCR registers are inaccessible.
3005 int sata_set_spd(struct ata_link *link)
3007 u32 scontrol;
3008 int rc;
3010 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3011 return rc;
3013 if (!__sata_set_spd_needed(link, &scontrol))
3014 return 0;
3016 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3017 return rc;
3019 return 1;
3023 * This mode timing computation functionality is ported over from
3024 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3027 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3028 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3029 * for UDMA6, which is currently supported only by Maxtor drives.
3031 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3034 static const struct ata_timing ata_timing[] = {
3035 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3036 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3037 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3038 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3039 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3040 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3041 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3042 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3044 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3045 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3046 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3048 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3049 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3050 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3051 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3052 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3054 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3055 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3056 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3057 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3058 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3059 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3060 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3061 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3063 { 0xFF }
3066 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3067 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3069 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3071 q->setup = EZ(t->setup * 1000, T);
3072 q->act8b = EZ(t->act8b * 1000, T);
3073 q->rec8b = EZ(t->rec8b * 1000, T);
3074 q->cyc8b = EZ(t->cyc8b * 1000, T);
3075 q->active = EZ(t->active * 1000, T);
3076 q->recover = EZ(t->recover * 1000, T);
3077 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3078 q->cycle = EZ(t->cycle * 1000, T);
3079 q->udma = EZ(t->udma * 1000, UT);
3082 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3083 struct ata_timing *m, unsigned int what)
3085 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3086 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3087 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3088 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3089 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3090 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3091 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3092 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3093 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3096 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3098 const struct ata_timing *t = ata_timing;
3100 while (xfer_mode > t->mode)
3101 t++;
3103 if (xfer_mode == t->mode)
3104 return t;
3105 return NULL;
3108 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3109 struct ata_timing *t, int T, int UT)
3111 const u16 *id = adev->id;
3112 const struct ata_timing *s;
3113 struct ata_timing p;
3116 * Find the mode.
3119 if (!(s = ata_timing_find_mode(speed)))
3120 return -EINVAL;
3122 memcpy(t, s, sizeof(*s));
3125 * If the drive is an EIDE drive, it can tell us it needs extended
3126 * PIO/MW_DMA cycle timing.
3129 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3130 memset(&p, 0, sizeof(p));
3132 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3133 if (speed <= XFER_PIO_2)
3134 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3135 else if ((speed <= XFER_PIO_4) ||
3136 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3137 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3138 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3139 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3141 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3145 * Convert the timing to bus clock counts.
3148 ata_timing_quantize(t, t, T, UT);
3151 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3152 * S.M.A.R.T * and some other commands. We have to ensure that the
3153 * DMA cycle timing is slower/equal than the fastest PIO timing.
3156 if (speed > XFER_PIO_6) {
3157 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3158 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3162 * Lengthen active & recovery time so that cycle time is correct.
3165 if (t->act8b + t->rec8b < t->cyc8b) {
3166 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3167 t->rec8b = t->cyc8b - t->act8b;
3170 if (t->active + t->recover < t->cycle) {
3171 t->active += (t->cycle - (t->active + t->recover)) / 2;
3172 t->recover = t->cycle - t->active;
3175 /* In a few cases quantisation may produce enough errors to
3176 leave t->cycle too low for the sum of active and recovery
3177 if so we must correct this */
3178 if (t->active + t->recover > t->cycle)
3179 t->cycle = t->active + t->recover;
3181 return 0;
3185 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3186 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3187 * @cycle: cycle duration in ns
3189 * Return matching xfer mode for @cycle. The returned mode is of
3190 * the transfer type specified by @xfer_shift. If @cycle is too
3191 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3192 * than the fastest known mode, the fasted mode is returned.
3194 * LOCKING:
3195 * None.
3197 * RETURNS:
3198 * Matching xfer_mode, 0xff if no match found.
3200 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3202 u8 base_mode = 0xff, last_mode = 0xff;
3203 const struct ata_xfer_ent *ent;
3204 const struct ata_timing *t;
3206 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3207 if (ent->shift == xfer_shift)
3208 base_mode = ent->base;
3210 for (t = ata_timing_find_mode(base_mode);
3211 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3212 unsigned short this_cycle;
3214 switch (xfer_shift) {
3215 case ATA_SHIFT_PIO:
3216 case ATA_SHIFT_MWDMA:
3217 this_cycle = t->cycle;
3218 break;
3219 case ATA_SHIFT_UDMA:
3220 this_cycle = t->udma;
3221 break;
3222 default:
3223 return 0xff;
3226 if (cycle > this_cycle)
3227 break;
3229 last_mode = t->mode;
3232 return last_mode;
3236 * ata_down_xfermask_limit - adjust dev xfer masks downward
3237 * @dev: Device to adjust xfer masks
3238 * @sel: ATA_DNXFER_* selector
3240 * Adjust xfer masks of @dev downward. Note that this function
3241 * does not apply the change. Invoking ata_set_mode() afterwards
3242 * will apply the limit.
3244 * LOCKING:
3245 * Inherited from caller.
3247 * RETURNS:
3248 * 0 on success, negative errno on failure
3250 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3252 char buf[32];
3253 unsigned long orig_mask, xfer_mask;
3254 unsigned long pio_mask, mwdma_mask, udma_mask;
3255 int quiet, highbit;
3257 quiet = !!(sel & ATA_DNXFER_QUIET);
3258 sel &= ~ATA_DNXFER_QUIET;
3260 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3261 dev->mwdma_mask,
3262 dev->udma_mask);
3263 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3265 switch (sel) {
3266 case ATA_DNXFER_PIO:
3267 highbit = fls(pio_mask) - 1;
3268 pio_mask &= ~(1 << highbit);
3269 break;
3271 case ATA_DNXFER_DMA:
3272 if (udma_mask) {
3273 highbit = fls(udma_mask) - 1;
3274 udma_mask &= ~(1 << highbit);
3275 if (!udma_mask)
3276 return -ENOENT;
3277 } else if (mwdma_mask) {
3278 highbit = fls(mwdma_mask) - 1;
3279 mwdma_mask &= ~(1 << highbit);
3280 if (!mwdma_mask)
3281 return -ENOENT;
3283 break;
3285 case ATA_DNXFER_40C:
3286 udma_mask &= ATA_UDMA_MASK_40C;
3287 break;
3289 case ATA_DNXFER_FORCE_PIO0:
3290 pio_mask &= 1;
3291 case ATA_DNXFER_FORCE_PIO:
3292 mwdma_mask = 0;
3293 udma_mask = 0;
3294 break;
3296 default:
3297 BUG();
3300 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3302 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3303 return -ENOENT;
3305 if (!quiet) {
3306 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3307 snprintf(buf, sizeof(buf), "%s:%s",
3308 ata_mode_string(xfer_mask),
3309 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3310 else
3311 snprintf(buf, sizeof(buf), "%s",
3312 ata_mode_string(xfer_mask));
3314 ata_dev_printk(dev, KERN_WARNING,
3315 "limiting speed to %s\n", buf);
3318 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3319 &dev->udma_mask);
3321 return 0;
3324 static int ata_dev_set_mode(struct ata_device *dev)
3326 struct ata_port *ap = dev->link->ap;
3327 struct ata_eh_context *ehc = &dev->link->eh_context;
3328 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3329 const char *dev_err_whine = "";
3330 int ign_dev_err = 0;
3331 unsigned int err_mask = 0;
3332 int rc;
3334 dev->flags &= ~ATA_DFLAG_PIO;
3335 if (dev->xfer_shift == ATA_SHIFT_PIO)
3336 dev->flags |= ATA_DFLAG_PIO;
3338 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3339 dev_err_whine = " (SET_XFERMODE skipped)";
3340 else {
3341 if (nosetxfer)
3342 ata_dev_printk(dev, KERN_WARNING,
3343 "NOSETXFER but PATA detected - can't "
3344 "skip SETXFER, might malfunction\n");
3345 err_mask = ata_dev_set_xfermode(dev);
3348 if (err_mask & ~AC_ERR_DEV)
3349 goto fail;
3351 /* revalidate */
3352 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3353 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3354 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3355 if (rc)
3356 return rc;
3358 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3359 /* Old CFA may refuse this command, which is just fine */
3360 if (ata_id_is_cfa(dev->id))
3361 ign_dev_err = 1;
3362 /* Catch several broken garbage emulations plus some pre
3363 ATA devices */
3364 if (ata_id_major_version(dev->id) == 0 &&
3365 dev->pio_mode <= XFER_PIO_2)
3366 ign_dev_err = 1;
3367 /* Some very old devices and some bad newer ones fail
3368 any kind of SET_XFERMODE request but support PIO0-2
3369 timings and no IORDY */
3370 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3371 ign_dev_err = 1;
3373 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3374 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3375 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3376 dev->dma_mode == XFER_MW_DMA_0 &&
3377 (dev->id[63] >> 8) & 1)
3378 ign_dev_err = 1;
3380 /* if the device is actually configured correctly, ignore dev err */
3381 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3382 ign_dev_err = 1;
3384 if (err_mask & AC_ERR_DEV) {
3385 if (!ign_dev_err)
3386 goto fail;
3387 else
3388 dev_err_whine = " (device error ignored)";
3391 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3392 dev->xfer_shift, (int)dev->xfer_mode);
3394 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3395 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3396 dev_err_whine);
3398 return 0;
3400 fail:
3401 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3402 "(err_mask=0x%x)\n", err_mask);
3403 return -EIO;
3407 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3408 * @link: link on which timings will be programmed
3409 * @r_failed_dev: out parameter for failed device
3411 * Standard implementation of the function used to tune and set
3412 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3413 * ata_dev_set_mode() fails, pointer to the failing device is
3414 * returned in @r_failed_dev.
3416 * LOCKING:
3417 * PCI/etc. bus probe sem.
3419 * RETURNS:
3420 * 0 on success, negative errno otherwise
3423 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3425 struct ata_port *ap = link->ap;
3426 struct ata_device *dev;
3427 int rc = 0, used_dma = 0, found = 0;
3429 /* step 1: calculate xfer_mask */
3430 ata_for_each_dev(dev, link, ENABLED) {
3431 unsigned long pio_mask, dma_mask;
3432 unsigned int mode_mask;
3434 mode_mask = ATA_DMA_MASK_ATA;
3435 if (dev->class == ATA_DEV_ATAPI)
3436 mode_mask = ATA_DMA_MASK_ATAPI;
3437 else if (ata_id_is_cfa(dev->id))
3438 mode_mask = ATA_DMA_MASK_CFA;
3440 ata_dev_xfermask(dev);
3441 ata_force_xfermask(dev);
3443 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3444 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3446 if (libata_dma_mask & mode_mask)
3447 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3448 else
3449 dma_mask = 0;
3451 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3452 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3454 found = 1;
3455 if (ata_dma_enabled(dev))
3456 used_dma = 1;
3458 if (!found)
3459 goto out;
3461 /* step 2: always set host PIO timings */
3462 ata_for_each_dev(dev, link, ENABLED) {
3463 if (dev->pio_mode == 0xff) {
3464 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3465 rc = -EINVAL;
3466 goto out;
3469 dev->xfer_mode = dev->pio_mode;
3470 dev->xfer_shift = ATA_SHIFT_PIO;
3471 if (ap->ops->set_piomode)
3472 ap->ops->set_piomode(ap, dev);
3475 /* step 3: set host DMA timings */
3476 ata_for_each_dev(dev, link, ENABLED) {
3477 if (!ata_dma_enabled(dev))
3478 continue;
3480 dev->xfer_mode = dev->dma_mode;
3481 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3482 if (ap->ops->set_dmamode)
3483 ap->ops->set_dmamode(ap, dev);
3486 /* step 4: update devices' xfer mode */
3487 ata_for_each_dev(dev, link, ENABLED) {
3488 rc = ata_dev_set_mode(dev);
3489 if (rc)
3490 goto out;
3493 /* Record simplex status. If we selected DMA then the other
3494 * host channels are not permitted to do so.
