intel-iommu: Introduce domain_pfn_mapping()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / pci / intel-iommu.c
blob7540ef91d5f7c8b905dc29cb89513456fdeafb89
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
65 #ifndef PHYSICAL_PAGE_MASK
66 #define PHYSICAL_PAGE_MASK PAGE_MASK
67 #endif
69 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
70 are never going to work. */
71 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
73 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
76 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
78 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
80 static inline unsigned long page_to_dma_pfn(struct page *pg)
82 return mm_to_dma_pfn(page_to_pfn(pg));
84 static inline unsigned long virt_to_dma_pfn(void *p)
86 return page_to_dma_pfn(virt_to_page(p));
89 /* global iommu list, set NULL for ignored DMAR units */
90 static struct intel_iommu **g_iommus;
92 static int rwbf_quirk;
95 * 0: Present
96 * 1-11: Reserved
97 * 12-63: Context Ptr (12 - (haw-1))
98 * 64-127: Reserved
100 struct root_entry {
101 u64 val;
102 u64 rsvd1;
104 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
105 static inline bool root_present(struct root_entry *root)
107 return (root->val & 1);
109 static inline void set_root_present(struct root_entry *root)
111 root->val |= 1;
113 static inline void set_root_value(struct root_entry *root, unsigned long value)
115 root->val |= value & VTD_PAGE_MASK;
118 static inline struct context_entry *
119 get_context_addr_from_root(struct root_entry *root)
121 return (struct context_entry *)
122 (root_present(root)?phys_to_virt(
123 root->val & VTD_PAGE_MASK) :
124 NULL);
128 * low 64 bits:
129 * 0: present
130 * 1: fault processing disable
131 * 2-3: translation type
132 * 12-63: address space root
133 * high 64 bits:
134 * 0-2: address width
135 * 3-6: aval
136 * 8-23: domain id
138 struct context_entry {
139 u64 lo;
140 u64 hi;
143 static inline bool context_present(struct context_entry *context)
145 return (context->lo & 1);
147 static inline void context_set_present(struct context_entry *context)
149 context->lo |= 1;
152 static inline void context_set_fault_enable(struct context_entry *context)
154 context->lo &= (((u64)-1) << 2) | 1;
157 static inline void context_set_translation_type(struct context_entry *context,
158 unsigned long value)
160 context->lo &= (((u64)-1) << 4) | 3;
161 context->lo |= (value & 3) << 2;
164 static inline void context_set_address_root(struct context_entry *context,
165 unsigned long value)
167 context->lo |= value & VTD_PAGE_MASK;
170 static inline void context_set_address_width(struct context_entry *context,
171 unsigned long value)
173 context->hi |= value & 7;
176 static inline void context_set_domain_id(struct context_entry *context,
177 unsigned long value)
179 context->hi |= (value & ((1 << 16) - 1)) << 8;
182 static inline void context_clear_entry(struct context_entry *context)
184 context->lo = 0;
185 context->hi = 0;
189 * 0: readable
190 * 1: writable
191 * 2-6: reserved
192 * 7: super page
193 * 8-10: available
194 * 11: snoop behavior
195 * 12-63: Host physcial address
197 struct dma_pte {
198 u64 val;
201 static inline void dma_clear_pte(struct dma_pte *pte)
203 pte->val = 0;
206 static inline void dma_set_pte_readable(struct dma_pte *pte)
208 pte->val |= DMA_PTE_READ;
211 static inline void dma_set_pte_writable(struct dma_pte *pte)
213 pte->val |= DMA_PTE_WRITE;
216 static inline void dma_set_pte_snp(struct dma_pte *pte)
218 pte->val |= DMA_PTE_SNP;
221 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
223 pte->val = (pte->val & ~3) | (prot & 3);
226 static inline u64 dma_pte_addr(struct dma_pte *pte)
228 return (pte->val & VTD_PAGE_MASK);
231 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
233 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
236 static inline bool dma_pte_present(struct dma_pte *pte)
238 return (pte->val & 3) != 0;
242 * This domain is a statically identity mapping domain.
243 * 1. This domain creats a static 1:1 mapping to all usable memory.
244 * 2. It maps to each iommu if successful.
245 * 3. Each iommu mapps to this domain if successful.
247 struct dmar_domain *si_domain;
249 /* devices under the same p2p bridge are owned in one domain */
250 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
252 /* domain represents a virtual machine, more than one devices
253 * across iommus may be owned in one domain, e.g. kvm guest.
255 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
257 /* si_domain contains mulitple devices */
258 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
260 struct dmar_domain {
261 int id; /* domain id */
262 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
264 struct list_head devices; /* all devices' list */
265 struct iova_domain iovad; /* iova's that belong to this domain */
267 struct dma_pte *pgd; /* virtual address */
268 spinlock_t mapping_lock; /* page table lock */
269 int gaw; /* max guest address width */
271 /* adjusted guest address width, 0 is level 2 30-bit */
272 int agaw;
274 int flags; /* flags to find out type of domain */
276 int iommu_coherency;/* indicate coherency of iommu access */
277 int iommu_snooping; /* indicate snooping control feature*/
278 int iommu_count; /* reference count of iommu */
279 spinlock_t iommu_lock; /* protect iommu set in domain */
280 u64 max_addr; /* maximum mapped address */
283 /* PCI domain-device relationship */
284 struct device_domain_info {
285 struct list_head link; /* link to domain siblings */
286 struct list_head global; /* link to global list */
287 int segment; /* PCI domain */
288 u8 bus; /* PCI bus number */
289 u8 devfn; /* PCI devfn number */
290 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
291 struct intel_iommu *iommu; /* IOMMU used by this device */
292 struct dmar_domain *domain; /* pointer to domain */
295 static void flush_unmaps_timeout(unsigned long data);
297 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
299 #define HIGH_WATER_MARK 250
300 struct deferred_flush_tables {
301 int next;
302 struct iova *iova[HIGH_WATER_MARK];
303 struct dmar_domain *domain[HIGH_WATER_MARK];
306 static struct deferred_flush_tables *deferred_flush;
308 /* bitmap for indexing intel_iommus */
309 static int g_num_of_iommus;
311 static DEFINE_SPINLOCK(async_umap_flush_lock);
312 static LIST_HEAD(unmaps_to_do);
314 static int timer_on;
315 static long list_size;
317 static void domain_remove_dev_info(struct dmar_domain *domain);
319 #ifdef CONFIG_DMAR_DEFAULT_ON
320 int dmar_disabled = 0;
321 #else
322 int dmar_disabled = 1;
323 #endif /*CONFIG_DMAR_DEFAULT_ON*/
325 static int __initdata dmar_map_gfx = 1;
326 static int dmar_forcedac;
327 static int intel_iommu_strict;
329 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
330 static DEFINE_SPINLOCK(device_domain_lock);
331 static LIST_HEAD(device_domain_list);
333 static struct iommu_ops intel_iommu_ops;
335 static int __init intel_iommu_setup(char *str)
337 if (!str)
338 return -EINVAL;
339 while (*str) {
340 if (!strncmp(str, "on", 2)) {
341 dmar_disabled = 0;
342 printk(KERN_INFO "Intel-IOMMU: enabled\n");
343 } else if (!strncmp(str, "off", 3)) {
344 dmar_disabled = 1;
345 printk(KERN_INFO "Intel-IOMMU: disabled\n");
346 } else if (!strncmp(str, "igfx_off", 8)) {
347 dmar_map_gfx = 0;
348 printk(KERN_INFO
349 "Intel-IOMMU: disable GFX device mapping\n");
350 } else if (!strncmp(str, "forcedac", 8)) {
351 printk(KERN_INFO
352 "Intel-IOMMU: Forcing DAC for PCI devices\n");
353 dmar_forcedac = 1;
354 } else if (!strncmp(str, "strict", 6)) {
355 printk(KERN_INFO
356 "Intel-IOMMU: disable batched IOTLB flush\n");
357 intel_iommu_strict = 1;
360 str += strcspn(str, ",");
361 while (*str == ',')
362 str++;
364 return 0;
366 __setup("intel_iommu=", intel_iommu_setup);
368 static struct kmem_cache *iommu_domain_cache;
369 static struct kmem_cache *iommu_devinfo_cache;
370 static struct kmem_cache *iommu_iova_cache;
372 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
374 unsigned int flags;
375 void *vaddr;
377 /* trying to avoid low memory issues */
378 flags = current->flags & PF_MEMALLOC;
379 current->flags |= PF_MEMALLOC;
380 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
381 current->flags &= (~PF_MEMALLOC | flags);
382 return vaddr;
386 static inline void *alloc_pgtable_page(void)
388 unsigned int flags;
389 void *vaddr;
391 /* trying to avoid low memory issues */
392 flags = current->flags & PF_MEMALLOC;
393 current->flags |= PF_MEMALLOC;
394 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
395 current->flags &= (~PF_MEMALLOC | flags);
396 return vaddr;
399 static inline void free_pgtable_page(void *vaddr)
401 free_page((unsigned long)vaddr);
404 static inline void *alloc_domain_mem(void)
406 return iommu_kmem_cache_alloc(iommu_domain_cache);
409 static void free_domain_mem(void *vaddr)
411 kmem_cache_free(iommu_domain_cache, vaddr);
414 static inline void * alloc_devinfo_mem(void)
416 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
419 static inline void free_devinfo_mem(void *vaddr)
421 kmem_cache_free(iommu_devinfo_cache, vaddr);
424 struct iova *alloc_iova_mem(void)
426 return iommu_kmem_cache_alloc(iommu_iova_cache);
429 void free_iova_mem(struct iova *iova)
431 kmem_cache_free(iommu_iova_cache, iova);
435 static inline int width_to_agaw(int width);
437 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
439 unsigned long sagaw;
440 int agaw = -1;
442 sagaw = cap_sagaw(iommu->cap);
443 for (agaw = width_to_agaw(max_gaw);
444 agaw >= 0; agaw--) {
445 if (test_bit(agaw, &sagaw))
446 break;
449 return agaw;
453 * Calculate max SAGAW for each iommu.
455 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
457 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
461 * calculate agaw for each iommu.
462 * "SAGAW" may be different across iommus, use a default agaw, and
463 * get a supported less agaw for iommus that don't support the default agaw.
