ACPI: thinkpad-acpi: update CMOS commands documentation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-crypt.c
blob7989dac5de2115208bb1fc47ea4f0cbe25d582aa
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <linux/backing-dev.h>
20 #include <asm/atomic.h>
21 #include <linux/scatterlist.h>
22 #include <asm/page.h>
23 #include <asm/unaligned.h>
25 #include "dm.h"
27 #define DM_MSG_PREFIX "crypt"
28 #define MESG_STR(x) x, sizeof(x)
31 * per bio private data
33 struct crypt_io {
34 struct dm_target *target;
35 struct bio *base_bio;
36 struct work_struct work;
37 atomic_t pending;
38 int error;
39 int post_process;
43 * context holding the current state of a multi-part conversion
45 struct convert_context {
46 struct bio *bio_in;
47 struct bio *bio_out;
48 unsigned int offset_in;
49 unsigned int offset_out;
50 unsigned int idx_in;
51 unsigned int idx_out;
52 sector_t sector;
53 int write;
56 struct crypt_config;
58 struct crypt_iv_operations {
59 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
60 const char *opts);
61 void (*dtr)(struct crypt_config *cc);
62 const char *(*status)(struct crypt_config *cc);
63 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
67 * Crypt: maps a linear range of a block device
68 * and encrypts / decrypts at the same time.
70 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
71 struct crypt_config {
72 struct dm_dev *dev;
73 sector_t start;
76 * pool for per bio private data and
77 * for encryption buffer pages
79 mempool_t *io_pool;
80 mempool_t *page_pool;
81 struct bio_set *bs;
84 * crypto related data
86 struct crypt_iv_operations *iv_gen_ops;
87 char *iv_mode;
88 union {
89 struct crypto_cipher *essiv_tfm;
90 int benbi_shift;
91 } iv_gen_private;
92 sector_t iv_offset;
93 unsigned int iv_size;
95 char cipher[CRYPTO_MAX_ALG_NAME];
96 char chainmode[CRYPTO_MAX_ALG_NAME];
97 struct crypto_blkcipher *tfm;
98 unsigned long flags;
99 unsigned int key_size;
100 u8 key[0];
103 #define MIN_IOS 16
104 #define MIN_POOL_PAGES 32
105 #define MIN_BIO_PAGES 8
107 static struct kmem_cache *_crypt_io_pool;
109 static void clone_init(struct crypt_io *, struct bio *);
112 * Different IV generation algorithms:
114 * plain: the initial vector is the 32-bit little-endian version of the sector
115 * number, padded with zeros if neccessary.
117 * essiv: "encrypted sector|salt initial vector", the sector number is
118 * encrypted with the bulk cipher using a salt as key. The salt
119 * should be derived from the bulk cipher's key via hashing.
121 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
122 * (needed for LRW-32-AES and possible other narrow block modes)
124 * plumb: unimplemented, see:
125 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
128 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
130 memset(iv, 0, cc->iv_size);
131 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
133 return 0;
136 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
137 const char *opts)
139 struct crypto_cipher *essiv_tfm;
140 struct crypto_hash *hash_tfm;
141 struct hash_desc desc;
142 struct scatterlist sg;
143 unsigned int saltsize;
144 u8 *salt;
145 int err;
147 if (opts == NULL) {
148 ti->error = "Digest algorithm missing for ESSIV mode";
149 return -EINVAL;
152 /* Hash the cipher key with the given hash algorithm */
153 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
154 if (IS_ERR(hash_tfm)) {
155 ti->error = "Error initializing ESSIV hash";
156 return PTR_ERR(hash_tfm);
159 saltsize = crypto_hash_digestsize(hash_tfm);
160 salt = kmalloc(saltsize, GFP_KERNEL);
161 if (salt == NULL) {
162 ti->error = "Error kmallocing salt storage in ESSIV";
163 crypto_free_hash(hash_tfm);
164 return -ENOMEM;
167 sg_set_buf(&sg, cc->key, cc->key_size);
168 desc.tfm = hash_tfm;
169 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
170 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
171 crypto_free_hash(hash_tfm);
173 if (err) {
