USB: xhci: Support interrupt transfers.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-hcd.c
blobe478a63488fbd7c355a12dff6924bc2f4cbf6d6e
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
27 #include "xhci.h"
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
37 /* TODO: copied from ehci-hcd.c - can this be refactored? */
39 * handshake - spin reading hc until handshake completes or fails
40 * @ptr: address of hc register to be read
41 * @mask: bits to look at in result of read
42 * @done: value of those bits when handshake succeeds
43 * @usec: timeout in microseconds
45 * Returns negative errno, or zero on success
47 * Success happens when the "mask" bits have the specified value (hardware
48 * handshake done). There are two failure modes: "usec" have passed (major
49 * hardware flakeout), or the register reads as all-ones (hardware removed).
51 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
52 u32 mask, u32 done, int usec)
54 u32 result;
56 do {
57 result = xhci_readl(xhci, ptr);
58 if (result == ~(u32)0) /* card removed */
59 return -ENODEV;
60 result &= mask;
61 if (result == done)
62 return 0;
63 udelay(1);
64 usec--;
65 } while (usec > 0);
66 return -ETIMEDOUT;
70 * Force HC into halt state.
72 * Disable any IRQs and clear the run/stop bit.
73 * HC will complete any current and actively pipelined transactions, and
74 * should halt within 16 microframes of the run/stop bit being cleared.
75 * Read HC Halted bit in the status register to see when the HC is finished.
76 * XXX: shouldn't we set HC_STATE_HALT here somewhere?
78 int xhci_halt(struct xhci_hcd *xhci)
80 u32 halted;
81 u32 cmd;
82 u32 mask;
84 xhci_dbg(xhci, "// Halt the HC\n");
85 /* Disable all interrupts from the host controller */
86 mask = ~(XHCI_IRQS);
87 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
88 if (!halted)
89 mask &= ~CMD_RUN;
91 cmd = xhci_readl(xhci, &xhci->op_regs->command);
92 cmd &= mask;
93 xhci_writel(xhci, cmd, &xhci->op_regs->command);
95 return handshake(xhci, &xhci->op_regs->status,
96 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
100 * Reset a halted HC, and set the internal HC state to HC_STATE_HALT.
102 * This resets pipelines, timers, counters, state machines, etc.
103 * Transactions will be terminated immediately, and operational registers
104 * will be set to their defaults.
106 int xhci_reset(struct xhci_hcd *xhci)
108 u32 command;
109 u32 state;
111 state = xhci_readl(xhci, &xhci->op_regs->status);
112 if ((state & STS_HALT) == 0) {
113 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
114 return 0;
117 xhci_dbg(xhci, "// Reset the HC\n");
118 command = xhci_readl(xhci, &xhci->op_regs->command);
119 command |= CMD_RESET;
120 xhci_writel(xhci, command, &xhci->op_regs->command);
121 /* XXX: Why does EHCI set this here? Shouldn't other code do this? */
122 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
124 return handshake(xhci, &xhci->op_regs->command, CMD_RESET, 0, 250 * 1000);
128 * Stop the HC from processing the endpoint queues.
130 static void xhci_quiesce(struct xhci_hcd *xhci)
133 * Queues are per endpoint, so we need to disable an endpoint or slot.
135 * To disable a slot, we need to insert a disable slot command on the
136 * command ring and ring the doorbell. This will also free any internal
137 * resources associated with the slot (which might not be what we want).
139 * A Release Endpoint command sounds better - doesn't free internal HC
140 * memory, but removes the endpoints from the schedule and releases the
141 * bandwidth, disables the doorbells, and clears the endpoint enable
142 * flag. Usually used prior to a set interface command.
144 * TODO: Implement after command ring code is done.
146 BUG_ON(!HC_IS_RUNNING(xhci_to_hcd(xhci)->state));
147 xhci_dbg(xhci, "Finished quiescing -- code not written yet\n");
150 #if 0
151 /* Set up MSI-X table for entry 0 (may claim other entries later) */
152 static int xhci_setup_msix(struct xhci_hcd *xhci)
154 int ret;
155 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
157 xhci->msix_count = 0;
158 /* XXX: did I do this right? ixgbe does kcalloc for more than one */
159 xhci->msix_entries = kmalloc(sizeof(struct msix_entry), GFP_KERNEL);
160 if (!xhci->msix_entries) {
161 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
162 return -ENOMEM;
164 xhci->msix_entries[0].entry = 0;
166 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
167 if (ret) {
168 xhci_err(xhci, "Failed to enable MSI-X\n");
169 goto free_entries;
173 * Pass the xhci pointer value as the request_irq "cookie".
174 * If more irqs are added, this will need to be unique for each one.
176 ret = request_irq(xhci->msix_entries[0].vector, &xhci_irq, 0,
177 "xHCI", xhci_to_hcd(xhci));
178 if (ret) {
179 xhci_err(xhci, "Failed to allocate MSI-X interrupt\n");
180 goto disable_msix;
182 xhci_dbg(xhci, "Finished setting up MSI-X\n");
183 return 0;
185 disable_msix:
186 pci_disable_msix(pdev);
187 free_entries:
188 kfree(xhci->msix_entries);
189 xhci->msix_entries = NULL;
190 return ret;
193 /* XXX: code duplication; can xhci_setup_msix call this? */
194 /* Free any IRQs and disable MSI-X */
195 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
197 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
198 if (!xhci->msix_entries)
199 return;
201 free_irq(xhci->msix_entries[0].vector, xhci);
202 pci_disable_msix(pdev);
203 kfree(xhci->msix_entries);
204 xhci->msix_entries = NULL;
205 xhci_dbg(xhci, "Finished cleaning up MSI-X\n");
207 #endif
210 * Initialize memory for HCD and xHC (one-time init).
212 * Program the PAGESIZE register, initialize the device context array, create
213 * device contexts (?), set up a command ring segment (or two?), create event
214 * ring (one for now).
216 int xhci_init(struct usb_hcd *hcd)
218 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
219 int retval = 0;
221 xhci_dbg(xhci, "xhci_init\n");
222 spin_lock_init(&xhci->lock);
223 if (link_quirk) {
224 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
225 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
226 } else {
227 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
229 retval = xhci_mem_init(xhci, GFP_KERNEL);
230 xhci_dbg(xhci, "Finished xhci_init\n");
232 return retval;
236 * Called in interrupt context when there might be work
237 * queued on the event ring
239 * xhci->lock must be held by caller.