3496 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3497 ap->host->simplex_claimed = ap;
3499 out:
3500 if (rc)
3501 *r_failed_dev = dev;
3502 return rc;
3506 * ata_wait_ready - wait for link to become ready
3507 * @link: link to be waited on
3508 * @deadline: deadline jiffies for the operation
3509 * @check_ready: callback to check link readiness
3511 * Wait for @link to become ready. @check_ready should return
3512 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3513 * link doesn't seem to be occupied, other errno for other error
3514 * conditions.
3516 * Transient -ENODEV conditions are allowed for
3517 * ATA_TMOUT_FF_WAIT.
3519 * LOCKING:
3520 * EH context.
3522 * RETURNS:
3523 * 0 if @linke is ready before @deadline; otherwise, -errno.
3525 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3526 int (*check_ready)(struct ata_link *link))
3528 unsigned long start = jiffies;
3529 unsigned long nodev_deadline;
3530 int warned = 0;
3532 /* choose which 0xff timeout to use, read comment in libata.h */
3533 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3534 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3535 else
3536 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3538 /* Slave readiness can't be tested separately from master. On
3539 * M/S emulation configuration, this function should be called
3540 * only on the master and it will handle both master and slave.
3542 WARN_ON(link == link->ap->slave_link);
3544 if (time_after(nodev_deadline, deadline))
3545 nodev_deadline = deadline;
3547 while (1) {
3548 unsigned long now = jiffies;
3549 int ready, tmp;
3551 ready = tmp = check_ready(link);
3552 if (ready > 0)
3553 return 0;
3556 * -ENODEV could be transient. Ignore -ENODEV if link
3557 * is online. Also, some SATA devices take a long
3558 * time to clear 0xff after reset. Wait for
3559 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3560 * offline.
3562 * Note that some PATA controllers (pata_ali) explode
3563 * if status register is read more than once when
3564 * there's no device attached.
3566 if (ready == -ENODEV) {
3567 if (ata_link_online(link))
3568 ready = 0;
3569 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3570 !ata_link_offline(link) &&
3571 time_before(now, nodev_deadline))
3572 ready = 0;
3575 if (ready)
3576 return ready;
3577 if (time_after(now, deadline))
3578 return -EBUSY;
3580 if (!warned && time_after(now, start + 5 * HZ) &&
3581 (deadline - now > 3 * HZ)) {
3582 ata_link_printk(link, KERN_WARNING,
3583 "link is slow to respond, please be patient "
3584 "(ready=%d)\n", tmp);
3585 warned = 1;
3588 msleep(50);
3593 * ata_wait_after_reset - wait for link to become ready after reset
3594 * @link: link to be waited on
3595 * @deadline: deadline jiffies for the operation
3596 * @check_ready: callback to check link readiness
3598 * Wait for @link to become ready after reset.
3600 * LOCKING:
3601 * EH context.
3603 * RETURNS:
3604 * 0 if @linke is ready before @deadline; otherwise, -errno.
3606 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3607 int (*check_ready)(struct ata_link *link))
3609 msleep(ATA_WAIT_AFTER_RESET);
3611 return ata_wait_ready(link, deadline, check_ready);
3615 * sata_link_debounce - debounce SATA phy status
3616 * @link: ATA link to debounce SATA phy status for
3617 * @params: timing parameters { interval, duratinon, timeout } in msec
3618 * @deadline: deadline jiffies for the operation
3620 * Make sure SStatus of @link reaches stable state, determined by
3621 * holding the same value where DET is not 1 for @duration polled
3622 * every @interval, before @timeout. Timeout constraints the
3623 * beginning of the stable state. Because DET gets stuck at 1 on
3624 * some controllers after hot unplugging, this functions waits
3625 * until timeout then returns 0 if DET is stable at 1.
3627 * @timeout is further limited by @deadline. The sooner of the
3628 * two is used.
3630 * LOCKING:
3631 * Kernel thread context (may sleep)
3633 * RETURNS:
3634 * 0 on success, -errno on failure.
3636 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3637 unsigned long deadline)
3639 unsigned long interval = params[0];
3640 unsigned long duration = params[1];
3641 unsigned long last_jiffies, t;
3642 u32 last, cur;
3643 int rc;
3645 t = ata_deadline(jiffies, params[2]);
3646 if (time_before(t, deadline))
3647 deadline = t;
3649 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3650 return rc;
3651 cur &= 0xf;
3653 last = cur;
3654 last_jiffies = jiffies;
3656 while (1) {
3657 msleep(interval);
3658 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3659 return rc;
3660 cur &= 0xf;
3662 /* DET stable? */
3663 if (cur == last) {
3664 if (cur == 1 && time_before(jiffies, deadline))
3665 continue;
3666 if (time_after(jiffies,
3667 ata_deadline(last_jiffies, duration)))
3668 return 0;
3669 continue;
3672 /* unstable, start over */
3673 last = cur;
3674 last_jiffies = jiffies;
3676 /* Check deadline. If debouncing failed, return
3677 * -EPIPE to tell upper layer to lower link speed.
3679 if (time_after(jiffies, deadline))
3680 return -EPIPE;
3685 * sata_link_resume - resume SATA link
3686 * @link: ATA link to resume SATA
3687 * @params: timing parameters { interval, duratinon, timeout } in msec
3688 * @deadline: deadline jiffies for the operation
3690 * Resume SATA phy @link and debounce it.
3692 * LOCKING:
3693 * Kernel thread context (may sleep)
3695 * RETURNS:
3696 * 0 on success, -errno on failure.
3698 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3699 unsigned long deadline)
3701 int tries = ATA_LINK_RESUME_TRIES;
3702 u32 scontrol, serror;
3703 int rc;
3705 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3706 return rc;
3709 * Writes to SControl sometimes get ignored under certain
3710 * controllers (ata_piix SIDPR). Make sure DET actually is
3711 * cleared.
3713 do {
3714 scontrol = (scontrol & 0x0f0) | 0x300;
3715 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3716 return rc;
3718 * Some PHYs react badly if SStatus is pounded
3719 * immediately after resuming. Delay 200ms before
3720 * debouncing.
3722 msleep(200);
3724 /* is SControl restored correctly? */
3725 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3726 return rc;
3727 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3729 if ((scontrol & 0xf0f) != 0x300) {
3730 ata_link_printk(link, KERN_ERR,
3731 "failed to resume link (SControl %X)\n",
3732 scontrol);
3733 return 0;
3736 if (tries < ATA_LINK_RESUME_TRIES)
3737 ata_link_printk(link, KERN_WARNING,
3738 "link resume succeeded after %d retries\n",
3739 ATA_LINK_RESUME_TRIES - tries);
3741 if ((rc = sata_link_debounce(link, params, deadline)))
3742 return rc;
3744 /* clear SError, some PHYs require this even for SRST to work */
3745 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3746 rc = sata_scr_write(link, SCR_ERROR, serror);
3748 return rc != -EINVAL ? rc : 0;
3752 * ata_std_prereset - prepare for reset
3753 * @link: ATA link to be reset
3754 * @deadline: deadline jiffies for the operation
3756 * @link is about to be reset. Initialize it. Failure from
3757 * prereset makes libata abort whole reset sequence and give up
3758 * that port, so prereset should be best-effort. It does its
3759 * best to prepare for reset sequence but if things go wrong, it
3760 * should just whine, not fail.
3762 * LOCKING:
3763 * Kernel thread context (may sleep)
3765 * RETURNS:
3766 * 0 on success, -errno otherwise.
3768 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3770 struct ata_port *ap = link->ap;
3771 struct ata_eh_context *ehc = &link->eh_context;
3772 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3773 int rc;
3775 /* if we're about to do hardreset, nothing more to do */
3776 if (ehc->i.action & ATA_EH_HARDRESET)
3777 return 0;
3779 /* if SATA, resume link */
3780 if (ap->flags & ATA_FLAG_SATA) {
3781 rc = sata_link_resume(link, timing, deadline);
3782 /* whine about phy resume failure but proceed */
3783 if (rc && rc != -EOPNOTSUPP)
3784 ata_link_printk(link, KERN_WARNING, "failed to resume "
3785 "link for reset (errno=%d)\n", rc);
3788 /* no point in trying softreset on offline link */
3789 if (ata_phys_link_offline(link))
3790 ehc->i.action &= ~ATA_EH_SOFTRESET;
3792 return 0;
3796 * sata_link_hardreset - reset link via SATA phy reset
3797 * @link: link to reset
3798 * @timing: timing parameters { interval, duratinon, timeout } in msec
3799 * @deadline: deadline jiffies for the operation
3800 * @online: optional out parameter indicating link onlineness
3801 * @check_ready: optional callback to check link readiness
3803 * SATA phy-reset @link using DET bits of SControl register.
3804 * After hardreset, link readiness is waited upon using
3805 * ata_wait_ready() if @check_ready is specified. LLDs are
3806 * allowed to not specify @check_ready and wait itself after this
3807 * function returns. Device classification is LLD's
3808 * responsibility.
3810 * *@online is set to one iff reset succeeded and @link is online
3811 * after reset.
3813 * LOCKING:
3814 * Kernel thread context (may sleep)
3816 * RETURNS:
3817 * 0 on success, -errno otherwise.
3819 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3820 unsigned long deadline,
3821 bool *online, int (*check_ready)(struct ata_link *))
3823 u32 scontrol;
3824 int rc;
3826 DPRINTK("ENTER\n");
3828 if (online)
3829 *online = false;
3831 if (sata_set_spd_needed(link)) {
3832 /* SATA spec says nothing about how to reconfigure
3833 * spd. To be on the safe side, turn off phy during
3834 * reconfiguration. This works for at least ICH7 AHCI
3835 * and Sil3124.
3837 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3838 goto out;
3840 scontrol = (scontrol & 0x0f0) | 0x304;
3842 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3843 goto out;
3845 sata_set_spd(link);
3848 /* issue phy wake/reset */
3849 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3850 goto out;
3852 scontrol = (scontrol & 0x0f0) | 0x301;
3854 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3855 goto out;
3857 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3858 * 10.4.2 says at least 1 ms.
3860 msleep(1);
3862 /* bring link back */
3863 rc = sata_link_resume(link, timing, deadline);
3864 if (rc)
3865 goto out;
3866 /* if link is offline nothing more to do */
3867 if (ata_phys_link_offline(link))
3868 goto out;
3870 /* Link is online. From this point, -ENODEV too is an error. */
3871 if (online)
3872 *online = true;
3874 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3875 /* If PMP is supported, we have to do follow-up SRST.
3876 * Some PMPs don't send D2H Reg FIS after hardreset if
3877 * the first port is empty. Wait only for
3878 * ATA_TMOUT_PMP_SRST_WAIT.
3880 if (check_ready) {
3881 unsigned long pmp_deadline;
3883 pmp_deadline = ata_deadline(jiffies,
3884 ATA_TMOUT_PMP_SRST_WAIT);
3885 if (time_after(pmp_deadline, deadline))
3886 pmp_deadline = deadline;
3887 ata_wait_ready(link, pmp_deadline, check_ready);
3889 rc = -EAGAIN;
3890 goto out;
3893 rc = 0;
3894 if (check_ready)
3895 rc = ata_wait_ready(link, deadline, check_ready);
3896 out:
3897 if (rc && rc != -EAGAIN) {
3898 /* online is set iff link is online && reset succeeded */
3899 if (online)
3900 *online = false;
3901 ata_link_printk(link, KERN_ERR,
3902 "COMRESET failed (errno=%d)\n", rc);
3904 DPRINTK("EXIT, rc=%d\n", rc);
3905 return rc;
3909 * sata_std_hardreset - COMRESET w/o waiting or classification
3910 * @link: link to reset
3911 * @class: resulting class of attached device
3912 * @deadline: deadline jiffies for the operation
3914 * Standard SATA COMRESET w/o waiting or classification.
3916 * LOCKING:
3917 * Kernel thread context (may sleep)
3919 * RETURNS:
3920 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3922 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3923 unsigned long deadline)
3925 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3926 bool online;
3927 int rc;
3929 /* do hardreset */
3930 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3931 return online ? -EAGAIN : rc;
3935 * ata_std_postreset - standard postreset callback
3936 * @link: the target ata_link
3937 * @classes: classes of attached devices
3939 * This function is invoked after a successful reset. Note that
3940 * the device might have been reset more than once using
3941 * different reset methods before postreset is invoked.
