[S390] Kconfig: use common Kconfig files for s390.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / video / vermilion / vermilion.c
blobde531c907718945e9e2fe14bd94098f4f3bd5765
1 /*
2 * Copyright (c) Intel Corp. 2007.
3 * All Rights Reserved.
5 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6 * develop this driver.
8 * This file is part of the Vermilion Range fb driver.
9 * The Vermilion Range fb driver is free software;
10 * you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * The Vermilion Range fb driver is distributed
16 * in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 * Authors:
26 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27 * Michel Dänzer <michel-at-tungstengraphics-dot-com>
28 * Alan Hourihane <alanh-at-tungstengraphics-dot-com>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/fb.h>
38 #include <linux/pci.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <linux/mmzone.h>
42 #include <asm/uaccess.h>
44 /* #define VERMILION_DEBUG */
46 #include "vermilion.h"
48 #define MODULE_NAME "vmlfb"
50 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
52 static struct mutex vml_mutex;
53 static struct list_head global_no_mode;
54 static struct list_head global_has_mode;
55 static struct fb_ops vmlfb_ops;
56 static struct vml_sys *subsys = NULL;
57 static char *vml_default_mode = "1024x768@60";
58 static struct fb_videomode defaultmode = {
59 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
60 0, FB_VMODE_NONINTERLACED
63 static u32 vml_mem_requested = (10 * 1024 * 1024);
64 static u32 vml_mem_contig = (4 * 1024 * 1024);
65 static u32 vml_mem_min = (4 * 1024 * 1024);
67 static u32 vml_clocks[] = {
68 6750,
69 13500,
70 27000,
71 29700,
72 37125,
73 54000,
74 59400,
75 74250,
76 120000,
77 148500
80 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
83 * Allocate a contiguous vram area and make its linear kernel map
84 * uncached.
87 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
88 unsigned min_order)
90 gfp_t flags;
91 unsigned long i;
92 pgprot_t wc_pageprot;
94 wc_pageprot = PAGE_KERNEL_NOCACHE;
95 max_order++;
96 do {
98 * Really try hard to get the needed memory.
99 * We need memory below the first 32MB, so we
100 * add the __GFP_DMA flag that guarantees that we are
101 * below the first 16MB.
104 flags = __GFP_DMA | __GFP_HIGH;
105 va->logical =
106 __get_free_pages(flags, --max_order);
107 } while (va->logical == 0 && max_order > min_order);
109 if (!va->logical)
110 return -ENOMEM;
112 va->phys = virt_to_phys((void *)va->logical);
113 va->size = PAGE_SIZE << max_order;
114 va->order = max_order;
117 * It seems like __get_free_pages only ups the usage count
118 * of the first page. This doesn't work with nopage mapping, so
119 * up the usage count once more.
122 memset((void *)va->logical, 0x00, va->size);
123 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
124 get_page(virt_to_page(i));
128 * Change caching policy of the linear kernel map to avoid
129 * mapping type conflicts with user-space mappings.
130 * The first global_flush_tlb() is really only there to do a global
131 * wbinvd().
134 global_flush_tlb();
135 change_page_attr(virt_to_page(va->logical), va->size >> PAGE_SHIFT,
136 wc_pageprot);
137 global_flush_tlb();
139 printk(KERN_DEBUG MODULE_NAME
140 ": Allocated %ld bytes vram area at 0x%08lx\n",
141 va->size, va->phys);
143 return 0;
147 * Free a contiguous vram area and reset its linear kernel map
148 * mapping type.
151 static void vmlfb_free_vram_area(struct vram_area *va)
153 unsigned long j;
155 if (va->logical) {
158 * Reset the linear kernel map caching policy.
161 change_page_attr(virt_to_page(va->logical),
162 va->size >> PAGE_SHIFT, PAGE_KERNEL);
163 global_flush_tlb();
166 * Decrease the usage count on the pages we've used
167 * to compensate for upping when allocating.