241 static void xhci_work(struct xhci_hcd *xhci)
243 u32 temp;
244 u64 temp_64;
247 * Clear the op reg interrupt status first,
248 * so we can receive interrupts from other MSI-X interrupters.
249 * Write 1 to clear the interrupt status.
251 temp = xhci_readl(xhci, &xhci->op_regs->status);
252 temp |= STS_EINT;
253 xhci_writel(xhci, temp, &xhci->op_regs->status);
254 /* FIXME when MSI-X is supported and there are multiple vectors */
255 /* Clear the MSI-X event interrupt status */
257 /* Acknowledge the interrupt */
258 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
259 temp |= 0x3;
260 xhci_writel(xhci, temp, &xhci->ir_set->irq_pending);
261 /* Flush posted writes */
262 xhci_readl(xhci, &xhci->ir_set->irq_pending);
264 /* FIXME this should be a delayed service routine that clears the EHB */
265 xhci_handle_event(xhci);
267 /* Clear the event handler busy flag (RW1C); the event ring should be empty. */
268 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
269 xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
270 /* Flush posted writes -- FIXME is this necessary? */
271 xhci_readl(xhci, &xhci->ir_set->irq_pending);
274 /*-------------------------------------------------------------------------*/
277 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
278 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
279 * indicators of an event TRB error, but we check the status *first* to be safe.
281 irqreturn_t xhci_irq(struct usb_hcd *hcd)
283 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
284 u32 temp, temp2;
285 union xhci_trb *trb;
287 spin_lock(&xhci->lock);
288 trb = xhci->event_ring->dequeue;
289 /* Check if the xHC generated the interrupt, or the irq is shared */
290 temp = xhci_readl(xhci, &xhci->op_regs->status);
291 temp2 = xhci_readl(xhci, &xhci->ir_set->irq_pending);
292 if (temp == 0xffffffff && temp2 == 0xffffffff)
293 goto hw_died;
295 if (!(temp & STS_EINT) && !ER_IRQ_PENDING(temp2)) {
296 spin_unlock(&xhci->lock);
297 return IRQ_NONE;
299 xhci_dbg(xhci, "op reg status = %08x\n", temp);
300 xhci_dbg(xhci, "ir set irq_pending = %08x\n", temp2);
301 xhci_dbg(xhci, "Event ring dequeue ptr:\n");
302 xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n",
303 (unsigned long long)xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb),
304 lower_32_bits(trb->link.segment_ptr),
305 upper_32_bits(trb->link.segment_ptr),
306 (unsigned int) trb->link.intr_target,
307 (unsigned int) trb->link.control);
309 if (temp & STS_FATAL) {
310 xhci_warn(xhci, "WARNING: Host System Error\n");
311 xhci_halt(xhci);
312 hw_died:
313 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
314 spin_unlock(&xhci->lock);
315 return -ESHUTDOWN;
318 xhci_work(xhci);
319 spin_unlock(&xhci->lock);
321 return IRQ_HANDLED;
324 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
325 void xhci_event_ring_work(unsigned long arg)
327 unsigned long flags;
328 int temp;
329 u64 temp_64;
330 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
331 int i, j;
333 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
335 spin_lock_irqsave(&xhci->lock, flags);
336 temp = xhci_readl(xhci, &xhci->op_regs->status);
337 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
338 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
339 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
340 xhci_dbg(xhci, "No-op commands handled = %d\n", xhci->noops_handled);
341 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
342 xhci->error_bitmask = 0;
343 xhci_dbg(xhci, "Event ring:\n");
344 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
345 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
346 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
347 temp_64 &= ~ERST_PTR_MASK;
348 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
349 xhci_dbg(xhci, "Command ring:\n");
350 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
351 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
352 xhci_dbg_cmd_ptrs(xhci);
353 for (i = 0; i < MAX_HC_SLOTS; ++i) {
354 if (xhci->devs[i]) {
355 for (j = 0; j < 31; ++j) {
356 if (xhci->devs[i]->ep_rings[j]) {
357 xhci_dbg(xhci, "Dev %d endpoint ring %d:\n", i, j);
358 xhci_debug_segment(xhci, xhci->devs[i]->ep_rings[j]->deq_seg);
364 if (xhci->noops_submitted != NUM_TEST_NOOPS)
365 if (xhci_setup_one_noop(xhci))
366 xhci_ring_cmd_db(xhci);
367 spin_unlock_irqrestore(&xhci->lock, flags);
369 if (!xhci->zombie)
370 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
371 else
372 xhci_dbg(xhci, "Quit polling the event ring.\n");
374 #endif
377 * Start the HC after it was halted.
379 * This function is called by the USB core when the HC driver is added.
380 * Its opposite is xhci_stop().
382 * xhci_init() must be called once before this function can be called.
383 * Reset the HC, enable device slot contexts, program DCBAAP, and
384 * set command ring pointer and event ring pointer.
386 * Setup MSI-X vectors and enable interrupts.