3943 * LOCKING:
3944 * Kernel thread context (may sleep)
3946 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3948 u32 serror;
3950 DPRINTK("ENTER\n");
3952 /* reset complete, clear SError */
3953 if (!sata_scr_read(link, SCR_ERROR, &serror))
3954 sata_scr_write(link, SCR_ERROR, serror);
3956 /* print link status */
3957 sata_print_link_status(link);
3959 DPRINTK("EXIT\n");
3963 * ata_dev_same_device - Determine whether new ID matches configured device
3964 * @dev: device to compare against
3965 * @new_class: class of the new device
3966 * @new_id: IDENTIFY page of the new device
3968 * Compare @new_class and @new_id against @dev and determine
3969 * whether @dev is the device indicated by @new_class and
3970 * @new_id.
3972 * LOCKING:
3973 * None.
3975 * RETURNS:
3976 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3978 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3979 const u16 *new_id)
3981 const u16 *old_id = dev->id;
3982 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3983 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3985 if (dev->class != new_class) {
3986 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3987 dev->class, new_class);
3988 return 0;
3991 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3992 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3993 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3994 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3996 if (strcmp(model[0], model[1])) {
3997 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3998 "'%s' != '%s'\n", model[0], model[1]);
3999 return 0;
4002 if (strcmp(serial[0], serial[1])) {
4003 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4004 "'%s' != '%s'\n", serial[0], serial[1]);
4005 return 0;
4008 return 1;
4012 * ata_dev_reread_id - Re-read IDENTIFY data
4013 * @dev: target ATA device
4014 * @readid_flags: read ID flags
4016 * Re-read IDENTIFY page and make sure @dev is still attached to
4017 * the port.
4019 * LOCKING:
4020 * Kernel thread context (may sleep)
4022 * RETURNS:
4023 * 0 on success, negative errno otherwise
4025 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4027 unsigned int class = dev->class;
4028 u16 *id = (void *)dev->link->ap->sector_buf;
4029 int rc;
4031 /* read ID data */
4032 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4033 if (rc)
4034 return rc;
4036 /* is the device still there? */
4037 if (!ata_dev_same_device(dev, class, id))
4038 return -ENODEV;
4040 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4041 return 0;
4045 * ata_dev_revalidate - Revalidate ATA device
4046 * @dev: device to revalidate
4047 * @new_class: new class code
4048 * @readid_flags: read ID flags
4050 * Re-read IDENTIFY page, make sure @dev is still attached to the
4051 * port and reconfigure it according to the new IDENTIFY page.
4053 * LOCKING:
4054 * Kernel thread context (may sleep)
4056 * RETURNS:
4057 * 0 on success, negative errno otherwise
4059 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4060 unsigned int readid_flags)
4062 u64 n_sectors = dev->n_sectors;
4063 u64 n_native_sectors = dev->n_native_sectors;
4064 int rc;
4066 if (!ata_dev_enabled(dev))
4067 return -ENODEV;
4069 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4070 if (ata_class_enabled(new_class) &&
4071 new_class != ATA_DEV_ATA &&
4072 new_class != ATA_DEV_ATAPI &&
4073 new_class != ATA_DEV_SEMB) {
4074 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4075 dev->class, new_class);
4076 rc = -ENODEV;
4077 goto fail;
4080 /* re-read ID */
4081 rc = ata_dev_reread_id(dev, readid_flags);
4082 if (rc)
4083 goto fail;
4085 /* configure device according to the new ID */
4086 rc = ata_dev_configure(dev);
4087 if (rc)
4088 goto fail;
4090 /* verify n_sectors hasn't changed */
4091 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4092 dev->n_sectors == n_sectors)
4093 return 0;
4095 /* n_sectors has changed */
4096 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4097 (unsigned long long)n_sectors,
4098 (unsigned long long)dev->n_sectors);
4101 * Something could have caused HPA to be unlocked
4102 * involuntarily. If n_native_sectors hasn't changed and the
4103 * new size matches it, keep the device.
4105 if (dev->n_native_sectors == n_native_sectors &&
4106 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4107 ata_dev_printk(dev, KERN_WARNING,
4108 "new n_sectors matches native, probably "
4109 "late HPA unlock, continuing\n");
4110 /* keep using the old n_sectors */
4111 dev->n_sectors = n_sectors;
4112 return 0;
4116 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4117 * unlocking HPA in those cases.
4119 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4121 if (dev->n_native_sectors == n_native_sectors &&
4122 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4123 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4124 ata_dev_printk(dev, KERN_WARNING,
4125 "old n_sectors matches native, probably "
4126 "late HPA lock, will try to unlock HPA\n");
4127 /* try unlocking HPA */
4128 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4129 rc = -EIO;
4130 } else
4131 rc = -ENODEV;
4133 /* restore original n_[native_]sectors and fail */
4134 dev->n_native_sectors = n_native_sectors;
4135 dev->n_sectors = n_sectors;
4136 fail:
4137 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4138 return rc;
4141 struct ata_blacklist_entry {
4142 const char *model_num;
4143 const char *model_rev;
4144 unsigned long horkage;
4147 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4148 /* Devices with DMA related problems under Linux */
4149 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4150 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4151 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4152 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4153 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4154 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4155 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4156 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4157 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4158 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4159 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4160 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4161 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4162 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4163 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4164 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4165 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4166 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4167 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4168 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4169 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4170 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4171 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4172 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4173 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4174 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4175 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4176 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4177 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4178 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4179 /* Odd clown on sil3726/4726 PMPs */
4180 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4182 /* Weird ATAPI devices */
4183 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4184 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4186 /* Devices we expect to fail diagnostics */
4188 /* Devices where NCQ should be avoided */
4189 /* NCQ is slow */
4190 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4191 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4192 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4193 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4194 /* NCQ is broken */
4195 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4196 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4197 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4198 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4199 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4201 /* Seagate NCQ + FLUSH CACHE firmware bug */
4202 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4203 ATA_HORKAGE_FIRMWARE_WARN },
4204 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4205 ATA_HORKAGE_FIRMWARE_WARN },
4206 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4207 ATA_HORKAGE_FIRMWARE_WARN },
4208 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4209 ATA_HORKAGE_FIRMWARE_WARN },
4210 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4211 ATA_HORKAGE_FIRMWARE_WARN },
4213 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4214 ATA_HORKAGE_FIRMWARE_WARN },
4215 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4216 ATA_HORKAGE_FIRMWARE_WARN },
4217 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4218 ATA_HORKAGE_FIRMWARE_WARN },
4219 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4220 ATA_HORKAGE_FIRMWARE_WARN },
4221 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4222 ATA_HORKAGE_FIRMWARE_WARN },
4224 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4225 ATA_HORKAGE_FIRMWARE_WARN },
4226 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4228 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4229 ATA_HORKAGE_FIRMWARE_WARN },
4230 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4231 ATA_HORKAGE_FIRMWARE_WARN },
4232 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4233 ATA_HORKAGE_FIRMWARE_WARN },
4235 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4237 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4238 ATA_HORKAGE_FIRMWARE_WARN },
4239 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4240 ATA_HORKAGE_FIRMWARE_WARN },
4241 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4242 ATA_HORKAGE_FIRMWARE_WARN },
4243 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4244 ATA_HORKAGE_FIRMWARE_WARN },
4246 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4248 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4249 ATA_HORKAGE_FIRMWARE_WARN },
4250 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4251 ATA_HORKAGE_FIRMWARE_WARN },
4252 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4253 ATA_HORKAGE_FIRMWARE_WARN },
4254 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4255 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4260 ATA_HORKAGE_FIRMWARE_WARN },
4261 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4262 ATA_HORKAGE_FIRMWARE_WARN },
4263 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4264 ATA_HORKAGE_FIRMWARE_WARN },
4265 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4266 ATA_HORKAGE_FIRMWARE_WARN },
4268 /* Blacklist entries taken from Silicon Image 3124/3132
4269 Windows driver .inf file - also several Linux problem reports */
4270 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4271 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4272 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4274 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4275 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4277 /* devices which puke on READ_NATIVE_MAX */
4278 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4279 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4280 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4281 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4283 /* this one allows HPA unlocking but fails IOs on the area */
4284 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4286 /* Devices which report 1 sector over size HPA */
4287 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4288 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4289 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4291 /* Devices which get the IVB wrong */
4292 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4293 /* Maybe we should just blacklist TSSTcorp... */
4294 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4295 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4296 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4297 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4298 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4299 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4301 /* Devices that do not need bridging limits applied */
4302 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4304 /* Devices which aren't very happy with higher link speeds */
4305 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4308 * Devices which choke on SETXFER. Applies only if both the
4309 * device and controller are SATA.
4311 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4313 /* End Marker */
4317 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4319 const char *p;
4320 int len;
4323 * check for trailing wildcard: *\0
4325 p = strchr(patt, wildchar);
4326 if (p && ((*(p + 1)) == 0))
4327 len = p - patt;
4328 else {
4329 len = strlen(name);
4330 if (!len) {
4331 if (!*patt)
4332 return 0;
4333 return -1;
4337 return strncmp(patt, name, len);
4340 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4342 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4343 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4344 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4346 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4347 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4349 while (ad->model_num) {
4350 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4351 if (ad->model_rev == NULL)
4352 return ad->horkage;
4353 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4354 return ad->horkage;
4356 ad++;
4358 return 0;
4361 static int ata_dma_blacklisted(const struct ata_device *dev)
4363 /* We don't support polling DMA.
4364 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4365 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4367 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4368 (dev->flags & ATA_DFLAG_CDB_INTR))
4369 return 1;
4370 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4374 * ata_is_40wire - check drive side detection
4375 * @dev: device
4377 * Perform drive side detection decoding, allowing for device vendors
4378 * who can't follow the documentation.
4381 static int ata_is_40wire(struct ata_device *dev)
4383 if (dev->horkage & ATA_HORKAGE_IVB)
4384 return ata_drive_40wire_relaxed(dev->id);
4385 return ata_drive_40wire(dev->id);
4389 * cable_is_40wire - 40/80/SATA decider
4390 * @ap: port to consider
4392 * This function encapsulates the policy for speed management
4393 * in one place. At the moment we don't cache the result but
4394 * there is a good case for setting ap->cbl to the result when
4395 * we are called with unknown cables (and figuring out if it
4396 * impacts hotplug at all).
4398 * Return 1 if the cable appears to be 40 wire.
4401 static int cable_is_40wire(struct ata_port *ap)
4403 struct ata_link *link;
4404 struct ata_device *dev;
4406 /* If the controller thinks we are 40 wire, we are. */
4407 if (ap->cbl == ATA_CBL_PATA40)
4408 return 1;
4410 /* If the controller thinks we are 80 wire, we are. */
4411 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4412 return 0;
4414 /* If the system is known to be 40 wire short cable (eg
4415 * laptop), then we allow 80 wire modes even if the drive
4416 * isn't sure.
4418 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4419 return 0;
4421 /* If the controller doesn't know, we scan.
4423 * Note: We look for all 40 wire detects at this point. Any
4424 * 80 wire detect is taken to be 80 wire cable because
4425 * - in many setups only the one drive (slave if present) will
4426 * give a valid detect
4427 * - if you have a non detect capable drive you don't want it
4428 * to colour the choice
4430 ata_for_each_link(link, ap, EDGE) {
4431 ata_for_each_dev(dev, link, ENABLED) {
4432 if (!ata_is_40wire(dev))
4433 return 0;
4436 return 1;
4440 * ata_dev_xfermask - Compute supported xfermask of the given device
4441 * @dev: Device to compute xfermask for
4443 * Compute supported xfermask of @dev and store it in
4444 * dev->*_mask. This function is responsible for applying all
4445 * known limits including host controller limits, device
4446 * blacklist, etc...
4448 * LOCKING:
4449 * None.