174 ti->error = "Error calculating hash in ESSIV";
175 return err;
178 /* Setup the essiv_tfm with the given salt */
179 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
180 if (IS_ERR(essiv_tfm)) {
181 ti->error = "Error allocating crypto tfm for ESSIV";
182 kfree(salt);
183 return PTR_ERR(essiv_tfm);
185 if (crypto_cipher_blocksize(essiv_tfm) !=
186 crypto_blkcipher_ivsize(cc->tfm)) {
187 ti->error = "Block size of ESSIV cipher does "
188 "not match IV size of block cipher";
189 crypto_free_cipher(essiv_tfm);
190 kfree(salt);
191 return -EINVAL;
193 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
194 if (err) {
195 ti->error = "Failed to set key for ESSIV cipher";
196 crypto_free_cipher(essiv_tfm);
197 kfree(salt);
198 return err;
200 kfree(salt);
202 cc->iv_gen_private.essiv_tfm = essiv_tfm;
203 return 0;
206 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
208 crypto_free_cipher(cc->iv_gen_private.essiv_tfm);
209 cc->iv_gen_private.essiv_tfm = NULL;
212 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
214 memset(iv, 0, cc->iv_size);
215 *(u64 *)iv = cpu_to_le64(sector);
216 crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv);
217 return 0;
220 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
221 const char *opts)
223 unsigned int bs = crypto_blkcipher_blocksize(cc->tfm);
224 int log = ilog2(bs);
226 /* we need to calculate how far we must shift the sector count
227 * to get the cipher block count, we use this shift in _gen */
229 if (1 << log != bs) {
230 ti->error = "cypher blocksize is not a power of 2";
231 return -EINVAL;
234 if (log > 9) {
235 ti->error = "cypher blocksize is > 512";
236 return -EINVAL;
239 cc->iv_gen_private.benbi_shift = 9 - log;
241 return 0;
244 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
248 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
250 __be64 val;
252 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
254 val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1);
255 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
257 return 0;
260 static struct crypt_iv_operations crypt_iv_plain_ops = {
261 .generator = crypt_iv_plain_gen
264 static struct crypt_iv_operations crypt_iv_essiv_ops = {
265 .ctr = crypt_iv_essiv_ctr,
266 .dtr = crypt_iv_essiv_dtr,
267 .generator = crypt_iv_essiv_gen
270 static struct crypt_iv_operations crypt_iv_benbi_ops = {
271 .ctr = crypt_iv_benbi_ctr,
272 .dtr = crypt_iv_benbi_dtr,
273 .generator = crypt_iv_benbi_gen
276 static int
277 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
278 struct scatterlist *in, unsigned int length,
279 int write, sector_t sector)
281 u8 iv[cc->iv_size] __attribute__ ((aligned(__alignof__(u64))));
282 struct blkcipher_desc desc = {
283 .tfm = cc->tfm,
284 .info = iv,
285 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
287 int r;
289 if (cc->iv_gen_ops) {
290 r = cc->iv_gen_ops->generator(cc, iv, sector);
291 if (r < 0)
292 return r;
294 if (write)
295 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
296 else
297 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
298 } else {
299 if (write)
300 r = crypto_blkcipher_encrypt(&desc, out, in, length);
301 else
302 r = crypto_blkcipher_decrypt(&desc, out, in, length);
305 return r;
308 static void
309 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
310 struct bio *bio_out, struct bio *bio_in,
311 sector_t sector, int write)
313 ctx->bio_in = bio_in;
314 ctx->bio_out = bio_out;
315 ctx->offset_in = 0;
316 ctx->offset_out = 0;
317 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
318 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
319 ctx->sector = sector + cc->iv_offset;
320 ctx->write = write;
324 * Encrypt / decrypt data from one bio to another one (can be the same one)
326 static int crypt_convert(struct crypt_config *cc,
327 struct convert_context *ctx)
329 int r = 0;
331 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
332 ctx->idx_out < ctx->bio_out->bi_vcnt) {
