Linux 2.6.16.4
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blobc8dbe38c81c80bf1544901bb7b16ac6cd73337e0
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/kernel.h>
10 #include <linux/fs.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/bio.h>
14 #include <linux/config.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/compiler.h>
19 #include <linux/hash.h>
20 #include <linux/rbtree.h>
21 #include <linux/mempool.h>
22 #include <linux/ioprio.h>
23 #include <linux/writeback.h>
26 * tunables
28 static const int cfq_quantum = 4; /* max queue in one round of service */
29 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
30 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
31 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
32 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
34 static const int cfq_slice_sync = HZ / 10;
35 static int cfq_slice_async = HZ / 25;
36 static const int cfq_slice_async_rq = 2;
37 static int cfq_slice_idle = HZ / 100;
39 #define CFQ_IDLE_GRACE (HZ / 10)
40 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_KEY_ASYNC (0)
43 #define CFQ_KEY_ANY (0xffff)
46 * disable queueing at the driver/hardware level
48 static const int cfq_max_depth = 2;
51 * for the hash of cfqq inside the cfqd
53 #define CFQ_QHASH_SHIFT 6
54 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
55 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
58 * for the hash of crq inside the cfqq
60 #define CFQ_MHASH_SHIFT 6
61 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
62 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
63 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
64 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
65 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
67 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
68 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
70 #define RQ_DATA(rq) (rq)->elevator_private
73 * rb-tree defines
75 #define RB_NONE (2)
76 #define RB_EMPTY(node) ((node)->rb_node == NULL)
77 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
78 #define RB_CLEAR(node) do { \
79 (node)->rb_parent = NULL; \
80 RB_CLEAR_COLOR((node)); \
81 (node)->rb_right = NULL; \
82 (node)->rb_left = NULL; \
83 } while (0)
84 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
85 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
86 #define rq_rb_key(rq) (rq)->sector
88 static kmem_cache_t *crq_pool;
89 static kmem_cache_t *cfq_pool;
90 static kmem_cache_t *cfq_ioc_pool;
92 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
93 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
94 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
95 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
97 #define ASYNC (0)
98 #define SYNC (1)
100 #define cfq_cfqq_dispatched(cfqq) \
101 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
103 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
105 #define cfq_cfqq_sync(cfqq) \
106 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
109 * Per block device queue structure
111 struct cfq_data {
112 atomic_t ref;
113 request_queue_t *queue;
116 * rr list of queues with requests and the count of them
118 struct list_head rr_list[CFQ_PRIO_LISTS];
119 struct list_head busy_rr;
120 struct list_head cur_rr;
121 struct list_head idle_rr;
122 unsigned int busy_queues;
125 * non-ordered list of empty cfqq's
127 struct list_head empty_list;
130 * cfqq lookup hash
132 struct hlist_head *cfq_hash;
135 * global crq hash for all queues
137 struct hlist_head *crq_hash;
139 unsigned int max_queued;
141 mempool_t *crq_pool;
143 int rq_in_driver;
146 * schedule slice state info
149 * idle window management
151 struct timer_list idle_slice_timer;
152 struct work_struct unplug_work;
154 struct cfq_queue *active_queue;
155 struct cfq_io_context *active_cic;
156 int cur_prio, cur_end_prio;
157 unsigned int dispatch_slice;
159 struct timer_list idle_class_timer;
161 sector_t last_sector;
162 unsigned long last_end_request;
164 unsigned int rq_starved;
167 * tunables, see top of file
169 unsigned int cfq_quantum;
170 unsigned int cfq_queued;
171 unsigned int cfq_fifo_expire[2];
172 unsigned int cfq_back_penalty;
173 unsigned int cfq_back_max;
174 unsigned int cfq_slice[2];
175 unsigned int cfq_slice_async_rq;
176 unsigned int cfq_slice_idle;
177 unsigned int cfq_max_depth;
181 * Per process-grouping structure
183 struct cfq_queue {
184 /* reference count */
185 atomic_t ref;
186 /* parent cfq_data */
187 struct cfq_data *cfqd;
188 /* cfqq lookup hash */
189 struct hlist_node cfq_hash;
190 /* hash key */
191 unsigned int key;
192 /* on either rr or empty list of cfqd */
193 struct list_head cfq_list;
194 /* sorted list of pending requests */
195 struct rb_root sort_list;
196 /* if fifo isn't expired, next request to serve */
197 struct cfq_rq *next_crq;
198 /* requests queued in sort_list */
199 int queued[2];
200 /* currently allocated requests */
201 int allocated[2];
202 /* fifo list of requests in sort_list */
203 struct list_head fifo;
205 unsigned long slice_start;
206 unsigned long slice_end;
207 unsigned long slice_left;
208 unsigned long service_last;
210 /* number of requests that are on the dispatch list */
211 int on_dispatch[2];
213 /* io prio of this group */
214 unsigned short ioprio, org_ioprio;
215 unsigned short ioprio_class, org_ioprio_class;
217 /* various state flags, see below */
218 unsigned int flags;
221 struct cfq_rq {
222 struct rb_node rb_node;
223 sector_t rb_key;
224 struct request *request;
225 struct hlist_node hash;
227 struct cfq_queue *cfq_queue;
228 struct cfq_io_context *io_context;
230 unsigned int crq_flags;
233 enum cfqq_state_flags {
234 CFQ_CFQQ_FLAG_on_rr = 0,
235 CFQ_CFQQ_FLAG_wait_request,
236 CFQ_CFQQ_FLAG_must_alloc,
237 CFQ_CFQQ_FLAG_must_alloc_slice,
238 CFQ_CFQQ_FLAG_must_dispatch,
239 CFQ_CFQQ_FLAG_fifo_expire,
240 CFQ_CFQQ_FLAG_idle_window,
241 CFQ_CFQQ_FLAG_prio_changed,
244 #define CFQ_CFQQ_FNS(name) \
245 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
247 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
249 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
251 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
253 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
255 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
258 CFQ_CFQQ_FNS(on_rr);
259 CFQ_CFQQ_FNS(wait_request);
260 CFQ_CFQQ_FNS(must_alloc);
261 CFQ_CFQQ_FNS(must_alloc_slice);
262 CFQ_CFQQ_FNS(must_dispatch);
263 CFQ_CFQQ_FNS(fifo_expire);
264 CFQ_CFQQ_FNS(idle_window);
265 CFQ_CFQQ_FNS(prio_changed);
266 #undef CFQ_CFQQ_FNS
268 enum cfq_rq_state_flags {
269 CFQ_CRQ_FLAG_is_sync = 0,
272 #define CFQ_CRQ_FNS(name) \
273 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
275 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
277 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
279 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
281 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
283 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
286 CFQ_CRQ_FNS(is_sync);
287 #undef CFQ_CRQ_FNS
289 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
290 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
291 static void cfq_put_cfqd(struct cfq_data *cfqd);
293 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
296 * lots of deadline iosched dupes, can be abstracted later...
298 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
300 hlist_del_init(&crq->hash);
303 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
305 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
307 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
310 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
312 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
313 struct hlist_node *entry, *next;
315 hlist_for_each_safe(entry, next, hash_list) {
316 struct cfq_rq *crq = list_entry_hash(entry);
317 struct request *__rq = crq->request;
319 if (!rq_mergeable(__rq)) {
320 cfq_del_crq_hash(crq);
321 continue;
324 if (rq_hash_key(__rq) == offset)
325 return __rq;
328 return NULL;
332 * scheduler run of queue, if there are requests pending and no one in the
333 * driver that will restart queueing
335 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
337 if (cfqd->busy_queues)
338 kblockd_schedule_work(&cfqd->unplug_work);
341 static int cfq_queue_empty(request_queue_t *q)
343 struct cfq_data *cfqd = q->elevator->elevator_data;
345 return !cfqd->busy_queues;
349 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
350 * We choose the request that is closest to the head right now. Distance
351 * behind the head are penalized and only allowed to a certain extent.