465 int iommu_calculate_agaw(struct intel_iommu *iommu)
467 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
470 /* This functionin only returns single iommu in a domain */
471 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
473 int iommu_id;
475 /* si_domain and vm domain should not get here. */
476 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
477 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
479 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
480 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
481 return NULL;
483 return g_iommus[iommu_id];
486 static void domain_update_iommu_coherency(struct dmar_domain *domain)
488 int i;
490 domain->iommu_coherency = 1;
492 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
493 for (; i < g_num_of_iommus; ) {
494 if (!ecap_coherent(g_iommus[i]->ecap)) {
495 domain->iommu_coherency = 0;
496 break;
498 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
502 static void domain_update_iommu_snooping(struct dmar_domain *domain)
504 int i;
506 domain->iommu_snooping = 1;
508 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
509 for (; i < g_num_of_iommus; ) {
510 if (!ecap_sc_support(g_iommus[i]->ecap)) {
511 domain->iommu_snooping = 0;
512 break;
514 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
518 /* Some capabilities may be different across iommus */
519 static void domain_update_iommu_cap(struct dmar_domain *domain)
521 domain_update_iommu_coherency(domain);
522 domain_update_iommu_snooping(domain);
525 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
527 struct dmar_drhd_unit *drhd = NULL;
528 int i;
530 for_each_drhd_unit(drhd) {
531 if (drhd->ignored)
532 continue;
533 if (segment != drhd->segment)
534 continue;
536 for (i = 0; i < drhd->devices_cnt; i++) {
537 if (drhd->devices[i] &&
538 drhd->devices[i]->bus->number == bus &&
539 drhd->devices[i]->devfn == devfn)
540 return drhd->iommu;
541 if (drhd->devices[i] &&
542 drhd->devices[i]->subordinate &&
543 drhd->devices[i]->subordinate->number <= bus &&
544 drhd->devices[i]->subordinate->subordinate >= bus)
545 return drhd->iommu;
548 if (drhd->include_all)
549 return drhd->iommu;
552 return NULL;
555 static void domain_flush_cache(struct dmar_domain *domain,
556 void *addr, int size)
558 if (!domain->iommu_coherency)
559 clflush_cache_range(addr, size);
562 /* Gets context entry for a given bus and devfn */
563 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
564 u8 bus, u8 devfn)
566 struct root_entry *root;
567 struct context_entry *context;
568 unsigned long phy_addr;
569 unsigned long flags;
571 spin_lock_irqsave(&iommu->lock, flags);
572 root = &iommu->root_entry[bus];
573 context = get_context_addr_from_root(root);
574 if (!context) {
575 context = (struct context_entry *)alloc_pgtable_page();
576 if (!context) {
577 spin_unlock_irqrestore(&iommu->lock, flags);
578 return NULL;
580 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
581 phy_addr = virt_to_phys((void *)context);
582 set_root_value(root, phy_addr);
583 set_root_present(root);
584 __iommu_flush_cache(iommu, root, sizeof(*root));
586 spin_unlock_irqrestore(&iommu->lock, flags);
587 return &context[devfn];
590 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
592 struct root_entry *root;
593 struct context_entry *context;
594 int ret;
595 unsigned long flags;
597 spin_lock_irqsave(&iommu->lock, flags);
598 root = &iommu->root_entry[bus];
599 context = get_context_addr_from_root(root);
600 if (!context) {
601 ret = 0;
602 goto out;
604 ret = context_present(&context[devfn]);
605 out:
606 spin_unlock_irqrestore(&iommu->lock, flags);
607 return ret;
610 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
612 struct root_entry *root;
613 struct context_entry *context;
614 unsigned long flags;
616 spin_lock_irqsave(&iommu->lock, flags);
617 root = &iommu->root_entry[bus];
618 context = get_context_addr_from_root(root);
619 if (context) {
620 context_clear_entry(&context[devfn]);
621 __iommu_flush_cache(iommu, &context[devfn], \
622 sizeof(*context));
624 spin_unlock_irqrestore(&iommu->lock, flags);
627 static void free_context_table(struct intel_iommu *iommu)
629 struct root_entry *root;
630 int i;
631 unsigned long flags;
632 struct context_entry *context;
634 spin_lock_irqsave(&iommu->lock, flags);
635 if (!iommu->root_entry) {
636 goto out;
638 for (i = 0; i < ROOT_ENTRY_NR; i++) {
639 root = &iommu->root_entry[i];
640 context = get_context_addr_from_root(root);
641 if (context)
642 free_pgtable_page(context);
644 free_pgtable_page(iommu->root_entry);
645 iommu->root_entry = NULL;
646 out:
647 spin_unlock_irqrestore(&iommu->lock, flags);
650 /* page table handling */
651 #define LEVEL_STRIDE (9)
652 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
654 static inline int agaw_to_level(int agaw)
656 return agaw + 2;
659 static inline int agaw_to_width(int agaw)
661 return 30 + agaw * LEVEL_STRIDE;
665 static inline int width_to_agaw(int width)
667 return (width - 30) / LEVEL_STRIDE;
670 static inline unsigned int level_to_offset_bits(int level)
672 return (level - 1) * LEVEL_STRIDE;
675 static inline int pfn_level_offset(unsigned long pfn, int level)
677 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
680 static inline unsigned long level_mask(int level)
682 return -1UL << level_to_offset_bits(level);
685 static inline unsigned long level_size(int level)
687 return 1UL << level_to_offset_bits(level);
690 static inline unsigned long align_to_level(unsigned long pfn, int level)
692 return (pfn + level_size(level) - 1) & level_mask(level);
695 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
696 unsigned long pfn)
698 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
699 struct dma_pte *parent, *pte = NULL;
700 int level = agaw_to_level(domain->agaw);
701 int offset;
702 unsigned long flags;
704 BUG_ON(!domain->pgd);
705 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
706 parent = domain->pgd;
708 spin_lock_irqsave(&domain->mapping_lock, flags);
709 while (level > 0) {
710 void *tmp_page;
712 offset = pfn_level_offset(pfn, level);
713 pte = &parent[offset];
714 if (level == 1)
715 break;
717 if (!dma_pte_present(pte)) {
718 tmp_page = alloc_pgtable_page();
720 if (!tmp_page) {
721 spin_unlock_irqrestore(&domain->mapping_lock,
722 flags);
723 return NULL;
725 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
726 dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
728 * high level table always sets r/w, last level page
729 * table control read/write
731 dma_set_pte_readable(pte);
732 dma_set_pte_writable(pte);
733 domain_flush_cache(domain, pte, sizeof(*pte));
735 parent = phys_to_virt(dma_pte_addr(pte));
736 level--;
739 spin_unlock_irqrestore(&domain->mapping_lock, flags);
740 return pte;
743 /* return address's pte at specific level */
744 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
745 unsigned long pfn,
746 int level)
748 struct dma_pte *parent, *pte = NULL;
749 int total = agaw_to_level(domain->agaw);
750 int offset;
752 parent = domain->pgd;
753 while (level <= total) {
754 offset = pfn_level_offset(pfn, total);
755 pte = &parent[offset];
756 if (level == total)
757 return pte;
759 if (!dma_pte_present(pte))
760 break;
761 parent = phys_to_virt(dma_pte_addr(pte));
762 total--;
764 return NULL;
767 /* clear one page's page table */
768 static void dma_pte_clear_one(struct dmar_domain *domain, unsigned long pfn)
770 struct dma_pte *pte = NULL;
772 /* get last level pte */
773 pte = dma_pfn_level_pte(domain, pfn, 1);
775 if (pte) {
776 dma_clear_pte(pte);
777 domain_flush_cache(domain, pte, sizeof(*pte));
781 /* clear last level pte, a tlb flush should be followed */
782 static void dma_pte_clear_range(struct dmar_domain *domain,
783 unsigned long start_pfn,
784 unsigned long last_pfn)
786 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
788 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
789 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
791 /* we don't need lock here; nobody else touches the iova range */
792 while (start_pfn <= last_pfn) {
793 dma_pte_clear_one(domain, start_pfn);
794 start_pfn++;
798 /* free page table pages. last level pte should already be cleared */
799 static void dma_pte_free_pagetable(struct dmar_domain *domain,
800 unsigned long start_pfn,
801 unsigned long last_pfn)
803 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
804 struct dma_pte *pte;
805 int total = agaw_to_level(domain->agaw);
806 int level;
807 unsigned long tmp;
809 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
810 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
812 /* we don't need lock here, nobody else touches the iova range */
813 level = 2;
814 while (level <= total) {
815 tmp = align_to_level(start_pfn, level);
817 /* Only clear this pte/pmd if we're asked to clear its
818 _whole_ range */
819 if (tmp + level_size(level) - 1 > last_pfn)
820 return;
822 while (tmp <= last_pfn) {
823 pte = dma_pfn_level_pte(domain, tmp, level);
824 if (pte) {
825 free_pgtable_page(
826 phys_to_virt(dma_pte_addr(pte)));
827 dma_clear_pte(pte);
828 domain_flush_cache(domain, pte, sizeof(*pte));
830 tmp += level_size(level);
832 level++;
834 /* free pgd */
835 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
836 free_pgtable_page(domain->pgd);
837 domain->pgd = NULL;
841 /* iommu handling */
842 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
844 struct root_entry *root;
845 unsigned long flags;
847 root = (struct root_entry *)alloc_pgtable_page();
848 if (!root)
849 return -ENOMEM;
851 __iommu_flush_cache(iommu, root, ROOT_SIZE);
853 spin_lock_irqsave(&iommu->lock, flags);
854 iommu->root_entry = root;
855 spin_unlock_irqrestore(&iommu->lock, flags);
857 return 0;
860 static void iommu_set_root_entry(struct intel_iommu *iommu)
862 void *addr;
863 u32 sts;
864 unsigned long flag;
866 addr = iommu->root_entry;
868 spin_lock_irqsave(&iommu->register_lock, flag);
869 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
871 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
873 /* Make sure hardware complete it */
874 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
875 readl, (sts & DMA_GSTS_RTPS), sts);
877 spin_unlock_irqrestore(&iommu->register_lock, flag);
880 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
882 u32 val;
883 unsigned long flag;
885 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
886 return;
888 spin_lock_irqsave(&iommu->register_lock, flag);
889 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
891 /* Make sure hardware complete it */
892 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
893 readl, (!(val & DMA_GSTS_WBFS)), val);
895 spin_unlock_irqrestore(&iommu->register_lock, flag);
898 /* return value determine if we need a write buffer flush */
899 static void __iommu_flush_context(struct intel_iommu *iommu,
900 u16 did, u16 source_id, u8 function_mask,
901 u64 type)
903 u64 val = 0;
904 unsigned long flag;
906 switch (type) {
907 case DMA_CCMD_GLOBAL_INVL:
908 val = DMA_CCMD_GLOBAL_INVL;
909 break;
910 case DMA_CCMD_DOMAIN_INVL:
911 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
912 break;
913 case DMA_CCMD_DEVICE_INVL:
914 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
915 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
916 break;
917 default:
918 BUG();
920 val |= DMA_CCMD_ICC;
922 spin_lock_irqsave(&iommu->register_lock, flag);
923 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
925 /* Make sure hardware complete it */
926 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
927 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
929 spin_unlock_irqrestore(&iommu->register_lock, flag);
932 /* return value determine if we need a write buffer flush */
933 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
934 u64 addr, unsigned int size_order, u64 type)
936 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
937 u64 val = 0, val_iva = 0;
938 unsigned long flag;
940 switch (type) {
941 case DMA_TLB_GLOBAL_FLUSH:
942 /* global flush doesn't need set IVA_REG */
943 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
944 break;
945 case DMA_TLB_DSI_FLUSH:
946 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
947 break;
948 case DMA_TLB_PSI_FLUSH:
949 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
950 /* Note: always flush non-leaf currently */
951 val_iva = size_order | addr;
952 break;
953 default:
954 BUG();
956 /* Note: set drain read/write */
957 #if 0
959 * This is probably to be super secure.. Looks like we can
960 * ignore it without any impact.