333 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
334 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
335 struct scatterlist sg_in = {
336 .page = bv_in->bv_page,
337 .offset = bv_in->bv_offset + ctx->offset_in,
338 .length = 1 << SECTOR_SHIFT
340 struct scatterlist sg_out = {
341 .page = bv_out->bv_page,
342 .offset = bv_out->bv_offset + ctx->offset_out,
343 .length = 1 << SECTOR_SHIFT
346 ctx->offset_in += sg_in.length;
347 if (ctx->offset_in >= bv_in->bv_len) {
348 ctx->offset_in = 0;
349 ctx->idx_in++;
352 ctx->offset_out += sg_out.length;
353 if (ctx->offset_out >= bv_out->bv_len) {
354 ctx->offset_out = 0;
355 ctx->idx_out++;
358 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
359 ctx->write, ctx->sector);
360 if (r < 0)
361 break;
363 ctx->sector++;
366 return r;
369 static void dm_crypt_bio_destructor(struct bio *bio)
371 struct crypt_io *io = bio->bi_private;
372 struct crypt_config *cc = io->target->private;
374 bio_free(bio, cc->bs);
378 * Generate a new unfragmented bio with the given size
379 * This should never violate the device limitations
380 * May return a smaller bio when running out of pages
382 static struct bio *crypt_alloc_buffer(struct crypt_io *io, unsigned int size,
383 unsigned int *bio_vec_idx)
385 struct crypt_config *cc = io->target->private;
386 struct bio *clone;
387 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
388 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
389 unsigned int i;
391 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
392 if (!clone)
393 return NULL;
395 clone_init(io, clone);
397 /* if the last bio was not complete, continue where that one ended */
398 clone->bi_idx = *bio_vec_idx;
399 clone->bi_vcnt = *bio_vec_idx;
400 clone->bi_size = 0;
401 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
403 /* clone->bi_idx pages have already been allocated */
404 size -= clone->bi_idx * PAGE_SIZE;
406 for (i = clone->bi_idx; i < nr_iovecs; i++) {
407 struct bio_vec *bv = bio_iovec_idx(clone, i);
409 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
410 if (!bv->bv_page)
411 break;
414 * if additional pages cannot be allocated without waiting,
415 * return a partially allocated bio, the caller will then try
416 * to allocate additional bios while submitting this partial bio
418 if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1))
419 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
421 bv->bv_offset = 0;
422 if (size > PAGE_SIZE)
423 bv->bv_len = PAGE_SIZE;
424 else
425 bv->bv_len = size;
427 clone->bi_size += bv->bv_len;
428 clone->bi_vcnt++;
429 size -= bv->bv_len;
432 if (!clone->bi_size) {
433 bio_put(clone);
434 return NULL;
438 * Remember the last bio_vec allocated to be able
439 * to correctly continue after the splitting.
441 *bio_vec_idx = clone->bi_vcnt;
443 return clone;
446 static void crypt_free_buffer_pages(struct crypt_config *cc,
447 struct bio *clone, unsigned int bytes)
449 unsigned int i, start, end;
450 struct bio_vec *bv;
453 * This is ugly, but Jens Axboe thinks that using bi_idx in the
454 * endio function is too dangerous at the moment, so I calculate the
455 * correct position using bi_vcnt and bi_size.
456 * The bv_offset and bv_len fields might already be modified but we
457 * know that we always allocated whole pages.
458 * A fix to the bi_idx issue in the kernel is in the works, so
459 * we will hopefully be able to revert to the cleaner solution soon.
461 i = clone->bi_vcnt - 1;
462 bv = bio_iovec_idx(clone, i);
463 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
464 start = end - bytes;
466 start >>= PAGE_SHIFT;
467 if (!clone->bi_size)
468 end = clone->bi_vcnt;
469 else
470 end >>= PAGE_SHIFT;
472 for (i = start; i < end; i++) {
473 bv = bio_iovec_idx(clone, i);
474 BUG_ON(!bv->bv_page);
475 mempool_free(bv->bv_page, cc->page_pool);
476 bv->bv_page = NULL;
481 * One of the bios was finished. Check for completion of
482 * the whole request and correctly clean up the buffer.