170 for (j = va->logical; j < va->logical + va->size;
171 j += PAGE_SIZE) {
172 (void)put_page_testzero(virt_to_page(j));
175 printk(KERN_DEBUG MODULE_NAME
176 ": Freeing %ld bytes vram area at 0x%08lx\n",
177 va->size, va->phys);
178 free_pages(va->logical, va->order);
180 va->logical = 0;
185 * Free allocated vram.
188 static void vmlfb_free_vram(struct vml_info *vinfo)
190 int i;
192 for (i = 0; i < vinfo->num_areas; ++i) {
193 vmlfb_free_vram_area(&vinfo->vram[i]);
195 vinfo->num_areas = 0;
199 * Allocate vram. Currently we try to allocate contiguous areas from the
200 * __GFP_DMA zone and puzzle them together. A better approach would be to
201 * allocate one contiguous area for scanout and use one-page allocations for
202 * offscreen areas. This requires user-space and GPU virtual mappings.
205 static int vmlfb_alloc_vram(struct vml_info *vinfo,
206 size_t requested,
207 size_t min_total, size_t min_contig)
209 int i, j;
210 int order;
211 int contiguous;
212 int err;
213 struct vram_area *va;
214 struct vram_area *va2;
216 vinfo->num_areas = 0;
217 for (i = 0; i < VML_VRAM_AREAS; ++i) {
218 va = &vinfo->vram[i];
219 order = 0;
221 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
222 order++;
224 err = vmlfb_alloc_vram_area(va, order, 0);
226 if (err)
227 break;
229 if (i == 0) {
230 vinfo->vram_start = va->phys;
231 vinfo->vram_logical = (void __iomem *) va->logical;
232 vinfo->vram_contig_size = va->size;
233 vinfo->num_areas = 1;
234 } else {
235 contiguous = 0;
237 for (j = 0; j < i; ++j) {
238 va2 = &vinfo->vram[j];
239 if (va->phys + va->size == va2->phys ||
240 va2->phys + va2->size == va->phys) {
241 contiguous = 1;
242 break;
246 if (contiguous) {
247 vinfo->num_areas++;
248 if (va->phys < vinfo->vram_start) {
249 vinfo->vram_start = va->phys;
250 vinfo->vram_logical =
251 (void __iomem *)va->logical;
253 vinfo->vram_contig_size += va->size;
254 } else {
255 vmlfb_free_vram_area(va);
256 break;
260 if (requested < va->size)
261 break;
262 else
263 requested -= va->size;
266 if (vinfo->vram_contig_size > min_total &&
267 vinfo->vram_contig_size > min_contig) {
269 printk(KERN_DEBUG MODULE_NAME
270 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
271 (unsigned long)vinfo->vram_contig_size,
272 (unsigned long)vinfo->vram_start);
274 return 0;
277 printk(KERN_ERR MODULE_NAME
278 ": Could not allocate requested minimal amount of vram.\n");
280 vmlfb_free_vram(vinfo);
282 return -ENOMEM;
286 * Find the GPU to use with our display controller.
289 static int vmlfb_get_gpu(struct vml_par *par)
291 mutex_lock(&vml_mutex);
293 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
295 if (!par->gpu) {
296 mutex_unlock(&vml_mutex);
297 return -ENODEV;
300 mutex_unlock(&vml_mutex);
302 if (pci_enable_device(par->gpu) < 0)
303 return -ENODEV;
305 return 0;
309 * Find a contiguous vram area that contains a given offset from vram start.
311 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
313 unsigned long aoffset;
314 unsigned i;
316 for (i = 0; i < vinfo->num_areas; ++i) {
317 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
319 if (aoffset < vinfo->vram[i].size) {
320 return 0;
324 return -EINVAL;
328 * Remap the MMIO register spaces of the VDC and the GPU.