353 static struct cfq_rq *
354 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
356 sector_t last, s1, s2, d1 = 0, d2 = 0;
357 int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */
358 unsigned long back_max;
360 if (crq1 == NULL || crq1 == crq2)
361 return crq2;
362 if (crq2 == NULL)
363 return crq1;
365 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
366 return crq1;
367 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
368 return crq2;
370 s1 = crq1->request->sector;
371 s2 = crq2->request->sector;
373 last = cfqd->last_sector;
376 * by definition, 1KiB is 2 sectors
378 back_max = cfqd->cfq_back_max * 2;
381 * Strict one way elevator _except_ in the case where we allow
382 * short backward seeks which are biased as twice the cost of a
383 * similar forward seek.
385 if (s1 >= last)
386 d1 = s1 - last;
387 else if (s1 + back_max >= last)
388 d1 = (last - s1) * cfqd->cfq_back_penalty;
389 else
390 r1_wrap = 1;
392 if (s2 >= last)
393 d2 = s2 - last;
394 else if (s2 + back_max >= last)
395 d2 = (last - s2) * cfqd->cfq_back_penalty;
396 else
397 r2_wrap = 1;
399 /* Found required data */
400 if (!r1_wrap && r2_wrap)
401 return crq1;
402 else if (!r2_wrap && r1_wrap)
403 return crq2;
404 else if (r1_wrap && r2_wrap) {
405 /* both behind the head */
406 if (s1 <= s2)
407 return crq1;
408 else
409 return crq2;
412 /* Both requests in front of the head */
413 if (d1 < d2)
414 return crq1;
415 else if (d2 < d1)
416 return crq2;
417 else {
418 if (s1 >= s2)
419 return crq1;
420 else
421 return crq2;
426 * would be nice to take fifo expire time into account as well
428 static struct cfq_rq *
429 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
430 struct cfq_rq *last)
432 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
433 struct rb_node *rbnext, *rbprev;
435 if (!(rbnext = rb_next(&last->rb_node))) {
436 rbnext = rb_first(&cfqq->sort_list);
437 if (rbnext == &last->rb_node)
438 rbnext = NULL;
441 rbprev = rb_prev(&last->rb_node);
443 if (rbprev)
444 crq_prev = rb_entry_crq(rbprev);
445 if (rbnext)
446 crq_next = rb_entry_crq(rbnext);
448 return cfq_choose_req(cfqd, crq_next, crq_prev);
451 static void cfq_update_next_crq(struct cfq_rq *crq)
453 struct cfq_queue *cfqq = crq->cfq_queue;
455 if (cfqq->next_crq == crq)
456 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
459 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
461 struct cfq_data *cfqd = cfqq->cfqd;
462 struct list_head *list, *entry;
464 BUG_ON(!cfq_cfqq_on_rr(cfqq));
466 list_del(&cfqq->cfq_list);
468 if (cfq_class_rt(cfqq))
469 list = &cfqd->cur_rr;
470 else if (cfq_class_idle(cfqq))
471 list = &cfqd->idle_rr;
472 else {
474 * if cfqq has requests in flight, don't allow it to be
475 * found in cfq_set_active_queue before it has finished them.
476 * this is done to increase fairness between a process that
477 * has lots of io pending vs one that only generates one
478 * sporadically or synchronously
480 if (cfq_cfqq_dispatched(cfqq))
481 list = &cfqd->busy_rr;
482 else
483 list = &cfqd->rr_list[cfqq->ioprio];
487 * if queue was preempted, just add to front to be fair. busy_rr
488 * isn't sorted.
490 if (preempted || list == &cfqd->busy_rr) {
491 list_add(&cfqq->cfq_list, list);
492 return;
496 * sort by when queue was last serviced
498 entry = list;
499 while ((entry = entry->prev) != list) {
500 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
502 if (!__cfqq->service_last)
503 break;
504 if (time_before(__cfqq->service_last, cfqq->service_last))
505 break;
508 list_add(&cfqq->cfq_list, entry);
512 * add to busy list of queues for service, trying to be fair in ordering
513 * the pending list according to last request service
515 static inline void
516 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
518 BUG_ON(cfq_cfqq_on_rr(cfqq));
519 cfq_mark_cfqq_on_rr(cfqq);
520 cfqd->busy_queues++;
522 cfq_resort_rr_list(cfqq, 0);
525 static inline void
526 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528 BUG_ON(!cfq_cfqq_on_rr(cfqq));
529 cfq_clear_cfqq_on_rr(cfqq);
530 list_move(&cfqq->cfq_list, &cfqd->empty_list);
532 BUG_ON(!cfqd->busy_queues);
533 cfqd->busy_queues--;
537 * rb tree support functions
539 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
541 struct cfq_queue *cfqq = crq->cfq_queue;
542 struct cfq_data *cfqd = cfqq->cfqd;
543 const int sync = cfq_crq_is_sync(crq);
545 BUG_ON(!cfqq->queued[sync]);
546 cfqq->queued[sync]--;
548 cfq_update_next_crq(crq);
550 rb_erase(&crq->rb_node, &cfqq->sort_list);
551 RB_CLEAR_COLOR(&crq->rb_node);
553 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
554 cfq_del_cfqq_rr(cfqd, cfqq);
557 static struct cfq_rq *
558 __cfq_add_crq_rb(struct cfq_rq *crq)
560 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
561 struct rb_node *parent = NULL;
562 struct cfq_rq *__crq;
564 while (*p) {
565 parent = *p;
566 __crq = rb_entry_crq(parent);
568 if (crq->rb_key < __crq->rb_key)
569 p = &(*p)->rb_left;
570 else if (crq->rb_key > __crq->rb_key)
571 p = &(*p)->rb_right;
572 else
573 return __crq;
576 rb_link_node(&crq->rb_node, parent, p);
577 return NULL;
580 static void cfq_add_crq_rb(struct cfq_rq *crq)
582 struct cfq_queue *cfqq = crq->cfq_queue;
583 struct cfq_data *cfqd = cfqq->cfqd;
584 struct request *rq = crq->request;
585 struct cfq_rq *__alias;
587 crq->rb_key = rq_rb_key(rq);
588 cfqq->queued[cfq_crq_is_sync(crq)]++;
591 * looks a little odd, but the first insert might return an alias.