4451 static void ata_dev_xfermask(struct ata_device *dev)
4453 struct ata_link *link = dev->link;
4454 struct ata_port *ap = link->ap;
4455 struct ata_host *host = ap->host;
4456 unsigned long xfer_mask;
4458 /* controller modes available */
4459 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4460 ap->mwdma_mask, ap->udma_mask);
4462 /* drive modes available */
4463 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4464 dev->mwdma_mask, dev->udma_mask);
4465 xfer_mask &= ata_id_xfermask(dev->id);
4468 * CFA Advanced TrueIDE timings are not allowed on a shared
4469 * cable
4471 if (ata_dev_pair(dev)) {
4472 /* No PIO5 or PIO6 */
4473 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4474 /* No MWDMA3 or MWDMA 4 */
4475 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4478 if (ata_dma_blacklisted(dev)) {
4479 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4480 ata_dev_printk(dev, KERN_WARNING,
4481 "device is on DMA blacklist, disabling DMA\n");
4484 if ((host->flags & ATA_HOST_SIMPLEX) &&
4485 host->simplex_claimed && host->simplex_claimed != ap) {
4486 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4487 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4488 "other device, disabling DMA\n");
4491 if (ap->flags & ATA_FLAG_NO_IORDY)
4492 xfer_mask &= ata_pio_mask_no_iordy(dev);
4494 if (ap->ops->mode_filter)
4495 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4497 /* Apply cable rule here. Don't apply it early because when
4498 * we handle hot plug the cable type can itself change.
4499 * Check this last so that we know if the transfer rate was
4500 * solely limited by the cable.
4501 * Unknown or 80 wire cables reported host side are checked
4502 * drive side as well. Cases where we know a 40wire cable
4503 * is used safely for 80 are not checked here.
4505 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4506 /* UDMA/44 or higher would be available */
4507 if (cable_is_40wire(ap)) {
4508 ata_dev_printk(dev, KERN_WARNING,
4509 "limited to UDMA/33 due to 40-wire cable\n");
4510 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4513 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4514 &dev->mwdma_mask, &dev->udma_mask);
4518 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4519 * @dev: Device to which command will be sent
4521 * Issue SET FEATURES - XFER MODE command to device @dev
4522 * on port @ap.
4524 * LOCKING:
4525 * PCI/etc. bus probe sem.
4527 * RETURNS:
4528 * 0 on success, AC_ERR_* mask otherwise.
4531 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4533 struct ata_taskfile tf;
4534 unsigned int err_mask;
4536 /* set up set-features taskfile */
4537 DPRINTK("set features - xfer mode\n");
4539 /* Some controllers and ATAPI devices show flaky interrupt
4540 * behavior after setting xfer mode. Use polling instead.
4542 ata_tf_init(dev, &tf);
4543 tf.command = ATA_CMD_SET_FEATURES;
4544 tf.feature = SETFEATURES_XFER;
4545 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4546 tf.protocol = ATA_PROT_NODATA;
4547 /* If we are using IORDY we must send the mode setting command */
4548 if (ata_pio_need_iordy(dev))
4549 tf.nsect = dev->xfer_mode;
4550 /* If the device has IORDY and the controller does not - turn it off */
4551 else if (ata_id_has_iordy(dev->id))
4552 tf.nsect = 0x01;
4553 else /* In the ancient relic department - skip all of this */
4554 return 0;
4556 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4558 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4559 return err_mask;
4562 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4563 * @dev: Device to which command will be sent
4564 * @enable: Whether to enable or disable the feature
4565 * @feature: The sector count represents the feature to set
4567 * Issue SET FEATURES - SATA FEATURES command to device @dev
4568 * on port @ap with sector count
4570 * LOCKING:
4571 * PCI/etc. bus probe sem.
4573 * RETURNS:
4574 * 0 on success, AC_ERR_* mask otherwise.
4576 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4577 u8 feature)
4579 struct ata_taskfile tf;
4580 unsigned int err_mask;
4582 /* set up set-features taskfile */
4583 DPRINTK("set features - SATA features\n");
4585 ata_tf_init(dev, &tf);
4586 tf.command = ATA_CMD_SET_FEATURES;
4587 tf.feature = enable;
4588 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4589 tf.protocol = ATA_PROT_NODATA;
4590 tf.nsect = feature;
4592 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4594 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4595 return err_mask;
4599 * ata_dev_init_params - Issue INIT DEV PARAMS command
4600 * @dev: Device to which command will be sent
4601 * @heads: Number of heads (taskfile parameter)
4602 * @sectors: Number of sectors (taskfile parameter)
4604 * LOCKING:
4605 * Kernel thread context (may sleep)
4607 * RETURNS:
4608 * 0 on success, AC_ERR_* mask otherwise.
4610 static unsigned int ata_dev_init_params(struct ata_device *dev,
4611 u16 heads, u16 sectors)
4613 struct ata_taskfile tf;
4614 unsigned int err_mask;
4616 /* Number of sectors per track 1-255. Number of heads 1-16 */
4617 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4618 return AC_ERR_INVALID;
4620 /* set up init dev params taskfile */
4621 DPRINTK("init dev params \n");
4623 ata_tf_init(dev, &tf);
4624 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4625 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4626 tf.protocol = ATA_PROT_NODATA;
4627 tf.nsect = sectors;
4628 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4630 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4631 /* A clean abort indicates an original or just out of spec drive
4632 and we should continue as we issue the setup based on the
4633 drive reported working geometry */
4634 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4635 err_mask = 0;
4637 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4638 return err_mask;
4642 * ata_sg_clean - Unmap DMA memory associated with command
4643 * @qc: Command containing DMA memory to be released
4645 * Unmap all mapped DMA memory associated with this command.
4647 * LOCKING:
4648 * spin_lock_irqsave(host lock)
4650 void ata_sg_clean(struct ata_queued_cmd *qc)
4652 struct ata_port *ap = qc->ap;
4653 struct scatterlist *sg = qc->sg;
4654 int dir = qc->dma_dir;
4656 WARN_ON_ONCE(sg == NULL);
4658 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4660 if (qc->n_elem)
4661 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4663 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4664 qc->sg = NULL;
4668 * atapi_check_dma - Check whether ATAPI DMA can be supported
4669 * @qc: Metadata associated with taskfile to check
4671 * Allow low-level driver to filter ATA PACKET commands, returning
4672 * a status indicating whether or not it is OK to use DMA for the
4673 * supplied PACKET command.
4675 * LOCKING:
4676 * spin_lock_irqsave(host lock)
4678 * RETURNS: 0 when ATAPI DMA can be used
4679 * nonzero otherwise
4681 int atapi_check_dma(struct ata_queued_cmd *qc)
4683 struct ata_port *ap = qc->ap;
4685 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4686 * few ATAPI devices choke on such DMA requests.
4688 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4689 unlikely(qc->nbytes & 15))
4690 return 1;
4692 if (ap->ops->check_atapi_dma)
4693 return ap->ops->check_atapi_dma(qc);
4695 return 0;
4699 * ata_std_qc_defer - Check whether a qc needs to be deferred
4700 * @qc: ATA command in question
4702 * Non-NCQ commands cannot run with any other command, NCQ or
4703 * not. As upper layer only knows the queue depth, we are
4704 * responsible for maintaining exclusion. This function checks
4705 * whether a new command @qc can be issued.
4707 * LOCKING:
4708 * spin_lock_irqsave(host lock)
4710 * RETURNS:
4711 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4713 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4715 struct ata_link *link = qc->dev->link;
4717 if (qc->tf.protocol == ATA_PROT_NCQ) {
4718 if (!ata_tag_valid(link->active_tag))
4719 return 0;
4720 } else {
4721 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4722 return 0;
4725 return ATA_DEFER_LINK;
4728 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4731 * ata_sg_init - Associate command with scatter-gather table.
4732 * @qc: Command to be associated
4733 * @sg: Scatter-gather table.
4734 * @n_elem: Number of elements in s/g table.
4736 * Initialize the data-related elements of queued_cmd @qc
4737 * to point to a scatter-gather table @sg, containing @n_elem
4738 * elements.
4740 * LOCKING:
4741 * spin_lock_irqsave(host lock)
4743 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4744 unsigned int n_elem)
4746 qc->sg = sg;
4747 qc->n_elem = n_elem;
4748 qc->cursg = qc->sg;
4752 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4753 * @qc: Command with scatter-gather table to be mapped.
4755 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4760 * RETURNS:
4761 * Zero on success, negative on error.
4764 static int ata_sg_setup(struct ata_queued_cmd *qc)
4766 struct ata_port *ap = qc->ap;
4767 unsigned int n_elem;
4769 VPRINTK("ENTER, ata%u\n", ap->print_id);
4771 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4772 if (n_elem < 1)
4773 return -1;
4775 DPRINTK("%d sg elements mapped\n", n_elem);
4776 qc->orig_n_elem = qc->n_elem;
4777 qc->n_elem = n_elem;
4778 qc->flags |= ATA_QCFLAG_DMAMAP;
4780 return 0;
4784 * swap_buf_le16 - swap halves of 16-bit words in place
4785 * @buf: Buffer to swap
4786 * @buf_words: Number of 16-bit words in buffer.
4788 * Swap halves of 16-bit words if needed to convert from
4789 * little-endian byte order to native cpu byte order, or
4790 * vice-versa.
4792 * LOCKING:
4793 * Inherited from caller.
4795 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4797 #ifdef __BIG_ENDIAN
4798 unsigned int i;
4800 for (i = 0; i < buf_words; i++)
4801 buf[i] = le16_to_cpu(buf[i]);
4802 #endif /* __BIG_ENDIAN */
4806 * ata_qc_new - Request an available ATA command, for queueing
4807 * @ap: target port
4809 * LOCKING:
4810 * None.
4813 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4815 struct ata_queued_cmd *qc = NULL;
4816 unsigned int i;
4818 /* no command while frozen */
4819 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4820 return NULL;
4822 /* the last tag is reserved for internal command. */
4823 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4824 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4825 qc = __ata_qc_from_tag(ap, i);
4826 break;
4829 if (qc)
4830 qc->tag = i;
4832 return qc;
4836 * ata_qc_new_init - Request an available ATA command, and initialize it
4837 * @dev: Device from whom we request an available command structure
4839 * LOCKING:
4840 * None.
4843 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4845 struct ata_port *ap = dev->link->ap;
4846 struct ata_queued_cmd *qc;
4848 qc = ata_qc_new(ap);
4849 if (qc) {
4850 qc->scsicmd = NULL;
4851 qc->ap = ap;
4852 qc->dev = dev;
4854 ata_qc_reinit(qc);
4857 return qc;
4861 * ata_qc_free - free unused ata_queued_cmd
4862 * @qc: Command to complete
4864 * Designed to free unused ata_queued_cmd object
4865 * in case something prevents using it.
4867 * LOCKING:
4868 * spin_lock_irqsave(host lock)
4870 void ata_qc_free(struct ata_queued_cmd *qc)
4872 struct ata_port *ap;
4873 unsigned int tag;
4875 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4876 ap = qc->ap;
4878 qc->flags = 0;
4879 tag = qc->tag;
4880 if (likely(ata_tag_valid(tag))) {
4881 qc->tag = ATA_TAG_POISON;
4882 clear_bit(tag, &ap->qc_allocated);
4886 void __ata_qc_complete(struct ata_queued_cmd *qc)
4888 struct ata_port *ap;
4889 struct ata_link *link;
4891 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4892 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4893 ap = qc->ap;
4894 link = qc->dev->link;
4896 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4897 ata_sg_clean(qc);
4899 /* command should be marked inactive atomically with qc completion */
4900 if (qc->tf.protocol == ATA_PROT_NCQ) {
4901 link->sactive &= ~(1 << qc->tag);
4902 if (!link->sactive)
4903 ap->nr_active_links--;
4904 } else {
4905 link->active_tag = ATA_TAG_POISON;
4906 ap->nr_active_links--;
4909 /* clear exclusive status */
4910 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4911 ap->excl_link == link))
4912 ap->excl_link = NULL;
4914 /* atapi: mark qc as inactive to prevent the interrupt handler
4915 * from completing the command twice later, before the error handler
4916 * is called. (when rc != 0 and atapi request sense is needed)
4918 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4919 ap->qc_active &= ~(1 << qc->tag);
4921 /* call completion callback */
4922 qc->complete_fn(qc);
4925 static void fill_result_tf(struct ata_queued_cmd *qc)
4927 struct ata_port *ap = qc->ap;
4929 qc->result_tf.flags = qc->tf.flags;
4930 ap->ops->qc_fill_rtf(qc);
4933 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4935 struct ata_device *dev = qc->dev;
4937 if (ata_tag_internal(qc->tag))
4938 return;
4940 if (ata_is_nodata(qc->tf.protocol))
4941 return;
4943 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4944 return;
4946 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4950 * ata_qc_complete - Complete an active ATA command
4951 * @qc: Command to complete
4953 * Indicate to the mid and upper layers that an ATA
4954 * command has completed, with either an ok or not-ok status.
