2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
65 * - Move a bunch of definitions to .h file
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
73 * - Fix typo when reading back fan speed on 2 CPU machines
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
98 * July. 06, 2006 : 1.3
99 * - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100 * - Add missing slots fan control loop for Xserve G5
101 * - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102 * still can't properly implement the control loop for these, so let's
103 * reduce the noise a little bit, it appears that 40% still gives us
104 * a pretty good air flow
105 * - Add code to "tickle" the FCU regulary so it doesn't think that
106 * we are gone while in fact, the machine just didn't need any fan
107 * speed change lately
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/init.h>
118 #include <linux/spinlock.h>
119 #include <linux/wait.h>
120 #include <linux/reboot.h>
121 #include <linux/kmod.h>
122 #include <linux/i2c.h>
123 #include <linux/kthread.h>
124 #include <linux/mutex.h>
125 #include <linux/of_device.h>
126 #include <linux/of_platform.h>
127 #include <asm/prom.h>
128 #include <asm/machdep.h>
130 #include <asm/system.h>
131 #include <asm/sections.h>
132 #include <asm/macio.h>
134 #include "therm_pm72.h"
136 #define VERSION "1.3"
141 #define DBG(args...) printk(args)
143 #define DBG(args...) do { } while(0)
151 static struct of_device
* of_dev
;
152 static struct i2c_adapter
* u3_0
;
153 static struct i2c_adapter
* u3_1
;
154 static struct i2c_adapter
* k2
;
155 static struct i2c_client
* fcu
;
156 static struct cpu_pid_state cpu_state
[2];
157 static struct basckside_pid_params backside_params
;
158 static struct backside_pid_state backside_state
;
159 static struct drives_pid_state drives_state
;
160 static struct dimm_pid_state dimms_state
;
161 static struct slots_pid_state slots_state
;
163 static int cpu_count
;
164 static int cpu_pid_type
;
165 static struct task_struct
*ctrl_task
;
166 static struct completion ctrl_complete
;
167 static int critical_state
;
169 static s32 dimm_output_clamp
;
170 static int fcu_rpm_shift
;
171 static int fcu_tickle_ticks
;
172 static DEFINE_MUTEX(driver_lock
);
175 * We have 3 types of CPU PID control. One is "split" old style control
176 * for intake & exhaust fans, the other is "combined" control for both
177 * CPUs that also deals with the pumps when present. To be "compatible"
178 * with OS X at this point, we only use "COMBINED" on the machines that
179 * are identified as having the pumps (though that identification is at
180 * least dodgy). Ultimately, we could probably switch completely to this
181 * algorithm provided we hack it to deal with the UP case
183 #define CPU_PID_TYPE_SPLIT 0
184 #define CPU_PID_TYPE_COMBINED 1
185 #define CPU_PID_TYPE_RACKMAC 2
188 * This table describes all fans in the FCU. The "id" and "type" values
189 * are defaults valid for all earlier machines. Newer machines will
190 * eventually override the table content based on the device-tree
194 char* loc
; /* location code */
195 int type
; /* 0 = rpm, 1 = pwm, 2 = pump */
196 int id
; /* id or -1 */
199 #define FCU_FAN_RPM 0
200 #define FCU_FAN_PWM 1
202 #define FCU_FAN_ABSENT_ID -1
204 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
206 struct fcu_fan_table fcu_fans
[] = {
207 [BACKSIDE_FAN_PWM_INDEX
] = {
208 .loc
= "BACKSIDE,SYS CTRLR FAN",
210 .id
= BACKSIDE_FAN_PWM_DEFAULT_ID
,
212 [DRIVES_FAN_RPM_INDEX
] = {
215 .id
= DRIVES_FAN_RPM_DEFAULT_ID
,
217 [SLOTS_FAN_PWM_INDEX
] = {
218 .loc
= "SLOT,PCI FAN",
220 .id
= SLOTS_FAN_PWM_DEFAULT_ID
,
222 [CPUA_INTAKE_FAN_RPM_INDEX
] = {
223 .loc
= "CPU A INTAKE",
225 .id
= CPUA_INTAKE_FAN_RPM_DEFAULT_ID
,
227 [CPUA_EXHAUST_FAN_RPM_INDEX
] = {
228 .loc
= "CPU A EXHAUST",
230 .id
= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID
,
232 [CPUB_INTAKE_FAN_RPM_INDEX
] = {
233 .loc
= "CPU B INTAKE",
235 .id
= CPUB_INTAKE_FAN_RPM_DEFAULT_ID
,
237 [CPUB_EXHAUST_FAN_RPM_INDEX
] = {
238 .loc
= "CPU B EXHAUST",
240 .id
= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID
,
242 /* pumps aren't present by default, have to be looked up in the
245 [CPUA_PUMP_RPM_INDEX
] = {
248 .id
= FCU_FAN_ABSENT_ID
,
250 [CPUB_PUMP_RPM_INDEX
] = {
253 .id
= FCU_FAN_ABSENT_ID
,
256 [CPU_A1_FAN_RPM_INDEX
] = {
259 .id
= FCU_FAN_ABSENT_ID
,
261 [CPU_A2_FAN_RPM_INDEX
] = {
264 .id
= FCU_FAN_ABSENT_ID
,
266 [CPU_A3_FAN_RPM_INDEX
] = {
269 .id
= FCU_FAN_ABSENT_ID
,
271 [CPU_B1_FAN_RPM_INDEX
] = {
274 .id
= FCU_FAN_ABSENT_ID
,
276 [CPU_B2_FAN_RPM_INDEX
] = {
279 .id
= FCU_FAN_ABSENT_ID
,
281 [CPU_B3_FAN_RPM_INDEX
] = {
284 .id
= FCU_FAN_ABSENT_ID
,
288 static struct i2c_driver therm_pm72_driver
;
291 * Utility function to create an i2c_client structure and
292 * attach it to one of u3 adapters
294 static struct i2c_client
*attach_i2c_chip(int id
, const char *name
)
296 struct i2c_client
*clt
;
297 struct i2c_adapter
*adap
;
298 struct i2c_board_info info
;
309 memset(&info
, 0, sizeof(struct i2c_board_info
));
310 info
.addr
= (id
>> 1) & 0x7f;
311 strlcpy(info
.type
, "therm_pm72", I2C_NAME_SIZE
);
312 clt
= i2c_new_device(adap
, &info
);
314 printk(KERN_ERR
"therm_pm72: Failed to attach to i2c ID 0x%x\n", id
);
319 * Let i2c-core delete that device on driver removal.