962 if (cap_read_drain(iommu->cap))
963 val |= DMA_TLB_READ_DRAIN;
964 #endif
965 if (cap_write_drain(iommu->cap))
966 val |= DMA_TLB_WRITE_DRAIN;
968 spin_lock_irqsave(&iommu->register_lock, flag);
969 /* Note: Only uses first TLB reg currently */
970 if (val_iva)
971 dmar_writeq(iommu->reg + tlb_offset, val_iva);
972 dmar_writeq(iommu->reg + tlb_offset + 8, val);
974 /* Make sure hardware complete it */
975 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
976 dmar_readq, (!(val & DMA_TLB_IVT)), val);
978 spin_unlock_irqrestore(&iommu->register_lock, flag);
980 /* check IOTLB invalidation granularity */
981 if (DMA_TLB_IAIG(val) == 0)
982 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
983 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
984 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
985 (unsigned long long)DMA_TLB_IIRG(type),
986 (unsigned long long)DMA_TLB_IAIG(val));
989 static struct device_domain_info *iommu_support_dev_iotlb(
990 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
992 int found = 0;
993 unsigned long flags;
994 struct device_domain_info *info;
995 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
997 if (!ecap_dev_iotlb_support(iommu->ecap))
998 return NULL;
1000 if (!iommu->qi)
1001 return NULL;
1003 spin_lock_irqsave(&device_domain_lock, flags);
1004 list_for_each_entry(info, &domain->devices, link)
1005 if (info->bus == bus && info->devfn == devfn) {
1006 found = 1;
1007 break;
1009 spin_unlock_irqrestore(&device_domain_lock, flags);
1011 if (!found || !info->dev)
1012 return NULL;
1014 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1015 return NULL;
1017 if (!dmar_find_matched_atsr_unit(info->dev))
1018 return NULL;
1020 info->iommu = iommu;
1022 return info;
1025 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1027 if (!info)
1028 return;
1030 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1033 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1035 if (!info->dev || !pci_ats_enabled(info->dev))
1036 return;
1038 pci_disable_ats(info->dev);
1041 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1042 u64 addr, unsigned mask)
1044 u16 sid, qdep;
1045 unsigned long flags;
1046 struct device_domain_info *info;
1048 spin_lock_irqsave(&device_domain_lock, flags);
1049 list_for_each_entry(info, &domain->devices, link) {
1050 if (!info->dev || !pci_ats_enabled(info->dev))
1051 continue;
1053 sid = info->bus << 8 | info->devfn;
1054 qdep = pci_ats_queue_depth(info->dev);
1055 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1057 spin_unlock_irqrestore(&device_domain_lock, flags);
1060 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1061 u64 addr, unsigned int pages)
1063 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1065 BUG_ON(addr & (~VTD_PAGE_MASK));
1066 BUG_ON(pages == 0);
1069 * Fallback to domain selective flush if no PSI support or the size is
1070 * too big.
1071 * PSI requires page size to be 2 ^ x, and the base address is naturally
1072 * aligned to the size
1074 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1075 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1076 DMA_TLB_DSI_FLUSH);
1077 else
1078 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1079 DMA_TLB_PSI_FLUSH);
1082 * In caching mode, domain ID 0 is reserved for non-present to present
1083 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1085 if (!cap_caching_mode(iommu->cap) || did)
1086 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1089 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1091 u32 pmen;
1092 unsigned long flags;
1094 spin_lock_irqsave(&iommu->register_lock, flags);
1095 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1096 pmen &= ~DMA_PMEN_EPM;
1097 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1099 /* wait for the protected region status bit to clear */
1100 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1101 readl, !(pmen & DMA_PMEN_PRS), pmen);
1103 spin_unlock_irqrestore(&iommu->register_lock, flags);
1106 static int iommu_enable_translation(struct intel_iommu *iommu)
1108 u32 sts;
1109 unsigned long flags;
1111 spin_lock_irqsave(&iommu->register_lock, flags);
1112 iommu->gcmd |= DMA_GCMD_TE;
1113 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1115 /* Make sure hardware complete it */
1116 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1117 readl, (sts & DMA_GSTS_TES), sts);
1119 spin_unlock_irqrestore(&iommu->register_lock, flags);
1120 return 0;
1123 static int iommu_disable_translation(struct intel_iommu *iommu)
1125 u32 sts;
1126 unsigned long flag;
1128 spin_lock_irqsave(&iommu->register_lock, flag);
1129 iommu->gcmd &= ~DMA_GCMD_TE;
1130 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1132 /* Make sure hardware complete it */
1133 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1134 readl, (!(sts & DMA_GSTS_TES)), sts);
1136 spin_unlock_irqrestore(&iommu->register_lock, flag);
1137 return 0;
1141 static int iommu_init_domains(struct intel_iommu *iommu)
1143 unsigned long ndomains;
1144 unsigned long nlongs;
1146 ndomains = cap_ndoms(iommu->cap);
1147 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1148 nlongs = BITS_TO_LONGS(ndomains);
1150 /* TBD: there might be 64K domains,
1151 * consider other allocation for future chip
1153 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1154 if (!iommu->domain_ids) {
1155 printk(KERN_ERR "Allocating domain id array failed\n");
1156 return -ENOMEM;
1158 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1159 GFP_KERNEL);
1160 if (!iommu->domains) {
1161 printk(KERN_ERR "Allocating domain array failed\n");
1162 kfree(iommu->domain_ids);
1163 return -ENOMEM;
1166 spin_lock_init(&iommu->lock);
1169 * if Caching mode is set, then invalid translations are tagged
1170 * with domainid 0. Hence we need to pre-allocate it.
1172 if (cap_caching_mode(iommu->cap))
1173 set_bit(0, iommu->domain_ids);
1174 return 0;
1178 static void domain_exit(struct dmar_domain *domain);
1179 static void vm_domain_exit(struct dmar_domain *domain);
1181 void free_dmar_iommu(struct intel_iommu *iommu)
1183 struct dmar_domain *domain;
1184 int i;
1185 unsigned long flags;
1187 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1188 for (; i < cap_ndoms(iommu->cap); ) {
1189 domain = iommu->domains[i];
1190 clear_bit(i, iommu->domain_ids);
1192 spin_lock_irqsave(&domain->iommu_lock, flags);
1193 if (--domain->iommu_count == 0) {
1194 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1195 vm_domain_exit(domain);
1196 else
1197 domain_exit(domain);
1199 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1201 i = find_next_bit(iommu->domain_ids,
1202 cap_ndoms(iommu->cap), i+1);
1205 if (iommu->gcmd & DMA_GCMD_TE)
1206 iommu_disable_translation(iommu);
1208 if (iommu->irq) {
1209 set_irq_data(iommu->irq, NULL);
1210 /* This will mask the irq */
1211 free_irq(iommu->irq, iommu);
1212 destroy_irq(iommu->irq);
1215 kfree(iommu->domains);
1216 kfree(iommu->domain_ids);
1218 g_iommus[iommu->seq_id] = NULL;
1220 /* if all iommus are freed, free g_iommus */
1221 for (i = 0; i < g_num_of_iommus; i++) {
1222 if (g_iommus[i])
1223 break;
1226 if (i == g_num_of_iommus)
1227 kfree(g_iommus);
1229 /* free context mapping */
1230 free_context_table(iommu);
1233 static struct dmar_domain *alloc_domain(void)
1235 struct dmar_domain *domain;
1237 domain = alloc_domain_mem();
1238 if (!domain)
1239 return NULL;
1241 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1242 domain->flags = 0;
1244 return domain;
1247 static int iommu_attach_domain(struct dmar_domain *domain,
1248 struct intel_iommu *iommu)
1250 int num;
1251 unsigned long ndomains;
1252 unsigned long flags;
1254 ndomains = cap_ndoms(iommu->cap);
1256 spin_lock_irqsave(&iommu->lock, flags);
1258 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1259 if (num >= ndomains) {
1260 spin_unlock_irqrestore(&iommu->lock, flags);
1261 printk(KERN_ERR "IOMMU: no free domain ids\n");
1262 return -ENOMEM;
1265 domain->id = num;
1266 set_bit(num, iommu->domain_ids);
1267 set_bit(iommu->seq_id, &domain->iommu_bmp);
1268 iommu->domains[num] = domain;
1269 spin_unlock_irqrestore(&iommu->lock, flags);
1271 return 0;
1274 static void iommu_detach_domain(struct dmar_domain *domain,
1275 struct intel_iommu *iommu)
1277 unsigned long flags;
1278 int num, ndomains;
1279 int found = 0;
1281 spin_lock_irqsave(&iommu->lock, flags);
1282 ndomains = cap_ndoms(iommu->cap);
1283 num = find_first_bit(iommu->domain_ids, ndomains);
1284 for (; num < ndomains; ) {
1285 if (iommu->domains[num] == domain) {
1286 found = 1;
1287 break;
1289 num = find_next_bit(iommu->domain_ids,
1290 cap_ndoms(iommu->cap), num+1);
1293 if (found) {
1294 clear_bit(num, iommu->domain_ids);
1295 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1296 iommu->domains[num] = NULL;
1298 spin_unlock_irqrestore(&iommu->lock, flags);
1301 static struct iova_domain reserved_iova_list;
1302 static struct lock_class_key reserved_alloc_key;
1303 static struct lock_class_key reserved_rbtree_key;
1305 static void dmar_init_reserved_ranges(void)
1307 struct pci_dev *pdev = NULL;
1308 struct iova *iova;
1309 int i;
1310 u64 addr, size;
1312 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1314 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1315 &reserved_alloc_key);
1316 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1317 &reserved_rbtree_key);
1319 /* IOAPIC ranges shouldn't be accessed by DMA */
1320 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1321 IOVA_PFN(IOAPIC_RANGE_END));
1322 if (!iova)
1323 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1325 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1326 for_each_pci_dev(pdev) {
1327 struct resource *r;
1329 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1330 r = &pdev->resource[i];
1331 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1332 continue;
1333 addr = r->start;
1334 addr &= PHYSICAL_PAGE_MASK;
1335 size = r->end - addr;
1336 size = PAGE_ALIGN(size);
1337 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1338 IOVA_PFN(size + addr) - 1);
1339 if (!iova)
1340 printk(KERN_ERR "Reserve iova failed\n");
1346 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1348 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1351 static inline int guestwidth_to_adjustwidth(int gaw)
1353 int agaw;
1354 int r = (gaw - 12) % 9;
1356 if (r == 0)
1357 agaw = gaw;
1358 else
1359 agaw = gaw + 9 - r;
1360 if (agaw > 64)
1361 agaw = 64;
1362 return agaw;
1365 static int domain_init(struct dmar_domain *domain, int guest_width)
1367 struct intel_iommu *iommu;
1368 int adjust_width, agaw;
1369 unsigned long sagaw;
1371 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1372 spin_lock_init(&domain->mapping_lock);
1373 spin_lock_init(&domain->iommu_lock);
1375 domain_reserve_special_ranges(domain);
1377 /* calculate AGAW */
1378 iommu = domain_get_iommu(domain);
1379 if (guest_width > cap_mgaw(iommu->cap))
1380 guest_width = cap_mgaw(iommu->cap);
1381 domain->gaw = guest_width;
1382 adjust_width = guestwidth_to_adjustwidth(guest_width);
1383 agaw = width_to_agaw(adjust_width);
1384 sagaw = cap_sagaw(iommu->cap);
1385 if (!test_bit(agaw, &sagaw)) {
1386 /* hardware doesn't support it, choose a bigger one */
1387 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1388 agaw = find_next_bit(&sagaw, 5, agaw);
1389 if (agaw >= 5)
1390 return -ENODEV;
1392 domain->agaw = agaw;
1393 INIT_LIST_HEAD(&domain->devices);
1395 if (ecap_coherent(iommu->ecap))
1396 domain->iommu_coherency = 1;
1397 else
1398 domain->iommu_coherency = 0;
1400 if (ecap_sc_support(iommu->ecap))
1401 domain->iommu_snooping = 1;
1402 else
1403 domain->iommu_snooping = 0;
1405 domain->iommu_count = 1;
1407 /* always allocate the top pgd */
1408 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1409 if (!domain->pgd)
1410 return -ENOMEM;
1411 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1412 return 0;
1415 static void domain_exit(struct dmar_domain *domain)
1417 struct dmar_drhd_unit *drhd;
1418 struct intel_iommu *iommu;
1420 /* Domain 0 is reserved, so dont process it */
1421 if (!domain)
1422 return;
1424 domain_remove_dev_info(domain);
1425 /* destroy iovas */
1426 put_iova_domain(&domain->iovad);
1428 /* clear ptes */
1429 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1431 /* free page tables */
1432 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1434 for_each_active_iommu(iommu, drhd)
1435 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1436 iommu_detach_domain(domain, iommu);
1438 free_domain_mem(domain);
1441 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1442 u8 bus, u8 devfn, int translation)
1444 struct context_entry *context;
1445 unsigned long flags;
1446 struct intel_iommu *iommu;
1447 struct dma_pte *pgd;
1448 unsigned long num;
1449 unsigned long ndomains;
1450 int id;
1451 int agaw;
1452 struct device_domain_info *info = NULL;
1454 pr_debug("Set context mapping for %02x:%02x.%d\n",
1455 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1457 BUG_ON(!domain->pgd);
1458 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1459 translation != CONTEXT_TT_MULTI_LEVEL);
1461 iommu = device_to_iommu(segment, bus, devfn);
1462 if (!iommu)
1463 return -ENODEV;
1465 context = device_to_context_entry(iommu, bus, devfn);
1466 if (!context)
1467 return -ENOMEM;
1468 spin_lock_irqsave(&iommu->lock, flags);
1469 if (context_present(context)) {
1470 spin_unlock_irqrestore(&iommu->lock, flags);
1471 return 0;
1474 id = domain->id;
1475 pgd = domain->pgd;
1477 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1478 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1479 int found = 0;
1481 /* find an available domain id for this device in iommu */
1482 ndomains = cap_ndoms(iommu->cap);
1483 num = find_first_bit(iommu->domain_ids, ndomains);
1484 for (; num < ndomains; ) {
1485 if (iommu->domains[num] == domain) {
1486 id = num;
1487 found = 1;
1488 break;
1490 num = find_next_bit(iommu->domain_ids,
1491 cap_ndoms(iommu->cap), num+1);
1494 if (found == 0) {
1495 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1496 if (num >= ndomains) {
1497 spin_unlock_irqrestore(&iommu->lock, flags);
1498 printk(KERN_ERR "IOMMU: no free domain ids\n");
1499 return -EFAULT;
1502 set_bit(num, iommu->domain_ids);
1503 set_bit(iommu->seq_id, &domain->iommu_bmp);
1504 iommu->domains[num] = domain;
1505 id = num;
1508 /* Skip top levels of page tables for
1509 * iommu which has less agaw than default.