388 int xhci_run(struct usb_hcd *hcd)
390 u32 temp;
391 u64 temp_64;
392 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
393 void (*doorbell)(struct xhci_hcd *) = NULL;
395 hcd->uses_new_polling = 1;
396 hcd->poll_rh = 0;
398 xhci_dbg(xhci, "xhci_run\n");
399 #if 0 /* FIXME: MSI not setup yet */
400 /* Do this at the very last minute */
401 ret = xhci_setup_msix(xhci);
402 if (!ret)
403 return ret;
405 return -ENOSYS;
406 #endif
407 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
408 init_timer(&xhci->event_ring_timer);
409 xhci->event_ring_timer.data = (unsigned long) xhci;
410 xhci->event_ring_timer.function = xhci_event_ring_work;
411 /* Poll the event ring */
412 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
413 xhci->zombie = 0;
414 xhci_dbg(xhci, "Setting event ring polling timer\n");
415 add_timer(&xhci->event_ring_timer);
416 #endif
418 xhci_dbg(xhci, "Command ring memory map follows:\n");
419 xhci_debug_ring(xhci, xhci->cmd_ring);
420 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
421 xhci_dbg_cmd_ptrs(xhci);
423 xhci_dbg(xhci, "ERST memory map follows:\n");
424 xhci_dbg_erst(xhci, &xhci->erst);
425 xhci_dbg(xhci, "Event ring:\n");
426 xhci_debug_ring(xhci, xhci->event_ring);
427 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
428 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
429 temp_64 &= ~ERST_PTR_MASK;
430 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
432 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
433 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
434 temp &= ~ER_IRQ_INTERVAL_MASK;
435 temp |= (u32) 160;
436 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
438 /* Set the HCD state before we enable the irqs */
439 hcd->state = HC_STATE_RUNNING;
440 temp = xhci_readl(xhci, &xhci->op_regs->command);
441 temp |= (CMD_EIE);
442 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
443 temp);
444 xhci_writel(xhci, temp, &xhci->op_regs->command);
446 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
447 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
448 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
449 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
450 &xhci->ir_set->irq_pending);
451 xhci_print_ir_set(xhci, xhci->ir_set, 0);
453 if (NUM_TEST_NOOPS > 0)
454 doorbell = xhci_setup_one_noop(xhci);
456 temp = xhci_readl(xhci, &xhci->op_regs->command);
457 temp |= (CMD_RUN);
458 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
459 temp);
460 xhci_writel(xhci, temp, &xhci->op_regs->command);
461 /* Flush PCI posted writes */
462 temp = xhci_readl(xhci, &xhci->op_regs->command);
463 xhci_dbg(xhci, "// @%p = 0x%x\n", &xhci->op_regs->command, temp);
464 if (doorbell)
465 (*doorbell)(xhci);
467 xhci_dbg(xhci, "Finished xhci_run\n");
468 return 0;
472 * Stop xHCI driver.
474 * This function is called by the USB core when the HC driver is removed.
475 * Its opposite is xhci_run().
477 * Disable device contexts, disable IRQs, and quiesce the HC.
478 * Reset the HC, finish any completed transactions, and cleanup memory.
480 void xhci_stop(struct usb_hcd *hcd)
482 u32 temp;
483 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
485 spin_lock_irq(&xhci->lock);
486 if (HC_IS_RUNNING(hcd->state))
487 xhci_quiesce(xhci);
488 xhci_halt(xhci);
489 xhci_reset(xhci);
490 spin_unlock_irq(&xhci->lock);
492 #if 0 /* No MSI yet */
493 xhci_cleanup_msix(xhci);
494 #endif
495 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
496 /* Tell the event ring poll function not to reschedule */
497 xhci->zombie = 1;
498 del_timer_sync(&xhci->event_ring_timer);
499 #endif
501 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
502 temp = xhci_readl(xhci, &xhci->op_regs->status);
503 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
504 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
505 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
506 &xhci->ir_set->irq_pending);
507 xhci_print_ir_set(xhci, xhci->ir_set, 0);
509 xhci_dbg(xhci, "cleaning up memory\n");
510 xhci_mem_cleanup(xhci);
511 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
512 xhci_readl(xhci, &xhci->op_regs->status));
516 * Shutdown HC (not bus-specific)
518 * This is called when the machine is rebooting or halting. We assume that the
519 * machine will be powered off, and the HC's internal state will be reset.
520 * Don't bother to free memory.
522 void xhci_shutdown(struct usb_hcd *hcd)
524 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
526 spin_lock_irq(&xhci->lock);
527 xhci_halt(xhci);
528 spin_unlock_irq(&xhci->lock);
530 #if 0
531 xhci_cleanup_msix(xhci);
532 #endif
534 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
535 xhci_readl(xhci, &xhci->op_regs->status));
538 /*-------------------------------------------------------------------------*/
541 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
542 * HCDs. Find the index for an endpoint given its descriptor. Use the return
543 * value to right shift 1 for the bitmask.
545 * Index = (epnum * 2) + direction - 1,
546 * where direction = 0 for OUT, 1 for IN.
547 * For control endpoints, the IN index is used (OUT index is unused), so
548 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
550 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
552 unsigned int index;
553 if (usb_endpoint_xfer_control(desc))
554 index = (unsigned int) (usb_endpoint_num(desc)*2);
555 else
556 index = (unsigned int) (usb_endpoint_num(desc)*2) +
557 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
558 return index;
561 /* Find the flag for this endpoint (for use in the control context). Use the
562 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
563 * bit 1, etc.
565 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
567 return 1 << (xhci_get_endpoint_index(desc) + 1);
570 /* Find the flag for this endpoint (for use in the control context). Use the
571 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
572 * bit 1, etc.
574 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
576 return 1 << (ep_index + 1);
579 /* Compute the last valid endpoint context index. Basically, this is the
580 * endpoint index plus one. For slot contexts with more than valid endpoint,
581 * we find the most significant bit set in the added contexts flags.
582 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
583 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
585 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
587 return fls(added_ctxs) - 1;
590 /* Returns 1 if the arguments are OK;
591 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
593 int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
594 struct usb_host_endpoint *ep, int check_ep, const char *func) {
595 if (!hcd || (check_ep && !ep) || !udev) {
596 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
597 func);
598 return -EINVAL;
600 if (!udev->parent) {
601 printk(KERN_DEBUG "xHCI %s called for root hub\n",
602 func);
603 return 0;
605 if (!udev->slot_id) {
606 printk(KERN_DEBUG "xHCI %s called with unaddressed device\n",
607 func);
608 return -EINVAL;
610 return 1;
613 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
614 struct usb_device *udev, struct xhci_virt_device *virt_dev,
615 bool ctx_change);
618 * Full speed devices may have a max packet size greater than 8 bytes, but the
619 * USB core doesn't know that until it reads the first 8 bytes of the
620 * descriptor. If the usb_device's max packet size changes after that point,
621 * we need to issue an evaluate context command and wait on it.