320 * This is safe because i2c-core holds the core_lock mutex for us.
322 list_add_tail(&clt
->detected
, &therm_pm72_driver
.clients
);
327 * Here are the i2c chip access wrappers
330 static void initialize_adc(struct cpu_pid_state
*state
)
335 /* Read ADC the configuration register and cache it. We
336 * also make sure Config2 contains proper values, I've seen
337 * cases where we got stale grabage in there, thus preventing
338 * proper reading of conv. values
344 i2c_master_send(state
->monitor
, buf
, 2);
346 /* Read & cache Config1 */
348 rc
= i2c_master_send(state
->monitor
, buf
, 1);
350 rc
= i2c_master_recv(state
->monitor
, buf
, 1);
352 state
->adc_config
= buf
[0];
353 DBG("ADC config reg: %02x\n", state
->adc_config
);
354 /* Disable shutdown mode */
355 state
->adc_config
&= 0xfe;
357 buf
[1] = state
->adc_config
;
358 rc
= i2c_master_send(state
->monitor
, buf
, 2);
362 printk(KERN_ERR
"therm_pm72: Error reading ADC config"
366 static int read_smon_adc(struct cpu_pid_state
*state
, int chan
)
368 int rc
, data
, tries
= 0;
374 buf
[1] = (state
->adc_config
& 0x1f) | (chan
<< 5);
375 rc
= i2c_master_send(state
->monitor
, buf
, 2);
378 /* Wait for convertion */
380 /* Switch to data register */
382 rc
= i2c_master_send(state
->monitor
, buf
, 1);
386 rc
= i2c_master_recv(state
->monitor
, buf
, 2);
389 data
= ((u16
)buf
[0]) << 8 | (u16
)buf
[1];
392 DBG("Error reading ADC, retrying...\n");
394 printk(KERN_ERR
"therm_pm72: Error reading ADC !\n");
401 static int read_lm87_reg(struct i2c_client
* chip
, int reg
)
409 rc
= i2c_master_send(chip
, &buf
, 1);
412 rc
= i2c_master_recv(chip
, &buf
, 1);
417 DBG("Error reading LM87, retrying...\n");
419 printk(KERN_ERR
"therm_pm72: Error reading LM87 !\n");
426 static int fan_read_reg(int reg
, unsigned char *buf
, int nb
)
433 nw
= i2c_master_send(fcu
, buf
, 1);
434 if (nw
> 0 || (nw
< 0 && nw
!= -EIO
) || tries
>= 100)
440 printk(KERN_ERR
"Failure writing address to FCU: %d", nw
);
445 nr
= i2c_master_recv(fcu
, buf
, nb
);
446 if (nr
> 0 || (nr
< 0 && nr
!= ENODEV
) || tries
>= 100)
452 printk(KERN_ERR
"Failure reading data from FCU: %d", nw
);
456 static int fan_write_reg(int reg
, const unsigned char *ptr
, int nb
)
459 unsigned char buf
[16];
462 memcpy(buf
+1, ptr
, nb
);
466 nw
= i2c_master_send(fcu
, buf
, nb
);
467 if (nw
> 0 || (nw
< 0 && nw
!= EIO
) || tries
>= 100)
473 printk(KERN_ERR
"Failure writing to FCU: %d", nw
);
477 static int start_fcu(void)
479 unsigned char buf
= 0xff;
482 rc
= fan_write_reg(0xe, &buf
, 1);
485 rc
= fan_write_reg(0x2e, &buf
, 1);
488 rc
= fan_read_reg(0, &buf
, 1);
491 fcu_rpm_shift
= (buf
== 1) ? 2 : 3;
492 printk(KERN_DEBUG
"FCU Initialized, RPM fan shift is %d\n",
498 static int set_rpm_fan(int fan_index
, int rpm
)
500 unsigned char buf
[2];
501 int rc
, id
, min
, max
;
503 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
505 id
= fcu_fans
[fan_index
].id
;
506 if (id
== FCU_FAN_ABSENT_ID
)
509 min
= 2400 >> fcu_rpm_shift
;
510 max
= 56000 >> fcu_rpm_shift
;
516 buf
[0] = rpm
>> (8 - fcu_rpm_shift
);
517 buf
[1] = rpm
<< fcu_rpm_shift
;
518 rc
= fan_write_reg(0x10 + (id
* 2), buf
, 2);
524 static int get_rpm_fan(int fan_index
, int programmed
)
526 unsigned char failure
;
527 unsigned char active
;
528 unsigned char buf
[2];
529 int rc
, id
, reg_base
;
531 if (fcu_fans
[fan_index
].type
!= FCU_FAN_RPM
)
533 id
= fcu_fans
[fan_index
].id
;
534 if (id
== FCU_FAN_ABSENT_ID
)
537 rc
= fan_read_reg(0xb, &failure