484 static void dec_pending(struct crypt_io *io, int error)
486 struct crypt_config *cc = (struct crypt_config *) io->target->private;
488 if (error < 0)
489 io->error = error;
491 if (!atomic_dec_and_test(&io->pending))
492 return;
494 bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
496 mempool_free(io, cc->io_pool);
500 * kcryptd:
502 * Needed because it would be very unwise to do decryption in an
503 * interrupt context.
505 static struct workqueue_struct *_kcryptd_workqueue;
506 static void kcryptd_do_work(struct work_struct *work);
508 static void kcryptd_queue_io(struct crypt_io *io)
510 INIT_WORK(&io->work, kcryptd_do_work);
511 queue_work(_kcryptd_workqueue, &io->work);
514 static int crypt_endio(struct bio *clone, unsigned int done, int error)
516 struct crypt_io *io = clone->bi_private;
517 struct crypt_config *cc = io->target->private;
518 unsigned read_io = bio_data_dir(clone) == READ;
521 * free the processed pages, even if
522 * it's only a partially completed write
524 if (!read_io)
525 crypt_free_buffer_pages(cc, clone, done);
527 /* keep going - not finished yet */
528 if (unlikely(clone->bi_size))
529 return 1;
531 if (!read_io)
532 goto out;
534 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
535 error = -EIO;
536 goto out;
539 bio_put(clone);
540 io->post_process = 1;
541 kcryptd_queue_io(io);
542 return 0;
544 out:
545 bio_put(clone);
546 dec_pending(io, error);
547 return error;
550 static void clone_init(struct crypt_io *io, struct bio *clone)
552 struct crypt_config *cc = io->target->private;
554 clone->bi_private = io;
555 clone->bi_end_io = crypt_endio;
556 clone->bi_bdev = cc->dev->bdev;
557 clone->bi_rw = io->base_bio->bi_rw;
558 clone->bi_destructor = dm_crypt_bio_destructor;
561 static void process_read(struct crypt_io *io)
563 struct crypt_config *cc = io->target->private;
564 struct bio *base_bio = io->base_bio;
565 struct bio *clone;
566 sector_t sector = base_bio->bi_sector - io->target->begin;
568 atomic_inc(&io->pending);
571 * The block layer might modify the bvec array, so always
572 * copy the required bvecs because we need the original
573 * one in order to decrypt the whole bio data *afterwards*.
575 clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs);
576 if (unlikely(!clone)) {
577 dec_pending(io, -ENOMEM);
578 return;
581 clone_init(io, clone);
582 clone->bi_idx = 0;
583 clone->bi_vcnt = bio_segments(base_bio);
584 clone->bi_size = base_bio->bi_size;
585 clone->bi_sector = cc->start + sector;
586 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
587 sizeof(struct bio_vec) * clone->bi_vcnt);
589 generic_make_request(clone);
592 static void process_write(struct crypt_io *io)
594 struct crypt_config *cc = io->target->private;
595 struct bio *base_bio = io->base_bio;
596 struct bio *clone;
597 struct convert_context ctx;
598 unsigned remaining = base_bio->bi_size;
599 sector_t sector = base_bio->bi_sector - io->target->begin;
600 unsigned bvec_idx = 0;
602 atomic_inc(&io->pending);
604 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
607 * The allocated buffers can be smaller than the whole bio,
608 * so repeat the whole process until all the data can be handled.