623 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
624 unsigned int ep_index, struct urb *urb)
626 struct xhci_container_ctx *in_ctx;
627 struct xhci_container_ctx *out_ctx;
628 struct xhci_input_control_ctx *ctrl_ctx;
629 struct xhci_ep_ctx *ep_ctx;
630 int max_packet_size;
631 int hw_max_packet_size;
632 int ret = 0;
634 out_ctx = xhci->devs[slot_id]->out_ctx;
635 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
636 hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2);
637 max_packet_size = urb->dev->ep0.desc.wMaxPacketSize;
638 if (hw_max_packet_size != max_packet_size) {
639 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
640 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
641 max_packet_size);
642 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
643 hw_max_packet_size);
644 xhci_dbg(xhci, "Issuing evaluate context command.\n");
646 /* Set up the modified control endpoint 0 */
647 xhci_endpoint_copy(xhci, xhci->devs[slot_id], ep_index);
648 in_ctx = xhci->devs[slot_id]->in_ctx;
649 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
650 ep_ctx->ep_info2 &= ~MAX_PACKET_MASK;
651 ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size);
653 /* Set up the input context flags for the command */
654 /* FIXME: This won't work if a non-default control endpoint
655 * changes max packet sizes.
657 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
658 ctrl_ctx->add_flags = EP0_FLAG;
659 ctrl_ctx->drop_flags = 0;
661 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
662 xhci_dbg_ctx(xhci, in_ctx, ep_index);
663 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
664 xhci_dbg_ctx(xhci, out_ctx, ep_index);
666 ret = xhci_configure_endpoint(xhci, urb->dev,
667 xhci->devs[slot_id], true);
669 /* Clean up the input context for later use by bandwidth
670 * functions.
672 ctrl_ctx->add_flags = SLOT_FLAG;
674 return ret;
678 * non-error returns are a promise to giveback() the urb later
679 * we drop ownership so next owner (or urb unlink) can get it
681 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
683 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
684 unsigned long flags;
685 int ret = 0;
686 unsigned int slot_id, ep_index;
689 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep, true, __func__) <= 0)
690 return -EINVAL;
692 slot_id = urb->dev->slot_id;
693 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
695 if (!xhci->devs || !xhci->devs[slot_id]) {
696 if (!in_interrupt())
697 dev_warn(&urb->dev->dev, "WARN: urb submitted for dev with no Slot ID\n");
698 ret = -EINVAL;
699 goto exit;
701 if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
702 if (!in_interrupt())
703 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
704 ret = -ESHUTDOWN;
705 goto exit;
707 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
708 /* Check to see if the max packet size for the default control
709 * endpoint changed during FS device enumeration
711 if (urb->dev->speed == USB_SPEED_FULL) {
712 ret = xhci_check_maxpacket(xhci, slot_id,
713 ep_index, urb);
714 if (ret < 0)
715 return ret;
718 /* We have a spinlock and interrupts disabled, so we must pass
719 * atomic context to this function, which may allocate memory.
721 spin_lock_irqsave(&xhci->lock, flags);
722 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
723 slot_id, ep_index);
724 spin_unlock_irqrestore(&xhci->lock, flags);
725 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
726 spin_lock_irqsave(&xhci->lock, flags);
727 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
728 slot_id, ep_index);
729 spin_unlock_irqrestore(&xhci->lock, flags);
730 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
731 spin_lock_irqsave(&xhci->lock, flags);
732 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
733 slot_id, ep_index);
734 spin_unlock_irqrestore(&xhci->lock, flags);
735 } else {
736 ret = -EINVAL;
738 exit:
739 return ret;
743 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
744 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
745 * should pick up where it left off in the TD, unless a Set Transfer Ring
746 * Dequeue Pointer is issued.
748 * The TRBs that make up the buffers for the canceled URB will be "removed" from
749 * the ring. Since the ring is a contiguous structure, they can't be physically
750 * removed. Instead, there are two options:
752 * 1) If the HC is in the middle of processing the URB to be canceled, we
753 * simply move the ring's dequeue pointer past those TRBs using the Set
754 * Transfer Ring Dequeue Pointer command. This will be the common case,
755 * when drivers timeout on the last submitted URB and attempt to cancel.
757 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
758 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
759 * HC will need to invalidate the any TRBs it has cached after the stop
760 * endpoint command, as noted in the xHCI 0.95 errata.
762 * 3) The TD may have completed by the time the Stop Endpoint Command
763 * completes, so software needs to handle that case too.
765 * This function should protect against the TD enqueueing code ringing the
766 * doorbell while this code is waiting for a Stop Endpoint command to complete.
767 * It also needs to account for multiple cancellations on happening at the same
768 * time for the same endpoint.
770 * Note that this function can be called in any context, or so says
771 * usb_hcd_unlink_urb()
773 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
775 unsigned long flags;
776 int ret;
777 struct xhci_hcd *xhci;
778 struct xhci_td *td;
779 unsigned int ep_index;
780 struct xhci_ring *ep_ring;
782 xhci = hcd_to_xhci(hcd);
783 spin_lock_irqsave(&xhci->lock, flags);
784 /* Make sure the URB hasn't completed or been unlinked already */
785 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
786 if (ret || !urb->hcpriv)
787 goto done;
789 xhci_dbg(xhci, "Cancel URB %p\n", urb);
790 xhci_dbg(xhci, "Event ring:\n");
791 xhci_debug_ring(xhci, xhci->event_ring);
792 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
793 ep_ring = xhci->devs[urb->dev->slot_id]->ep_rings[ep_index];
794 xhci_dbg(xhci, "Endpoint ring:\n");
795 xhci_debug_ring(xhci, ep_ring);
796 td = (struct xhci_td *) urb->hcpriv;
798 ep_ring->cancels_pending++;
799 list_add_tail(&td->cancelled_td_list, &ep_ring->cancelled_td_list);
800 /* Queue a stop endpoint command, but only if this is
801 * the first cancellation to be handled.
803 if (ep_ring->cancels_pending == 1) {
804 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index);
805 xhci_ring_cmd_db(xhci);
807 done:
808 spin_unlock_irqrestore(&xhci->lock, flags);
809 return ret;
812 /* Drop an endpoint from a new bandwidth configuration for this device.
813 * Only one call to this function is allowed per endpoint before
814 * check_bandwidth() or reset_bandwidth() must be called.
815 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
816 * add the endpoint to the schedule with possibly new parameters denoted by a
817 * different endpoint descriptor in usb_host_endpoint.
818 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
819 * not allowed.