, 1);
540 if ((failure
& (1 << id
)) != 0)
542 rc
= fan_read_reg(0xd, &active
, 1);
545 if ((active
& (1 << id
)) == 0)
548 /* Programmed value or real current speed */
549 reg_base
= programmed
? 0x10 : 0x11;
550 rc
= fan_read_reg(reg_base
+ (id
* 2), buf
, 2);
554 return (buf
[0] << (8 - fcu_rpm_shift
)) | buf
[1] >> fcu_rpm_shift
;
557 static int set_pwm_fan(int fan_index
, int pwm
)
559 unsigned char buf
[2];
562 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
564 id
= fcu_fans
[fan_index
].id
;
565 if (id
== FCU_FAN_ABSENT_ID
)
572 pwm
= (pwm
* 2559) / 1000;
574 rc
= fan_write_reg(0x30 + (id
* 2), buf
, 1);
580 static int get_pwm_fan(int fan_index
)
582 unsigned char failure
;
583 unsigned char active
;
584 unsigned char buf
[2];
587 if (fcu_fans
[fan_index
].type
!= FCU_FAN_PWM
)
589 id
= fcu_fans
[fan_index
].id
;
590 if (id
== FCU_FAN_ABSENT_ID
)
593 rc
= fan_read_reg(0x2b, &failure
, 1);
596 if ((failure
& (1 << id
)) != 0)
598 rc
= fan_read_reg(0x2d, &active
, 1);
601 if ((active
& (1 << id
)) == 0)
604 /* Programmed value or real current speed */
605 rc
= fan_read_reg(0x30 + (id
* 2), buf
, 1);
609 return (buf
[0] * 1000) / 2559;
612 static void tickle_fcu(void)
616 pwm
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
618 DBG("FCU Tickle, slots fan is: %d\n", pwm
);
623 pwm
= SLOTS_FAN_DEFAULT_PWM
;
624 } else if (pwm
< SLOTS_PID_OUTPUT_MIN
)
625 pwm
= SLOTS_PID_OUTPUT_MIN
;
627 /* That is hopefully enough to make the FCU happy */
628 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, pwm
);
633 * Utility routine to read the CPU calibration EEPROM data
634 * from the device-tree
636 static int read_eeprom(int cpu
, struct mpu_data
*out
)
638 struct device_node
*np
;
643 /* prom.c routine for finding a node by path is a bit brain dead
644 * and requires exact @xxx unit numbers. This is a bit ugly but
645 * will work for these machines
647 sprintf(nodename
, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu
? 2 : 0);
648 np
= of_find_node_by_path(nodename
);
650 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid node from device-tree\n");
653 data
= of_get_property(np
, "cpuid", &len
);
655 printk(KERN_ERR
"therm_pm72: Failed to retrieve cpuid property from device-tree\n");
659 memcpy(out
, data
, sizeof(struct mpu_data
));
665 static void fetch_cpu_pumps_minmax(void)
667 struct cpu_pid_state
*state0
= &cpu_state
[0];
668 struct cpu_pid_state
*state1
= &cpu_state
[1];
669 u16 pump_min
= 0, pump_max
= 0xffff;
672 /* Try to fetch pumps min/max infos from eeprom */
674 memcpy(&tmp
, &state0
->mpu
.processor_part_num
, 8);
675 if (tmp
[0] != 0xffff && tmp
[1] != 0xffff) {
676 pump_min
= max(pump_min
, tmp
[0]);
677 pump_max
= min(pump_max
, tmp
[1]);
679 if (tmp
[2] != 0xffff && tmp
[3] != 0xffff) {
680 pump_min
= max(pump_min
, tmp
[2]);
681 pump_max
= min(pump_max
, tmp
[3]);
684 /* Double check the values, this _IS_ needed as the EEPROM on
685 * some dual 2.5Ghz G5s seem, at least, to have both min & max
686 * same to the same value ... (grrrr)
688 if (pump_min
== pump_max
|| pump_min
== 0 || pump_max
== 0xffff) {
689 pump_min
= CPU_PUMP_OUTPUT_MIN
;
690 pump_max
= CPU_PUMP_OUTPUT_MAX
;
693 state0
->pump_min
= state1
->pump_min
= pump_min
;
694 state0
->pump_max
= state1
->pump_max
= pump_max
;
698 * Now, unfortunately, sysfs doesn't give us a nice void * we could
699 * pass around to the attribute functions, so we don't really have
700 * choice but implement a bunch of them...