331 static int vmlfb_enable_mmio(struct vml_par *par)
333 int err;
335 par->vdc_mem_base = pci_resource_start(par->vdc, 0);
336 par->vdc_mem_size = pci_resource_len(par->vdc, 0);
337 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
338 printk(KERN_ERR MODULE_NAME
339 ": Could not claim display controller MMIO.\n");
340 return -EBUSY;
342 par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
343 if (par->vdc_mem == NULL) {
344 printk(KERN_ERR MODULE_NAME
345 ": Could not map display controller MMIO.\n");
346 err = -ENOMEM;
347 goto out_err_0;
350 par->gpu_mem_base = pci_resource_start(par->gpu, 0);
351 par->gpu_mem_size = pci_resource_len(par->gpu, 0);
352 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
353 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
354 err = -EBUSY;
355 goto out_err_1;
357 par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
358 if (par->gpu_mem == NULL) {
359 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
360 err = -ENOMEM;
361 goto out_err_2;
364 return 0;
366 out_err_2:
367 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
368 out_err_1:
369 iounmap(par->vdc_mem);
370 out_err_0:
371 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
372 return err;
376 * Unmap the VDC and GPU register spaces.
379 static void vmlfb_disable_mmio(struct vml_par *par)
381 iounmap(par->gpu_mem);
382 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
383 iounmap(par->vdc_mem);
384 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
388 * Release and uninit the VDC and GPU.
391 static void vmlfb_release_devices(struct vml_par *par)
393 if (atomic_dec_and_test(&par->refcount)) {
394 pci_set_drvdata(par->vdc, NULL);
395 pci_disable_device(par->gpu);
396 pci_disable_device(par->vdc);
401 * Free up allocated resources for a device.
404 static void __devexit vml_pci_remove(struct pci_dev *dev)
406 struct fb_info *info;
407 struct vml_info *vinfo;
408 struct vml_par *par;
410 info = pci_get_drvdata(dev);
411 if (info) {
412 vinfo = container_of(info, struct vml_info, info);
413 par = vinfo->par;
414 mutex_lock(&vml_mutex);
415 unregister_framebuffer(info);
416 fb_dealloc_cmap(&info->cmap);
417 vmlfb_free_vram(vinfo);
418 vmlfb_disable_mmio(par);
419 vmlfb_release_devices(par);
420 kfree(vinfo);
421 kfree(par);
422 mutex_unlock(&vml_mutex);
426 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
428 switch (var->bits_per_pixel) {
429 case 16:
430 var->blue.offset = 0;
431 var->blue.length = 5;
432 var->green.offset = 5;
433 var->green.length = 5;
434 var->red.offset = 10;
435 var->red.length = 5;
436 var->transp.offset = 15;
437 var->transp.length = 1;
438 break;
439 case 32:
440 var->blue.offset = 0;
441 var->blue.length = 8;
442 var->green.offset = 8;
443 var->green.length = 8;
444 var->red.offset = 16;
445 var->red.length = 8;
446 var->transp.offset = 24;
447 var->transp.length = 0;
448 break;
449 default:
450 break;
453 var->blue.msb_right = var->green.msb_right =
454 var->red.msb_right = var->transp.msb_right = 0;
458 * Device initialization.
459 * We initialize one vml_par struct per device and one vml_info
460 * struct per pipe. Currently we have only one pipe.