592 * if that happens, put the alias on the dispatch list
594 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
595 cfq_dispatch_insert(cfqd->queue, __alias);
597 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
599 if (!cfq_cfqq_on_rr(cfqq))
600 cfq_add_cfqq_rr(cfqd, cfqq);
603 * check if this request is a better next-serve candidate
605 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
608 static inline void
609 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
611 rb_erase(&crq->rb_node, &cfqq->sort_list);
612 cfqq->queued[cfq_crq_is_sync(crq)]--;
614 cfq_add_crq_rb(crq);
617 static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
620 struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
621 struct rb_node *n;
623 if (!cfqq)
624 goto out;
626 n = cfqq->sort_list.rb_node;
627 while (n) {
628 struct cfq_rq *crq = rb_entry_crq(n);
630 if (sector < crq->rb_key)
631 n = n->rb_left;
632 else if (sector > crq->rb_key)
633 n = n->rb_right;
634 else
635 return crq->request;
638 out:
639 return NULL;
642 static void cfq_activate_request(request_queue_t *q, struct request *rq)
644 struct cfq_data *cfqd = q->elevator->elevator_data;
646 cfqd->rq_in_driver++;
649 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
651 struct cfq_data *cfqd = q->elevator->elevator_data;
653 WARN_ON(!cfqd->rq_in_driver);
654 cfqd->rq_in_driver--;
657 static void cfq_remove_request(struct request *rq)
659 struct cfq_rq *crq = RQ_DATA(rq);
661 list_del_init(&rq->queuelist);
662 cfq_del_crq_rb(crq);
663 cfq_del_crq_hash(crq);
666 static int
667 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
669 struct cfq_data *cfqd = q->elevator->elevator_data;
670 struct request *__rq;
671 int ret;
673 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
674 if (__rq && elv_rq_merge_ok(__rq, bio)) {
675 ret = ELEVATOR_BACK_MERGE;
676 goto out;
679 __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
680 if (__rq && elv_rq_merge_ok(__rq, bio)) {
681 ret = ELEVATOR_FRONT_MERGE;
682 goto out;
685 return ELEVATOR_NO_MERGE;
686 out:
687 *req = __rq;
688 return ret;
691 static void cfq_merged_request(request_queue_t *q, struct request *req)
693 struct cfq_data *cfqd = q->elevator->elevator_data;
694 struct cfq_rq *crq = RQ_DATA(req);
696 cfq_del_crq_hash(crq);
697 cfq_add_crq_hash(cfqd, crq);
699 if (rq_rb_key(req) != crq->rb_key) {
700 struct cfq_queue *cfqq = crq->cfq_queue;
702 cfq_update_next_crq(crq);
703 cfq_reposition_crq_rb(cfqq, crq);
707 static void
708 cfq_merged_requests(request_queue_t *q, struct request *rq,
709 struct request *next)
711 cfq_merged_request(q, rq);
714 * reposition in fifo if next is older than rq
716 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
717 time_before(next->start_time, rq->start_time))
718 list_move(&rq->queuelist, &next->queuelist);
720 cfq_remove_request(next);
723 static inline void
724 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
726 if (cfqq) {
728 * stop potential idle class queues waiting service
730 del_timer(&cfqd->idle_class_timer);
732 cfqq->slice_start = jiffies;
733 cfqq->slice_end = 0;
734 cfqq->slice_left = 0;
735 cfq_clear_cfqq_must_alloc_slice(cfqq);
736 cfq_clear_cfqq_fifo_expire(cfqq);
739 cfqd->active_queue = cfqq;
743 * current cfqq expired its slice (or was too idle), select new one
745 static void
746 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
747 int preempted)
749 unsigned long now = jiffies;
751 if (cfq_cfqq_wait_request(cfqq))
752 del_timer(&cfqd->idle_slice_timer);
754 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
755 cfqq->service_last = now;
756 cfq_schedule_dispatch(cfqd);
759 cfq_clear_cfqq_must_dispatch(cfqq);
760 cfq_clear_cfqq_wait_request(cfqq);
763 * store what was left of this slice, if the queue idled out
764 * or was preempted
766 if (time_after(cfqq->slice_end, now))
767 cfqq->slice_left = cfqq->slice_end - now;
768 else
769 cfqq->slice_left = 0;
771 if (cfq_cfqq_on_rr(cfqq))
772 cfq_resort_rr_list(cfqq, preempted);
774 if (cfqq == cfqd->active_queue)
775 cfqd->active_queue = NULL;
777 if (cfqd->active_cic) {
778 put_io_context(cfqd->active_cic->ioc);
779 cfqd->active_cic = NULL;
782 cfqd->dispatch_slice = 0;
785 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
787 struct cfq_queue *cfqq = cfqd->active_queue;
789 if (cfqq)
790 __cfq_slice_expired(cfqd, cfqq, preempted);
795 * 0,1
796 * 0,1,2
797 * 0,1,2,3
798 * 0,1,2,3,4
799 * 0,1,2,3,4,5
800 * 0,1,2,3,4,5,6
801 * 0,1,2,3,4,5,6,7
803 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
805 int prio, wrap;
807 prio = -1;
808 wrap = 0;
809 do {
810 int p;
812 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
813 if (!list_empty(&cfqd->rr_list[p])) {
814 prio = p;
815 break;
819 if (prio != -1)
820 break;
821 cfqd->cur_prio = 0;
822 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
823 cfqd->cur_end_prio = 0;
824 if (wrap)
825 break;
826 wrap = 1;
828 } while (1);
830 if (unlikely(prio == -1))
831 return -1;
833 BUG_ON(prio >= CFQ_PRIO_LISTS);
835 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
837 cfqd->cur_prio = prio + 1;
838 if (cfqd->cur_prio > cfqd->cur_end_prio) {
839 cfqd->cur_end_prio = cfqd->cur_prio;
840 cfqd->cur_prio = 0;
842 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
843 cfqd->cur_prio = 0;
844 cfqd->cur_end_prio = 0;
847 return prio;
850 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
852 struct cfq_queue *cfqq = NULL;
855 * if current list is non-empty, grab first entry. if it is empty,
856 * get next prio level and grab first entry then if any are spliced
858 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
859 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
862 * if we have idle queues and no rt or be queues had pending
863 * requests, either allow immediate service if the grace period
864 * has passed or arm the idle grace timer
866 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
867 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
869 if (time_after_eq(jiffies, end))
870 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
871 else
872 mod_timer(&cfqd->idle_class_timer, end);
875 __cfq_set_active_queue(cfqd, cfqq);
876 return cfqq;
879 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
882 unsigned long sl;
884 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
885 WARN_ON(cfqq != cfqd->active_queue);
888 * idle is disabled, either manually or by past process history
890 if (!cfqd->cfq_slice_idle)
891 return 0;
892 if (!cfq_cfqq_idle_window(cfqq))
893 return 0;
895 * task has exited, don't wait
897 if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
898 return 0;
900 cfq_mark_cfqq_must_dispatch(cfqq);
901 cfq_mark_cfqq_wait_request(cfqq);
903 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
904 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
905 return 1;
908 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
910 struct cfq_data *cfqd = q->elevator->elevator_data;
911 struct cfq_queue *cfqq = crq->cfq_queue;
913 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
914 cfq_remove_request(crq->request);
915 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
916 elv_dispatch_sort(q, crq->request);
920 * return expired entry, or NULL to just start from scratch in rbtree
922 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
924 struct cfq_data *cfqd = cfqq->cfqd;
925 struct request *rq;
926 struct cfq_rq *crq;
928 if (cfq_cfqq_fifo_expire(cfqq))
929 return NULL;
931 if (!list_empty(&cfqq->fifo)) {
932 int fifo = cfq_cfqq_class_sync(cfqq);
934 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
935 rq = crq->request;
936 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
937 cfq_mark_cfqq_fifo_expire(cfqq);
938 return crq;
942 return NULL;
946 * Scale schedule slice based on io priority. Use the sync time slice only
947 * if a queue is marked sync and has sync io queued. A sync queue with async
948 * io only, should not get full sync slice length.