702 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
703 * the input twice... I accept patches :)
705 #define BUILD_SHOW_FUNC_FIX(name, data) \
706 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
709 mutex_lock(&driver_lock); \
710 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
711 mutex_unlock(&driver_lock); \
714 #define BUILD_SHOW_FUNC_INT(name, data) \
715 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
717 return sprintf(buf, "%d", data); \
720 BUILD_SHOW_FUNC_FIX(cpu0_temperature
, cpu_state
[0].last_temp
)
721 BUILD_SHOW_FUNC_FIX(cpu0_voltage
, cpu_state
[0].voltage
)
722 BUILD_SHOW_FUNC_FIX(cpu0_current
, cpu_state
[0].current_a
)
723 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm
, cpu_state
[0].rpm
)
724 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm
, cpu_state
[0].intake_rpm
)
726 BUILD_SHOW_FUNC_FIX(cpu1_temperature
, cpu_state
[1].last_temp
)
727 BUILD_SHOW_FUNC_FIX(cpu1_voltage
, cpu_state
[1].voltage
)
728 BUILD_SHOW_FUNC_FIX(cpu1_current
, cpu_state
[1].current_a
)
729 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm
, cpu_state
[1].rpm
)
730 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm
, cpu_state
[1].intake_rpm
)
732 BUILD_SHOW_FUNC_FIX(backside_temperature
, backside_state
.last_temp
)
733 BUILD_SHOW_FUNC_INT(backside_fan_pwm
, backside_state
.pwm
)
735 BUILD_SHOW_FUNC_FIX(drives_temperature
, drives_state
.last_temp
)
736 BUILD_SHOW_FUNC_INT(drives_fan_rpm
, drives_state
.rpm
)
738 BUILD_SHOW_FUNC_FIX(slots_temperature
, slots_state
.last_temp
)
739 BUILD_SHOW_FUNC_INT(slots_fan_pwm
, slots_state
.pwm
)
741 BUILD_SHOW_FUNC_FIX(dimms_temperature
, dimms_state
.last_temp
)
743 static DEVICE_ATTR(cpu0_temperature
,S_IRUGO
,show_cpu0_temperature
,NULL
);
744 static DEVICE_ATTR(cpu0_voltage
,S_IRUGO
,show_cpu0_voltage
,NULL
);
745 static DEVICE_ATTR(cpu0_current
,S_IRUGO
,show_cpu0_current
,NULL
);
746 static DEVICE_ATTR(cpu0_exhaust_fan_rpm
,S_IRUGO
,show_cpu0_exhaust_fan_rpm
,NULL
);
747 static DEVICE_ATTR(cpu0_intake_fan_rpm
,S_IRUGO
,show_cpu0_intake_fan_rpm
,NULL
);
749 static DEVICE_ATTR(cpu1_temperature
,S_IRUGO
,show_cpu1_temperature
,NULL
);
750 static DEVICE_ATTR(cpu1_voltage
,S_IRUGO
,show_cpu1_voltage
,NULL
);
751 static DEVICE_ATTR(cpu1_current
,S_IRUGO
,show_cpu1_current
,NULL
);
752 static DEVICE_ATTR(cpu1_exhaust_fan_rpm
,S_IRUGO
,show_cpu1_exhaust_fan_rpm
,NULL
);
753 static DEVICE_ATTR(cpu1_intake_fan_rpm
,S_IRUGO
,show_cpu1_intake_fan_rpm
,NULL
);
755 static DEVICE_ATTR(backside_temperature
,S_IRUGO
,show_backside_temperature
,NULL
);
756 static DEVICE_ATTR(backside_fan_pwm
,S_IRUGO
,show_backside_fan_pwm
,NULL
);
758 static DEVICE_ATTR(drives_temperature
,S_IRUGO
,show_drives_temperature
,NULL
);
759 static DEVICE_ATTR(drives_fan_rpm
,S_IRUGO
,show_drives_fan_rpm
,NULL
);
761 static DEVICE_ATTR(slots_temperature
,S_IRUGO
,show_slots_temperature
,NULL
);
762 static DEVICE_ATTR(slots_fan_pwm
,S_IRUGO
,show_slots_fan_pwm
,NULL
);
764 static DEVICE_ATTR(dimms_temperature
,S_IRUGO
,show_dimms_temperature
,NULL
);
767 * CPUs fans control loop
770 static int do_read_one_cpu_values(struct cpu_pid_state
*state
, s32
*temp
, s32
*power
)
772 s32 ltemp
, volts
, amps
;
775 /* Default (in case of error) */
776 *temp
= state
->cur_temp
;
777 *power
= state
->cur_power
;
779 if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
)
780 index
= (state
->index
== 0) ?
781 CPU_A1_FAN_RPM_INDEX
: CPU_B1_FAN_RPM_INDEX
;
783 index
= (state
->index
== 0) ?