1511 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1512 pgd = phys_to_virt(dma_pte_addr(pgd));
1513 if (!dma_pte_present(pgd)) {
1514 spin_unlock_irqrestore(&iommu->lock, flags);
1515 return -ENOMEM;
1520 context_set_domain_id(context, id);
1522 if (translation != CONTEXT_TT_PASS_THROUGH) {
1523 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1524 translation = info ? CONTEXT_TT_DEV_IOTLB :
1525 CONTEXT_TT_MULTI_LEVEL;
1528 * In pass through mode, AW must be programmed to indicate the largest
1529 * AGAW value supported by hardware. And ASR is ignored by hardware.
1531 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1532 context_set_address_width(context, iommu->msagaw);
1533 else {
1534 context_set_address_root(context, virt_to_phys(pgd));
1535 context_set_address_width(context, iommu->agaw);
1538 context_set_translation_type(context, translation);
1539 context_set_fault_enable(context);
1540 context_set_present(context);
1541 domain_flush_cache(domain, context, sizeof(*context));
1544 * It's a non-present to present mapping. If hardware doesn't cache
1545 * non-present entry we only need to flush the write-buffer. If the
1546 * _does_ cache non-present entries, then it does so in the special
1547 * domain #0, which we have to flush:
1549 if (cap_caching_mode(iommu->cap)) {
1550 iommu->flush.flush_context(iommu, 0,
1551 (((u16)bus) << 8) | devfn,
1552 DMA_CCMD_MASK_NOBIT,
1553 DMA_CCMD_DEVICE_INVL);
1554 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1555 } else {
1556 iommu_flush_write_buffer(iommu);
1558 iommu_enable_dev_iotlb(info);
1559 spin_unlock_irqrestore(&iommu->lock, flags);
1561 spin_lock_irqsave(&domain->iommu_lock, flags);
1562 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1563 domain->iommu_count++;
1564 domain_update_iommu_cap(domain);
1566 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1567 return 0;
1570 static int
1571 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1572 int translation)
1574 int ret;
1575 struct pci_dev *tmp, *parent;
1577 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1578 pdev->bus->number, pdev->devfn,
1579 translation);
1580 if (ret)
1581 return ret;
1583 /* dependent device mapping */
1584 tmp = pci_find_upstream_pcie_bridge(pdev);
1585 if (!tmp)
1586 return 0;
1587 /* Secondary interface's bus number and devfn 0 */
1588 parent = pdev->bus->self;
1589 while (parent != tmp) {
1590 ret = domain_context_mapping_one(domain,
1591 pci_domain_nr(parent->bus),
1592 parent->bus->number,
1593 parent->devfn, translation);
1594 if (ret)
1595 return ret;
1596 parent = parent->bus->self;
1598 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1599 return domain_context_mapping_one(domain,
1600 pci_domain_nr(tmp->subordinate),
1601 tmp->subordinate->number, 0,
1602 translation);
1603 else /* this is a legacy PCI bridge */
1604 return domain_context_mapping_one(domain,
1605 pci_domain_nr(tmp->bus),
1606 tmp->bus->number,
1607 tmp->devfn,
1608 translation);
1611 static int domain_context_mapped(struct pci_dev *pdev)
1613 int ret;
1614 struct pci_dev *tmp, *parent;
1615 struct intel_iommu *iommu;
1617 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1618 pdev->devfn);
1619 if (!iommu)
1620 return -ENODEV;
1622 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1623 if (!ret)
1624 return ret;
1625 /* dependent device mapping */
1626 tmp = pci_find_upstream_pcie_bridge(pdev);
1627 if (!tmp)
1628 return ret;
1629 /* Secondary interface's bus number and devfn 0 */
1630 parent = pdev->bus->self;
1631 while (parent != tmp) {
1632 ret = device_context_mapped(iommu, parent->bus->number,
1633 parent->devfn);
1634 if (!ret)
1635 return ret;
1636 parent = parent->bus->self;
1638 if (tmp->is_pcie)
1639 return device_context_mapped(iommu, tmp->subordinate->number,
1641 else
1642 return device_context_mapped(iommu, tmp->bus->number,
1643 tmp->devfn);
1646 static int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1647 unsigned long phys_pfn, unsigned long nr_pages,
1648 int prot)
1650 struct dma_pte *pte;
1651 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1653 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1655 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1656 return -EINVAL;
1658 while (nr_pages--) {
1659 pte = pfn_to_dma_pte(domain, iov_pfn);
1660 if (!pte)
1661 return -ENOMEM;
1662 /* We don't need lock here, nobody else
1663 * touches the iova range
1665 BUG_ON(dma_pte_addr(pte));
1666 dma_set_pte_pfn(pte, phys_pfn);
1667 dma_set_pte_prot(pte, prot);
1668 if (prot & DMA_PTE_SNP)
1669 dma_set_pte_snp(pte);
1670 domain_flush_cache(domain, pte, sizeof(*pte));
1671 iov_pfn++;
1672 phys_pfn++;
1674 return 0;
1677 static int domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1678 u64 hpa, size_t size, int prot)
1680 unsigned long first_pfn = hpa >> VTD_PAGE_SHIFT;
1681 unsigned long last_pfn = (hpa + size - 1) >> VTD_PAGE_SHIFT;
1683 return domain_pfn_mapping(domain, iova >> VTD_PAGE_SHIFT, first_pfn,
1684 last_pfn - first_pfn + 1, prot);
1688 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1690 if (!iommu)
1691 return;
1693 clear_context_table(iommu, bus, devfn);
1694 iommu->flush.flush_context(iommu, 0, 0, 0,
1695 DMA_CCMD_GLOBAL_INVL);
1696 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1699 static void domain_remove_dev_info(struct dmar_domain *domain)
1701 struct device_domain_info *info;
1702 unsigned long flags;
1703 struct intel_iommu *iommu;
1705 spin_lock_irqsave(&device_domain_lock, flags);
1706 while (!list_empty(&domain->devices)) {
1707 info = list_entry(domain->devices.next,
1708 struct device_domain_info, link);
1709 list_del(&info->link);
1710 list_del(&info->global);
1711 if (info->dev)
1712 info->dev->dev.archdata.iommu = NULL;
1713 spin_unlock_irqrestore(&device_domain_lock, flags);
1715 iommu_disable_dev_iotlb(info);
1716 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1717 iommu_detach_dev(iommu, info->bus, info->devfn);
1718 free_devinfo_mem(info);
1720 spin_lock_irqsave(&device_domain_lock, flags);
1722 spin_unlock_irqrestore(&device_domain_lock, flags);
1726 * find_domain
1727 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1729 static struct dmar_domain *
1730 find_domain(struct pci_dev *pdev)
1732 struct device_domain_info *info;
1734 /* No lock here, assumes no domain exit in normal case */
1735 info = pdev->dev.archdata.iommu;
1736 if (info)
1737 return info->domain;
1738 return NULL;
1741 /* domain is initialized */
1742 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1744 struct dmar_domain *domain, *found = NULL;
1745 struct intel_iommu *iommu;
1746 struct dmar_drhd_unit *drhd;
1747 struct device_domain_info *info, *tmp;
1748 struct pci_dev *dev_tmp;
1749 unsigned long flags;
1750 int bus = 0, devfn = 0;
1751 int segment;
1752 int ret;
1754 domain = find_domain(pdev);
1755 if (domain)
1756 return domain;
1758 segment = pci_domain_nr(pdev->bus);
1760 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1761 if (dev_tmp) {
1762 if (dev_tmp->is_pcie) {
1763 bus = dev_tmp->subordinate->number;
1764 devfn = 0;
1765 } else {
1766 bus = dev_tmp->bus->number;
1767 devfn = dev_tmp->devfn;
1769 spin_lock_irqsave(&device_domain_lock, flags);
1770 list_for_each_entry(info, &device_domain_list, global) {
1771 if (info->segment == segment &&
1772 info->bus == bus && info->devfn == devfn) {
1773 found = info->domain;
1774 break;
1777 spin_unlock_irqrestore(&device_domain_lock, flags);
1778 /* pcie-pci bridge already has a domain, uses it */
1779 if (found) {
1780 domain = found;
1781 goto found_domain;
1785 domain = alloc_domain();
1786 if (!domain)
1787 goto error;
1789 /* Allocate new domain for the device */
1790 drhd = dmar_find_matched_drhd_unit(pdev);
1791 if (!drhd) {
1792 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1793 pci_name(pdev));
1794 return NULL;
1796 iommu = drhd->iommu;
1798 ret = iommu_attach_domain(domain, iommu);
1799 if (ret) {
1800 domain_exit(domain);
1801 goto error;
1804 if (domain_init(domain, gaw)) {
1805 domain_exit(domain);
1806 goto error;
1809 /* register pcie-to-pci device */
1810 if (dev_tmp) {
1811 info = alloc_devinfo_mem();
1812 if (!info) {
1813 domain_exit(domain);
1814 goto error;
1816 info->segment = segment;
1817 info->bus = bus;
1818 info->devfn = devfn;
1819 info->dev = NULL;
1820 info->domain = domain;
1821 /* This domain is shared by devices under p2p bridge */
1822 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1824 /* pcie-to-pci bridge already has a domain, uses it */
1825 found = NULL;
1826 spin_lock_irqsave(&device_domain_lock, flags);
1827 list_for_each_entry(tmp, &device_domain_list, global) {
1828 if (tmp->segment == segment &&
1829 tmp->bus == bus && tmp->devfn == devfn) {
1830 found = tmp->domain;
1831 break;
1834 if (found) {
1835 free_devinfo_mem(info);
1836 domain_exit(domain);
1837 domain = found;
1838 } else {
1839 list_add(&info->link, &domain->devices);
1840 list_add(&info->global, &device_domain_list);
1842 spin_unlock_irqrestore(&device_domain_lock, flags);
1845 found_domain:
1846 info = alloc_devinfo_mem();
1847 if (!info)
1848 goto error;
1849 info->segment = segment;
1850 info->bus = pdev->bus->number;
1851 info->devfn = pdev->devfn;
1852 info->dev = pdev;
1853 info->domain = domain;
1854 spin_lock_irqsave(&device_domain_lock, flags);
1855 /* somebody is fast */
1856 found = find_domain(pdev);
1857 if (found != NULL) {
1858 spin_unlock_irqrestore(&device_domain_lock, flags);
1859 if (found != domain) {
1860 domain_exit(domain);
1861 domain = found;
1863 free_devinfo_mem(info);
1864 return domain;
1866 list_add(&info->link, &domain->devices);
1867 list_add(&info->global, &device_domain_list);
1868 pdev->dev.archdata.iommu = info;