950 static inline int
951 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
953 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
955 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
957 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
960 static inline void
961 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
963 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
966 static inline int
967 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
969 const int base_rq = cfqd->cfq_slice_async_rq;
971 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
973 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
977 * get next queue for service
979 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
981 unsigned long now = jiffies;
982 struct cfq_queue *cfqq;
984 cfqq = cfqd->active_queue;
985 if (!cfqq)
986 goto new_queue;
989 * slice has expired
991 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
992 goto expire;
995 * if queue has requests, dispatch one. if not, check if
996 * enough slice is left to wait for one
998 if (!RB_EMPTY(&cfqq->sort_list))
999 goto keep_queue;
1000 else if (cfq_cfqq_class_sync(cfqq) &&
1001 time_before(now, cfqq->slice_end)) {
1002 if (cfq_arm_slice_timer(cfqd, cfqq))
1003 return NULL;
1006 expire:
1007 cfq_slice_expired(cfqd, 0);
1008 new_queue:
1009 cfqq = cfq_set_active_queue(cfqd);
1010 keep_queue:
1011 return cfqq;
1014 static int
1015 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1016 int max_dispatch)
1018 int dispatched = 0;
1020 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1022 do {
1023 struct cfq_rq *crq;
1026 * follow expired path, else get first next available
1028 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1029 crq = cfqq->next_crq;
1032 * finally, insert request into driver dispatch list
1034 cfq_dispatch_insert(cfqd->queue, crq);
1036 cfqd->dispatch_slice++;
1037 dispatched++;
1039 if (!cfqd->active_cic) {
1040 atomic_inc(&crq->io_context->ioc->refcount);
1041 cfqd->active_cic = crq->io_context;
1044 if (RB_EMPTY(&cfqq->sort_list))
1045 break;
1047 } while (dispatched < max_dispatch);
1050 * if slice end isn't set yet, set it. if at least one request was
1051 * sync, use the sync time slice value
1053 if (!cfqq->slice_end)
1054 cfq_set_prio_slice(cfqd, cfqq);
1057 * expire an async queue immediately if it has used up its slice. idle
1058 * queue always expire after 1 dispatch round.
1060 if ((!cfq_cfqq_sync(cfqq) &&
1061 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1062 cfq_class_idle(cfqq))
1063 cfq_slice_expired(cfqd, 0);
1065 return dispatched;
1068 static int
1069 cfq_forced_dispatch_cfqqs(struct list_head *list)
1071 int dispatched = 0;
1072 struct cfq_queue *cfqq, *next;
1073 struct cfq_rq *crq;
1075 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1076 while ((crq = cfqq->next_crq)) {
1077 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1078 dispatched++;
1080 BUG_ON(!list_empty(&cfqq->fifo));
1082 return dispatched;
1085 static int
1086 cfq_forced_dispatch(struct cfq_data *cfqd)
1088 int i, dispatched = 0;
1090 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1091 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1093 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1094 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1095 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1097 cfq_slice_expired(cfqd, 0);
1099 BUG_ON(cfqd->busy_queues);
1101 return dispatched;
1104 static int
1105 cfq_dispatch_requests(request_queue_t *q, int force)
1107 struct cfq_data *cfqd = q->elevator->elevator_data;
1108 struct cfq_queue *cfqq;
1110 if (!cfqd->busy_queues)
1111 return 0;
1113 if (unlikely(force))
1114 return cfq_forced_dispatch(cfqd);
1116 cfqq = cfq_select_queue(cfqd);
1117 if (cfqq) {
1118 int max_dispatch;
1121 * if idle window is disabled, allow queue buildup
1123 if (!cfq_cfqq_idle_window(cfqq) &&
1124 cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1125 return 0;
1127 cfq_clear_cfqq_must_dispatch(cfqq);
1128 cfq_clear_cfqq_wait_request(cfqq);
1129 del_timer(&cfqd->idle_slice_timer);
1131 max_dispatch = cfqd->cfq_quantum;
1132 if (cfq_class_idle(cfqq))
1133 max_dispatch = 1;
1135 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1138 return 0;
1142 * task holds one reference to the queue, dropped when task exits. each crq
1143 * in-flight on this queue also holds a reference, dropped when crq is freed.
1145 * queue lock must be held here.
1147 static void cfq_put_queue(struct cfq_queue *cfqq)
1149 struct cfq_data *cfqd = cfqq->cfqd;
1151 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1153 if (!atomic_dec_and_test(&cfqq->ref))
1154 return;
1156 BUG_ON(rb_first(&cfqq->sort_list));
1157 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1158 BUG_ON(cfq_cfqq_on_rr(cfqq));
1160 if (unlikely(cfqd->active_queue == cfqq))
1161 __cfq_slice_expired(cfqd, cfqq, 0);
1163 cfq_put_cfqd(cfqq->cfqd);
1166 * it's on the empty list and still hashed
1168 list_del(&cfqq->cfq_list);
1169 hlist_del(&cfqq->cfq_hash);
1170 kmem_cache_free(cfq_pool, cfqq);
1173 static inline struct cfq_queue *
1174 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1175 const int hashval)
1177 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1178 struct hlist_node *entry, *next;
1180 hlist_for_each_safe(entry, next, hash_list) {
1181 struct cfq_queue *__cfqq = list_entry_qhash(entry);
1182 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio);
1184 if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1185 return __cfqq;
1188 return NULL;
1191 static struct cfq_queue *
1192 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1194 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1197 static void cfq_free_io_context(struct cfq_io_context *cic)
1199 struct cfq_io_context *__cic;
1200 struct list_head *entry, *next;
1202 list_for_each_safe(entry, next, &cic->list) {
1203 __cic = list_entry(entry, struct cfq_io_context, list);
1204 kmem_cache_free(cfq_ioc_pool, __cic);
1207 kmem_cache_free(cfq_ioc_pool, cic);
1211 * Called with interrupts disabled
1213 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1215 struct cfq_data *cfqd = cic->cfqq->cfqd;
1216 request_queue_t *q = cfqd->queue;
1218 WARN_ON(!irqs_disabled());
1220 spin_lock(q->queue_lock);
1222 if (unlikely(cic->cfqq == cfqd->active_queue))
1223 __cfq_slice_expired(cfqd, cic->cfqq, 0);
1225 cfq_put_queue(cic->cfqq);
1226 cic->cfqq = NULL;
1227 spin_unlock(q->queue_lock);
1231 * Another task may update the task cic list, if it is doing a queue lookup
1232 * on its behalf. cfq_cic_lock excludes such concurrent updates
1234 static void cfq_exit_io_context(struct cfq_io_context *cic)
1236 struct cfq_io_context *__cic;
1237 struct list_head *entry;
1238 unsigned long flags;
1240 local_irq_save(flags);
1243 * put the reference this task is holding to the various queues
1245 list_for_each(entry, &cic->list) {
1246 __cic = list_entry(entry, struct cfq_io_context, list);
1247 cfq_exit_single_io_context(__cic);
1250 cfq_exit_single_io_context(cic);
1251 local_irq_restore(flags);
1254 static struct cfq_io_context *
1255 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1257 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1259 if (cic) {
1260 INIT_LIST_HEAD(&cic->list);
1261 cic->cfqq = NULL;
1262 cic->key = NULL;
1263 cic->last_end_request = jiffies;
1264 cic->ttime_total = 0;
1265 cic->ttime_samples = 0;
1266 cic->ttime_mean = 0;