784 CPUA_EXHAUST_FAN_RPM_INDEX
: CPUB_EXHAUST_FAN_RPM_INDEX
;
786 /* Read current fan status */
787 rc
= get_rpm_fan(index
, !RPM_PID_USE_ACTUAL_SPEED
);
789 /* XXX What do we do now ? Nothing for now, keep old value, but
790 * return error upstream
792 DBG(" cpu %d, fan reading error !\n", state
->index
);
795 DBG(" cpu %d, exhaust RPM: %d\n", state
->index
, state
->rpm
);
798 /* Get some sensor readings and scale it */
799 ltemp
= read_smon_adc(state
, 1);
801 /* XXX What do we do now ? */
805 DBG(" cpu %d, temp reading error !\n", state
->index
);
807 /* Fixup temperature according to diode calibration
809 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
811 ltemp
, state
->mpu
.mdiode
, state
->mpu
.bdiode
);
812 *temp
= ((s32
)ltemp
* (s32
)state
->mpu
.mdiode
+ ((s32
)state
->mpu
.bdiode
<< 12)) >> 2;
813 state
->last_temp
= *temp
;
814 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp
)));
818 * Read voltage & current and calculate power
820 volts
= read_smon_adc(state
, 3);
821 amps
= read_smon_adc(state
, 4);
823 /* Scale voltage and current raw sensor values according to fixed scales
824 * obtained in Darwin and calculate power from I and V
826 volts
*= ADC_CPU_VOLTAGE_SCALE
;
827 amps
*= ADC_CPU_CURRENT_SCALE
;
828 *power
= (((u64
)volts
) * ((u64
)amps
)) >> 16;
829 state
->voltage
= volts
;
830 state
->current_a
= amps
;
831 state
->last_power
= *power
;
833 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
834 state
->index
, FIX32TOPRINT(state
->current_a
),
835 FIX32TOPRINT(state
->voltage
), FIX32TOPRINT(*power
));
840 static void do_cpu_pid(struct cpu_pid_state
*state
, s32 temp
, s32 power
)
842 s32 power_target
, integral
, derivative
, proportional
, adj_in_target
, sval
;
843 s64 integ_p
, deriv_p
, prop_p
, sum
;
846 /* Calculate power target value (could be done once for all)
847 * and convert to a 16.16 fp number
849 power_target
= ((u32
)(state
->mpu
.pmaxh
- state
->mpu
.padjmax
)) << 16;
850 DBG(" power target: %d.%03d, error: %d.%03d\n",
851 FIX32TOPRINT(power_target
), FIX32TOPRINT(power_target
- power
));
853 /* Store temperature and power in history array */
854 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
855 state
->temp_history
[state
->cur_temp
] = temp
;
856 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
857 state
->power_history
[state
->cur_power
] = power
;
858 state
->error_history
[state
->cur_power
] = power_target
- power
;
860 /* If first loop, fill the history table */
862 for (i
= 0; i
< (state
->count_power
- 1); i
++) {
863 state
->cur_power
= (state
->cur_power
+ 1) % state
->count_power
;
864 state
->power_history
[state
->cur_power
] = power
;
865 state
->error_history
[state
->cur_power
] = power_target
- power
;
867 for (i
= 0; i
< (CPU_TEMP_HISTORY_SIZE
- 1); i
++) {
868 state
->cur_temp
= (state
->cur_temp
+ 1) % CPU_TEMP_HISTORY_SIZE
;
869 state
->temp_history
[state
->cur_temp
] = temp
;
874 /* Calculate the integral term normally based on the "power" values */
877 for (i
= 0; i
< state
->count_power
; i
++)
878 integral
+= state
->error_history
[i
];
879 integral
*= CPU_PID_INTERVAL
;
880 DBG(" integral: %08x\n", integral
);
882 /* Calculate the adjusted input (sense value).
885 * so the result is 28.36
887 * input target is mpu.ttarget, input max is mpu.tmax
889 integ_p
= ((s64
)state
->mpu
.pid_gr
) * (s64
)integral
;
890 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
891 sval
= (state
->mpu
.tmax
<< 16) - ((integ_p
>> 20) & 0xffffffff);
892 adj_in_target
= (state
->mpu
.ttarget
<< 16);
893 if (adj_in_target
> sval
)
894 adj_in_target
= sval
;
895 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target
),
898 /* Calculate the derivative term */
899 derivative
= state
->temp_history
[state
->cur_temp
] -
900 state
->temp_history
[(state
->cur_temp
+ CPU_TEMP_HISTORY_SIZE
- 1)
901 % CPU_TEMP_HISTORY_SIZE
];
902 derivative
/= CPU_PID_INTERVAL
;
903 deriv_p
= ((s64
)state
->mpu
.pid_gd
) * (s64
)derivative
;
904 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
907 /* Calculate the proportional term */
908 proportional
= temp
- adj_in_target
;
909 prop_p
= ((s64
)state
->mpu
.pid_gp
) * (s64
)proportional
;
910 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
916 DBG(" sum: %d\n", (int)sum
);
917 state
->rpm
+= (s32
)sum
;
920 static void do_monitor_cpu_combined(void)
922 struct cpu_pid_state
*state0
= &cpu_state
[0];
923 struct cpu_pid_state
*state1
= &cpu_state
[1];
924 s32 temp0
, power0
, temp1
, power1
;
925 s32 temp_combi
, power_combi
;
926 int rc
, intake
, pump
;
928 rc
= do_read_one_cpu_values(state0
, &temp0
, &power0
);
930 /* XXX What do we do now ? */
932 state1
->overtemp
= 0;
933 rc
= do_read_one_cpu_values(state1
, &temp1
, &power1
);
935 /* XXX What do we do now ? */
937 if (state1
->overtemp
)
940 temp_combi
= max(temp0
, temp1
);
941 power_combi
= max(power0
, power1
);
943 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