610 while (remaining) {
611 clone = crypt_alloc_buffer(io, base_bio->bi_size, &bvec_idx);
612 if (unlikely(!clone)) {
613 dec_pending(io, -ENOMEM);
614 return;
617 ctx.bio_out = clone;
619 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
620 crypt_free_buffer_pages(cc, clone, clone->bi_size);
621 bio_put(clone);
622 dec_pending(io, -EIO);
623 return;
626 clone->bi_sector = cc->start + sector;
627 remaining -= clone->bi_size;
628 sector += bio_sectors(clone);
630 /* Grab another reference to the io struct
631 * before we kick off the request */
632 if (remaining)
633 atomic_inc(&io->pending);
635 generic_make_request(clone);
637 /* Do not reference clone after this - it
638 * may be gone already. */
640 /* out of memory -> run queues */
641 if (remaining)
642 congestion_wait(WRITE, HZ/100);
646 static void process_read_endio(struct crypt_io *io)
648 struct crypt_config *cc = io->target->private;
649 struct convert_context ctx;
651 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
652 io->base_bio->bi_sector - io->target->begin, 0);
654 dec_pending(io, crypt_convert(cc, &ctx));
657 static void kcryptd_do_work(struct work_struct *work)
659 struct crypt_io *io = container_of(work, struct crypt_io, work);
661 if (io->post_process)
662 process_read_endio(io);
663 else if (bio_data_dir(io->base_bio) == READ)
664 process_read(io);
665 else
666 process_write(io);
670 * Decode key from its hex representation
672 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
674 char buffer[3];
675 char *endp;
676 unsigned int i;
678 buffer[2] = '\0';
680 for (i = 0; i < size; i++) {
681 buffer[0] = *hex++;
682 buffer[1] = *hex++;
684 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
686 if (endp != &buffer[2])
687 return -EINVAL;
690 if (*hex != '\0')
691 return -EINVAL;
693 return 0;
697 * Encode key into its hex representation
699 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
701 unsigned int i;
703 for (i = 0; i < size; i++) {
704 sprintf(hex, "%02x", *key);
705 hex += 2;
706 key++;
710 static int crypt_set_key(struct crypt_config *cc, char *key)
712 unsigned key_size = strlen(key) >> 1;
714 if (cc->key_size && cc->key_size != key_size)
715 return -EINVAL;
717 cc->key_size = key_size; /* initial settings */
719 if ((!key_size && strcmp(key, "-")) ||
720 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
721 return -EINVAL;
723 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
725 return 0;
728 static int crypt_wipe_key(struct crypt_config *cc)
730 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
731 memset(&cc->key, 0, cc->key_size * sizeof(u8));
732 return 0;
736 * Construct an encryption mapping:
737 * <cipher> <key> <iv_offset> <dev_path> <start>
739 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
741 struct crypt_config *cc;
742 struct crypto_blkcipher *tfm;
743 char *tmp;
744 char *cipher;
745 char *chainmode;
746 char *ivmode;
747 char *ivopts;
748 unsigned int key_size;
749 unsigned long long tmpll;
751 if (argc != 5) {
752 ti->error = "Not enough arguments";
753 return -EINVAL;
756 tmp = argv[0];
757 cipher = strsep(&tmp, "-");
758 chainmode = strsep(&tmp, "-");
759 ivopts = strsep(&tmp, "-");
760 ivmode = strsep(&ivopts, ":");
762 if (tmp)
763 DMWARN("Unexpected additional cipher options");
765 key_size = strlen(argv[1]) >> 1;
767 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
768 if (cc == NULL) {
769 ti->error =
770 "Cannot allocate transparent encryption context";
771 return -ENOMEM;
774 if (crypt_set_key(cc, argv[1])) {
775 ti->error = "Error decoding key";
776 goto bad1;
779 /* Compatiblity mode for old dm-crypt cipher strings */
780 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
781 chainmode = "cbc";
782 ivmode = "plain";
785 if (strcmp(chainmode, "ecb") && !ivmode) {
786 ti->error = "This chaining mode requires an IV mechanism";
787 goto bad1;
790 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
791 cipher) >= CRYPTO_MAX_ALG_NAME) {
792 ti->error = "Chain mode + cipher name is too long";
793 goto bad1;
796 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
797 if (IS_ERR(tfm)) {
798 ti->error = "Error allocating crypto tfm";
799 goto bad1;
802 strcpy(cc->cipher, cipher);
803 strcpy(cc->chainmode, chainmode);
804 cc->tfm = tfm;
807 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi".