1267 cic->dtor = cfq_free_io_context;
1268 cic->exit = cfq_exit_io_context;
1271 return cic;
1274 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1276 struct task_struct *tsk = current;
1277 int ioprio_class;
1279 if (!cfq_cfqq_prio_changed(cfqq))
1280 return;
1282 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1283 switch (ioprio_class) {
1284 default:
1285 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1286 case IOPRIO_CLASS_NONE:
1288 * no prio set, place us in the middle of the BE classes
1290 cfqq->ioprio = task_nice_ioprio(tsk);
1291 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1292 break;
1293 case IOPRIO_CLASS_RT:
1294 cfqq->ioprio = task_ioprio(tsk);
1295 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1296 break;
1297 case IOPRIO_CLASS_BE:
1298 cfqq->ioprio = task_ioprio(tsk);
1299 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1300 break;
1301 case IOPRIO_CLASS_IDLE:
1302 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1303 cfqq->ioprio = 7;
1304 cfq_clear_cfqq_idle_window(cfqq);
1305 break;
1309 * keep track of original prio settings in case we have to temporarily
1310 * elevate the priority of this queue
1312 cfqq->org_ioprio = cfqq->ioprio;
1313 cfqq->org_ioprio_class = cfqq->ioprio_class;
1315 if (cfq_cfqq_on_rr(cfqq))
1316 cfq_resort_rr_list(cfqq, 0);
1318 cfq_clear_cfqq_prio_changed(cfqq);
1321 static inline void changed_ioprio(struct cfq_queue *cfqq)
1323 if (cfqq) {
1324 struct cfq_data *cfqd = cfqq->cfqd;
1326 spin_lock(cfqd->queue->queue_lock);
1327 cfq_mark_cfqq_prio_changed(cfqq);
1328 cfq_init_prio_data(cfqq);
1329 spin_unlock(cfqd->queue->queue_lock);
1334 * callback from sys_ioprio_set, irqs are disabled
1336 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1338 struct cfq_io_context *cic = ioc->cic;
1340 changed_ioprio(cic->cfqq);
1342 list_for_each_entry(cic, &cic->list, list)
1343 changed_ioprio(cic->cfqq);
1345 return 0;
1348 static struct cfq_queue *
1349 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio,
1350 gfp_t gfp_mask)
1352 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1353 struct cfq_queue *cfqq, *new_cfqq = NULL;
1355 retry:
1356 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1358 if (!cfqq) {
1359 if (new_cfqq) {
1360 cfqq = new_cfqq;
1361 new_cfqq = NULL;
1362 } else if (gfp_mask & __GFP_WAIT) {
1363 spin_unlock_irq(cfqd->queue->queue_lock);
1364 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1365 spin_lock_irq(cfqd->queue->queue_lock);
1366 goto retry;
1367 } else {
1368 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1369 if (!cfqq)
1370 goto out;
1373 memset(cfqq, 0, sizeof(*cfqq));
1375 INIT_HLIST_NODE(&cfqq->cfq_hash);
1376 INIT_LIST_HEAD(&cfqq->cfq_list);
1377 RB_CLEAR_ROOT(&cfqq->sort_list);
1378 INIT_LIST_HEAD(&cfqq->fifo);
1380 cfqq->key = key;
1381 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1382 atomic_set(&cfqq->ref, 0);
1383 cfqq->cfqd = cfqd;
1384 atomic_inc(&cfqd->ref);
1385 cfqq->service_last = 0;
1387 * set ->slice_left to allow preemption for a new process
1389 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1390 cfq_mark_cfqq_idle_window(cfqq);
1391 cfq_mark_cfqq_prio_changed(cfqq);
1392 cfq_init_prio_data(cfqq);
1395 if (new_cfqq)
1396 kmem_cache_free(cfq_pool, new_cfqq);
1398 atomic_inc(&cfqq->ref);
1399 out:
1400 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1401 return cfqq;
1405 * Setup general io context and cfq io context. There can be several cfq
1406 * io contexts per general io context, if this process is doing io to more
1407 * than one device managed by cfq. Note that caller is holding a reference to
1408 * cfqq, so we don't need to worry about it disappearing
1410 static struct cfq_io_context *
1411 cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask)
1413 struct io_context *ioc = NULL;
1414 struct cfq_io_context *cic;
1416 might_sleep_if(gfp_mask & __GFP_WAIT);
1418 ioc = get_io_context(gfp_mask);
1419 if (!ioc)
1420 return NULL;
1422 if ((cic = ioc->cic) == NULL) {
1423 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1425 if (cic == NULL)
1426 goto err;
1429 * manually increment generic io_context usage count, it
1430 * cannot go away since we are already holding one ref to it
1432 ioc->cic = cic;
1433 ioc->set_ioprio = cfq_ioc_set_ioprio;
1434 cic->ioc = ioc;
1435 cic->key = cfqd;
1436 atomic_inc(&cfqd->ref);
1437 } else {
1438 struct cfq_io_context *__cic;
1441 * the first cic on the list is actually the head itself
1443 if (cic->key == cfqd)
1444 goto out;
1447 * cic exists, check if we already are there. linear search
1448 * should be ok here, the list will usually not be more than
1449 * 1 or a few entries long
1451 list_for_each_entry(__cic, &cic->list, list) {
1453 * this process is already holding a reference to
1454 * this queue, so no need to get one more
1456 if (__cic->key == cfqd) {
1457 cic = __cic;
1458 goto out;
1463 * nope, process doesn't have a cic assoicated with this
1464 * cfqq yet. get a new one and add to list
1466 __cic = cfq_alloc_io_context(cfqd, gfp_mask);
1467 if (__cic == NULL)
1468 goto err;
1470 __cic->ioc = ioc;
1471 __cic->key = cfqd;
1472 atomic_inc(&cfqd->ref);
1473 list_add(&__cic->list, &cic->list);
1474 cic = __cic;
1477 out:
1478 return cic;
1479 err:
1480 put_io_context(ioc);
1481 return NULL;
1484 static void
1485 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1487 unsigned long elapsed, ttime;
1490 * if this context already has stuff queued, thinktime is from
1491 * last queue not last end
1493 #if 0
1494 if (time_after(cic->last_end_request, cic->last_queue))
1495 elapsed = jiffies - cic->last_end_request;
1496 else
1497 elapsed = jiffies - cic->last_queue;
1498 #else
1499 elapsed = jiffies - cic->last_end_request;
1500 #endif
1502 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1504 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1505 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1506 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1509 #define sample_valid(samples) ((samples) > 80)
1512 * Disable idle window if the process thinks too long or seeks so much that
1513 * it doesn't matter
1515 static void
1516 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1517 struct cfq_io_context *cic)
1519 int enable_idle = cfq_cfqq_idle_window(cfqq);
1521 if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1522 enable_idle = 0;
1523 else if (sample_valid(cic->ttime_samples)) {
1524 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1525 enable_idle = 0;
1526 else
1527 enable_idle = 1;
1530 if (enable_idle)
1531 cfq_mark_cfqq_idle_window(cfqq);
1532 else
1533 cfq_clear_cfqq_idle_window(cfqq);
1538 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1539 * no or if we aren't sure, a 1 will cause a preempt.
1541 static int
1542 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1543 struct cfq_rq *crq)
1545 struct cfq_queue *cfqq = cfqd->active_queue;
1547 if (cfq_class_idle(new_cfqq))
1548 return 0;
1550 if (!cfqq)
1551 return 1;
1553 if (cfq_class_idle(cfqq))
1554 return 1;
1555 if (!cfq_cfqq_wait_request(new_cfqq))
1556 return 0;
1558 * if it doesn't have slice left, forget it
1560 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1561 return 0;
1562 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1563 return 1;
1565 return 0;
1569 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1570 * let it have half of its nominal slice.