821 * The USB core will not allow URBs to be queued to an endpoint that is being
822 * disabled, so there's no need for mutual exclusion to protect
823 * the xhci->devs[slot_id] structure.
825 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
826 struct usb_host_endpoint *ep)
828 struct xhci_hcd *xhci;
829 struct xhci_container_ctx *in_ctx, *out_ctx;
830 struct xhci_input_control_ctx *ctrl_ctx;
831 struct xhci_slot_ctx *slot_ctx;
832 unsigned int last_ctx;
833 unsigned int ep_index;
834 struct xhci_ep_ctx *ep_ctx;
835 u32 drop_flag;
836 u32 new_add_flags, new_drop_flags, new_slot_info;
837 int ret;
839 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
840 if (ret <= 0)
841 return ret;
842 xhci = hcd_to_xhci(hcd);
843 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
845 drop_flag = xhci_get_endpoint_flag(&ep->desc);
846 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
847 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
848 __func__, drop_flag);
849 return 0;
852 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
853 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
854 __func__);
855 return -EINVAL;
858 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
859 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
860 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
861 ep_index = xhci_get_endpoint_index(&ep->desc);
862 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
863 /* If the HC already knows the endpoint is disabled,
864 * or the HCD has noted it is disabled, ignore this request
866 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED ||
867 ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) {
868 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
869 __func__, ep);
870 return 0;
873 ctrl_ctx->drop_flags |= drop_flag;
874 new_drop_flags = ctrl_ctx->drop_flags;
876 ctrl_ctx->add_flags = ~drop_flag;
877 new_add_flags = ctrl_ctx->add_flags;
879 last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags);
880 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
881 /* Update the last valid endpoint context, if we deleted the last one */
882 if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) {
883 slot_ctx->dev_info &= ~LAST_CTX_MASK;
884 slot_ctx->dev_info |= LAST_CTX(last_ctx);
886 new_slot_info = slot_ctx->dev_info;
888 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
890 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
891 (unsigned int) ep->desc.bEndpointAddress,
892 udev->slot_id,
893 (unsigned int) new_drop_flags,
894 (unsigned int) new_add_flags,
895 (unsigned int) new_slot_info);
896 return 0;
899 /* Add an endpoint to a new possible bandwidth configuration for this device.
900 * Only one call to this function is allowed per endpoint before
901 * check_bandwidth() or reset_bandwidth() must be called.
902 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
903 * add the endpoint to the schedule with possibly new parameters denoted by a
904 * different endpoint descriptor in usb_host_endpoint.
905 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
906 * not allowed.
908 * The USB core will not allow URBs to be queued to an endpoint until the
909 * configuration or alt setting is installed in the device, so there's no need
910 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
912 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
913 struct usb_host_endpoint *ep)
915 struct xhci_hcd *xhci;
916 struct xhci_container_ctx *in_ctx, *out_ctx;
917 unsigned int ep_index;
918 struct xhci_ep_ctx *ep_ctx;
919 struct xhci_slot_ctx *slot_ctx;
920 struct xhci_input_control_ctx *ctrl_ctx;
921 u32 added_ctxs;
922 unsigned int last_ctx;
923 u32 new_add_flags, new_drop_flags, new_slot_info;
924 int ret = 0;
926 ret = xhci_check_args(hcd, udev, ep, 1, __func__);
927 if (ret <= 0) {
928 /* So we won't queue a reset ep command for a root hub */
929 ep->hcpriv = NULL;
930 return ret;
932 xhci = hcd_to_xhci(hcd);
934 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
935 last_ctx = xhci_last_valid_endpoint(added_ctxs);
936 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
937 /* FIXME when we have to issue an evaluate endpoint command to
938 * deal with ep0 max packet size changing once we get the
939 * descriptors
941 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
942 __func__, added_ctxs);
943 return 0;
946 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
947 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
948 __func__);
949 return -EINVAL;
952 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
953 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
954 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
955 ep_index = xhci_get_endpoint_index(&ep->desc);
956 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
957 /* If the HCD has already noted the endpoint is enabled,
958 * ignore this request.
960 if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) {
961 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
962 __func__, ep);
963 return 0;
967 * Configuration and alternate setting changes must be done in
968 * process context, not interrupt context (or so documenation
969 * for usb_set_interface() and usb_set_configuration() claim).
971 if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
972 udev, ep, GFP_KERNEL) < 0) {
973 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
974 __func__, ep->desc.bEndpointAddress);
975 return -ENOMEM;
978 ctrl_ctx->add_flags |= added_ctxs;
979 new_add_flags = ctrl_ctx->add_flags;
981 /* If xhci_endpoint_disable() was called for this endpoint, but the
982 * xHC hasn't been notified yet through the check_bandwidth() call,
983 * this re-adds a new state for the endpoint from the new endpoint
984 * descriptors. We must drop and re-add this endpoint, so we leave the
985 * drop flags alone.
987 new_drop_flags = ctrl_ctx->drop_flags;
989 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
990 /* Update the last valid endpoint context, if we just added one past */
991 if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) {
992 slot_ctx->dev_info &= ~LAST_CTX_MASK;
993 slot_ctx->dev_info |= LAST_CTX(last_ctx);
995 new_slot_info = slot_ctx->dev_info;
997 /* Store the usb_device pointer for later use */
998 ep->hcpriv = udev;
1000 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1001 (unsigned int) ep->desc.bEndpointAddress,
1002 udev->slot_id,
1003 (unsigned int) new_drop_flags,
1004 (unsigned int) new_add_flags,
1005 (unsigned int) new_slot_info);
1006 return 0;
1009 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1011 struct xhci_input_control_ctx *ctrl_ctx;
1012 struct xhci_ep_ctx *ep_ctx;
1013 struct xhci_slot_ctx *slot_ctx;
1014 int i;
1016 /* When a device's add flag and drop flag are zero, any subsequent
1017 * configure endpoint command will leave that endpoint's state
1018 * untouched. Make sure we don't leave any old state in the input
1019 * endpoint contexts.