944 * full blown immediately and try to trigger a shutdown
946 if (temp_combi
>= ((state0
->mpu
.tmax
+ 8) << 16)) {
947 printk(KERN_WARNING
"Warning ! Temperature way above maximum (%d) !\n",
949 state0
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
950 } else if (temp_combi
> (state0
->mpu
.tmax
<< 16)) {
952 printk(KERN_WARNING
"Temperature %d above max %d. overtemp %d\n",
953 temp_combi
>> 16, state0
->mpu
.tmax
, state0
->overtemp
);
955 if (state0
->overtemp
)
956 printk(KERN_WARNING
"Temperature back down to %d\n",
958 state0
->overtemp
= 0;
960 if (state0
->overtemp
>= CPU_MAX_OVERTEMP
)
962 if (state0
->overtemp
> 0) {
963 state0
->rpm
= state0
->mpu
.rmaxn_exhaust_fan
;
964 state0
->intake_rpm
= intake
= state0
->mpu
.rmaxn_intake_fan
;
965 pump
= state0
->pump_max
;
970 do_cpu_pid(state0
, temp_combi
, power_combi
);
973 state0
->rpm
= max(state0
->rpm
, (int)state0
->mpu
.rminn_exhaust_fan
);
974 state0
->rpm
= min(state0
->rpm
, (int)state0
->mpu
.rmaxn_exhaust_fan
);
976 /* Calculate intake fan speed */
977 intake
= (state0
->rpm
* CPU_INTAKE_SCALE
) >> 16;
978 intake
= max(intake
, (int)state0
->mpu
.rminn_intake_fan
);
979 intake
= min(intake
, (int)state0
->mpu
.rmaxn_intake_fan
);
980 state0
->intake_rpm
= intake
;
982 /* Calculate pump speed */
983 pump
= (state0
->rpm
* state0
->pump_max
) /
984 state0
->mpu
.rmaxn_exhaust_fan
;
985 pump
= min(pump
, state0
->pump_max
);
986 pump
= max(pump
, state0
->pump_min
);
989 /* We copy values from state 0 to state 1 for /sysfs */
990 state1
->rpm
= state0
->rpm
;
991 state1
->intake_rpm
= state0
->intake_rpm
;
993 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
994 state1
->index
, (int)state1
->rpm
, intake
, pump
, state1
->overtemp
);
996 /* We should check for errors, shouldn't we ? But then, what
997 * do we do once the error occurs ? For FCU notified fan
998 * failures (-EFAULT) we probably want to notify userland
1001 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1002 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1003 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1004 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state0
->rpm
);
1006 if (fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1007 set_rpm_fan(CPUA_PUMP_RPM_INDEX
, pump
);
1008 if (fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
)
1009 set_rpm_fan(CPUB_PUMP_RPM_INDEX
, pump
);
1012 static void do_monitor_cpu_split(struct cpu_pid_state
*state
)
1017 /* Read current fan status */
1018 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1020 /* XXX What do we do now ? */
1023 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1024 * full blown immediately and try to trigger a shutdown
1026 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1027 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1029 state
->index
, temp
>> 16);
1030 state
->overtemp
+= CPU_MAX_OVERTEMP
/ 4;
1031 } else if (temp
> (state
->mpu
.tmax
<< 16)) {
1033 printk(KERN_WARNING
"CPU %d temperature %d above max %d. overtemp %d\n",
1034 state
->index
, temp
>> 16, state
->mpu
.tmax
, state
->overtemp
);
1036 if (state
->overtemp
)
1037 printk(KERN_WARNING
"CPU %d temperature back down to %d\n",
1038 state
->index
, temp
>> 16);
1039 state
->overtemp
= 0;
1041 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1043 if (state
->overtemp
> 0) {
1044 state
->rpm
= state
->mpu
.rmaxn_exhaust_fan
;
1045 state
->intake_rpm
= intake
= state
->mpu
.rmaxn_intake_fan
;
1050 do_cpu_pid(state
, temp
, power
);
1053 state
->rpm
= max(state
->rpm
, (int)state
->mpu
.rminn_exhaust_fan
);
1054 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_exhaust_fan
);
1056 /* Calculate intake fan */
1057 intake
= (state
->rpm
* CPU_INTAKE_SCALE
) >> 16;
1058 intake
= max(intake
, (int)state
->mpu
.rminn_intake_fan
);
1059 intake
= min(intake
, (int)state
->mpu
.rmaxn_intake_fan
);
1060 state
->intake_rpm
= intake
;
1063 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1064 state
->index
, (int)state
->rpm
, intake
, state
->overtemp
);
1066 /* We should check for errors, shouldn't we ? But then, what
1067 * do we do once the error occurs ? For FCU notified fan
1068 * failures (-EFAULT) we probably want to notify userland
1071 if (state
->index
== 0) {
1072 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX
, intake
);
1073 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1075 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX
, intake
);
1076 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX
, state
->rpm
);
1080 static void do_monitor_cpu_rack(struct cpu_pid_state
*state
)
1082 s32 temp
, power
, fan_min
;
1085 /* Read current fan status */
1086 rc
= do_read_one_cpu_values(state
, &temp
, &power
);
1088 /* XXX What do we do now ? */
1091 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1092 * full blown immediately and try to trigger a shutdown
1094 if (temp
>= ((state
->mpu
.tmax