463 static int __devinit vml_pci_probe(struct pci_dev *dev,
464 const struct pci_device_id *id)
466 struct vml_info *vinfo;
467 struct fb_info *info;
468 struct vml_par *par;
469 int err = 0;
471 par = kzalloc(sizeof(*par), GFP_KERNEL);
472 if (par == NULL)
473 return -ENOMEM;
475 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
476 if (vinfo == NULL) {
477 err = -ENOMEM;
478 goto out_err_0;
481 vinfo->par = par;
482 par->vdc = dev;
483 atomic_set(&par->refcount, 1);
485 switch (id->device) {
486 case VML_DEVICE_VDC:
487 if ((err = vmlfb_get_gpu(par)))
488 goto out_err_1;
489 pci_set_drvdata(dev, &vinfo->info);
490 break;
491 default:
492 err = -ENODEV;
493 goto out_err_1;
494 break;
497 info = &vinfo->info;
498 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
500 err = vmlfb_enable_mmio(par);
501 if (err)
502 goto out_err_2;
504 err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
505 vml_mem_contig, vml_mem_min);
506 if (err)
507 goto out_err_3;
509 strcpy(info->fix.id, "Vermilion Range");
510 info->fix.mmio_start = 0;
511 info->fix.mmio_len = 0;
512 info->fix.smem_start = vinfo->vram_start;
513 info->fix.smem_len = vinfo->vram_contig_size;
514 info->fix.type = FB_TYPE_PACKED_PIXELS;
515 info->fix.visual = FB_VISUAL_TRUECOLOR;
516 info->fix.ypanstep = 1;
517 info->fix.xpanstep = 1;
518 info->fix.ywrapstep = 0;
519 info->fix.accel = FB_ACCEL_NONE;
520 info->screen_base = vinfo->vram_logical;
521 info->pseudo_palette = vinfo->pseudo_palette;
522 info->par = par;
523 info->fbops = &vmlfb_ops;
524 info->device = &dev->dev;
526 INIT_LIST_HEAD(&vinfo->head);
527 vinfo->pipe_disabled = 1;
528 vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
530 info->var.grayscale = 0;
531 info->var.bits_per_pixel = 16;
532 vmlfb_set_pref_pixel_format(&info->var);
534 if (!fb_find_mode
535 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
536 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
539 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
540 err = -ENOMEM;
541 goto out_err_4;
544 err = register_framebuffer(info);
545 if (err) {
546 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
547 goto out_err_5;
550 printk("Initialized vmlfb\n");
552 return 0;
554 out_err_5:
555 fb_dealloc_cmap(&info->cmap);
556 out_err_4:
557 vmlfb_free_vram(vinfo);
558 out_err_3:
559 vmlfb_disable_mmio(par);
560 out_err_2:
561 vmlfb_release_devices(par);
562 out_err_1:
563 kfree(vinfo);
564 out_err_0:
565 kfree(par);
566 return err;
569 static int vmlfb_open(struct fb_info *info, int user)
572 * Save registers here?
574 return 0;
577 static int vmlfb_release(struct fb_info *info, int user)
580 * Restore registers here.
583 return 0;
586 static int vml_nearest_clock(int clock)
589 int i;
590 int cur_index;
591 int cur_diff;
592 int diff;
594 cur_index = 0;
595 cur_diff = clock - vml_clocks[0];
596 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
597 for (i = 1; i < vml_num_clocks; ++i) {
598 diff = clock - vml_clocks[i];
599 diff = (diff < 0) ? -diff : diff;
600 if (diff < cur_diff) {
601 cur_index = i;
602 cur_diff = diff;
605 return vml_clocks[cur_index];
608 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
609 struct vml_info *vinfo)
611 u32 pitch;
612 u64 mem;
613 int nearest_clock;
614 int clock;
615 int clock_diff;
616 struct fb_var_screeninfo v;
618 v = *var;
619 clock = PICOS2KHZ(var->pixclock);
621 if (subsys && subsys->nearest_clock) {
622 nearest_clock = subsys->nearest_clock(subsys, clock);
623 } else {
624 nearest_clock = vml_nearest_clock(clock);
628 * Accept a 20% diff.