4956 * LOCKING:
4957 * spin_lock_irqsave(host lock)
4959 void ata_qc_complete(struct ata_queued_cmd *qc)
4961 struct ata_port *ap = qc->ap;
4963 /* XXX: New EH and old EH use different mechanisms to
4964 * synchronize EH with regular execution path.
4966 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4967 * Normal execution path is responsible for not accessing a
4968 * failed qc. libata core enforces the rule by returning NULL
4969 * from ata_qc_from_tag() for failed qcs.
4971 * Old EH depends on ata_qc_complete() nullifying completion
4972 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4973 * not synchronize with interrupt handler. Only PIO task is
4974 * taken care of.
4976 if (ap->ops->error_handler) {
4977 struct ata_device *dev = qc->dev;
4978 struct ata_eh_info *ehi = &dev->link->eh_info;
4980 if (unlikely(qc->err_mask))
4981 qc->flags |= ATA_QCFLAG_FAILED;
4983 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4984 /* always fill result TF for failed qc */
4985 fill_result_tf(qc);
4987 if (!ata_tag_internal(qc->tag))
4988 ata_qc_schedule_eh(qc);
4989 else
4990 __ata_qc_complete(qc);
4991 return;
4994 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4996 /* read result TF if requested */
4997 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4998 fill_result_tf(qc);
5000 /* Some commands need post-processing after successful
5001 * completion.
5003 switch (qc->tf.command) {
5004 case ATA_CMD_SET_FEATURES:
5005 if (qc->tf.feature != SETFEATURES_WC_ON &&
5006 qc->tf.feature != SETFEATURES_WC_OFF)
5007 break;
5008 /* fall through */
5009 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5010 case ATA_CMD_SET_MULTI: /* multi_count changed */
5011 /* revalidate device */
5012 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5013 ata_port_schedule_eh(ap);
5014 break;
5016 case ATA_CMD_SLEEP:
5017 dev->flags |= ATA_DFLAG_SLEEPING;
5018 break;
5021 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5022 ata_verify_xfer(qc);
5024 __ata_qc_complete(qc);
5025 } else {
5026 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5027 return;
5029 /* read result TF if failed or requested */
5030 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5031 fill_result_tf(qc);
5033 __ata_qc_complete(qc);
5038 * ata_qc_complete_multiple - Complete multiple qcs successfully
5039 * @ap: port in question
5040 * @qc_active: new qc_active mask
5042 * Complete in-flight commands. This functions is meant to be
5043 * called from low-level driver's interrupt routine to complete
5044 * requests normally. ap->qc_active and @qc_active is compared
5045 * and commands are completed accordingly.
5047 * LOCKING:
5048 * spin_lock_irqsave(host lock)
5050 * RETURNS:
5051 * Number of completed commands on success, -errno otherwise.
5053 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5055 int nr_done = 0;
5056 u32 done_mask;
5058 done_mask = ap->qc_active ^ qc_active;
5060 if (unlikely(done_mask & qc_active)) {
5061 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5062 "(%08x->%08x)\n", ap->qc_active, qc_active);
5063 return -EINVAL;
5066 while (done_mask) {
5067 struct ata_queued_cmd *qc;
5068 unsigned int tag = __ffs(done_mask);
5070 qc = ata_qc_from_tag(ap, tag);
5071 if (qc) {
5072 ata_qc_complete(qc);
5073 nr_done++;
5075 done_mask &= ~(1 << tag);
5078 return nr_done;
5082 * ata_qc_issue - issue taskfile to device
5083 * @qc: command to issue to device
5085 * Prepare an ATA command to submission to device.
5086 * This includes mapping the data into a DMA-able
5087 * area, filling in the S/G table, and finally
5088 * writing the taskfile to hardware, starting the command.
5090 * LOCKING:
5091 * spin_lock_irqsave(host lock)
5093 void ata_qc_issue(struct ata_queued_cmd *qc)
5095 struct ata_port *ap = qc->ap;
5096 struct ata_link *link = qc->dev->link;
5097 u8 prot = qc->tf.protocol;
5099 /* Make sure only one non-NCQ command is outstanding. The
5100 * check is skipped for old EH because it reuses active qc to
5101 * request ATAPI sense.
5103 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5105 if (ata_is_ncq(prot)) {
5106 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5108 if (!link->sactive)
5109 ap->nr_active_links++;
5110 link->sactive |= 1 << qc->tag;
5111 } else {
5112 WARN_ON_ONCE(link->sactive);
5114 ap->nr_active_links++;
5115 link->active_tag = qc->tag;
5118 qc->flags |= ATA_QCFLAG_ACTIVE;
5119 ap->qc_active |= 1 << qc->tag;
5121 /* We guarantee to LLDs that they will have at least one
5122 * non-zero sg if the command is a data command.
5124 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5126 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5127 (ap->flags & ATA_FLAG_PIO_DMA)))
5128 if (ata_sg_setup(qc))
5129 goto sg_err;
5131 /* if device is sleeping, schedule reset and abort the link */
5132 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5133 link->eh_info.action |= ATA_EH_RESET;
5134 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5135 ata_link_abort(link);
5136 return;
5139 ap->ops->qc_prep(qc);
5141 qc->err_mask |= ap->ops->qc_issue(qc);
5142 if (unlikely(qc->err_mask))
5143 goto err;
5144 return;
5146 sg_err:
5147 qc->err_mask |= AC_ERR_SYSTEM;
5148 err:
5149 ata_qc_complete(qc);
5153 * sata_scr_valid - test whether SCRs are accessible
5154 * @link: ATA link to test SCR accessibility for
5156 * Test whether SCRs are accessible for @link.
5158 * LOCKING:
5159 * None.
5161 * RETURNS:
5162 * 1 if SCRs are accessible, 0 otherwise.
5164 int sata_scr_valid(struct ata_link *link)
5166 struct ata_port *ap = link->ap;
5168 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5172 * sata_scr_read - read SCR register of the specified port
5173 * @link: ATA link to read SCR for
5174 * @reg: SCR to read
5175 * @val: Place to store read value
5177 * Read SCR register @reg of @link into *@val. This function is
5178 * guaranteed to succeed if @link is ap->link, the cable type of
5179 * the port is SATA and the port implements ->scr_read.
5181 * LOCKING:
5182 * None if @link is ap->link. Kernel thread context otherwise.
5184 * RETURNS:
5185 * 0 on success, negative errno on failure.
5187 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5189 if (ata_is_host_link(link)) {
5190 if (sata_scr_valid(link))
5191 return link->ap->ops->scr_read(link, reg, val);
5192 return -EOPNOTSUPP;
5195 return sata_pmp_scr_read(link, reg, val);
5199 * sata_scr_write - write SCR register of the specified port
5200 * @link: ATA link to write SCR for
5201 * @reg: SCR to write
5202 * @val: value to write
5204 * Write @val to SCR register @reg of @link. This function is
5205 * guaranteed to succeed if @link is ap->link, the cable type of
5206 * the port is SATA and the port implements ->scr_read.
5208 * LOCKING:
5209 * None if @link is ap->link. Kernel thread context otherwise.
5211 * RETURNS:
5212 * 0 on success, negative errno on failure.
5214 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5216 if (ata_is_host_link(link)) {
5217 if (sata_scr_valid(link))
5218 return link->ap->ops->scr_write(link, reg, val);
5219 return -EOPNOTSUPP;
5222 return sata_pmp_scr_write(link, reg, val);
5226 * sata_scr_write_flush - write SCR register of the specified port and flush
5227 * @link: ATA link to write SCR for
5228 * @reg: SCR to write
5229 * @val: value to write
5231 * This function is identical to sata_scr_write() except that this
5232 * function performs flush after writing to the register.
5234 * LOCKING:
5235 * None if @link is ap->link. Kernel thread context otherwise.
5237 * RETURNS:
5238 * 0 on success, negative errno on failure.
5240 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5242 if (ata_is_host_link(link)) {
5243 int rc;
5245 if (sata_scr_valid(link)) {
5246 rc = link->ap->ops->scr_write(link, reg, val);
5247 if (rc == 0)
5248 rc = link->ap->ops->scr_read(link, reg, &val);
5249 return rc;
5251 return -EOPNOTSUPP;
5254 return sata_pmp_scr_write(link, reg, val);
5258 * ata_phys_link_online - test whether the given link is online
5259 * @link: ATA link to test
5261 * Test whether @link is online. Note that this function returns
5262 * 0 if online status of @link cannot be obtained, so
5263 * ata_link_online(link) != !ata_link_offline(link).
5265 * LOCKING:
5266 * None.
5268 * RETURNS:
5269 * True if the port online status is available and online.
5271 bool ata_phys_link_online(struct ata_link *link)
5273 u32 sstatus;
5275 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5276 ata_sstatus_online(sstatus))
5277 return true;
5278 return false;
5282 * ata_phys_link_offline - test whether the given link is offline
5283 * @link: ATA link to test
5285 * Test whether @link is offline. Note that this function
5286 * returns 0 if offline status of @link cannot be obtained, so
5287 * ata_link_online(link) != !ata_link_offline(link).
5289 * LOCKING:
5290 * None.
5292 * RETURNS:
5293 * True if the port offline status is available and offline.
5295 bool ata_phys_link_offline(struct ata_link *link)
5297 u32 sstatus;
5299 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5300 !ata_sstatus_online(sstatus))
5301 return true;
5302 return false;
5306 * ata_link_online - test whether the given link is online
5307 * @link: ATA link to test
5309 * Test whether @link is online. This is identical to
5310 * ata_phys_link_online() when there's no slave link. When
5311 * there's a slave link, this function should only be called on
5312 * the master link and will return true if any of M/S links is
5313 * online.
5315 * LOCKING:
5316 * None.
5318 * RETURNS:
5319 * True if the port online status is available and online.
5321 bool ata_link_online(struct ata_link *link)
5323 struct ata_link *slave = link->ap->slave_link;
5325 WARN_ON(link == slave); /* shouldn't be called on slave link */
5327 return ata_phys_link_online(link) ||
5328 (slave && ata_phys_link_online(slave));
5332 * ata_link_offline - test whether the given link is offline
5333 * @link: ATA link to test
5335 * Test whether @link is offline. This is identical to
5336 * ata_phys_link_offline() when there's no slave link. When
5337 * there's a slave link, this function should only be called on
5338 * the master link and will return true if both M/S links are
5339 * offline.
5341 * LOCKING:
5342 * None.
5344 * RETURNS:
5345 * True if the port offline status is available and offline.
5347 bool ata_link_offline(struct ata_link *link)
5349 struct ata_link *slave = link->ap->slave_link;
5351 WARN_ON(link == slave); /* shouldn't be called on slave link */
5353 return ata_phys_link_offline(link) &&
5354 (!slave || ata_phys_link_offline(slave));
5357 #ifdef CONFIG_PM
5358 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5359 unsigned int action, unsigned int ehi_flags,
5360 int wait)
5362 unsigned long flags;
5363 int i, rc;
5365 for (i = 0; i < host->n_ports; i++) {
5366 struct ata_port *ap = host->ports[i];
5367 struct ata_link *link;
5369 /* Previous resume operation might still be in
5370 * progress. Wait for PM_PENDING to clear.
5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 ata_port_wait_eh(ap);
5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5377 /* request PM ops to EH */
5378 spin_lock_irqsave(ap->lock, flags);
5380 ap->pm_mesg = mesg;
5381 if (wait) {
5382 rc = 0;
5383 ap->pm_result = &rc;
5386 ap->pflags |= ATA_PFLAG_PM_PENDING;
5387 ata_for_each_link(link, ap, HOST_FIRST) {
5388 link->eh_info.action |= action;
5389 link->eh_info.flags |= ehi_flags;
5392 ata_port_schedule_eh(ap);
5394 spin_unlock_irqrestore(ap->lock, flags);
5396 /* wait and check result */
5397 if (wait) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 if (rc)
5401 return rc;
5405 return 0;
5409 * ata_host_suspend - suspend host
5410 * @host: host to suspend
5411 * @mesg: PM message
5413 * Suspend @host. Actual operation is performed by EH. This
5414 * function requests EH to perform PM operations and waits for EH
5415 * to finish.