1021 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1022 ctrl_ctx->drop_flags = 0;
1023 ctrl_ctx->add_flags = 0;
1024 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1025 slot_ctx->dev_info &= ~LAST_CTX_MASK;
1026 /* Endpoint 0 is always valid */
1027 slot_ctx->dev_info |= LAST_CTX(1);
1028 for (i = 1; i < 31; ++i) {
1029 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1030 ep_ctx->ep_info = 0;
1031 ep_ctx->ep_info2 = 0;
1032 ep_ctx->deq = 0;
1033 ep_ctx->tx_info = 0;
1037 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1038 struct usb_device *udev, struct xhci_virt_device *virt_dev)
1040 int ret;
1042 switch (virt_dev->cmd_status) {
1043 case COMP_ENOMEM:
1044 dev_warn(&udev->dev, "Not enough host controller resources "
1045 "for new device state.\n");
1046 ret = -ENOMEM;
1047 /* FIXME: can we allocate more resources for the HC? */
1048 break;
1049 case COMP_BW_ERR:
1050 dev_warn(&udev->dev, "Not enough bandwidth "
1051 "for new device state.\n");
1052 ret = -ENOSPC;
1053 /* FIXME: can we go back to the old state? */
1054 break;
1055 case COMP_TRB_ERR:
1056 /* the HCD set up something wrong */
1057 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1058 "add flag = 1, "
1059 "and endpoint is not disabled.\n");
1060 ret = -EINVAL;
1061 break;
1062 case COMP_SUCCESS:
1063 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1064 ret = 0;
1065 break;
1066 default:
1067 xhci_err(xhci, "ERROR: unexpected command completion "
1068 "code 0x%x.\n", virt_dev->cmd_status);
1069 ret = -EINVAL;
1070 break;
1072 return ret;
1075 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1076 struct usb_device *udev, struct xhci_virt_device *virt_dev)
1078 int ret;
1080 switch (virt_dev->cmd_status) {
1081 case COMP_EINVAL:
1082 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1083 "context command.\n");
1084 ret = -EINVAL;
1085 break;
1086 case COMP_EBADSLT:
1087 dev_warn(&udev->dev, "WARN: slot not enabled for"
1088 "evaluate context command.\n");
1089 case COMP_CTX_STATE:
1090 dev_warn(&udev->dev, "WARN: invalid context state for "
1091 "evaluate context command.\n");
1092 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1093 ret = -EINVAL;
1094 break;
1095 case COMP_SUCCESS:
1096 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1097 ret = 0;
1098 break;
1099 default:
1100 xhci_err(xhci, "ERROR: unexpected command completion "
1101 "code 0x%x.\n", virt_dev->cmd_status);
1102 ret = -EINVAL;
1103 break;
1105 return ret;
1108 /* Issue a configure endpoint command or evaluate context command
1109 * and wait for it to finish.
1111 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1112 struct usb_device *udev, struct xhci_virt_device *virt_dev,
1113 bool ctx_change)
1115 int ret;
1116 int timeleft;
1117 unsigned long flags;
1119 spin_lock_irqsave(&xhci->lock, flags);
1120 if (!ctx_change)
1121 ret = xhci_queue_configure_endpoint(xhci, virt_dev->in_ctx->dma,
1122 udev->slot_id);
1123 else
1124 ret = xhci_queue_evaluate_context(xhci, virt_dev->in_ctx->dma,
1125 udev->slot_id);
1126 if (ret < 0) {
1127 spin_unlock_irqrestore(&xhci->lock, flags);
1128 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1129 return -ENOMEM;
1131 xhci_ring_cmd_db(xhci);
1132 spin_unlock_irqrestore(&xhci->lock, flags);
1134 /* Wait for the configure endpoint command to complete */
1135 timeleft = wait_for_completion_interruptible_timeout(
1136 &virt_dev->cmd_completion,
1137 USB_CTRL_SET_TIMEOUT);
1138 if (timeleft <= 0) {
1139 xhci_warn(xhci, "%s while waiting for %s command\n",
1140 timeleft == 0 ? "Timeout" : "Signal",
1141 ctx_change == 0 ?
1142 "configure endpoint" :
1143 "evaluate context");
1144 /* FIXME cancel the configure endpoint command */
1145 return -ETIME;
1148 if (!ctx_change)
1149 return xhci_configure_endpoint_result(xhci, udev, virt_dev);
1150 return xhci_evaluate_context_result(xhci, udev, virt_dev);
1153 /* Called after one or more calls to xhci_add_endpoint() or
1154 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1155 * to call xhci_reset_bandwidth().
1157 * Since we are in the middle of changing either configuration or
1158 * installing a new alt setting, the USB core won't allow URBs to be
1159 * enqueued for any endpoint on the old config or interface. Nothing
1160 * else should be touching the xhci->devs[slot_id] structure, so we
1161 * don't need to take the xhci->lock for manipulating that.