631 clock_diff = nearest_clock - clock;
632 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
633 if (clock_diff > clock / 5) {
634 #if 0
635 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
636 #endif
637 return -EINVAL;
640 v.pixclock = KHZ2PICOS(nearest_clock);
642 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
643 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
644 return -EINVAL;
646 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
647 printk(KERN_DEBUG MODULE_NAME
648 ": Virtual resolution failure.\n");
649 return -EINVAL;
651 switch (v.bits_per_pixel) {
652 case 0 ... 16:
653 v.bits_per_pixel = 16;
654 break;
655 case 17 ... 32:
656 v.bits_per_pixel = 32;
657 break;
658 default:
659 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
660 var->bits_per_pixel);
661 return -EINVAL;
664 pitch = __ALIGN_MASK((var->xres * var->bits_per_pixel) >> 3, 0x3F);
665 mem = pitch * var->yres_virtual;
666 if (mem > vinfo->vram_contig_size) {
667 return -ENOMEM;
670 switch (v.bits_per_pixel) {
671 case 16:
672 if (var->blue.offset != 0 ||
673 var->blue.length != 5 ||
674 var->green.offset != 5 ||
675 var->green.length != 5 ||
676 var->red.offset != 10 ||
677 var->red.length != 5 ||
678 var->transp.offset != 15 || var->transp.length != 1) {
679 vmlfb_set_pref_pixel_format(&v);
681 break;
682 case 32:
683 if (var->blue.offset != 0 ||
684 var->blue.length != 8 ||
685 var->green.offset != 8 ||
686 var->green.length != 8 ||
687 var->red.offset != 16 ||
688 var->red.length != 8 ||
689 (var->transp.length != 0 && var->transp.length != 8) ||
690 (var->transp.length == 8 && var->transp.offset != 24)) {
691 vmlfb_set_pref_pixel_format(&v);
693 break;
694 default:
695 return -EINVAL;
698 *var = v;
700 return 0;
703 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
705 struct vml_info *vinfo = container_of(info, struct vml_info, info);
706 int ret;
708 mutex_lock(&vml_mutex);
709 ret = vmlfb_check_var_locked(var, vinfo);
710 mutex_unlock(&vml_mutex);
712 return ret;
715 static void vml_wait_vblank(struct vml_info *vinfo)
717 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
718 mdelay(20);
721 static void vmlfb_disable_pipe(struct vml_info *vinfo)
723 struct vml_par *par = vinfo->par;
725 /* Disable the MDVO pad */
726 VML_WRITE32(par, VML_RCOMPSTAT, 0);
727 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
729 /* Disable display planes */
730 VML_WRITE32(par, VML_DSPCCNTR,
731 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
732 (void)VML_READ32(par, VML_DSPCCNTR);
733 /* Wait for vblank for the disable to take effect */
734 vml_wait_vblank(vinfo);
736 /* Next, disable display pipes */
737 VML_WRITE32(par, VML_PIPEACONF, 0);
738 (void)VML_READ32(par, VML_PIPEACONF);
740 vinfo->pipe_disabled = 1;
743 #ifdef VERMILION_DEBUG
744 static void vml_dump_regs(struct vml_info *vinfo)
746 struct vml_par *par = vinfo->par;
748 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
749 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
750 (unsigned)VML_READ32(par, VML_HTOTAL_A));
751 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
752 (unsigned)VML_READ32(par, VML_HBLANK_A));
753 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
754 (unsigned)VML_READ32(par, VML_HSYNC_A));
755 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
756 (unsigned)VML_READ32(par, VML_VTOTAL_A));
757 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
758 (unsigned)VML_READ32(par, VML_VBLANK_A));
759 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
760 (unsigned)VML_READ32(par, VML_VSYNC_A));
761 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
762 (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
763 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
764 (unsigned)VML_READ32(par, VML_DSPCSIZE));
765 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
766 (unsigned)VML_READ32(par, VML_DSPCPOS));
767 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