1869 spin_unlock_irqrestore(&device_domain_lock, flags);
1870 return domain;
1871 error:
1872 /* recheck it here, maybe others set it */
1873 return find_domain(pdev);
1876 static int iommu_identity_mapping;
1878 static int iommu_domain_identity_map(struct dmar_domain *domain,
1879 unsigned long long start,
1880 unsigned long long end)
1882 unsigned long size;
1883 unsigned long long base;
1885 /* The address might not be aligned */
1886 base = start & PAGE_MASK;
1887 size = end - base;
1888 size = PAGE_ALIGN(size);
1889 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1890 IOVA_PFN(base + size) - 1)) {
1891 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1892 return -ENOMEM;
1895 pr_debug("Mapping reserved region %lx@%llx for domain %d\n",
1896 size, base, domain->id);
1898 * RMRR range might have overlap with physical memory range,
1899 * clear it first
1901 dma_pte_clear_range(domain, base >> VTD_PAGE_SHIFT,
1902 (base + size - 1) >> VTD_PAGE_SHIFT);
1904 return domain_pfn_mapping(domain, base >> VTD_PAGE_SHIFT,
1905 base >> VTD_PAGE_SHIFT,
1906 size >> VTD_PAGE_SHIFT,
1907 DMA_PTE_READ|DMA_PTE_WRITE);
1910 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1911 unsigned long long start,
1912 unsigned long long end)
1914 struct dmar_domain *domain;
1915 int ret;
1917 printk(KERN_INFO
1918 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1919 pci_name(pdev), start, end);
1921 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1922 if (!domain)
1923 return -ENOMEM;
1925 ret = iommu_domain_identity_map(domain, start, end);
1926 if (ret)
1927 goto error;
1929 /* context entry init */
1930 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1931 if (ret)
1932 goto error;
1934 return 0;
1936 error:
1937 domain_exit(domain);
1938 return ret;
1941 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1942 struct pci_dev *pdev)
1944 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1945 return 0;
1946 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1947 rmrr->end_address + 1);
1950 #ifdef CONFIG_DMAR_FLOPPY_WA
1951 static inline void iommu_prepare_isa(void)
1953 struct pci_dev *pdev;
1954 int ret;
1956 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1957 if (!pdev)
1958 return;
1960 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1961 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1963 if (ret)
1964 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1965 "floppy might not work\n");
1968 #else
1969 static inline void iommu_prepare_isa(void)
1971 return;
1973 #endif /* !CONFIG_DMAR_FLPY_WA */
1975 /* Initialize each context entry as pass through.*/
1976 static int __init init_context_pass_through(void)
1978 struct pci_dev *pdev = NULL;
1979 struct dmar_domain *domain;
1980 int ret;
1982 for_each_pci_dev(pdev) {
1983 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1984 ret = domain_context_mapping(domain, pdev,
1985 CONTEXT_TT_PASS_THROUGH);
1986 if (ret)
1987 return ret;
1989 return 0;
1992 static int md_domain_init(struct dmar_domain *domain, int guest_width);
1994 static int __init si_domain_work_fn(unsigned long start_pfn,
1995 unsigned long end_pfn, void *datax)
1997 int *ret = datax;
1999 *ret = iommu_domain_identity_map(si_domain,
2000 (uint64_t)start_pfn << PAGE_SHIFT,
2001 (uint64_t)end_pfn << PAGE_SHIFT);
2002 return *ret;
2006 static int si_domain_init(void)
2008 struct dmar_drhd_unit *drhd;
2009 struct intel_iommu *iommu;
2010 int nid, ret = 0;
2012 si_domain = alloc_domain();
2013 if (!si_domain)
2014 return -EFAULT;
2016 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2018 for_each_active_iommu(iommu, drhd) {
2019 ret = iommu_attach_domain(si_domain, iommu);
2020 if (ret) {
2021 domain_exit(si_domain);
2022 return -EFAULT;
2026 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2027 domain_exit(si_domain);
2028 return -EFAULT;
2031 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2033 for_each_online_node(nid) {
2034 work_with_active_regions(nid, si_domain_work_fn, &ret);
2035 if (ret)
2036 return ret;
2039 return 0;
2042 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2043 struct pci_dev *pdev);
2044 static int identity_mapping(struct pci_dev *pdev)
2046 struct device_domain_info *info;
2048 if (likely(!iommu_identity_mapping))
2049 return 0;
2052 list_for_each_entry(info, &si_domain->devices, link)
2053 if (info->dev == pdev)
2054 return 1;
2055 return 0;
2058 static int domain_add_dev_info(struct dmar_domain *domain,
2059 struct pci_dev *pdev)
2061 struct device_domain_info *info;
2062 unsigned long flags;
2064 info = alloc_devinfo_mem();
2065 if (!info)
2066 return -ENOMEM;
2068 info->segment = pci_domain_nr(pdev->bus);
2069 info->bus = pdev->bus->number;
2070 info->devfn = pdev->devfn;
2071 info->dev = pdev;
2072 info->domain = domain;
2074 spin_lock_irqsave(&device_domain_lock, flags);
2075 list_add(&info->link, &domain->devices);
2076 list_add(&info->global, &device_domain_list);
2077 pdev->dev.archdata.iommu = info;
2078 spin_unlock_irqrestore(&device_domain_lock, flags);
2080 return 0;
2083 static int iommu_prepare_static_identity_mapping(void)
2085 struct pci_dev *pdev = NULL;
2086 int ret;
2088 ret = si_domain_init();
2089 if (ret)
2090 return -EFAULT;
2092 for_each_pci_dev(pdev) {
2093 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2094 pci_name(pdev));
2096 ret = domain_context_mapping(si_domain, pdev,
2097 CONTEXT_TT_MULTI_LEVEL);
2098 if (ret)
2099 return ret;
2100 ret = domain_add_dev_info(si_domain, pdev);
2101 if (ret)
2102 return ret;
2105 return 0;
2108 int __init init_dmars(void)
2110 struct dmar_drhd_unit *drhd;
2111 struct dmar_rmrr_unit *rmrr;
2112 struct pci_dev *pdev;
2113 struct intel_iommu *iommu;
2114 int i, ret;
2115 int pass_through = 1;
2118 * In case pass through can not be enabled, iommu tries to use identity
2119 * mapping.
2121 if (iommu_pass_through)
2122 iommu_identity_mapping = 1;
2125 * for each drhd
2126 * allocate root
2127 * initialize and program root entry to not present
2128 * endfor
2130 for_each_drhd_unit(drhd) {
2131 g_num_of_iommus++;
2133 * lock not needed as this is only incremented in the single
2134 * threaded kernel __init code path all other access are read
2135 * only
2139 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2140 GFP_KERNEL);
2141 if (!g_iommus) {
2142 printk(KERN_ERR "Allocating global iommu array failed\n");
2143 ret = -ENOMEM;
2144 goto error;
2147 deferred_flush = kzalloc(g_num_of_iommus *
2148 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2149 if (!deferred_flush) {
2150 kfree(g_iommus);
2151 ret = -ENOMEM;
2152 goto error;
2155 for_each_drhd_unit(drhd) {
2156 if (drhd->ignored)
2157 continue;
2159 iommu = drhd->iommu;
2160 g_iommus[iommu->seq_id] = iommu;
2162 ret = iommu_init_domains(iommu);
2163 if (ret)
2164 goto error;
2167 * TBD:
2168 * we could share the same root & context tables
2169 * amoung all IOMMU's. Need to Split it later.
2171 ret = iommu_alloc_root_entry(iommu);
2172 if (ret) {
2173 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2174 goto error;
2176 if (!ecap_pass_through(iommu->ecap))
2177 pass_through = 0;
2179 if (iommu_pass_through)
2180 if (!pass_through) {
2181 printk(KERN_INFO
2182 "Pass Through is not supported by hardware.\n");
2183 iommu_pass_through = 0;
2187 * Start from the sane iommu hardware state.
2189 for_each_drhd_unit(drhd) {
2190 if (drhd->ignored)
2191 continue;
2193 iommu = drhd->iommu;
2196 * If the queued invalidation is already initialized by us
2197 * (for example, while enabling interrupt-remapping) then
2198 * we got the things already rolling from a sane state.
2200 if (iommu->qi)
2201 continue;
2204 * Clear any previous faults.
2206 dmar_fault(-1, iommu);
2208 * Disable queued invalidation if supported and already enabled
2209 * before OS handover.
2211 dmar_disable_qi(iommu);
2214 for_each_drhd_unit(drhd) {
2215 if (drhd->ignored)
2216 continue;
2218 iommu = drhd->iommu;
2220 if (dmar_enable_qi(iommu)) {
2222 * Queued Invalidate not enabled, use Register Based
2223 * Invalidate
2225 iommu->flush.flush_context = __iommu_flush_context;
2226 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2227 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2228 "invalidation\n",
2229 (unsigned long long)drhd->reg_base_addr);
2230 } else {
2231 iommu->flush.flush_context = qi_flush_context;
2232 iommu->flush.flush_iotlb = qi_flush_iotlb;
2233 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2234 "invalidation\n",
2235 (unsigned long long)drhd->reg_base_addr);
2240 * If pass through is set and enabled, context entries of all pci
2241 * devices are intialized by pass through translation type.
2243 if (iommu_pass_through) {
2244 ret = init_context_pass_through();
2245 if (ret) {
2246 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2247 iommu_pass_through = 0;
2252 * If pass through is not set or not enabled, setup context entries for
2253 * identity mappings for rmrr, gfx, and isa and may fall back to static
2254 * identity mapping if iommu_identity_mapping is set.
2256 if (!iommu_pass_through) {
2257 if (iommu_identity_mapping)
2258 iommu_prepare_static_identity_mapping();
2260 * For each rmrr
2261 * for each dev attached to rmrr
2262 * do
2263 * locate drhd for dev, alloc domain for dev
2264 * allocate free domain
2265 * allocate page table entries for rmrr
2266 * if context not allocated for bus
2267 * allocate and init context
2268 * set present in root table for this bus
2269 * init context with domain, translation etc
2270 * endfor
2271 * endfor
2273 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2274 for_each_rmrr_units(rmrr) {
2275 for (i = 0; i < rmrr->devices_cnt; i++) {
2276 pdev = rmrr->devices[i];
2278 * some BIOS lists non-exist devices in DMAR
2279 * table.