1163 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1165 int i;
1166 int ret = 0;
1167 struct xhci_hcd *xhci;
1168 struct xhci_virt_device *virt_dev;
1169 struct xhci_input_control_ctx *ctrl_ctx;
1170 struct xhci_slot_ctx *slot_ctx;
1172 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1173 if (ret <= 0)
1174 return ret;
1175 xhci = hcd_to_xhci(hcd);
1177 if (!udev->slot_id || !xhci->devs || !xhci->devs[udev->slot_id]) {
1178 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1179 __func__);
1180 return -EINVAL;
1182 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1183 virt_dev = xhci->devs[udev->slot_id];
1185 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1186 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1187 ctrl_ctx->add_flags |= SLOT_FLAG;
1188 ctrl_ctx->add_flags &= ~EP0_FLAG;
1189 ctrl_ctx->drop_flags &= ~SLOT_FLAG;
1190 ctrl_ctx->drop_flags &= ~EP0_FLAG;
1191 xhci_dbg(xhci, "New Input Control Context:\n");
1192 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1193 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1194 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1196 ret = xhci_configure_endpoint(xhci, udev, virt_dev, false);
1197 if (ret) {
1198 /* Callee should call reset_bandwidth() */
1199 return ret;
1202 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1203 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1204 LAST_CTX_TO_EP_NUM(slot_ctx->dev_info));
1206 xhci_zero_in_ctx(xhci, virt_dev);
1207 /* Free any old rings */
1208 for (i = 1; i < 31; ++i) {
1209 if (virt_dev->new_ep_rings[i]) {
1210 xhci_ring_free(xhci, virt_dev->ep_rings[i]);
1211 virt_dev->ep_rings[i] = virt_dev->new_ep_rings[i];
1212 virt_dev->new_ep_rings[i] = NULL;
1216 return ret;
1219 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1221 struct xhci_hcd *xhci;
1222 struct xhci_virt_device *virt_dev;
1223 int i, ret;
1225 ret = xhci_check_args(hcd, udev, NULL, 0, __func__);
1226 if (ret <= 0)
1227 return;
1228 xhci = hcd_to_xhci(hcd);
1230 if (!xhci->devs || !xhci->devs[udev->slot_id]) {
1231 xhci_warn(xhci, "xHCI %s called with unaddressed device\n",
1232 __func__);
1233 return;
1235 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1236 virt_dev = xhci->devs[udev->slot_id];
1237 /* Free any rings allocated for added endpoints */
1238 for (i = 0; i < 31; ++i) {
1239 if (virt_dev->new_ep_rings[i]) {
1240 xhci_ring_free(xhci, virt_dev->new_ep_rings[i]);
1241 virt_dev->new_ep_rings[i] = NULL;
1244 xhci_zero_in_ctx(xhci, virt_dev);
1247 void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1248 unsigned int slot_id, unsigned int ep_index,
1249 struct xhci_dequeue_state *deq_state)
1251 struct xhci_container_ctx *in_ctx;
1252 struct xhci_input_control_ctx *ctrl_ctx;
1253 struct xhci_ep_ctx *ep_ctx;
1254 u32 added_ctxs;
1255 dma_addr_t addr;
1257 xhci_endpoint_copy(xhci, xhci->devs[slot_id], ep_index);
1258 in_ctx = xhci->devs[slot_id]->in_ctx;
1259 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1260 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1261 deq_state->new_deq_ptr);
1262 if (addr == 0) {
1263 xhci_warn(xhci, "WARN Cannot submit config ep after "
1264 "reset ep command\n");
1265 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1266 deq_state->new_deq_seg,
1267 deq_state->new_deq_ptr);
1268 return;
1270 ep_ctx->deq = addr | deq_state->new_cycle_state;
1272 xhci_slot_copy(xhci, xhci->devs[slot_id]);
1274 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1275 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1276 ctrl_ctx->add_flags = added_ctxs | SLOT_FLAG;
1277 ctrl_ctx->drop_flags = added_ctxs;
1279 xhci_dbg(xhci, "Slot ID %d Input Context:\n", slot_id);
1280 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1283 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1284 struct usb_device *udev,
1285 unsigned int ep_index, struct xhci_ring *ep_ring)
1287 struct xhci_dequeue_state deq_state;
1289 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1290 /* We need to move the HW's dequeue pointer past this TD,
1291 * or it will attempt to resend it on the next doorbell ring.
1293 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1294 ep_index, ep_ring->stopped_td,
1295 &deq_state);
1297 /* HW with the reset endpoint quirk will use the saved dequeue state to
1298 * issue a configure endpoint command later.
1300 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1301 xhci_dbg(xhci, "Queueing new dequeue state\n");
1302 xhci_queue_new_dequeue_state(xhci, ep_ring,
1303 udev->slot_id,
1304 ep_index, &deq_state);
1305 } else {
1306 /* Better hope no one uses the input context between now and the
1307 * reset endpoint completion!
1309 xhci_dbg(xhci, "Setting up input context for "
1310 "configure endpoint command\n");
1311 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1312 ep_index, &deq_state);
1316 /* Deal with stalled endpoints. The core should have sent the control message
1317 * to clear the halt condition. However, we need to make the xHCI hardware
1318 * reset its sequence number, since a device will expect a sequence number of
1319 * zero after the halt condition is cleared.
1320 * Context: in_interrupt
1322 void xhci_endpoint_reset(struct usb_hcd *hcd,
1323 struct usb_host_endpoint *ep)
1325 struct xhci_hcd *xhci;
1326 struct usb_device *udev;
1327 unsigned int ep_index;
1328 unsigned long flags;
1329 int ret;
1330 struct xhci_ring *ep_ring;
1332 xhci = hcd_to_xhci(hcd);
1333 udev = (struct usb_device *) ep->hcpriv;
1334 /* Called with a root hub endpoint (or an endpoint that wasn't added
1335 * with xhci_add_endpoint()
1337 if (!ep->hcpriv)
1338 return;
1339 ep_index = xhci_get_endpoint_index(&ep->desc);
1340 ep_ring = xhci->devs[udev->slot_id]->ep_rings[ep_index];
1341 if (!ep_ring->stopped_td) {
1342 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1343 ep->desc.bEndpointAddress);
1344 return;
1346 if (usb_endpoint_xfer_control(&ep->desc)) {
1347 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1348 return;
1351 xhci_dbg(xhci, "Queueing reset endpoint command\n");
1352 spin_lock_irqsave(&xhci->lock, flags);
1353 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1355 * Can't change the ring dequeue pointer until it's transitioned to the
1356 * stopped state, which is only upon a successful reset endpoint
1357 * command. Better hope that last command worked!
1359 if (!ret) {
1360 xhci_cleanup_stalled_ring(xhci, udev, ep_index, ep_ring);
1361 kfree(ep_ring->stopped_td);
1362 xhci_ring_cmd_db(xhci);
1364 spin_unlock_irqrestore(&xhci->lock, flags);
1366 if (ret)
1367 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1371 * At this point, the struct usb_device is about to go away, the device has
1372 * disconnected, and all traffic has been stopped and the endpoints have been
1373 * disabled. Free any HC data structures associated with that device.
1375 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
1377 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1378 unsigned long flags;
1380 if (udev->slot_id == 0)
1381 return;
1383 spin_lock_irqsave(&xhci->lock, flags);
1384 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
1385 spin_unlock_irqrestore(&xhci->lock, flags);
1386 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1387 return;
1389 xhci_ring_cmd_db(xhci);
1390 spin_unlock_irqrestore(&xhci->lock, flags);
1392 * Event command completion handler will free any data structures
1393 * associated with the slot. XXX Can free sleep?
1398 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
1399 * timed out, or allocating memory failed. Returns 1 on success.