808 * See comments at iv code
811 if (ivmode == NULL)
812 cc->iv_gen_ops = NULL;
813 else if (strcmp(ivmode, "plain") == 0)
814 cc->iv_gen_ops = &crypt_iv_plain_ops;
815 else if (strcmp(ivmode, "essiv") == 0)
816 cc->iv_gen_ops = &crypt_iv_essiv_ops;
817 else if (strcmp(ivmode, "benbi") == 0)
818 cc->iv_gen_ops = &crypt_iv_benbi_ops;
819 else {
820 ti->error = "Invalid IV mode";
821 goto bad2;
824 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
825 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
826 goto bad2;
828 cc->iv_size = crypto_blkcipher_ivsize(tfm);
829 if (cc->iv_size)
830 /* at least a 64 bit sector number should fit in our buffer */
831 cc->iv_size = max(cc->iv_size,
832 (unsigned int)(sizeof(u64) / sizeof(u8)));
833 else {
834 if (cc->iv_gen_ops) {
835 DMWARN("Selected cipher does not support IVs");
836 if (cc->iv_gen_ops->dtr)
837 cc->iv_gen_ops->dtr(cc);
838 cc->iv_gen_ops = NULL;
842 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
843 if (!cc->io_pool) {
844 ti->error = "Cannot allocate crypt io mempool";
845 goto bad3;
848 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
849 if (!cc->page_pool) {
850 ti->error = "Cannot allocate page mempool";
851 goto bad4;
854 cc->bs = bioset_create(MIN_IOS, MIN_IOS, 4);
855 if (!cc->bs) {
856 ti->error = "Cannot allocate crypt bioset";
857 goto bad_bs;
860 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
861 ti->error = "Error setting key";
862 goto bad5;
865 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
866 ti->error = "Invalid iv_offset sector";
867 goto bad5;
869 cc->iv_offset = tmpll;
871 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
872 ti->error = "Invalid device sector";
873 goto bad5;
875 cc->start = tmpll;
877 if (dm_get_device(ti, argv[3], cc->start, ti->len,
878 dm_table_get_mode(ti->table), &cc->dev)) {
879 ti->error = "Device lookup failed";
880 goto bad5;
883 if (ivmode && cc->iv_gen_ops) {
884 if (ivopts)
885 *(ivopts - 1) = ':';
886 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
887 if (!cc->iv_mode) {
888 ti->error = "Error kmallocing iv_mode string";
889 goto bad5;
891 strcpy(cc->iv_mode, ivmode);
892 } else
893 cc->iv_mode = NULL;
895 ti->private = cc;
896 return 0;
898 bad5:
899 bioset_free(cc->bs);
900 bad_bs:
901 mempool_destroy(cc->page_pool);
902 bad4:
903 mempool_destroy(cc->io_pool);
904 bad3:
905 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
906 cc->iv_gen_ops->dtr(cc);
907 bad2:
908 crypto_free_blkcipher(tfm);
909 bad1:
910 /* Must zero key material before freeing */
911 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
912 kfree(cc);
913 return -EINVAL;
916 static void crypt_dtr(struct dm_target *ti)
918 struct crypt_config *cc = (struct crypt_config *) ti->private;
920 flush_workqueue(_kcryptd_workqueue);
922 bioset_free(cc->bs);
923 mempool_destroy(cc->page_pool);
924 mempool_destroy(cc->io_pool);
926 kfree(cc->iv_mode);
927 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
928 cc->iv_gen_ops->dtr(cc);
929 crypto_free_blkcipher(cc->tfm);
930 dm_put_device(ti, cc->dev);
932 /* Must zero key material before freeing */
933 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
934 kfree(cc);
937 static int crypt_map(struct dm_target *ti, struct bio *bio,
938 union map_info *map_context)
940 struct crypt_config *cc = ti->private;
941 struct crypt_io *io;
943 io = mempool_alloc(cc->io_pool, GFP_NOIO);
944 io->target = ti;
945 io->base_bio = bio;
946 io->error = io->post_process = 0;
947 atomic_set(&io->pending, 0);
948 kcryptd_queue_io(io);