2281 if (!pdev)
2282 continue;
2283 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2284 if (ret)
2285 printk(KERN_ERR
2286 "IOMMU: mapping reserved region failed\n");
2290 iommu_prepare_isa();
2294 * for each drhd
2295 * enable fault log
2296 * global invalidate context cache
2297 * global invalidate iotlb
2298 * enable translation
2300 for_each_drhd_unit(drhd) {
2301 if (drhd->ignored)
2302 continue;
2303 iommu = drhd->iommu;
2305 iommu_flush_write_buffer(iommu);
2307 ret = dmar_set_interrupt(iommu);
2308 if (ret)
2309 goto error;
2311 iommu_set_root_entry(iommu);
2313 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2314 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2315 iommu_disable_protect_mem_regions(iommu);
2317 ret = iommu_enable_translation(iommu);
2318 if (ret)
2319 goto error;
2322 return 0;
2323 error:
2324 for_each_drhd_unit(drhd) {
2325 if (drhd->ignored)
2326 continue;
2327 iommu = drhd->iommu;
2328 free_iommu(iommu);
2330 kfree(g_iommus);
2331 return ret;
2334 static inline u64 aligned_size(u64 host_addr, size_t size)
2336 u64 addr;
2337 addr = (host_addr & (~PAGE_MASK)) + size;
2338 return PAGE_ALIGN(addr);
2341 struct iova *
2342 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2344 struct iova *piova;
2346 /* Make sure it's in range */
2347 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2348 if (!size || (IOVA_START_ADDR + size > end))
2349 return NULL;
2351 piova = alloc_iova(&domain->iovad,
2352 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2353 return piova;
2356 static struct iova *
2357 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2358 size_t size, u64 dma_mask)
2360 struct pci_dev *pdev = to_pci_dev(dev);
2361 struct iova *iova = NULL;
2363 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2364 iova = iommu_alloc_iova(domain, size, dma_mask);
2365 else {
2367 * First try to allocate an io virtual address in
2368 * DMA_BIT_MASK(32) and if that fails then try allocating
2369 * from higher range
2371 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2372 if (!iova)
2373 iova = iommu_alloc_iova(domain, size, dma_mask);
2376 if (!iova) {
2377 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2378 return NULL;
2381 return iova;
2384 static struct dmar_domain *
2385 get_valid_domain_for_dev(struct pci_dev *pdev)
2387 struct dmar_domain *domain;
2388 int ret;
2390 domain = get_domain_for_dev(pdev,
2391 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2392 if (!domain) {
2393 printk(KERN_ERR
2394 "Allocating domain for %s failed", pci_name(pdev));
2395 return NULL;
2398 /* make sure context mapping is ok */
2399 if (unlikely(!domain_context_mapped(pdev))) {
2400 ret = domain_context_mapping(domain, pdev,
2401 CONTEXT_TT_MULTI_LEVEL);
2402 if (ret) {
2403 printk(KERN_ERR
2404 "Domain context map for %s failed",
2405 pci_name(pdev));
2406 return NULL;
2410 return domain;
2413 static int iommu_dummy(struct pci_dev *pdev)
2415 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2418 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2419 static int iommu_no_mapping(struct pci_dev *pdev)
2421 int found;
2423 if (!iommu_identity_mapping)
2424 return iommu_dummy(pdev);
2426 found = identity_mapping(pdev);
2427 if (found) {
2428 if (pdev->dma_mask > DMA_BIT_MASK(32))
2429 return 1;
2430 else {
2432 * 32 bit DMA is removed from si_domain and fall back
2433 * to non-identity mapping.
2435 domain_remove_one_dev_info(si_domain, pdev);
2436 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2437 pci_name(pdev));
2438 return 0;
2440 } else {
2442 * In case of a detached 64 bit DMA device from vm, the device
2443 * is put into si_domain for identity mapping.
2445 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2446 int ret;
2447 ret = domain_add_dev_info(si_domain, pdev);
2448 if (!ret) {
2449 printk(KERN_INFO "64bit %s uses identity mapping\n",
2450 pci_name(pdev));
2451 return 1;
2456 return iommu_dummy(pdev);
2459 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2460 size_t size, int dir, u64 dma_mask)
2462 struct pci_dev *pdev = to_pci_dev(hwdev);
2463 struct dmar_domain *domain;
2464 phys_addr_t start_paddr;
2465 struct iova *iova;
2466 int prot = 0;
2467 int ret;
2468 struct intel_iommu *iommu;
2470 BUG_ON(dir == DMA_NONE);
2472 if (iommu_no_mapping(pdev))
2473 return paddr;
2475 domain = get_valid_domain_for_dev(pdev);
2476 if (!domain)
2477 return 0;
2479 iommu = domain_get_iommu(domain);
2480 size = aligned_size((u64)paddr, size);
2482 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2483 if (!iova)
2484 goto error;
2486 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2489 * Check if DMAR supports zero-length reads on write only
2490 * mappings..
2492 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2493 !cap_zlr(iommu->cap))
2494 prot |= DMA_PTE_READ;
2495 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2496 prot |= DMA_PTE_WRITE;
2498 * paddr - (paddr + size) might be partial page, we should map the whole
2499 * page. Note: if two part of one page are separately mapped, we
2500 * might have two guest_addr mapping to the same host paddr, but this
2501 * is not a big problem
2503 ret = domain_page_mapping(domain, start_paddr,
2504 ((u64)paddr) & PHYSICAL_PAGE_MASK,
2505 size, prot);
2506 if (ret)
2507 goto error;
2509 /* it's a non-present to present mapping. Only flush if caching mode */
2510 if (cap_caching_mode(iommu->cap))
2511 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2512 size >> VTD_PAGE_SHIFT);
2513 else
2514 iommu_flush_write_buffer(iommu);
2516 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2518 error:
2519 if (iova)
2520 __free_iova(&domain->iovad, iova);
2521 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2522 pci_name(pdev), size, (unsigned long long)paddr, dir);
2523 return 0;
2526 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2527 unsigned long offset, size_t size,
2528 enum dma_data_direction dir,
2529 struct dma_attrs *attrs)
2531 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2532 dir, to_pci_dev(dev)->dma_mask);
2535 static void flush_unmaps(void)
2537 int i, j;
2539 timer_on = 0;
2541 /* just flush them all */
2542 for (i = 0; i < g_num_of_iommus; i++) {
2543 struct intel_iommu *iommu = g_iommus[i];
2544 if (!iommu)
2545 continue;
2547 if (!deferred_flush[i].next)
2548 continue;
2550 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2551 DMA_TLB_GLOBAL_FLUSH);
2552 for (j = 0; j < deferred_flush[i].next; j++) {
2553 unsigned long mask;
2554 struct iova *iova = deferred_flush[i].iova[j];
2556 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2557 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2558 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2559 iova->pfn_lo << PAGE_SHIFT, mask);
2560 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2562 deferred_flush[i].next = 0;
2565 list_size = 0;
2568 static void flush_unmaps_timeout(unsigned long data)
2570 unsigned long flags;
2572 spin_lock_irqsave(&async_umap_flush_lock, flags);
2573 flush_unmaps();
2574 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2577 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2579 unsigned long flags;
2580 int next, iommu_id;
2581 struct intel_iommu *iommu;
2583 spin_lock_irqsave(&async_umap_flush_lock, flags);
2584 if (list_size == HIGH_WATER_MARK)
2585 flush_unmaps();
2587 iommu = domain_get_iommu(dom);
2588 iommu_id = iommu->seq_id;
2590 next = deferred_flush[iommu_id].next;
2591 deferred_flush[iommu_id].domain[next] = dom;
2592 deferred_flush[iommu_id].iova[next] = iova;
2593 deferred_flush[iommu_id].next++;
2595 if (!timer_on) {
2596 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2597 timer_on = 1;
2599 list_size++;
2600 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2603 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2604 size_t size, enum dma_data_direction dir,
2605 struct dma_attrs *attrs)
2607 struct pci_dev *pdev = to_pci_dev(dev);
2608 struct dmar_domain *domain;
2609 unsigned long start_pfn, last_pfn;
2610 struct iova *iova;
2611 struct intel_iommu *iommu;
2613 if (iommu_no_mapping(pdev))
2614 return;
2616 domain = find_domain(pdev);
2617 BUG_ON(!domain);
2619 iommu = domain_get_iommu(domain);
2621 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2622 if (!iova)
2623 return;
2625 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2626 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2628 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2629 pci_name(pdev), start_pfn, last_pfn);
2631 /* clear the whole page */
2632 dma_pte_clear_range(domain, start_pfn, last_pfn);
2634 /* free page tables */
2635 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2637 if (intel_iommu_strict) {
2638 iommu_flush_iotlb_psi(iommu, domain->id,
2639 start_pfn << VTD_PAGE_SHIFT,
2640 last_pfn - start_pfn + 1);
2641 /* free iova */
2642 __free_iova(&domain->iovad, iova);
2643 } else {
2644 add_unmap(domain, iova);
2646 * queue up the release of the unmap to save the 1/6th of the
2647 * cpu used up by the iotlb flush operation...
2652 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2653 int dir)
2655 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2658 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2659 dma_addr_t *dma_handle, gfp_t flags)
2661 void *vaddr;
2662 int order;
2664 size = PAGE_ALIGN(size);
2665 order = get_order(size);
2666 flags &= ~(GFP_DMA | GFP_DMA32);
2668 vaddr = (void *)__get_free_pages(flags, order);
2669 if (!vaddr)
2670 return NULL;
2671 memset(vaddr, 0, size);
2673 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2674 DMA_BIDIRECTIONAL,
2675 hwdev->coherent_dma_mask);
2676 if (*dma_handle)
2677 return vaddr;
2678 free_pages((unsigned long)vaddr, order);
2679 return NULL;
2682 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2683 dma_addr_t dma_handle)
2685 int order;
2687 size = PAGE_ALIGN(size);
2688 order = get_order(size);
2690 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2691 free_pages((unsigned long)vaddr, order);
2694 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2695 int nelems, enum dma_data_direction dir,
2696 struct dma_attrs *attrs)
2698 struct pci_dev *pdev = to_pci_dev(hwdev);
2699 struct dmar_domain *domain;
2700 unsigned long start_pfn, last_pfn;
2701 struct iova *iova;
2702 struct intel_iommu *iommu;
2704 if (iommu_no_mapping(pdev))
2705 return;
2707 domain = find_domain(pdev);
2708 BUG_ON(!domain);
2710 iommu = domain_get_iommu(domain);
2712 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2713 if (!iova)
2714 return;
2716 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2717 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2719 /* clear the whole page */
2720 dma_pte_clear_range(domain, start_pfn, last_pfn);
2722 /* free page tables */
2723 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2725 iommu_flush_iotlb_psi(iommu, domain->id,
2726 start_pfn << VTD_PAGE_SHIFT,
2727 (last_pfn - start_pfn + 1));
2729 /* free iova */
2730 __free_iova(&domain->iovad, iova);
2733 static int intel_nontranslate_map_sg(struct device *hddev,
2734 struct scatterlist *sglist, int nelems, int dir)
2736 int i;
2737 struct scatterlist *sg;
2739 for_each_sg(sglist, sg, nelems, i) {
2740 BUG_ON(!sg_page(sg));
2741 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2742 sg->dma_length = sg->length;
2744 return nelems;
2747 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2748 enum dma_data_direction dir, struct dma_attrs *attrs)
2750 phys_addr_t addr;
2751 int i;
2752 struct pci_dev *pdev = to_pci_dev(hwdev);
2753 struct dmar_domain *domain;
2754 size_t size = 0;
2755 int prot = 0;
2756 size_t offset = 0;
2757 struct iova *iova = NULL;
2758 int ret;
2759 struct scatterlist *sg;
2760 unsigned long start_addr;
2761 struct intel_iommu *iommu;
2763 BUG_ON(dir == DMA_NONE);
2764 if (iommu_no_mapping(pdev))
2765 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2767 domain = get_valid_domain_for_dev(pdev);
2768 if (!domain)
2769 return 0;
2771 iommu = domain_get_iommu(domain);
2773 for_each_sg(sglist, sg, nelems, i) {
2774 addr = page_to_phys(sg_page(sg)) + sg->offset;
2775 size += aligned_size((u64)addr, sg->length);
2778 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2779 if (!iova) {
2780 sglist->dma_length = 0;
2781 return 0;
2785 * Check if DMAR supports zero-length reads on write only
2786 * mappings..