1401 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
1403 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1404 unsigned long flags;
1405 int timeleft;
1406 int ret;
1408 spin_lock_irqsave(&xhci->lock, flags);
1409 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
1410 if (ret) {
1411 spin_unlock_irqrestore(&xhci->lock, flags);
1412 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1413 return 0;
1415 xhci_ring_cmd_db(xhci);
1416 spin_unlock_irqrestore(&xhci->lock, flags);
1418 /* XXX: how much time for xHC slot assignment? */
1419 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1420 USB_CTRL_SET_TIMEOUT);
1421 if (timeleft <= 0) {
1422 xhci_warn(xhci, "%s while waiting for a slot\n",
1423 timeleft == 0 ? "Timeout" : "Signal");
1424 /* FIXME cancel the enable slot request */
1425 return 0;
1428 if (!xhci->slot_id) {
1429 xhci_err(xhci, "Error while assigning device slot ID\n");
1430 return 0;
1432 /* xhci_alloc_virt_device() does not touch rings; no need to lock */
1433 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_KERNEL)) {
1434 /* Disable slot, if we can do it without mem alloc */
1435 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
1436 spin_lock_irqsave(&xhci->lock, flags);
1437 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
1438 xhci_ring_cmd_db(xhci);
1439 spin_unlock_irqrestore(&xhci->lock, flags);
1440 return 0;
1442 udev->slot_id = xhci->slot_id;
1443 /* Is this a LS or FS device under a HS hub? */
1444 /* Hub or peripherial? */
1445 return 1;
1449 * Issue an Address Device command (which will issue a SetAddress request to
1450 * the device).
1451 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
1452 * we should only issue and wait on one address command at the same time.
1454 * We add one to the device address issued by the hardware because the USB core
1455 * uses address 1 for the root hubs (even though they're not really devices).
1457 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
1459 unsigned long flags;
1460 int timeleft;
1461 struct xhci_virt_device *virt_dev;
1462 int ret = 0;
1463 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1464 struct xhci_slot_ctx *slot_ctx;
1465 struct xhci_input_control_ctx *ctrl_ctx;
1466 u64 temp_64;
1468 if (!udev->slot_id) {
1469 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
1470 return -EINVAL;
1473 virt_dev = xhci->devs[udev->slot_id];
1475 /* If this is a Set Address to an unconfigured device, setup ep 0 */
1476 if (!udev->config)
1477 xhci_setup_addressable_virt_dev(xhci, udev);
1478 /* Otherwise, assume the core has the device configured how it wants */
1479 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1480 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1482 spin_lock_irqsave(&xhci->lock, flags);
1483 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
1484 udev->slot_id);
1485 if (ret) {
1486 spin_unlock_irqrestore(&xhci->lock, flags);
1487 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
1488 return ret;
1490 xhci_ring_cmd_db(xhci);
1491 spin_unlock_irqrestore(&xhci->lock, flags);
1493 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
1494 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
1495 USB_CTRL_SET_TIMEOUT);
1496 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
1497 * the SetAddress() "recovery interval" required by USB and aborting the
1498 * command on a timeout.
1500 if (timeleft <= 0) {
1501 xhci_warn(xhci, "%s while waiting for a slot\n",
1502 timeleft == 0 ? "Timeout" : "Signal");
1503 /* FIXME cancel the address device command */
1504 return -ETIME;
1507 switch (virt_dev->cmd_status) {
1508 case COMP_CTX_STATE:
1509 case COMP_EBADSLT:
1510 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
1511 udev->slot_id);
1512 ret = -EINVAL;
1513 break;
1514 case COMP_TX_ERR:
1515 dev_warn(&udev->dev, "Device not responding to set address.\n");
1516 ret = -EPROTO;
1517 break;
1518 case COMP_SUCCESS:
1519 xhci_dbg(xhci, "Successful Address Device command\n");
1520 break;
1521 default:
1522 xhci_err(xhci, "ERROR: unexpected command completion "
1523 "code 0x%x.\n", virt_dev->cmd_status);
1524 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1525 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1526 ret = -EINVAL;
1527 break;
1529 if (ret) {
1530 return ret;
1532 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
1533 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
1534 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
1535 udev->slot_id,
1536 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
1537 (unsigned long long)
1538 xhci->dcbaa->dev_context_ptrs[udev->slot_id]);
1539 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
1540 (unsigned long long)virt_dev->out_ctx->dma);
1541 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
1542 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
1543 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
1544 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
1546 * USB core uses address 1 for the roothubs, so we add one to the
1547 * address given back to us by the HC.
1549 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1550 udev->devnum = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1;
1551 /* Zero the input context control for later use */
1552 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1553 ctrl_ctx->add_flags = 0;
1554 ctrl_ctx->drop_flags = 0;
1556 xhci_dbg(xhci, "Device address = %d\n", udev->devnum);
1557 /* XXX Meh, not sure if anyone else but choose_address uses this. */
1558 set_bit(udev->devnum, udev->bus->devmap.devicemap);
1560 return 0;
1563 int xhci_get_frame(struct usb_hcd *hcd)
1565 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1566 /* EHCI mods by the periodic size. Why? */
1567 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
1570 MODULE_DESCRIPTION(DRIVER_DESC);
1571 MODULE_AUTHOR(DRIVER_AUTHOR);
1572 MODULE_LICENSE("GPL");
1574 static int __init xhci_hcd_init(void)
1576 #ifdef CONFIG_PCI
1577 int retval = 0;
1579 retval = xhci_register_pci();
1581 if (retval < 0) {
1582 printk(KERN_DEBUG "Problem registering PCI driver.");
1583 return retval;
1585 #endif
1587 * Check the compiler generated sizes of structures that must be laid
1588 * out in specific ways for hardware access.
1590 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1591 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
1592 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
1593 /* xhci_device_control has eight fields, and also
1594 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
1596 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
1597 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
1598 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
1599 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
1600 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
1601 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
1602 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
1603 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
1604 return 0;
1606 module_init(xhci_hcd_init);
1608 static void __exit xhci_hcd_cleanup(void)
1610 #ifdef CONFIG_PCI
1611 xhci_unregister_pci();
1612 #endif
1614 module_exit(xhci_hcd_cleanup);