768 (unsigned)VML_READ32(par, VML_DSPARB));
769 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
770 (unsigned)VML_READ32(par, VML_DSPCADDR));
771 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
772 (unsigned)VML_READ32(par, VML_BCLRPAT_A));
773 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
774 (unsigned)VML_READ32(par, VML_CANVSCLR_A));
775 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
776 (unsigned)VML_READ32(par, VML_PIPEASRC));
777 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
778 (unsigned)VML_READ32(par, VML_PIPEACONF));
779 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
780 (unsigned)VML_READ32(par, VML_DSPCCNTR));
781 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
782 (unsigned)VML_READ32(par, VML_RCOMPSTAT));
783 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
785 #endif
787 static int vmlfb_set_par_locked(struct vml_info *vinfo)
789 struct vml_par *par = vinfo->par;
790 struct fb_info *info = &vinfo->info;
791 struct fb_var_screeninfo *var = &info->var;
792 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
793 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
794 u32 dspcntr;
795 int clock;
797 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
798 vinfo->stride =
799 __ALIGN_MASK(var->xres_virtual * vinfo->bytes_per_pixel, 0x3F);
800 info->fix.line_length = vinfo->stride;
802 if (!subsys)
803 return 0;
805 htotal =
806 var->xres + var->right_margin + var->hsync_len + var->left_margin;
807 hactive = var->xres;
808 hblank_start = var->xres;
809 hblank_end = htotal;
810 hsync_start = hactive + var->right_margin;
811 hsync_end = hsync_start + var->hsync_len;
813 vtotal =
814 var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
815 vactive = var->yres;
816 vblank_start = var->yres;
817 vblank_end = vtotal;
818 vsync_start = vactive + var->lower_margin;
819 vsync_end = vsync_start + var->vsync_len;
821 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
822 clock = PICOS2KHZ(var->pixclock);
824 if (subsys->nearest_clock) {
825 clock = subsys->nearest_clock(subsys, clock);
826 } else {
827 clock = vml_nearest_clock(clock);
829 printk(KERN_DEBUG MODULE_NAME
830 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
831 ((clock / htotal) * 1000) / vtotal);
833 switch (var->bits_per_pixel) {
834 case 16:
835 dspcntr |= VML_GFX_ARGB1555;
836 break;
837 case 32:
838 if (var->transp.length == 8)
839 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
840 else
841 dspcntr |= VML_GFX_RGB0888;
842 break;
843 default:
844 return -EINVAL;
847 vmlfb_disable_pipe(vinfo);
848 mb();
850 if (subsys->set_clock)
851 subsys->set_clock(subsys, clock);
852 else
853 return -EINVAL;
855 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
856 VML_WRITE32(par, VML_HBLANK_A,
857 ((hblank_end - 1) << 16) | (hblank_start - 1));
858 VML_WRITE32(par, VML_HSYNC_A,
859 ((hsync_end - 1) << 16) | (hsync_start - 1));
860 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
861 VML_WRITE32(par, VML_VBLANK_A,
862 ((vblank_end - 1) << 16) | (vblank_start - 1));
863 VML_WRITE32(par, VML_VSYNC_A,
864 ((vsync_end - 1) << 16) | (vsync_start - 1));
865 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
866 VML_WRITE32(par, VML_DSPCSIZE,
867 ((var->yres - 1) << 16) | (var->xres - 1));
868 VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
869 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
870 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
871 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
872 VML_WRITE32(par, VML_PIPEASRC,
873 ((var->xres - 1) << 16) | (var->yres - 1));
875 wmb();
876 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
877 wmb();
878 VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
879 wmb();
880 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
881 var->yoffset * vinfo->stride +
882 var->xoffset * vinfo->bytes_per_pixel);
884 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