1572 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1574 struct cfq_queue *__cfqq, *next;
1576 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1577 cfq_resort_rr_list(__cfqq, 1);
1579 if (!cfqq->slice_left)
1580 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1582 cfqq->slice_end = cfqq->slice_left + jiffies;
1583 __cfq_slice_expired(cfqd, cfqq, 1);
1584 __cfq_set_active_queue(cfqd, cfqq);
1588 * should really be a ll_rw_blk.c helper
1590 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1592 request_queue_t *q = cfqd->queue;
1594 if (!blk_queue_plugged(q))
1595 q->request_fn(q);
1596 else
1597 __generic_unplug_device(q);
1601 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1602 * something we should do about it
1604 static void
1605 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1606 struct cfq_rq *crq)
1608 struct cfq_io_context *cic;
1610 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1613 * we never wait for an async request and we don't allow preemption
1614 * of an async request. so just return early
1616 if (!cfq_crq_is_sync(crq))
1617 return;
1619 cic = crq->io_context;
1621 cfq_update_io_thinktime(cfqd, cic);
1622 cfq_update_idle_window(cfqd, cfqq, cic);
1624 cic->last_queue = jiffies;
1626 if (cfqq == cfqd->active_queue) {
1628 * if we are waiting for a request for this queue, let it rip
1629 * immediately and flag that we must not expire this queue
1630 * just now
1632 if (cfq_cfqq_wait_request(cfqq)) {
1633 cfq_mark_cfqq_must_dispatch(cfqq);
1634 del_timer(&cfqd->idle_slice_timer);
1635 cfq_start_queueing(cfqd, cfqq);
1637 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1639 * not the active queue - expire current slice if it is
1640 * idle and has expired it's mean thinktime or this new queue
1641 * has some old slice time left and is of higher priority
1643 cfq_preempt_queue(cfqd, cfqq);
1644 cfq_mark_cfqq_must_dispatch(cfqq);
1645 cfq_start_queueing(cfqd, cfqq);
1649 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1651 struct cfq_data *cfqd = q->elevator->elevator_data;
1652 struct cfq_rq *crq = RQ_DATA(rq);
1653 struct cfq_queue *cfqq = crq->cfq_queue;
1655 cfq_init_prio_data(cfqq);
1657 cfq_add_crq_rb(crq);
1659 list_add_tail(&rq->queuelist, &cfqq->fifo);
1661 if (rq_mergeable(rq))
1662 cfq_add_crq_hash(cfqd, crq);
1664 cfq_crq_enqueued(cfqd, cfqq, crq);
1667 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1669 struct cfq_rq *crq = RQ_DATA(rq);
1670 struct cfq_queue *cfqq = crq->cfq_queue;
1671 struct cfq_data *cfqd = cfqq->cfqd;
1672 const int sync = cfq_crq_is_sync(crq);
1673 unsigned long now;
1675 now = jiffies;
1677 WARN_ON(!cfqd->rq_in_driver);
1678 WARN_ON(!cfqq->on_dispatch[sync]);
1679 cfqd->rq_in_driver--;
1680 cfqq->on_dispatch[sync]--;
1682 if (!cfq_class_idle(cfqq))
1683 cfqd->last_end_request = now;
1685 if (!cfq_cfqq_dispatched(cfqq)) {
1686 if (cfq_cfqq_on_rr(cfqq)) {
1687 cfqq->service_last = now;
1688 cfq_resort_rr_list(cfqq, 0);
1690 cfq_schedule_dispatch(cfqd);
1693 if (cfq_crq_is_sync(crq))
1694 crq->io_context->last_end_request = now;
1697 static struct request *
1698 cfq_former_request(request_queue_t *q, struct request *rq)
1700 struct cfq_rq *crq = RQ_DATA(rq);
1701 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1703 if (rbprev)
1704 return rb_entry_crq(rbprev)->request;
1706 return NULL;
1709 static struct request *
1710 cfq_latter_request(request_queue_t *q, struct request *rq)
1712 struct cfq_rq *crq = RQ_DATA(rq);
1713 struct rb_node *rbnext = rb_next(&crq->rb_node);
1715 if (rbnext)
1716 return rb_entry_crq(rbnext)->request;
1718 return NULL;
1722 * we temporarily boost lower priority queues if they are holding fs exclusive
1723 * resources. they are boosted to normal prio (CLASS_BE/4)
1725 static void cfq_prio_boost(struct cfq_queue *cfqq)
1727 const int ioprio_class = cfqq->ioprio_class;
1728 const int ioprio = cfqq->ioprio;
1730 if (has_fs_excl()) {
1732 * boost idle prio on transactions that would lock out other
1733 * users of the filesystem
1735 if (cfq_class_idle(cfqq))
1736 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1737 if (cfqq->ioprio > IOPRIO_NORM)
1738 cfqq->ioprio = IOPRIO_NORM;
1739 } else {
1741 * check if we need to unboost the queue
1743 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1744 cfqq->ioprio_class = cfqq->org_ioprio_class;
1745 if (cfqq->ioprio != cfqq->org_ioprio)
1746 cfqq->ioprio = cfqq->org_ioprio;
1750 * refile between round-robin lists if we moved the priority class
1752 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1753 cfq_cfqq_on_rr(cfqq))
1754 cfq_resort_rr_list(cfqq, 0);
1757 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1759 if (rw == READ || process_sync(task))
1760 return task->pid;
1762 return CFQ_KEY_ASYNC;
1765 static inline int
1766 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1767 struct task_struct *task, int rw)
1769 #if 1
1770 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1771 !cfq_cfqq_must_alloc_slice(cfqq)) {
1772 cfq_mark_cfqq_must_alloc_slice(cfqq);
1773 return ELV_MQUEUE_MUST;
1776 return ELV_MQUEUE_MAY;
1777 #else
1778 if (!cfqq || task->flags & PF_MEMALLOC)
1779 return ELV_MQUEUE_MAY;
1780 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1781 if (cfq_cfqq_wait_request(cfqq))
1782 return ELV_MQUEUE_MUST;
1785 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1786 * can quickly flood the queue with writes from a single task
1788 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1789 cfq_mark_cfqq_must_alloc_slice(cfqq);
1790 return ELV_MQUEUE_MUST;
1793 return ELV_MQUEUE_MAY;
1795 if (cfq_class_idle(cfqq))
1796 return ELV_MQUEUE_NO;
1797 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1798 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1799 int ret = ELV_MQUEUE_NO;
1801 if (ioc && ioc->nr_batch_requests)
1802 ret = ELV_MQUEUE_MAY;
1804 put_io_context(ioc);
1805 return ret;
1808 return ELV_MQUEUE_MAY;
1809 #endif
1812 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1814 struct cfq_data *cfqd = q->elevator->elevator_data;
1815 struct task_struct *tsk = current;
1816 struct cfq_queue *cfqq;
1819 * don't force setup of a queue from here, as a call to may_queue
1820 * does not necessarily imply that a request actually will be queued.
1821 * so just lookup a possibly existing queue, or return 'may queue'
1822 * if that fails
1824 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1825 if (cfqq) {
1826 cfq_init_prio_data(cfqq);
1827 cfq_prio_boost(cfqq);
1829 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1832 return ELV_MQUEUE_MAY;
1835 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1837 struct cfq_data *cfqd = q->elevator->elevator_data;
1838 struct request_list *rl = &q->rq;
1840 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1841 smp_mb();
1842 if (waitqueue_active(&rl->wait[READ]))
1843 wake_up(&rl->wait[READ]);
1846 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1847 smp_mb();
1848 if (waitqueue_active(&rl->wait[WRITE]))
1849 wake_up(&rl->wait[WRITE]);
1854 * queue lock held here
1856 static void cfq_put_request(request_queue_t *q, struct request *rq)
1858 struct cfq_data *cfqd = q->elevator->elevator_data;
1859 struct cfq_rq *crq = RQ_DATA(rq);
1861 if (crq) {
1862 struct cfq_queue *cfqq = crq->cfq_queue;
1863 const int rw = rq_data_dir(rq);
1865 BUG_ON(!cfqq->allocated[rw]);
1866 cfqq->allocated[rw]--;
1868 put_io_context(crq->io_context->ioc);
1870 mempool_free(crq, cfqd->crq_pool);
1871 rq->elevator_private = NULL;
1873 cfq_check_waiters(q, cfqq);
1874 cfq_put_queue(cfqq);
1879 * Allocate cfq data structures associated with this request.