2788 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2789 !cap_zlr(iommu->cap))
2790 prot |= DMA_PTE_READ;
2791 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2792 prot |= DMA_PTE_WRITE;
2794 start_addr = iova->pfn_lo << PAGE_SHIFT;
2795 offset = 0;
2796 for_each_sg(sglist, sg, nelems, i) {
2797 addr = page_to_phys(sg_page(sg)) + sg->offset;
2798 size = aligned_size((u64)addr, sg->length);
2799 ret = domain_page_mapping(domain, start_addr + offset,
2800 ((u64)addr) & PHYSICAL_PAGE_MASK,
2801 size, prot);
2802 if (ret) {
2803 /* clear the page */
2804 dma_pte_clear_range(domain,
2805 start_addr >> VTD_PAGE_SHIFT,
2806 (start_addr + offset - 1) >> VTD_PAGE_SHIFT);
2807 /* free page tables */
2808 dma_pte_free_pagetable(domain, start_addr >> VTD_PAGE_SHIFT,
2809 (start_addr + offset - 1) >> VTD_PAGE_SHIFT);
2810 /* free iova */
2811 __free_iova(&domain->iovad, iova);
2812 return 0;
2814 sg->dma_address = start_addr + offset +
2815 ((u64)addr & (~PAGE_MASK));
2816 sg->dma_length = sg->length;
2817 offset += size;
2820 /* it's a non-present to present mapping. Only flush if caching mode */
2821 if (cap_caching_mode(iommu->cap))
2822 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2823 offset >> VTD_PAGE_SHIFT);
2824 else
2825 iommu_flush_write_buffer(iommu);
2827 return nelems;
2830 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2832 return !dma_addr;
2835 struct dma_map_ops intel_dma_ops = {
2836 .alloc_coherent = intel_alloc_coherent,
2837 .free_coherent = intel_free_coherent,
2838 .map_sg = intel_map_sg,
2839 .unmap_sg = intel_unmap_sg,
2840 .map_page = intel_map_page,
2841 .unmap_page = intel_unmap_page,
2842 .mapping_error = intel_mapping_error,
2845 static inline int iommu_domain_cache_init(void)
2847 int ret = 0;
2849 iommu_domain_cache = kmem_cache_create("iommu_domain",
2850 sizeof(struct dmar_domain),
2852 SLAB_HWCACHE_ALIGN,
2854 NULL);
2855 if (!iommu_domain_cache) {
2856 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2857 ret = -ENOMEM;
2860 return ret;
2863 static inline int iommu_devinfo_cache_init(void)
2865 int ret = 0;
2867 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2868 sizeof(struct device_domain_info),
2870 SLAB_HWCACHE_ALIGN,
2871 NULL);
2872 if (!iommu_devinfo_cache) {
2873 printk(KERN_ERR "Couldn't create devinfo cache\n");
2874 ret = -ENOMEM;
2877 return ret;
2880 static inline int iommu_iova_cache_init(void)
2882 int ret = 0;
2884 iommu_iova_cache = kmem_cache_create("iommu_iova",
2885 sizeof(struct iova),
2887 SLAB_HWCACHE_ALIGN,
2888 NULL);
2889 if (!iommu_iova_cache) {
2890 printk(KERN_ERR "Couldn't create iova cache\n");
2891 ret = -ENOMEM;
2894 return ret;
2897 static int __init iommu_init_mempool(void)
2899 int ret;
2900 ret = iommu_iova_cache_init();
2901 if (ret)
2902 return ret;
2904 ret = iommu_domain_cache_init();
2905 if (ret)
2906 goto domain_error;
2908 ret = iommu_devinfo_cache_init();
2909 if (!ret)
2910 return ret;
2912 kmem_cache_destroy(iommu_domain_cache);
2913 domain_error:
2914 kmem_cache_destroy(iommu_iova_cache);
2916 return -ENOMEM;
2919 static void __init iommu_exit_mempool(void)
2921 kmem_cache_destroy(iommu_devinfo_cache);
2922 kmem_cache_destroy(iommu_domain_cache);
2923 kmem_cache_destroy(iommu_iova_cache);
2927 static void __init init_no_remapping_devices(void)
2929 struct dmar_drhd_unit *drhd;
2931 for_each_drhd_unit(drhd) {
2932 if (!drhd->include_all) {
2933 int i;
2934 for (i = 0; i < drhd->devices_cnt; i++)
2935 if (drhd->devices[i] != NULL)
2936 break;
2937 /* ignore DMAR unit if no pci devices exist */
2938 if (i == drhd->devices_cnt)
2939 drhd->ignored = 1;
2943 if (dmar_map_gfx)
2944 return;
2946 for_each_drhd_unit(drhd) {
2947 int i;
2948 if (drhd->ignored || drhd->include_all)
2949 continue;
2951 for (i = 0; i < drhd->devices_cnt; i++)
2952 if (drhd->devices[i] &&
2953 !IS_GFX_DEVICE(drhd->devices[i]))
2954 break;
2956 if (i < drhd->devices_cnt)
2957 continue;
2959 /* bypass IOMMU if it is just for gfx devices */
2960 drhd->ignored = 1;
2961 for (i = 0; i < drhd->devices_cnt; i++) {
2962 if (!drhd->devices[i])
2963 continue;
2964 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2969 #ifdef CONFIG_SUSPEND
2970 static int init_iommu_hw(void)
2972 struct dmar_drhd_unit *drhd;
2973 struct intel_iommu *iommu = NULL;
2975 for_each_active_iommu(iommu, drhd)
2976 if (iommu->qi)
2977 dmar_reenable_qi(iommu);
2979 for_each_active_iommu(iommu, drhd) {
2980 iommu_flush_write_buffer(iommu);
2982 iommu_set_root_entry(iommu);
2984 iommu->flush.flush_context(iommu, 0, 0, 0,
2985 DMA_CCMD_GLOBAL_INVL);
2986 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2987 DMA_TLB_GLOBAL_FLUSH);
2988 iommu_disable_protect_mem_regions(iommu);
2989 iommu_enable_translation(iommu);
2992 return 0;
2995 static void iommu_flush_all(void)
2997 struct dmar_drhd_unit *drhd;
2998 struct intel_iommu *iommu;
3000 for_each_active_iommu(iommu, drhd) {
3001 iommu->flush.flush_context(iommu, 0, 0, 0,
3002 DMA_CCMD_GLOBAL_INVL);
3003 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3004 DMA_TLB_GLOBAL_FLUSH);
3008 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3010 struct dmar_drhd_unit *drhd;
3011 struct intel_iommu *iommu = NULL;
3012 unsigned long flag;
3014 for_each_active_iommu(iommu, drhd) {
3015 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3016 GFP_ATOMIC);
3017 if (!iommu->iommu_state)
3018 goto nomem;
3021 iommu_flush_all();
3023 for_each_active_iommu(iommu, drhd) {
3024 iommu_disable_translation(iommu);
3026 spin_lock_irqsave(&iommu->register_lock, flag);
3028 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3029 readl(iommu->reg + DMAR_FECTL_REG);
3030 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3031 readl(iommu->reg + DMAR_FEDATA_REG);
3032 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3033 readl(iommu->reg + DMAR_FEADDR_REG);
3034 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3035 readl(iommu->reg + DMAR_FEUADDR_REG);
3037 spin_unlock_irqrestore(&iommu->register_lock, flag);
3039 return 0;
3041 nomem:
3042 for_each_active_iommu(iommu, drhd)
3043 kfree(iommu->iommu_state);
3045 return -ENOMEM;
3048 static int iommu_resume(struct sys_device *dev)
3050 struct dmar_drhd_unit *drhd;
3051 struct intel_iommu *iommu = NULL;
3052 unsigned long flag;
3054 if (init_iommu_hw()) {
3055 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3056 return -EIO;
3059 for_each_active_iommu(iommu, drhd) {
3061 spin_lock_irqsave(&iommu->register_lock, flag);
3063 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3064 iommu->reg + DMAR_FECTL_REG);
3065 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3066 iommu->reg + DMAR_FEDATA_REG);
3067 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3068 iommu->reg + DMAR_FEADDR_REG);
3069 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3070 iommu->reg + DMAR_FEUADDR_REG);
3072 spin_unlock_irqrestore(&iommu->register_lock, flag);
3075 for_each_active_iommu(iommu, drhd)
3076 kfree(iommu->iommu_state);
3078 return 0;
3081 static struct sysdev_class iommu_sysclass = {
3082 .name = "iommu",
3083 .resume = iommu_resume,
3084 .suspend = iommu_suspend,
3087 static struct sys_device device_iommu = {
3088 .cls = &iommu_sysclass,
3091 static int __init init_iommu_sysfs(void)
3093 int error;
3095 error = sysdev_class_register(&iommu_sysclass);
3096 if (error)
3097 return error;
3099 error = sysdev_register(&device_iommu);
3100 if (error)
3101 sysdev_class_unregister(&iommu_sysclass);
3103 return error;
3106 #else
3107 static int __init init_iommu_sysfs(void)
3109 return 0;
3111 #endif /* CONFIG_PM */
3113 int __init intel_iommu_init(void)
3115 int ret = 0;
3117 if (dmar_table_init())
3118 return -ENODEV;
3120 if (dmar_dev_scope_init())
3121 return -ENODEV;
3124 * Check the need for DMA-remapping initialization now.
3125 * Above initialization will also be used by Interrupt-remapping.