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5423 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5425 int rc;
5428 * disable link pm on all ports before requesting
5429 * any pm activity
5431 ata_lpm_enable(host);
5433 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5434 if (rc == 0)
5435 host->dev->power.power_state = mesg;
5436 return rc;
5440 * ata_host_resume - resume host
5441 * @host: host to resume
5443 * Resume @host. Actual operation is performed by EH. This
5444 * function requests EH to perform PM operations and returns.
5445 * Note that all resume operations are performed parallely.
5447 * LOCKING:
5448 * Kernel thread context (may sleep).
5450 void ata_host_resume(struct ata_host *host)
5452 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5453 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5454 host->dev->power.power_state = PMSG_ON;
5456 /* reenable link pm */
5457 ata_lpm_disable(host);
5459 #endif
5462 * ata_dev_init - Initialize an ata_device structure
5463 * @dev: Device structure to initialize
5465 * Initialize @dev in preparation for probing.
5467 * LOCKING:
5468 * Inherited from caller.
5470 void ata_dev_init(struct ata_device *dev)
5472 struct ata_link *link = ata_dev_phys_link(dev);
5473 struct ata_port *ap = link->ap;
5474 unsigned long flags;
5476 /* SATA spd limit is bound to the attached device, reset together */
5477 link->sata_spd_limit = link->hw_sata_spd_limit;
5478 link->sata_spd = 0;
5480 /* High bits of dev->flags are used to record warm plug
5481 * requests which occur asynchronously. Synchronize using
5482 * host lock.
5484 spin_lock_irqsave(ap->lock, flags);
5485 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5486 dev->horkage = 0;
5487 spin_unlock_irqrestore(ap->lock, flags);
5489 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5490 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5491 dev->pio_mask = UINT_MAX;
5492 dev->mwdma_mask = UINT_MAX;
5493 dev->udma_mask = UINT_MAX;
5497 * ata_link_init - Initialize an ata_link structure
5498 * @ap: ATA port link is attached to
5499 * @link: Link structure to initialize
5500 * @pmp: Port multiplier port number
5502 * Initialize @link.
5504 * LOCKING:
5505 * Kernel thread context (may sleep)
5507 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5509 int i;
5511 /* clear everything except for devices */
5512 memset(link, 0, offsetof(struct ata_link, device[0]));
5514 link->ap = ap;
5515 link->pmp = pmp;
5516 link->active_tag = ATA_TAG_POISON;
5517 link->hw_sata_spd_limit = UINT_MAX;
5519 /* can't use iterator, ap isn't initialized yet */
5520 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5521 struct ata_device *dev = &link->device[i];
5523 dev->link = link;
5524 dev->devno = dev - link->device;
5525 #ifdef CONFIG_ATA_ACPI
5526 dev->gtf_filter = ata_acpi_gtf_filter;
5527 #endif
5528 ata_dev_init(dev);
5533 * sata_link_init_spd - Initialize link->sata_spd_limit
5534 * @link: Link to configure sata_spd_limit for
5536 * Initialize @link->[hw_]sata_spd_limit to the currently
5537 * configured value.
5539 * LOCKING:
5540 * Kernel thread context (may sleep).
5542 * RETURNS:
5543 * 0 on success, -errno on failure.
5545 int sata_link_init_spd(struct ata_link *link)
5547 u8 spd;
5548 int rc;
5550 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5551 if (rc)
5552 return rc;
5554 spd = (link->saved_scontrol >> 4) & 0xf;
5555 if (spd)
5556 link->hw_sata_spd_limit &= (1 << spd) - 1;
5558 ata_force_link_limits(link);
5560 link->sata_spd_limit = link->hw_sata_spd_limit;
5562 return 0;
5566 * ata_port_alloc - allocate and initialize basic ATA port resources
5567 * @host: ATA host this allocated port belongs to
5569 * Allocate and initialize basic ATA port resources.
5571 * RETURNS:
5572 * Allocate ATA port on success, NULL on failure.
5574 * LOCKING:
5575 * Inherited from calling layer (may sleep).
5577 struct ata_port *ata_port_alloc(struct ata_host *host)
5579 struct ata_port *ap;
5581 DPRINTK("ENTER\n");
5583 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5584 if (!ap)
5585 return NULL;
5587 ap->pflags |= ATA_PFLAG_INITIALIZING;
5588 ap->lock = &host->lock;
5589 ap->print_id = -1;
5590 ap->host = host;
5591 ap->dev = host->dev;
5593 #if defined(ATA_VERBOSE_DEBUG)
5594 /* turn on all debugging levels */
5595 ap->msg_enable = 0x00FF;
5596 #elif defined(ATA_DEBUG)
5597 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5598 #else
5599 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5600 #endif
5602 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5603 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5604 INIT_LIST_HEAD(&ap->eh_done_q);
5605 init_waitqueue_head(&ap->eh_wait_q);
5606 init_completion(&ap->park_req_pending);
5607 init_timer_deferrable(&ap->fastdrain_timer);
5608 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5609 ap->fastdrain_timer.data = (unsigned long)ap;
5611 ap->cbl = ATA_CBL_NONE;
5613 ata_link_init(ap, &ap->link, 0);
5615 #ifdef ATA_IRQ_TRAP
5616 ap->stats.unhandled_irq = 1;
5617 ap->stats.idle_irq = 1;
5618 #endif
5619 ata_sff_port_init(ap);
5621 return ap;
5624 static void ata_host_release(struct device *gendev, void *res)
5626 struct ata_host *host = dev_get_drvdata(gendev);
5627 int i;
5629 for (i = 0; i < host->n_ports; i++) {
5630 struct ata_port *ap = host->ports[i];
5632 if (!ap)
5633 continue;
5635 if (ap->scsi_host)
5636 scsi_host_put(ap->scsi_host);
5638 kfree(ap->pmp_link);
5639 kfree(ap->slave_link);
5640 kfree(ap);
5641 host->ports[i] = NULL;
5644 dev_set_drvdata(gendev, NULL);
5648 * ata_host_alloc - allocate and init basic ATA host resources
5649 * @dev: generic device this host is associated with
5650 * @max_ports: maximum number of ATA ports associated with this host
5652 * Allocate and initialize basic ATA host resources. LLD calls
5653 * this function to allocate a host, initializes it fully and
5654 * attaches it using ata_host_register().
5656 * @max_ports ports are allocated and host->n_ports is
5657 * initialized to @max_ports. The caller is allowed to decrease
5658 * host->n_ports before calling ata_host_register(). The unused
5659 * ports will be automatically freed on registration.
5661 * RETURNS:
5662 * Allocate ATA host on success, NULL on failure.
5664 * LOCKING:
5665 * Inherited from calling layer (may sleep).
5667 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5669 struct ata_host *host;
5670 size_t sz;
5671 int i;
5673 DPRINTK("ENTER\n");
5675 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5676 return NULL;
5678 /* alloc a container for our list of ATA ports (buses) */
5679 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5680 /* alloc a container for our list of ATA ports (buses) */
5681 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5682 if (!host)
5683 goto err_out;
5685 devres_add(dev, host);
5686 dev_set_drvdata(dev, host);
5688 spin_lock_init(&host->lock);
5689 host->dev = dev;
5690 host->n_ports = max_ports;
5692 /* allocate ports bound to this host */
5693 for (i = 0; i < max_ports; i++) {
5694 struct ata_port *ap;
5696 ap = ata_port_alloc(host);
5697 if (!ap)
5698 goto err_out;
5700 ap->port_no = i;
5701 host->ports[i] = ap;
5704 devres_remove_group(dev, NULL);
5705 return host;
5707 err_out:
5708 devres_release_group(dev, NULL);
5709 return NULL;
5713 * ata_host_alloc_pinfo - alloc host and init with port_info array
5714 * @dev: generic device this host is associated with
5715 * @ppi: array of ATA port_info to initialize host with
5716 * @n_ports: number of ATA ports attached to this host
5718 * Allocate ATA host and initialize with info from @ppi. If NULL
5719 * terminated, @ppi may contain fewer entries than @n_ports. The
5720 * last entry will be used for the remaining ports.
5722 * RETURNS:
5723 * Allocate ATA host on success, NULL on failure.
5725 * LOCKING:
5726 * Inherited from calling layer (may sleep).
5728 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5729 const struct ata_port_info * const * ppi,
5730 int n_ports)
5732 const struct ata_port_info *pi;
5733 struct ata_host *host;
5734 int i, j;
5736 host = ata_host_alloc(dev, n_ports);
5737 if (!host)
5738 return NULL;
5740 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5741 struct ata_port *ap = host->ports[i];
5743 if (ppi[j])
5744 pi = ppi[j++];
5746 ap->pio_mask = pi->pio_mask;
5747 ap->mwdma_mask = pi->mwdma_mask;
5748 ap->udma_mask = pi->udma_mask;
5749 ap->flags |= pi->flags;
5750 ap->link.flags |= pi->link_flags;
5751 ap->ops = pi->port_ops;
5753 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5754 host->ops = pi->port_ops;
5757 return host;
5761 * ata_slave_link_init - initialize slave link
5762 * @ap: port to initialize slave link for
5764 * Create and initialize slave link for @ap. This enables slave
5765 * link handling on the port.
5767 * In libata, a port contains links and a link contains devices.
5768 * There is single host link but if a PMP is attached to it,
5769 * there can be multiple fan-out links. On SATA, there's usually
5770 * a single device connected to a link but PATA and SATA
5771 * controllers emulating TF based interface can have two - master
5772 * and slave.
5774 * However, there are a few controllers which don't fit into this
5775 * abstraction too well - SATA controllers which emulate TF
5776 * interface with both master and slave devices but also have
5777 * separate SCR register sets for each device. These controllers
5778 * need separate links for physical link handling
5779 * (e.g. onlineness, link speed) but should be treated like a
5780 * traditional M/S controller for everything else (e.g. command
5781 * issue, softreset).
5783 * slave_link is libata's way of handling this class of
5784 * controllers without impacting core layer too much. For
5785 * anything other than physical link handling, the default host
5786 * link is used for both master and slave. For physical link
5787 * handling, separate @ap->slave_link is used. All dirty details
5788 * are implemented inside libata core layer. From LLD's POV, the
5789 * only difference is that prereset, hardreset and postreset are
5790 * called once more for the slave link, so the reset sequence
5791 * looks like the following.
5793 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5794 * softreset(M) -> postreset(M) -> postreset(S)
5796 * Note that softreset is called only for the master. Softreset
5797 * resets both M/S by definition, so SRST on master should handle
5798 * both (the standard method will work just fine).
5800 * LOCKING:
5801 * Should be called before host is registered.
5803 * RETURNS:
5804 * 0 on success, -errno on failure.
5806 int ata_slave_link_init(struct ata_port *ap)
5808 struct ata_link *link;
5810 WARN_ON(ap->slave_link);
5811 WARN_ON(ap->flags & ATA_FLAG_PMP);
5813 link = kzalloc(sizeof(*link), GFP_KERNEL);
5814 if (!link)
5815 return -ENOMEM;
5817 ata_link_init(ap, link, 1);
5818 ap->slave_link = link;
5819 return 0;
5822 static void ata_host_stop(struct device *gendev, void *res)
5824 struct ata_host *host = dev_get_drvdata(gendev);
5825 int i;
5827 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5829 for (i = 0; i < host->n_ports; i++) {
5830 struct ata_port *ap = host->ports[i];
5832 if (ap->ops->port_stop)
5833 ap->ops->port_stop(ap);
5836 if (host->ops->host_stop)
5837 host->ops->host_stop(host);
5841 * ata_finalize_port_ops - finalize ata_port_operations
5842 * @ops: ata_port_operations to finalize
5844 * An ata_port_operations can inherit from another ops and that
5845 * ops can again inherit from another. This can go on as many
5846 * times as necessary as long as there is no loop in the
5847 * inheritance chain.