+ 8) << 16)) {
1095 printk(KERN_WARNING
"Warning ! CPU %d temperature way above maximum"
1097 state
->index
, temp
>> 16);
1098 state
->overtemp
= CPU_MAX_OVERTEMP
/ 4;
1099 } else if (temp
> (state
->mpu
.tmax
<< 16)) {
1101 printk(KERN_WARNING
"CPU %d temperature %d above max %d. overtemp %d\n",
1102 state
->index
, temp
>> 16, state
->mpu
.tmax
, state
->overtemp
);
1104 if (state
->overtemp
)
1105 printk(KERN_WARNING
"CPU %d temperature back down to %d\n",
1106 state
->index
, temp
>> 16);
1107 state
->overtemp
= 0;
1109 if (state
->overtemp
>= CPU_MAX_OVERTEMP
)
1111 if (state
->overtemp
> 0) {
1112 state
->rpm
= state
->intake_rpm
= state
->mpu
.rmaxn_intake_fan
;
1117 do_cpu_pid(state
, temp
, power
);
1119 /* Check clamp from dimms */
1120 fan_min
= dimm_output_clamp
;
1121 fan_min
= max(fan_min
, (int)state
->mpu
.rminn_intake_fan
);
1123 DBG(" CPU min mpu = %d, min dimm = %d\n",
1124 state
->mpu
.rminn_intake_fan
, dimm_output_clamp
);
1126 state
->rpm
= max(state
->rpm
, (int)fan_min
);
1127 state
->rpm
= min(state
->rpm
, (int)state
->mpu
.rmaxn_intake_fan
);
1128 state
->intake_rpm
= state
->rpm
;
1131 DBG("** CPU %d RPM: %d overtemp: %d\n",
1132 state
->index
, (int)state
->rpm
, state
->overtemp
);
1134 /* We should check for errors, shouldn't we ? But then, what
1135 * do we do once the error occurs ? For FCU notified fan
1136 * failures (-EFAULT) we probably want to notify userland
1139 if (state
->index
== 0) {
1140 set_rpm_fan(CPU_A1_FAN_RPM_INDEX
, state
->rpm
);
1141 set_rpm_fan(CPU_A2_FAN_RPM_INDEX
, state
->rpm
);
1142 set_rpm_fan(CPU_A3_FAN_RPM_INDEX
, state
->rpm
);
1144 set_rpm_fan(CPU_B1_FAN_RPM_INDEX
, state
->rpm
);
1145 set_rpm_fan(CPU_B2_FAN_RPM_INDEX
, state
->rpm
);
1146 set_rpm_fan(CPU_B3_FAN_RPM_INDEX
, state
->rpm
);
1151 * Initialize the state structure for one CPU control loop
1153 static int init_cpu_state(struct cpu_pid_state
*state
, int index
)
1157 state
->index
= index
;
1159 state
->rpm
= (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) ? 4000 : 1000;
1160 state
->overtemp
= 0;
1161 state
->adc_config
= 0x00;
1165 state
->monitor
= attach_i2c_chip(SUPPLY_MONITOR_ID
, "CPU0_monitor");
1166 else if (index
== 1)
1167 state
->monitor
= attach_i2c_chip(SUPPLY_MONITORB_ID
, "CPU1_monitor");
1168 if (state
->monitor
== NULL
)
1171 if (read_eeprom(index
, &state
->mpu
))
1174 state
->count_power
= state
->mpu
.tguardband
;
1175 if (state
->count_power
> CPU_POWER_HISTORY_SIZE
) {
1176 printk(KERN_WARNING
"Warning ! too many power history slots\n");
1177 state
->count_power
= CPU_POWER_HISTORY_SIZE
;
1179 DBG("CPU %d Using %d power history entries\n", index
, state
->count_power
);
1182 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1183 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1184 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1185 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1186 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1188 err
= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1189 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1190 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1191 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1192 err
|= device_create_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1195 printk(KERN_WARNING
"Failed to create some of the atribute"
1196 "files for CPU %d\n", index
);
1200 state
->monitor
= NULL
;
1206 * Dispose of the state data for one CPU control loop
1208 static void dispose_cpu_state(struct cpu_pid_state
*state
)
1210 if (state
->monitor
== NULL
)
1213 if (state
->index
== 0) {
1214 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_temperature
);
1215 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_voltage
);
1216 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_current
);
1217 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_exhaust_fan_rpm
);
1218 device_remove_file(&of_dev
->dev
, &dev_attr_cpu0_intake_fan_rpm
);
1220 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_temperature
);
1221 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_voltage
);
1222 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_current
);
1223 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_exhaust_fan_rpm
);
1224 device_remove_file(&of_dev
->dev
, &dev_attr_cpu1_intake_fan_rpm
);
1227 state
->monitor
= NULL
;
1231 * Motherboard backside & U3 heatsink fan control loop
1233 static void do_monitor_backside(struct backside_pid_state
*state
)
1235 s32 temp
, integral
, derivative
, fan_min
;
1236 s64 integ_p
, deriv_p
, prop_p
, sum
;
1239 if (--state
->ticks
!= 0)
1241 state
->ticks
= backside_params
.interval
;
1245 /* Check fan status */
1246 rc
= get_pwm_fan(BACKSIDE_FAN_PWM_INDEX
);
1248 printk(KERN_WARNING
"Error %d reading backside fan !\n", rc
);
1249 /* XXX What do we do now ? */
1252 DBG(" current pwm: %d\n", state
->pwm
);
1254 /* Get some sensor readings */
1255 temp