1881 static int
1882 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1883 gfp_t gfp_mask)
1885 struct cfq_data *cfqd = q->elevator->elevator_data;
1886 struct task_struct *tsk = current;
1887 struct cfq_io_context *cic;
1888 const int rw = rq_data_dir(rq);
1889 pid_t key = cfq_queue_pid(tsk, rw);
1890 struct cfq_queue *cfqq;
1891 struct cfq_rq *crq;
1892 unsigned long flags;
1894 might_sleep_if(gfp_mask & __GFP_WAIT);
1896 cic = cfq_get_io_context(cfqd, key, gfp_mask);
1898 spin_lock_irqsave(q->queue_lock, flags);
1900 if (!cic)
1901 goto queue_fail;
1903 if (!cic->cfqq) {
1904 cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask);
1905 if (!cfqq)
1906 goto queue_fail;
1908 cic->cfqq = cfqq;
1909 } else
1910 cfqq = cic->cfqq;
1912 cfqq->allocated[rw]++;
1913 cfq_clear_cfqq_must_alloc(cfqq);
1914 cfqd->rq_starved = 0;
1915 atomic_inc(&cfqq->ref);
1916 spin_unlock_irqrestore(q->queue_lock, flags);
1918 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1919 if (crq) {
1920 RB_CLEAR(&crq->rb_node);
1921 crq->rb_key = 0;
1922 crq->request = rq;
1923 INIT_HLIST_NODE(&crq->hash);
1924 crq->cfq_queue = cfqq;
1925 crq->io_context = cic;
1927 if (rw == READ || process_sync(tsk))
1928 cfq_mark_crq_is_sync(crq);
1929 else
1930 cfq_clear_crq_is_sync(crq);
1932 rq->elevator_private = crq;
1933 return 0;
1936 spin_lock_irqsave(q->queue_lock, flags);
1937 cfqq->allocated[rw]--;
1938 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
1939 cfq_mark_cfqq_must_alloc(cfqq);
1940 cfq_put_queue(cfqq);
1941 queue_fail:
1942 if (cic)
1943 put_io_context(cic->ioc);
1945 * mark us rq allocation starved. we need to kickstart the process
1946 * ourselves if there are no pending requests that can do it for us.
1947 * that would be an extremely rare OOM situation
1949 cfqd->rq_starved = 1;
1950 cfq_schedule_dispatch(cfqd);
1951 spin_unlock_irqrestore(q->queue_lock, flags);
1952 return 1;
1955 static void cfq_kick_queue(void *data)
1957 request_queue_t *q = data;
1958 struct cfq_data *cfqd = q->elevator->elevator_data;
1959 unsigned long flags;
1961 spin_lock_irqsave(q->queue_lock, flags);
1963 if (cfqd->rq_starved) {
1964 struct request_list *rl = &q->rq;
1967 * we aren't guaranteed to get a request after this, but we
1968 * have to be opportunistic
1970 smp_mb();
1971 if (waitqueue_active(&rl->wait[READ]))
1972 wake_up(&rl->wait[READ]);
1973 if (waitqueue_active(&rl->wait[WRITE]))
1974 wake_up(&rl->wait[WRITE]);
1977 blk_remove_plug(q);
1978 q->request_fn(q);
1979 spin_unlock_irqrestore(q->queue_lock, flags);
1983 * Timer running if the active_queue is currently idling inside its time slice
1985 static void cfq_idle_slice_timer(unsigned long data)
1987 struct cfq_data *cfqd = (struct cfq_data *) data;
1988 struct cfq_queue *cfqq;
1989 unsigned long flags;
1991 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1993 if ((cfqq = cfqd->active_queue) != NULL) {
1994 unsigned long now = jiffies;
1997 * expired
1999 if (time_after(now, cfqq->slice_end))
2000 goto expire;
2003 * only expire and reinvoke request handler, if there are
2004 * other queues with pending requests
2006 if (!cfqd->busy_queues) {
2007 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2008 add_timer(&cfqd->idle_slice_timer);
2009 goto out_cont;
2013 * not expired and it has a request pending, let it dispatch
2015 if (!RB_EMPTY(&cfqq->sort_list)) {
2016 cfq_mark_cfqq_must_dispatch(cfqq);
2017 goto out_kick;
2020 expire:
2021 cfq_slice_expired(cfqd, 0);
2022 out_kick:
2023 cfq_schedule_dispatch(cfqd);
2024 out_cont:
2025 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2029 * Timer running if an idle class queue is waiting for service
2031 static void cfq_idle_class_timer(unsigned long data)
2033 struct cfq_data *cfqd = (struct cfq_data *) data;
2034 unsigned long flags, end;
2036 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2039 * race with a non-idle queue, reset timer
2041 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2042 if (!time_after_eq(jiffies, end)) {
2043 cfqd->idle_class_timer.expires = end;
2044 add_timer(&cfqd->idle_class_timer);
2045 } else
2046 cfq_schedule_dispatch(cfqd);
2048 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2051 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2053 del_timer_sync(&cfqd->idle_slice_timer);
2054 del_timer_sync(&cfqd->idle_class_timer);
2055 blk_sync_queue(cfqd->queue);
2058 static void cfq_put_cfqd(struct cfq_data *cfqd)
2060 request_queue_t *q = cfqd->queue;
2062 if (!atomic_dec_and_test(&cfqd->ref))
2063 return;
2065 cfq_shutdown_timer_wq(cfqd);
2066 blk_put_queue(q);
2068 mempool_destroy(cfqd->crq_pool);
2069 kfree(cfqd->crq_hash);
2070 kfree(cfqd->cfq_hash);
2071 kfree(cfqd);
2074 static void cfq_exit_queue(elevator_t *e)
2076 struct cfq_data *cfqd = e->elevator_data;
2078 cfq_shutdown_timer_wq(cfqd);
2079 cfq_put_cfqd(cfqd);
2082 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2084 struct cfq_data *cfqd;
2085 int i;
2087 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2088 if (!cfqd)
2089 return -ENOMEM;
2091 memset(cfqd, 0, sizeof(*cfqd));
2093 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2094 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2096 INIT_LIST_HEAD(&cfqd->busy_rr);
2097 INIT_LIST_HEAD(&cfqd->cur_rr);
2098 INIT_LIST_HEAD(&cfqd->idle_rr);
2099 INIT_LIST_HEAD(&cfqd->empty_list);
2101 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2102 if (!cfqd->crq_hash)
2103 goto out_crqhash;
2105 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2106 if (!cfqd->cfq_hash)
2107 goto out_cfqhash;
2109 cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
2110 if (!cfqd->crq_pool)
2111 goto out_crqpool;
2113 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2114 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2115 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2116 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2118 e->elevator_data = cfqd;
2120 cfqd->queue = q;
2121 atomic_inc(&q->refcnt);
2123 cfqd->max_queued = q->nr_requests / 4;
2124 q->nr_batching = cfq_queued;
2126 init_timer(&cfqd->idle_slice_timer);
2127 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2128 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2130 init_timer(&cfqd->idle_class_timer);
2131 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2132 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2134 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2136 atomic_set(&cfqd->ref, 1);
2138 cfqd->cfq_queued = cfq_queued;
2139 cfqd->cfq_quantum = cfq_quantum;
2140 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2141 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2142 cfqd->cfq_back_max = cfq_back_max;
2143 cfqd->cfq_back_penalty = cfq_back_penalty;
2144 cfqd->cfq_slice[0] = cfq_slice_async;
2145 cfqd->cfq_slice[1] = cfq_slice_sync;
2146 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2147 cfqd->cfq_slice_idle = cfq_slice_idle;
2148 cfqd->cfq_max_depth = cfq_max_depth;
2150 return 0;
2151 out_crqpool:
2152 kfree(cfqd->cfq_hash);
2153 out_cfqhash:
2154 kfree(cfqd->crq_hash);
2155 out_crqhash:
2156 kfree(cfqd);
2157 return -ENOMEM;
2160 static void cfq_slab_kill(void)
2162 if (crq_pool)
2163 kmem_cache_destroy(crq_pool);
2164 if (cfq_pool)
2165 kmem_cache_destroy(cfq_pool);
2166 if (cfq_ioc_pool)
2167 kmem_cache_destroy(cfq_ioc_pool);
2170 static int __init cfq_slab_setup(void)
2172 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2173 NULL, NULL);
2174 if (!crq_pool)
2175 goto fail;
2177 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2178 NULL, NULL);
2179 if (!cfq_pool)
2180 goto fail;