5849 * Ops tables are finalized when the host is started. NULL or
5850 * unspecified entries are inherited from the closet ancestor
5851 * which has the method and the entry is populated with it.
5852 * After finalization, the ops table directly points to all the
5853 * methods and ->inherits is no longer necessary and cleared.
5855 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5857 * LOCKING:
5858 * None.
5860 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5862 static DEFINE_SPINLOCK(lock);
5863 const struct ata_port_operations *cur;
5864 void **begin = (void **)ops;
5865 void **end = (void **)&ops->inherits;
5866 void **pp;
5868 if (!ops || !ops->inherits)
5869 return;
5871 spin_lock(&lock);
5873 for (cur = ops->inherits; cur; cur = cur->inherits) {
5874 void **inherit = (void **)cur;
5876 for (pp = begin; pp < end; pp++, inherit++)
5877 if (!*pp)
5878 *pp = *inherit;
5881 for (pp = begin; pp < end; pp++)
5882 if (IS_ERR(*pp))
5883 *pp = NULL;
5885 ops->inherits = NULL;
5887 spin_unlock(&lock);
5891 * ata_host_start - start and freeze ports of an ATA host
5892 * @host: ATA host to start ports for
5894 * Start and then freeze ports of @host. Started status is
5895 * recorded in host->flags, so this function can be called
5896 * multiple times. Ports are guaranteed to get started only
5897 * once. If host->ops isn't initialized yet, its set to the
5898 * first non-dummy port ops.
5900 * LOCKING:
5901 * Inherited from calling layer (may sleep).
5903 * RETURNS:
5904 * 0 if all ports are started successfully, -errno otherwise.
5906 int ata_host_start(struct ata_host *host)
5908 int have_stop = 0;
5909 void *start_dr = NULL;
5910 int i, rc;
5912 if (host->flags & ATA_HOST_STARTED)
5913 return 0;
5915 ata_finalize_port_ops(host->ops);
5917 for (i = 0; i < host->n_ports; i++) {
5918 struct ata_port *ap = host->ports[i];
5920 ata_finalize_port_ops(ap->ops);
5922 if (!host->ops && !ata_port_is_dummy(ap))
5923 host->ops = ap->ops;
5925 if (ap->ops->port_stop)
5926 have_stop = 1;
5929 if (host->ops->host_stop)
5930 have_stop = 1;
5932 if (have_stop) {
5933 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5934 if (!start_dr)
5935 return -ENOMEM;
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5941 if (ap->ops->port_start) {
5942 rc = ap->ops->port_start(ap);
5943 if (rc) {
5944 if (rc != -ENODEV)
5945 dev_printk(KERN_ERR, host->dev,
5946 "failed to start port %d "
5947 "(errno=%d)\n", i, rc);
5948 goto err_out;
5951 ata_eh_freeze_port(ap);
5954 if (start_dr)
5955 devres_add(host->dev, start_dr);
5956 host->flags |= ATA_HOST_STARTED;
5957 return 0;
5959 err_out:
5960 while (--i >= 0) {
5961 struct ata_port *ap = host->ports[i];
5963 if (ap->ops->port_stop)
5964 ap->ops->port_stop(ap);
5966 devres_free(start_dr);
5967 return rc;
5971 * ata_sas_host_init - Initialize a host struct
5972 * @host: host to initialize
5973 * @dev: device host is attached to
5974 * @flags: host flags
5975 * @ops: port_ops
5977 * LOCKING:
5978 * PCI/etc. bus probe sem.
5981 /* KILLME - the only user left is ipr */
5982 void ata_host_init(struct ata_host *host, struct device *dev,
5983 unsigned long flags, struct ata_port_operations *ops)
5985 spin_lock_init(&host->lock);
5986 host->dev = dev;
5987 host->flags = flags;
5988 host->ops = ops;
5992 static void async_port_probe(void *data, async_cookie_t cookie)
5994 int rc;
5995 struct ata_port *ap = data;
5998 * If we're not allowed to scan this host in parallel,
5999 * we need to wait until all previous scans have completed
6000 * before going further.
6001 * Jeff Garzik says this is only within a controller, so we
6002 * don't need to wait for port 0, only for later ports.
6004 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6005 async_synchronize_cookie(cookie);
6007 /* probe */
6008 if (ap->ops->error_handler) {
6009 struct ata_eh_info *ehi = &ap->link.eh_info;
6010 unsigned long flags;
6012 /* kick EH for boot probing */
6013 spin_lock_irqsave(ap->lock, flags);
6015 ehi->probe_mask |= ATA_ALL_DEVICES;
6016 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6017 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6019 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6020 ap->pflags |= ATA_PFLAG_LOADING;
6021 ata_port_schedule_eh(ap);
6023 spin_unlock_irqrestore(ap->lock, flags);
6025 /* wait for EH to finish */
6026 ata_port_wait_eh(ap);
6027 } else {
6028 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6029 rc = ata_bus_probe(ap);
6030 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6032 if (rc) {
6033 /* FIXME: do something useful here?
6034 * Current libata behavior will
6035 * tear down everything when
6036 * the module is removed
6037 * or the h/w is unplugged.
6042 /* in order to keep device order, we need to synchronize at this point */
6043 async_synchronize_cookie(cookie);
6045 ata_scsi_scan_host(ap, 1);
6049 * ata_host_register - register initialized ATA host
6050 * @host: ATA host to register
6051 * @sht: template for SCSI host
6053 * Register initialized ATA host. @host is allocated using
6054 * ata_host_alloc() and fully initialized by LLD. This function
6055 * starts ports, registers @host with ATA and SCSI layers and
6056 * probe registered devices.
6058 * LOCKING:
6059 * Inherited from calling layer (may sleep).
6061 * RETURNS:
6062 * 0 on success, -errno otherwise.
6064 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6066 int i, rc;
6068 /* host must have been started */
6069 if (!(host->flags & ATA_HOST_STARTED)) {
6070 dev_printk(KERN_ERR, host->dev,
6071 "BUG: trying to register unstarted host\n");
6072 WARN_ON(1);
6073 return -EINVAL;
6076 /* Blow away unused ports. This happens when LLD can't
6077 * determine the exact number of ports to allocate at
6078 * allocation time.
6080 for (i = host->n_ports; host->ports[i]; i++)
6081 kfree(host->ports[i]);
6083 /* give ports names and add SCSI hosts */
6084 for (i = 0; i < host->n_ports; i++)
6085 host->ports[i]->print_id = ata_print_id++;
6087 rc = ata_scsi_add_hosts(host, sht);
6088 if (rc)
6089 return rc;
6091 /* associate with ACPI nodes */
6092 ata_acpi_associate(host);
6094 /* set cable, sata_spd_limit and report */
6095 for (i = 0; i < host->n_ports; i++) {
6096 struct ata_port *ap = host->ports[i];
6097 unsigned long xfer_mask;
6099 /* set SATA cable type if still unset */
6100 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6101 ap->cbl = ATA_CBL_SATA;
6103 /* init sata_spd_limit to the current value */
6104 sata_link_init_spd(&ap->link);
6105 if (ap->slave_link)
6106 sata_link_init_spd(ap->slave_link);
6108 /* print per-port info to dmesg */
6109 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6110 ap->udma_mask);
6112 if (!ata_port_is_dummy(ap)) {
6113 ata_port_printk(ap, KERN_INFO,
6114 "%cATA max %s %s\n",
6115 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6116 ata_mode_string(xfer_mask),
6117 ap->link.eh_info.desc);
6118 ata_ehi_clear_desc(&ap->link.eh_info);
6119 } else
6120 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6123 /* perform each probe asynchronously */
6124 for (i = 0; i < host->n_ports; i++) {
6125 struct ata_port *ap = host->ports[i];
6126 async_schedule(async_port_probe, ap);
6129 return 0;
6133 * ata_host_activate - start host, request IRQ and register it
6134 * @host: target ATA host
6135 * @irq: IRQ to request
6136 * @irq_handler: irq_handler used when requesting IRQ
6137 * @irq_flags: irq_flags used when requesting IRQ
6138 * @sht: scsi_host_template to use when registering the host
6140 * After allocating an ATA host and initializing it, most libata
6141 * LLDs perform three steps to activate the host - start host,
6142 * request IRQ and register it. This helper takes necessasry
6143 * arguments and performs the three steps in one go.
6145 * An invalid IRQ skips the IRQ registration and expects the host to
6146 * have set polling mode on the port. In this case, @irq_handler
6147 * should be NULL.
6149 * LOCKING:
6150 * Inherited from calling layer (may sleep).
6152 * RETURNS:
6153 * 0 on success, -errno otherwise.
6155 int ata_host_activate(struct ata_host *host, int irq,
6156 irq_handler_t irq_handler, unsigned long irq_flags,
6157 struct scsi_host_template *sht)
6159 int i, rc;
6161 rc = ata_host_start(host);
6162 if (rc)
6163 return rc;
6165 /* Special case for polling mode */
6166 if (!irq) {
6167 WARN_ON(irq_handler);
6168 return ata_host_register(host, sht);
6171 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6172 dev_driver_string(host->dev), host);
6173 if (rc)
6174 return rc;
6176 for (i = 0; i < host->n_ports; i++)
6177 ata_port_desc(host->ports[i], "irq %d", irq);
6179 rc = ata_host_register(host, sht);
6180 /* if failed, just free the IRQ and leave ports alone */
6181 if (rc)
6182 devm_free_irq(host->dev, irq, host);
6184 return rc;
6188 * ata_port_detach - Detach ATA port in prepration of device removal
6189 * @ap: ATA port to be detached
6191 * Detach all ATA devices and the associated SCSI devices of @ap;
6192 * then, remove the associated SCSI host. @ap is guaranteed to
6193 * be quiescent on return from this function.
6195 * LOCKING:
6196 * Kernel thread context (may sleep).
6198 static void ata_port_detach(struct ata_port *ap)
6200 unsigned long flags;
6202 if (!ap->ops->error_handler)
6203 goto skip_eh;
6205 /* tell EH we're leaving & flush EH */
6206 spin_lock_irqsave(ap->lock, flags);
6207 ap->pflags |= ATA_PFLAG_UNLOADING;
6208 ata_port_schedule_eh(ap);
6209 spin_unlock_irqrestore(ap->lock, flags);
6211 /* wait till EH commits suicide */
6212 ata_port_wait_eh(ap);
6214 /* it better be dead now */
6215 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6217 cancel_rearming_delayed_work(&ap->hotplug_task);
6219 skip_eh:
6220 /* remove the associated SCSI host */
6221 scsi_remove_host(ap->scsi_host);
6225 * ata_host_detach - Detach all ports of an ATA host
6226 * @host: Host to detach
6228 * Detach all ports of @host.
6230 * LOCKING:
6231 * Kernel thread context (may sleep).
6233 void ata_host_detach(struct ata_host *host)
6235 int i;
6237 for (i = 0; i < host->n_ports; i++)
6238 ata_port_detach(host->ports[i]);
6240 /* the host is dead now, dissociate ACPI */
6241 ata_acpi_dissociate(host);
6244 #ifdef CONFIG_PCI
6247 * ata_pci_remove_one - PCI layer callback for device removal
6248 * @pdev: PCI device that was removed
6250 * PCI layer indicates to libata via this hook that hot-unplug or
6251 * module unload event has occurred. Detach all ports. Resource
6252 * release is handled via devres.
6254 * LOCKING:
6255 * Inherited from PCI layer (may sleep).