886 while (!(VML_READ32(par, VML_RCOMPSTAT) &
887 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
889 vinfo->pipe_disabled = 0;
890 #ifdef VERMILION_DEBUG
891 vml_dump_regs(vinfo);
892 #endif
894 return 0;
897 static int vmlfb_set_par(struct fb_info *info)
899 struct vml_info *vinfo = container_of(info, struct vml_info, info);
900 int ret;
902 mutex_lock(&vml_mutex);
903 list_del(&vinfo->head);
904 list_add(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
905 ret = vmlfb_set_par_locked(vinfo);
907 mutex_unlock(&vml_mutex);
908 return ret;
911 static int vmlfb_blank_locked(struct vml_info *vinfo)
913 struct vml_par *par = vinfo->par;
914 u32 cur = VML_READ32(par, VML_PIPEACONF);
916 switch (vinfo->cur_blank_mode) {
917 case FB_BLANK_UNBLANK:
918 if (vinfo->pipe_disabled) {
919 vmlfb_set_par_locked(vinfo);
921 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
922 (void)VML_READ32(par, VML_PIPEACONF);
923 break;
924 case FB_BLANK_NORMAL:
925 if (vinfo->pipe_disabled) {
926 vmlfb_set_par_locked(vinfo);
928 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
929 (void)VML_READ32(par, VML_PIPEACONF);
930 break;
931 case FB_BLANK_VSYNC_SUSPEND:
932 case FB_BLANK_HSYNC_SUSPEND:
933 if (!vinfo->pipe_disabled) {
934 vmlfb_disable_pipe(vinfo);
936 break;
937 case FB_BLANK_POWERDOWN:
938 if (!vinfo->pipe_disabled) {
939 vmlfb_disable_pipe(vinfo);
941 break;
942 default:
943 return -EINVAL;
946 return 0;
949 static int vmlfb_blank(int blank_mode, struct fb_info *info)
951 struct vml_info *vinfo = container_of(info, struct vml_info, info);
952 int ret;
954 mutex_lock(&vml_mutex);
955 vinfo->cur_blank_mode = blank_mode;
956 ret = vmlfb_blank_locked(vinfo);
957 mutex_unlock(&vml_mutex);
958 return ret;
961 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
962 struct fb_info *info)
964 struct vml_info *vinfo = container_of(info, struct vml_info, info);
965 struct vml_par *par = vinfo->par;
967 mutex_lock(&vml_mutex);
968 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
969 var->yoffset * vinfo->stride +
970 var->xoffset * vinfo->bytes_per_pixel);
971 (void)VML_READ32(par, VML_DSPCADDR);
972 mutex_unlock(&vml_mutex);
974 return 0;
977 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
978 u_int transp, struct fb_info *info)
980 u32 v;
982 if (regno >= 16)
983 return -EINVAL;
985 if (info->var.grayscale) {
986 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
989 if (info->fix.visual != FB_VISUAL_TRUECOLOR)
990 return -EINVAL;
992 red = VML_TOHW(red, info->var.red.length);
993 blue = VML_TOHW(blue, info->var.blue.length);
994 green = VML_TOHW(green, info->var.green.length);
995 transp = VML_TOHW(transp, info->var.transp.length);
997 v = (red << info->var.red.offset) |
998 (green << info->var.green.offset) |
999 (blue << info->var.blue.offset) |
1000 (transp << info->var.transp.offset);
1002 switch (info->var.bits_per_pixel) {
1003 case 16:
1004 ((u32 *) info->pseudo_palette)[regno] = v;
1005 break;
1006 case 24:
1007 case 32:
1008 ((u32 *) info->pseudo_palette)[regno] = v;
1009 break;
1011 return 0;
1014 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1016 struct vml_info *vinfo = container_of(info, struct vml_info, info);
1017 unsigned long size = vma->vm_end - vma->vm_start;
1018 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1019 int ret;
1021 if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT))
1022 return -EINVAL;
1023 if (offset + size > vinfo->vram_contig_size)
1024 return -EINVAL;
1025 ret = vmlfb_vram_offset(vinfo, offset);
1026 if (ret)
1027 return -EINVAL;
1028 offset += vinfo->vram_start;
1029 pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
1030 pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
1031 vma->vm_flags |= VM_RESERVED | VM_IO;
1032 if (remap_pfn_range(vma, vma->vm_start, offset >> PAGE_SHIFT,
1033 size, vma->vm_page_prot))
1034 return -EAGAIN;
1035 return 0;