2182 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2183 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2184 if (!cfq_ioc_pool)
2185 goto fail;
2187 return 0;
2188 fail:
2189 cfq_slab_kill();
2190 return -ENOMEM;
2194 * sysfs parts below -->
2196 struct cfq_fs_entry {
2197 struct attribute attr;
2198 ssize_t (*show)(struct cfq_data *, char *);
2199 ssize_t (*store)(struct cfq_data *, const char *, size_t);
2202 static ssize_t
2203 cfq_var_show(unsigned int var, char *page)
2205 return sprintf(page, "%d\n", var);
2208 static ssize_t
2209 cfq_var_store(unsigned int *var, const char *page, size_t count)
2211 char *p = (char *) page;
2213 *var = simple_strtoul(p, &p, 10);
2214 return count;
2217 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2218 static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \
2220 unsigned int __data = __VAR; \
2221 if (__CONV) \
2222 __data = jiffies_to_msecs(__data); \
2223 return cfq_var_show(__data, (page)); \
2225 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2226 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2227 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2228 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2229 SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
2230 SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
2231 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2232 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2233 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2234 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2235 SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2236 #undef SHOW_FUNCTION
2238 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2239 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \
2241 unsigned int __data; \
2242 int ret = cfq_var_store(&__data, (page), count); \
2243 if (__data < (MIN)) \
2244 __data = (MIN); \
2245 else if (__data > (MAX)) \
2246 __data = (MAX); \
2247 if (__CONV) \
2248 *(__PTR) = msecs_to_jiffies(__data); \
2249 else \
2250 *(__PTR) = __data; \
2251 return ret; \
2253 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2254 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2255 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2256 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2257 STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2258 STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2259 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2260 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2261 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2262 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2263 STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2264 #undef STORE_FUNCTION
2266 static struct cfq_fs_entry cfq_quantum_entry = {
2267 .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
2268 .show = cfq_quantum_show,
2269 .store = cfq_quantum_store,
2271 static struct cfq_fs_entry cfq_queued_entry = {
2272 .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
2273 .show = cfq_queued_show,
2274 .store = cfq_queued_store,
2276 static struct cfq_fs_entry cfq_fifo_expire_sync_entry = {
2277 .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
2278 .show = cfq_fifo_expire_sync_show,
2279 .store = cfq_fifo_expire_sync_store,
2281 static struct cfq_fs_entry cfq_fifo_expire_async_entry = {
2282 .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
2283 .show = cfq_fifo_expire_async_show,
2284 .store = cfq_fifo_expire_async_store,
2286 static struct cfq_fs_entry cfq_back_max_entry = {
2287 .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
2288 .show = cfq_back_max_show,
2289 .store = cfq_back_max_store,
2291 static struct cfq_fs_entry cfq_back_penalty_entry = {
2292 .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
2293 .show = cfq_back_penalty_show,
2294 .store = cfq_back_penalty_store,
2296 static struct cfq_fs_entry cfq_slice_sync_entry = {
2297 .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR },
2298 .show = cfq_slice_sync_show,
2299 .store = cfq_slice_sync_store,
2301 static struct cfq_fs_entry cfq_slice_async_entry = {
2302 .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR },
2303 .show = cfq_slice_async_show,
2304 .store = cfq_slice_async_store,
2306 static struct cfq_fs_entry cfq_slice_async_rq_entry = {
2307 .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR },
2308 .show = cfq_slice_async_rq_show,
2309 .store = cfq_slice_async_rq_store,
2311 static struct cfq_fs_entry cfq_slice_idle_entry = {
2312 .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR },
2313 .show = cfq_slice_idle_show,
2314 .store = cfq_slice_idle_store,
2316 static struct cfq_fs_entry cfq_max_depth_entry = {
2317 .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR },
2318 .show = cfq_max_depth_show,
2319 .store = cfq_max_depth_store,
2322 static struct attribute *default_attrs[] = {
2323 &cfq_quantum_entry.attr,
2324 &cfq_queued_entry.attr,
2325 &cfq_fifo_expire_sync_entry.attr,
2326 &cfq_fifo_expire_async_entry.attr,
2327 &cfq_back_max_entry.attr,
2328 &cfq_back_penalty_entry.attr,
2329 &cfq_slice_sync_entry.attr,
2330 &cfq_slice_async_entry.attr,
2331 &cfq_slice_async_rq_entry.attr,
2332 &cfq_slice_idle_entry.attr,
2333 &cfq_max_depth_entry.attr,
2334 NULL,
2337 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2339 static ssize_t
2340 cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2342 elevator_t *e = container_of(kobj, elevator_t, kobj);
2343 struct cfq_fs_entry *entry = to_cfq(attr);
2345 if (!entry->show)
2346 return -EIO;
2348 return entry->show(e->elevator_data, page);
2351 static ssize_t
2352 cfq_attr_store(struct kobject *kobj, struct attribute *attr,
2353 const char *page, size_t length)
2355 elevator_t *e = container_of(kobj, elevator_t, kobj);
2356 struct cfq_fs_entry *entry = to_cfq(attr);
2358 if (!entry->store)
2359 return -EIO;
2361 return entry->store(e->elevator_data, page, length);
2364 static struct sysfs_ops cfq_sysfs_ops = {
2365 .show = cfq_attr_show,
2366 .store = cfq_attr_store,
2369 static struct kobj_type cfq_ktype = {
2370 .sysfs_ops = &cfq_sysfs_ops,
2371 .default_attrs = default_attrs,
2374 static struct elevator_type iosched_cfq = {
2375 .ops = {
2376 .elevator_merge_fn = cfq_merge,
2377 .elevator_merged_fn = cfq_merged_request,
2378 .elevator_merge_req_fn = cfq_merged_requests,
2379 .elevator_dispatch_fn = cfq_dispatch_requests,
2380 .elevator_add_req_fn = cfq_insert_request,
2381 .elevator_activate_req_fn = cfq_activate_request,
2382 .elevator_deactivate_req_fn = cfq_deactivate_request,
2383 .elevator_queue_empty_fn = cfq_queue_empty,
2384 .elevator_completed_req_fn = cfq_completed_request,
2385 .elevator_former_req_fn = cfq_former_request,
2386 .elevator_latter_req_fn = cfq_latter_request,
2387 .elevator_set_req_fn = cfq_set_request,
2388 .elevator_put_req_fn = cfq_put_request,
2389 .elevator_may_queue_fn = cfq_may_queue,
2390 .elevator_init_fn = cfq_init_queue,
2391 .elevator_exit_fn = cfq_exit_queue,
2393 .elevator_ktype = &cfq_ktype,
2394 .elevator_name = "cfq",
2395 .elevator_owner = THIS_MODULE,
2398 static int __init cfq_init(void)
2400 int ret;
2403 * could be 0 on HZ < 1000 setups
2405 if (!cfq_slice_async)
2406 cfq_slice_async = 1;
2407 if (!cfq_slice_idle)
2408 cfq_slice_idle = 1;
2410 if (cfq_slab_setup())
2411 return -ENOMEM;
2413 ret = elv_register(&iosched_cfq);
2414 if (ret)
2415 cfq_slab_kill();
2417 return ret;
2420 static void __exit cfq_exit(void)
2422 elv_unregister(&iosched_cfq);
2423 cfq_slab_kill();
2426 module_init(cfq_init);
2427 module_exit(cfq_exit);
2429 MODULE_AUTHOR("Jens Axboe");
2430 MODULE_LICENSE("GPL");
2431 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");