6257 void ata_pci_remove_one(struct pci_dev *pdev)
6259 struct device *dev = &pdev->dev;
6260 struct ata_host *host = dev_get_drvdata(dev);
6262 ata_host_detach(host);
6265 /* move to PCI subsystem */
6266 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6268 unsigned long tmp = 0;
6270 switch (bits->width) {
6271 case 1: {
6272 u8 tmp8 = 0;
6273 pci_read_config_byte(pdev, bits->reg, &tmp8);
6274 tmp = tmp8;
6275 break;
6277 case 2: {
6278 u16 tmp16 = 0;
6279 pci_read_config_word(pdev, bits->reg, &tmp16);
6280 tmp = tmp16;
6281 break;
6283 case 4: {
6284 u32 tmp32 = 0;
6285 pci_read_config_dword(pdev, bits->reg, &tmp32);
6286 tmp = tmp32;
6287 break;
6290 default:
6291 return -EINVAL;
6294 tmp &= bits->mask;
6296 return (tmp == bits->val) ? 1 : 0;
6299 #ifdef CONFIG_PM
6300 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6302 pci_save_state(pdev);
6303 pci_disable_device(pdev);
6305 if (mesg.event & PM_EVENT_SLEEP)
6306 pci_set_power_state(pdev, PCI_D3hot);
6309 int ata_pci_device_do_resume(struct pci_dev *pdev)
6311 int rc;
6313 pci_set_power_state(pdev, PCI_D0);
6314 pci_restore_state(pdev);
6316 rc = pcim_enable_device(pdev);
6317 if (rc) {
6318 dev_printk(KERN_ERR, &pdev->dev,
6319 "failed to enable device after resume (%d)\n", rc);
6320 return rc;
6323 pci_set_master(pdev);
6324 return 0;
6327 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6329 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6330 int rc = 0;
6332 rc = ata_host_suspend(host, mesg);
6333 if (rc)
6334 return rc;
6336 ata_pci_device_do_suspend(pdev, mesg);
6338 return 0;
6341 int ata_pci_device_resume(struct pci_dev *pdev)
6343 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6344 int rc;
6346 rc = ata_pci_device_do_resume(pdev);
6347 if (rc == 0)
6348 ata_host_resume(host);
6349 return rc;
6351 #endif /* CONFIG_PM */
6353 #endif /* CONFIG_PCI */
6355 static int __init ata_parse_force_one(char **cur,
6356 struct ata_force_ent *force_ent,
6357 const char **reason)
6359 /* FIXME: Currently, there's no way to tag init const data and
6360 * using __initdata causes build failure on some versions of
6361 * gcc. Once __initdataconst is implemented, add const to the
6362 * following structure.
6364 static struct ata_force_param force_tbl[] __initdata = {
6365 { "40c", .cbl = ATA_CBL_PATA40 },
6366 { "80c", .cbl = ATA_CBL_PATA80 },
6367 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6368 { "unk", .cbl = ATA_CBL_PATA_UNK },
6369 { "ign", .cbl = ATA_CBL_PATA_IGN },
6370 { "sata", .cbl = ATA_CBL_SATA },
6371 { "1.5Gbps", .spd_limit = 1 },
6372 { "3.0Gbps", .spd_limit = 2 },
6373 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6374 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6375 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6376 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6377 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6378 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6379 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6380 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6381 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6382 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6383 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6384 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6385 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6386 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6387 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6388 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6389 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6390 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6391 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6392 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6393 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6394 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6395 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6396 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6397 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6398 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6399 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6400 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6401 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6402 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6403 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6404 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6405 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6406 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6407 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6408 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6409 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6410 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6411 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6413 char *start = *cur, *p = *cur;
6414 char *id, *val, *endp;
6415 const struct ata_force_param *match_fp = NULL;
6416 int nr_matches = 0, i;
6418 /* find where this param ends and update *cur */
6419 while (*p != '\0' && *p != ',')
6420 p++;
6422 if (*p == '\0')
6423 *cur = p;
6424 else
6425 *cur = p + 1;
6427 *p = '\0';
6429 /* parse */
6430 p = strchr(start, ':');
6431 if (!p) {
6432 val = strstrip(start);
6433 goto parse_val;
6435 *p = '\0';
6437 id = strstrip(start);
6438 val = strstrip(p + 1);
6440 /* parse id */
6441 p = strchr(id, '.');
6442 if (p) {
6443 *p++ = '\0';
6444 force_ent->device = simple_strtoul(p, &endp, 10);
6445 if (p == endp || *endp != '\0') {
6446 *reason = "invalid device";
6447 return -EINVAL;
6451 force_ent->port = simple_strtoul(id, &endp, 10);
6452 if (p == endp || *endp != '\0') {
6453 *reason = "invalid port/link";
6454 return -EINVAL;
6457 parse_val:
6458 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6459 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6460 const struct ata_force_param *fp = &force_tbl[i];
6462 if (strncasecmp(val, fp->name, strlen(val)))
6463 continue;
6465 nr_matches++;
6466 match_fp = fp;
6468 if (strcasecmp(val, fp->name) == 0) {
6469 nr_matches = 1;
6470 break;
6474 if (!nr_matches) {
6475 *reason = "unknown value";
6476 return -EINVAL;
6478 if (nr_matches > 1) {
6479 *reason = "ambigious value";
6480 return -EINVAL;
6483 force_ent->param = *match_fp;
6485 return 0;
6488 static void __init ata_parse_force_param(void)
6490 int idx = 0, size = 1;
6491 int last_port = -1, last_device = -1;
6492 char *p, *cur, *next;
6494 /* calculate maximum number of params and allocate force_tbl */
6495 for (p = ata_force_param_buf; *p; p++)
6496 if (*p == ',')
6497 size++;
6499 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6500 if (!ata_force_tbl) {
6501 printk(KERN_WARNING "ata: failed to extend force table, "
6502 "libata.force ignored\n");
6503 return;
6506 /* parse and populate the table */
6507 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6508 const char *reason = "";
6509 struct ata_force_ent te = { .port = -1, .device = -1 };
6511 next = cur;
6512 if (ata_parse_force_one(&next, &te, &reason)) {
6513 printk(KERN_WARNING "ata: failed to parse force "
6514 "parameter \"%s\" (%s)\n",
6515 cur, reason);
6516 continue;
6519 if (te.port == -1) {
6520 te.port = last_port;
6521 te.device = last_device;
6524 ata_force_tbl[idx++] = te;
6526 last_port = te.port;
6527 last_device = te.device;
6530 ata_force_tbl_size = idx;
6533 static int __init ata_init(void)
6535 int rc = -ENOMEM;
6537 ata_parse_force_param();
6539 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6540 if (!ata_aux_wq)
6541 goto fail;
6543 rc = ata_sff_init();
6544 if (rc)
6545 goto fail;
6547 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6548 return 0;
6550 fail:
6551 kfree(ata_force_tbl);
6552 if (ata_aux_wq)
6553 destroy_workqueue(ata_aux_wq);
6554 return rc;
6557 static void __exit ata_exit(void)
6559 ata_sff_exit();
6560 kfree(ata_force_tbl);
6561 destroy_workqueue(ata_aux_wq);
6564 subsys_initcall(ata_init);
6565 module_exit(ata_exit);
6567 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6569 int ata_ratelimit(void)
6571 return __ratelimit(&ratelimit);
6575 * ata_wait_register - wait until register value changes
6576 * @reg: IO-mapped register
6577 * @mask: Mask to apply to read register value
6578 * @val: Wait condition
6579 * @interval: polling interval in milliseconds
6580 * @timeout: timeout in milliseconds
6582 * Waiting for some bits of register to change is a common
6583 * operation for ATA controllers. This function reads 32bit LE
6584 * IO-mapped register @reg and tests for the following condition.
6586 * (*@reg & mask) != val
6588 * If the condition is met, it returns; otherwise, the process is
6589 * repeated after @interval_msec until timeout.
6591 * LOCKING:
6592 * Kernel thread context (may sleep)
6594 * RETURNS:
6595 * The final register value.
6597 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6598 unsigned long interval, unsigned long timeout)
6600 unsigned long deadline;
6601 u32 tmp;
6603 tmp = ioread32(reg);
6605 /* Calculate timeout _after_ the first read to make sure
6606 * preceding writes reach the controller before starting to
6607 * eat away the timeout.
6609 deadline = ata_deadline(jiffies, timeout);
6611 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6612 msleep(interval);
6613 tmp = ioread32(reg);
6616 return tmp;
6620 * Dummy port_ops
6622 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6624 return AC_ERR_SYSTEM;
6627 static void ata_dummy_error_handler(struct ata_port *ap)
6629 /* truly dummy */
6632 struct ata_port_operations ata_dummy_port_ops = {
6633 .qc_prep = ata_noop_qc_prep,
6634 .qc_issue = ata_dummy_qc_issue,
6635 .error_handler = ata_dummy_error_handler,
6638 const struct ata_port_info ata_dummy_port_info = {
6639 .port_ops = &ata_dummy_port_ops,
6643 * libata is essentially a library of internal helper functions for
6644 * low-level ATA host controller drivers. As such, the API/ABI is
6645 * likely to change as new drivers are added and updated.
6646 * Do not depend on ABI/API stability.
6648 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6649 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6650 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6651 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6652 EXPORT_SYMBOL_GPL(sata_port_ops);
6653 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6654 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6655 EXPORT_SYMBOL_GPL(ata_link_next);
6656 EXPORT_SYMBOL_GPL(ata_dev_next);
6657 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6658 EXPORT_SYMBOL_GPL(ata_host_init);
6659 EXPORT_SYMBOL_GPL(ata_host_alloc);
6660 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6661 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6662 EXPORT_SYMBOL_GPL(ata_host_start);
6663 EXPORT_SYMBOL_GPL(ata_host_register);
6664 EXPORT_SYMBOL_GPL(ata_host_activate);
6665 EXPORT_SYMBOL_GPL(ata_host_detach);
6666 EXPORT_SYMBOL_GPL(ata_sg_init);
6667 EXPORT_SYMBOL_GPL(ata_qc_complete);
6668 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6669 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6670 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6671 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6672 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6673 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6674 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6675 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6676 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6677 EXPORT_SYMBOL_GPL(ata_mode_string);
6678 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6679 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6680 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6681 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6682 EXPORT_SYMBOL_GPL(ata_dev_disable);
6683 EXPORT_SYMBOL_GPL(sata_set_spd);
6684 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6685 EXPORT_SYMBOL_GPL(sata_link_debounce);
6686 EXPORT_SYMBOL_GPL(sata_link_resume);
6687 EXPORT_SYMBOL_GPL(ata_std_prereset);
6688 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6689 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6690 EXPORT_SYMBOL_GPL(ata_std_postreset);
6691 EXPORT_SYMBOL_GPL(ata_dev_classify);
6692 EXPORT_SYMBOL_GPL(ata_dev_pair);
6693 EXPORT_SYMBOL_GPL(ata_ratelimit);
6694 EXPORT_SYMBOL_GPL(ata_wait_register);
6695 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6696 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6697 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6698 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6699 EXPORT_SYMBOL_GPL(sata_scr_valid);
6700 EXPORT_SYMBOL_GPL(sata_scr_read);
6701 EXPORT_SYMBOL_GPL(sata_scr_write);
6702 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6703 EXPORT_SYMBOL_GPL(ata_link_online);
6704 EXPORT_SYMBOL_GPL(ata_link_offline);
6705 #ifdef CONFIG_PM
6706 EXPORT_SYMBOL_GPL(ata_host_suspend);
6707 EXPORT_SYMBOL_GPL(ata_host_resume);
6708 #endif /* CONFIG_PM */
6709 EXPORT_SYMBOL_GPL(ata_id_string);
6710 EXPORT_SYMBOL_GPL(ata_id_c_string);
6711 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6712 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6714 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6715 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6716 EXPORT_SYMBOL_GPL(ata_timing_compute);
6717 EXPORT_SYMBOL_GPL(ata_timing_merge);
6718 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6720 #ifdef CONFIG_PCI
6721 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6722 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6723 #ifdef CONFIG_PM
6724 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6725 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6726 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6727 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6728 #endif /* CONFIG_PM */
6729 #endif /* CONFIG_PCI */
6731 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6732 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6733 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6734 EXPORT_SYMBOL_GPL(ata_port_desc);
6735 #ifdef CONFIG_PCI
6736 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6737 #endif /* CONFIG_PCI */
6738 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6739 EXPORT_SYMBOL_GPL(ata_link_abort);
6740 EXPORT_SYMBOL_GPL(ata_port_abort);
6741 EXPORT_SYMBOL_GPL(ata_port_freeze);
6742 EXPORT_SYMBOL_GPL(sata_async_notification);
6743 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6744 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6745 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6746 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6747 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6748 EXPORT_SYMBOL_GPL(ata_do_eh);
6749 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6751 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6752 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6753 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6754 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6755 EXPORT_SYMBOL_GPL(ata_cable_sata);