1038 static int vmlfb_sync(struct fb_info *info)
1040 return 0;
1043 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1045 return -EINVAL; /* just to force soft_cursor() call */
1048 static struct fb_ops vmlfb_ops = {
1049 .owner = THIS_MODULE,
1050 .fb_open = vmlfb_open,
1051 .fb_release = vmlfb_release,
1052 .fb_check_var = vmlfb_check_var,
1053 .fb_set_par = vmlfb_set_par,
1054 .fb_blank = vmlfb_blank,
1055 .fb_pan_display = vmlfb_pan_display,
1056 .fb_fillrect = cfb_fillrect,
1057 .fb_copyarea = cfb_copyarea,
1058 .fb_imageblit = cfb_imageblit,
1059 .fb_cursor = vmlfb_cursor,
1060 .fb_sync = vmlfb_sync,
1061 .fb_mmap = vmlfb_mmap,
1062 .fb_setcolreg = vmlfb_setcolreg
1065 static struct pci_device_id vml_ids[] = {
1066 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1070 static struct pci_driver vmlfb_pci_driver = {
1071 .name = "vmlfb",
1072 .id_table = vml_ids,
1073 .probe = vml_pci_probe,
1074 .remove = __devexit_p(vml_pci_remove)
1077 static void __exit vmlfb_cleanup(void)
1079 pci_unregister_driver(&vmlfb_pci_driver);
1082 static int __init vmlfb_init(void)
1085 #ifndef MODULE
1086 char *option = NULL;
1088 if (fb_get_options(MODULE_NAME, &option))
1089 return -ENODEV;
1090 #endif
1092 printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1093 mutex_init(&vml_mutex);
1094 INIT_LIST_HEAD(&global_no_mode);
1095 INIT_LIST_HEAD(&global_has_mode);
1097 return pci_register_driver(&vmlfb_pci_driver);
1100 int vmlfb_register_subsys(struct vml_sys *sys)
1102 struct vml_info *entry;
1103 struct list_head *list;
1104 u32 save_activate;
1106 mutex_lock(&vml_mutex);
1107 if (subsys != NULL) {
1108 subsys->restore(subsys);
1110 subsys = sys;
1111 subsys->save(subsys);
1114 * We need to restart list traversal for each item, since we
1115 * release the list mutex in the loop.
1118 list = global_no_mode.next;
1119 while (list != &global_no_mode) {
1120 list_del_init(list);
1121 entry = list_entry(list, struct vml_info, head);
1124 * First, try the current mode which might not be
1125 * completely validated with respect to the pixel clock.
1128 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1129 vmlfb_set_par_locked(entry);
1130 list_add_tail(list, &global_has_mode);
1131 } else {
1134 * Didn't work. Try to find another mode,
1135 * that matches this subsys.
1138 mutex_unlock(&vml_mutex);
1139 save_activate = entry->info.var.activate;
1140 entry->info.var.bits_per_pixel = 16;
1141 vmlfb_set_pref_pixel_format(&entry->info.var);
1142 if (fb_find_mode(&entry->info.var,
1143 &entry->info,
1144 vml_default_mode, NULL, 0, NULL, 16)) {
1145 entry->info.var.activate |=
1146 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1147 fb_set_var(&entry->info, &entry->info.var);
1148 } else {
1149 printk(KERN_ERR MODULE_NAME
1150 ": Sorry. no mode found for this subsys.\n");
1152 entry->info.var.activate = save_activate;
1153 mutex_lock(&vml_mutex);
1155 vmlfb_blank_locked(entry);
1156 list = global_no_mode.next;
1158 mutex_unlock(&vml_mutex);
1160 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1161 subsys->name ? subsys->name : "unknown");
1162 return 0;
1165 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1167 void vmlfb_unregister_subsys(struct vml_sys *sys)
1169 struct vml_info *entry, *next;
1171 mutex_lock(&vml_mutex);
1172 if (subsys != sys) {
1173 mutex_unlock(&vml_mutex);
1174 return;
1176 subsys->restore(subsys);
1177 subsys = NULL;
1178 list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1179 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1180 vmlfb_disable_pipe(entry);
1181 list_del(&entry->head);
1182 list_add_tail(&entry->head, &global_no_mode);
1184 mutex_unlock(&vml_mutex);
1187 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1189 module_init(vmlfb_init);
1190 module_exit(vmlfb_cleanup);
1192 MODULE_AUTHOR("Tungsten Graphics");
1193 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1194 MODULE_VERSION("1.0.0");
1195 MODULE_LICENSE("GPL");