950 return DM_MAPIO_SUBMITTED;
953 static int crypt_status(struct dm_target *ti, status_type_t type,
954 char *result, unsigned int maxlen)
956 struct crypt_config *cc = (struct crypt_config *) ti->private;
957 unsigned int sz = 0;
959 switch (type) {
960 case STATUSTYPE_INFO:
961 result[0] = '\0';
962 break;
964 case STATUSTYPE_TABLE:
965 if (cc->iv_mode)
966 DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode,
967 cc->iv_mode);
968 else
969 DMEMIT("%s-%s ", cc->cipher, cc->chainmode);
971 if (cc->key_size > 0) {
972 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
973 return -ENOMEM;
975 crypt_encode_key(result + sz, cc->key, cc->key_size);
976 sz += cc->key_size << 1;
977 } else {
978 if (sz >= maxlen)
979 return -ENOMEM;
980 result[sz++] = '-';
983 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
984 cc->dev->name, (unsigned long long)cc->start);
985 break;
987 return 0;
990 static void crypt_postsuspend(struct dm_target *ti)
992 struct crypt_config *cc = ti->private;
994 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
997 static int crypt_preresume(struct dm_target *ti)
999 struct crypt_config *cc = ti->private;
1001 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1002 DMERR("aborting resume - crypt key is not set.");
1003 return -EAGAIN;
1006 return 0;
1009 static void crypt_resume(struct dm_target *ti)
1011 struct crypt_config *cc = ti->private;
1013 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1016 /* Message interface
1017 * key set <key>
1018 * key wipe
1020 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1022 struct crypt_config *cc = ti->private;
1024 if (argc < 2)
1025 goto error;
1027 if (!strnicmp(argv[0], MESG_STR("key"))) {
1028 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1029 DMWARN("not suspended during key manipulation.");
1030 return -EINVAL;
1032 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
1033 return crypt_set_key(cc, argv[2]);
1034 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
1035 return crypt_wipe_key(cc);
1038 error:
1039 DMWARN("unrecognised message received.");
1040 return -EINVAL;
1043 static struct target_type crypt_target = {
1044 .name = "crypt",
1045 .version= {1, 3, 0},
1046 .module = THIS_MODULE,
1047 .ctr = crypt_ctr,
1048 .dtr = crypt_dtr,
1049 .map = crypt_map,
1050 .status = crypt_status,
1051 .postsuspend = crypt_postsuspend,
1052 .preresume = crypt_preresume,
1053 .resume = crypt_resume,
1054 .message = crypt_message,
1057 static int __init dm_crypt_init(void)
1059 int r;
1061 _crypt_io_pool = kmem_cache_create("dm-crypt_io",
1062 sizeof(struct crypt_io),
1063 0, 0, NULL, NULL);
1064 if (!_crypt_io_pool)
1065 return -ENOMEM;
1067 _kcryptd_workqueue = create_workqueue("kcryptd");
1068 if (!_kcryptd_workqueue) {
1069 r = -ENOMEM;
1070 DMERR("couldn't create kcryptd");
1071 goto bad1;
1074 r = dm_register_target(&crypt_target);
1075 if (r < 0) {
1076 DMERR("register failed %d", r);
1077 goto bad2;
1080 return 0;
1082 bad2:
1083 destroy_workqueue(_kcryptd_workqueue);
1084 bad1:
1085 kmem_cache_destroy(_crypt_io_pool);
1086 return r;
1089 static void __exit dm_crypt_exit(void)
1091 int r = dm_unregister_target(&crypt_target);
1093 if (r < 0)
1094 DMERR("unregister failed %d", r);
1096 destroy_workqueue(_kcryptd_workqueue);
1097 kmem_cache_destroy(_crypt_io_pool);
1100 module_init(dm_crypt_init);
1101 module_exit(dm_crypt_exit);
1103 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1104 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1105 MODULE_LICENSE("GPL");