3127 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3128 return -ENODEV;
3130 iommu_init_mempool();
3131 dmar_init_reserved_ranges();
3133 init_no_remapping_devices();
3135 ret = init_dmars();
3136 if (ret) {
3137 printk(KERN_ERR "IOMMU: dmar init failed\n");
3138 put_iova_domain(&reserved_iova_list);
3139 iommu_exit_mempool();
3140 return ret;
3142 printk(KERN_INFO
3143 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3145 init_timer(&unmap_timer);
3146 force_iommu = 1;
3148 if (!iommu_pass_through) {
3149 printk(KERN_INFO
3150 "Multi-level page-table translation for DMAR.\n");
3151 dma_ops = &intel_dma_ops;
3152 } else
3153 printk(KERN_INFO
3154 "DMAR: Pass through translation for DMAR.\n");
3156 init_iommu_sysfs();
3158 register_iommu(&intel_iommu_ops);
3160 return 0;
3163 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3164 struct pci_dev *pdev)
3166 struct pci_dev *tmp, *parent;
3168 if (!iommu || !pdev)
3169 return;
3171 /* dependent device detach */
3172 tmp = pci_find_upstream_pcie_bridge(pdev);
3173 /* Secondary interface's bus number and devfn 0 */
3174 if (tmp) {
3175 parent = pdev->bus->self;
3176 while (parent != tmp) {
3177 iommu_detach_dev(iommu, parent->bus->number,
3178 parent->devfn);
3179 parent = parent->bus->self;
3181 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3182 iommu_detach_dev(iommu,
3183 tmp->subordinate->number, 0);
3184 else /* this is a legacy PCI bridge */
3185 iommu_detach_dev(iommu, tmp->bus->number,
3186 tmp->devfn);
3190 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3191 struct pci_dev *pdev)
3193 struct device_domain_info *info;
3194 struct intel_iommu *iommu;
3195 unsigned long flags;
3196 int found = 0;
3197 struct list_head *entry, *tmp;
3199 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3200 pdev->devfn);
3201 if (!iommu)
3202 return;
3204 spin_lock_irqsave(&device_domain_lock, flags);
3205 list_for_each_safe(entry, tmp, &domain->devices) {
3206 info = list_entry(entry, struct device_domain_info, link);
3207 /* No need to compare PCI domain; it has to be the same */
3208 if (info->bus == pdev->bus->number &&
3209 info->devfn == pdev->devfn) {
3210 list_del(&info->link);
3211 list_del(&info->global);
3212 if (info->dev)
3213 info->dev->dev.archdata.iommu = NULL;
3214 spin_unlock_irqrestore(&device_domain_lock, flags);
3216 iommu_disable_dev_iotlb(info);
3217 iommu_detach_dev(iommu, info->bus, info->devfn);
3218 iommu_detach_dependent_devices(iommu, pdev);
3219 free_devinfo_mem(info);
3221 spin_lock_irqsave(&device_domain_lock, flags);
3223 if (found)
3224 break;
3225 else
3226 continue;
3229 /* if there is no other devices under the same iommu
3230 * owned by this domain, clear this iommu in iommu_bmp
3231 * update iommu count and coherency
3233 if (iommu == device_to_iommu(info->segment, info->bus,
3234 info->devfn))
3235 found = 1;
3238 if (found == 0) {
3239 unsigned long tmp_flags;
3240 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3241 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3242 domain->iommu_count--;
3243 domain_update_iommu_cap(domain);
3244 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3247 spin_unlock_irqrestore(&device_domain_lock, flags);
3250 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3252 struct device_domain_info *info;
3253 struct intel_iommu *iommu;
3254 unsigned long flags1, flags2;
3256 spin_lock_irqsave(&device_domain_lock, flags1);
3257 while (!list_empty(&domain->devices)) {
3258 info = list_entry(domain->devices.next,
3259 struct device_domain_info, link);
3260 list_del(&info->link);
3261 list_del(&info->global);
3262 if (info->dev)
3263 info->dev->dev.archdata.iommu = NULL;
3265 spin_unlock_irqrestore(&device_domain_lock, flags1);
3267 iommu_disable_dev_iotlb(info);
3268 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3269 iommu_detach_dev(iommu, info->bus, info->devfn);
3270 iommu_detach_dependent_devices(iommu, info->dev);
3272 /* clear this iommu in iommu_bmp, update iommu count
3273 * and capabilities
3275 spin_lock_irqsave(&domain->iommu_lock, flags2);
3276 if (test_and_clear_bit(iommu->seq_id,
3277 &domain->iommu_bmp)) {
3278 domain->iommu_count--;
3279 domain_update_iommu_cap(domain);
3281 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3283 free_devinfo_mem(info);
3284 spin_lock_irqsave(&device_domain_lock, flags1);
3286 spin_unlock_irqrestore(&device_domain_lock, flags1);
3289 /* domain id for virtual machine, it won't be set in context */
3290 static unsigned long vm_domid;
3292 static int vm_domain_min_agaw(struct dmar_domain *domain)
3294 int i;
3295 int min_agaw = domain->agaw;
3297 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3298 for (; i < g_num_of_iommus; ) {
3299 if (min_agaw > g_iommus[i]->agaw)
3300 min_agaw = g_iommus[i]->agaw;
3302 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3305 return min_agaw;
3308 static struct dmar_domain *iommu_alloc_vm_domain(void)
3310 struct dmar_domain *domain;
3312 domain = alloc_domain_mem();
3313 if (!domain)
3314 return NULL;
3316 domain->id = vm_domid++;
3317 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3318 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3320 return domain;
3323 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3325 int adjust_width;
3327 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3328 spin_lock_init(&domain->mapping_lock);
3329 spin_lock_init(&domain->iommu_lock);
3331 domain_reserve_special_ranges(domain);
3333 /* calculate AGAW */
3334 domain->gaw = guest_width;
3335 adjust_width = guestwidth_to_adjustwidth(guest_width);
3336 domain->agaw = width_to_agaw(adjust_width);
3338 INIT_LIST_HEAD(&domain->devices);
3340 domain->iommu_count = 0;
3341 domain->iommu_coherency = 0;
3342 domain->max_addr = 0;
3344 /* always allocate the top pgd */
3345 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3346 if (!domain->pgd)
3347 return -ENOMEM;
3348 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3349 return 0;
3352 static void iommu_free_vm_domain(struct dmar_domain *domain)
3354 unsigned long flags;
3355 struct dmar_drhd_unit *drhd;
3356 struct intel_iommu *iommu;
3357 unsigned long i;
3358 unsigned long ndomains;
3360 for_each_drhd_unit(drhd) {
3361 if (drhd->ignored)
3362 continue;
3363 iommu = drhd->iommu;
3365 ndomains = cap_ndoms(iommu->cap);
3366 i = find_first_bit(iommu->domain_ids, ndomains);
3367 for (; i < ndomains; ) {
3368 if (iommu->domains[i] == domain) {
3369 spin_lock_irqsave(&iommu->lock, flags);
3370 clear_bit(i, iommu->domain_ids);
3371 iommu->domains[i] = NULL;
3372 spin_unlock_irqrestore(&iommu->lock, flags);
3373 break;
3375 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3380 static void vm_domain_exit(struct dmar_domain *domain)
3382 /* Domain 0 is reserved, so dont process it */
3383 if (!domain)
3384 return;
3386 vm_domain_remove_all_dev_info(domain);
3387 /* destroy iovas */
3388 put_iova_domain(&domain->iovad);
3390 /* clear ptes */
3391 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3393 /* free page tables */
3394 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3396 iommu_free_vm_domain(domain);
3397 free_domain_mem(domain);
3400 static int intel_iommu_domain_init(struct iommu_domain *domain)
3402 struct dmar_domain *dmar_domain;
3404 dmar_domain = iommu_alloc_vm_domain();
3405 if (!dmar_domain) {
3406 printk(KERN_ERR
3407 "intel_iommu_domain_init: dmar_domain == NULL\n");
3408 return -ENOMEM;
3410 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3411 printk(KERN_ERR
3412 "intel_iommu_domain_init() failed\n");
3413 vm_domain_exit(dmar_domain);
3414 return -ENOMEM;
3416 domain->priv = dmar_domain;
3418 return 0;
3421 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3423 struct dmar_domain *dmar_domain = domain->priv;
3425 domain->priv = NULL;
3426 vm_domain_exit(dmar_domain);
3429 static int intel_iommu_attach_device(struct iommu_domain *domain,
3430 struct device *dev)
3432 struct dmar_domain *dmar_domain = domain->priv;
3433 struct pci_dev *pdev = to_pci_dev(dev);
3434 struct intel_iommu *iommu;
3435 int addr_width;
3436 u64 end;
3437 int ret;
3439 /* normally pdev is not mapped */
3440 if (unlikely(domain_context_mapped(pdev))) {
3441 struct dmar_domain *old_domain;
3443 old_domain = find_domain(pdev);
3444 if (old_domain) {
3445 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3446 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3447 domain_remove_one_dev_info(old_domain, pdev);
3448 else
3449 domain_remove_dev_info(old_domain);
3453 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3454 pdev->devfn);
3455 if (!iommu)
3456 return -ENODEV;
3458 /* check if this iommu agaw is sufficient for max mapped address */
3459 addr_width = agaw_to_width(iommu->agaw);
3460 end = DOMAIN_MAX_ADDR(addr_width);
3461 end = end & VTD_PAGE_MASK;
3462 if (end < dmar_domain->max_addr) {
3463 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3464 "sufficient for the mapped address (%llx)\n",
3465 __func__, iommu->agaw, dmar_domain->max_addr);
3466 return -EFAULT;
3469 ret = domain_add_dev_info(dmar_domain, pdev);
3470 if (ret)
3471 return ret;
3473 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3474 return ret;
3477 static void intel_iommu_detach_device(struct iommu_domain *domain,
3478 struct device *dev)
3480 struct dmar_domain *dmar_domain = domain->priv;
3481 struct pci_dev *pdev = to_pci_dev(dev);
3483 domain_remove_one_dev_info(dmar_domain, pdev);
3486 static int intel_iommu_map_range(struct iommu_domain *domain,
3487 unsigned long iova, phys_addr_t hpa,
3488 size_t size, int iommu_prot)
3490 struct dmar_domain *dmar_domain = domain->priv;
3491 u64 max_addr;
3492 int addr_width;
3493 int prot = 0;
3494 int ret;
3496 if (iommu_prot & IOMMU_READ)
3497 prot |= DMA_PTE_READ;
3498 if (iommu_prot & IOMMU_WRITE)
3499 prot |= DMA_PTE_WRITE;
3500 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3501 prot |= DMA_PTE_SNP;
3503 max_addr = iova + size;
3504 if (dmar_domain->max_addr < max_addr) {
3505 int min_agaw;
3506 u64 end;
3508 /* check if minimum agaw is sufficient for mapped address */
3509 min_agaw = vm_domain_min_agaw(dmar_domain);
3510 addr_width = agaw_to_width(min_agaw);
3511 end = DOMAIN_MAX_ADDR(addr_width);
3512 end = end & VTD_PAGE_MASK;
3513 if (end < max_addr) {
3514 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3515 "sufficient for the mapped address (%llx)\n",
3516 __func__, min_agaw, max_addr);
3517 return -EFAULT;
3519 dmar_domain->max_addr = max_addr;
3522 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3523 return ret;
3526 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3527 unsigned long iova, size_t size)
3529 struct dmar_domain *dmar_domain = domain->priv;
3531 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3532 (iova + size - 1) >> VTD_PAGE_SHIFT);
3534 if (dmar_domain->max_addr == iova + size)
3535 dmar_domain->max_addr = iova;
3538 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3539 unsigned long iova)
3541 struct dmar_domain *dmar_domain = domain->priv;
3542 struct dma_pte *pte;
3543 u64 phys = 0;
3545 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3546 if (pte)
3547 phys = dma_pte_addr(pte);
3549 return phys;
3552 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3553 unsigned long cap)
3555 struct dmar_domain *dmar_domain = domain->priv;
3557 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3558 return dmar_domain->iommu_snooping;
3560 return 0;
3563 static struct iommu_ops intel_iommu_ops = {
3564 .domain_init = intel_iommu_domain_init,
3565 .domain_destroy = intel_iommu_domain_destroy,
3566 .attach_dev = intel_iommu_attach_device,
3567 .detach_dev = intel_iommu_detach_device,
3568 .map = intel_iommu_map_range,
3569 .unmap = intel_iommu_unmap_range,
3570 .iova_to_phys = intel_iommu_iova_to_phys,
3571 .domain_has_cap = intel_iommu_domain_has_cap,
3574 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3577 * Mobile 4 Series Chipset neglects to set RWBF capability,
3578 * but needs it:
3580 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3581 rwbf_quirk = 1;
3584 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);