= i2c_smbus_read_byte_data(state
->monitor
, MAX6690_EXT_TEMP
) << 16;
1256 state
->last_temp
= temp
;
1257 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1258 FIX32TOPRINT(backside_params
.input_target
));
1260 /* Store temperature and error in history array */
1261 state
->cur_sample
= (state
->cur_sample
+ 1) % BACKSIDE_PID_HISTORY_SIZE
;
1262 state
->sample_history
[state
->cur_sample
] = temp
;
1263 state
->error_history
[state
->cur_sample
] = temp
- backside_params
.input_target
;
1265 /* If first loop, fill the history table */
1267 for (i
= 0; i
< (BACKSIDE_PID_HISTORY_SIZE
- 1); i
++) {
1268 state
->cur_sample
= (state
->cur_sample
+ 1) %
1269 BACKSIDE_PID_HISTORY_SIZE
;
1270 state
->sample_history
[state
->cur_sample
] = temp
;
1271 state
->error_history
[state
->cur_sample
] =
1272 temp
- backside_params
.input_target
;
1277 /* Calculate the integral term */
1280 for (i
= 0; i
< BACKSIDE_PID_HISTORY_SIZE
; i
++)
1281 integral
+= state
->error_history
[i
];
1282 integral
*= backside_params
.interval
;
1283 DBG(" integral: %08x\n", integral
);
1284 integ_p
= ((s64
)backside_params
.G_r
) * (s64
)integral
;
1285 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1288 /* Calculate the derivative term */
1289 derivative
= state
->error_history
[state
->cur_sample
] -
1290 state
->error_history
[(state
->cur_sample
+ BACKSIDE_PID_HISTORY_SIZE
- 1)
1291 % BACKSIDE_PID_HISTORY_SIZE
];
1292 derivative
/= backside_params
.interval
;
1293 deriv_p
= ((s64
)backside_params
.G_d
) * (s64
)derivative
;
1294 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1297 /* Calculate the proportional term */
1298 prop_p
= ((s64
)backside_params
.G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1299 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1305 DBG(" sum: %d\n", (int)sum
);
1306 if (backside_params
.additive
)
1307 state
->pwm
+= (s32
)sum
;
1311 /* Check for clamp */
1312 fan_min
= (dimm_output_clamp
* 100) / 14000;
1313 fan_min
= max(fan_min
, backside_params
.output_min
);
1315 state
->pwm
= max(state
->pwm
, fan_min
);
1316 state
->pwm
= min(state
->pwm
, backside_params
.output_max
);
1318 DBG("** BACKSIDE PWM: %d\n", (int)state
->pwm
);
1319 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, state
->pwm
);
1323 * Initialize the state structure for the backside fan control loop
1325 static int init_backside_state(struct backside_pid_state
*state
)
1327 struct device_node
*u3
;
1328 int u3h
= 1; /* conservative by default */
1332 * There are different PID params for machines with U3 and machines
1333 * with U3H, pick the right ones now
1335 u3
= of_find_node_by_path("/u3@0,f8000000");
1337 const u32
*vers
= of_get_property(u3
, "device-rev", NULL
);
1339 if (((*vers
) & 0x3f) < 0x34)
1345 backside_params
.G_d
= BACKSIDE_PID_RACK_G_d
;
1346 backside_params
.input_target
= BACKSIDE_PID_RACK_INPUT_TARGET
;
1347 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1348 backside_params
.interval
= BACKSIDE_PID_RACK_INTERVAL
;
1349 backside_params
.G_p
= BACKSIDE_PID_RACK_G_p
;
1350 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1351 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1352 backside_params
.additive
= 0;
1354 backside_params
.G_d
= BACKSIDE_PID_U3H_G_d
;
1355 backside_params
.input_target
= BACKSIDE_PID_U3H_INPUT_TARGET
;
1356 backside_params
.output_min
= BACKSIDE_PID_U3H_OUTPUT_MIN
;
1357 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1358 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1359 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1360 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1361 backside_params
.additive
= 1;
1363 backside_params
.G_d
= BACKSIDE_PID_U3_G_d
;
1364 backside_params
.input_target
= BACKSIDE_PID_U3_INPUT_TARGET
;
1365 backside_params
.output_min
= BACKSIDE_PID_U3_OUTPUT_MIN
;
1366 backside_params
.interval
= BACKSIDE_PID_INTERVAL
;
1367 backside_params
.G_p
= BACKSIDE_PID_G_p
;
1368 backside_params
.G_r
= BACKSIDE_PID_G_r
;
1369 backside_params
.output_max
= BACKSIDE_PID_OUTPUT_MAX
;
1370 backside_params
.additive
= 1;
1377 state
->monitor
= attach_i2c_chip(BACKSIDE_MAX_ID
, "backside_temp");
1378 if (state
->monitor
== NULL
)
1381 err
= device_create_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1382 err
|= device_create_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1384 printk(KERN_WARNING
"Failed to create attribute file(s)"
1385 " for backside fan\n");
1391 * Dispose of the state data for the backside control loop
1393 static void dispose_backside_state(struct backside_pid_state
*state
)
1395 if (state
->monitor
== NULL
)
1398 device_remove_file(&of_dev
->dev
, &dev_attr_backside_temperature
);
1399 device_remove_file(&of_dev
->dev
, &dev_attr_backside_fan_pwm
);
1401 state
->monitor
= NULL
;
1405 * Drives bay fan control loop
1407 static void do_monitor_drives(struct drives_pid_state
*state
)
1409 s32 temp
, integral
, derivative
;
1410 s64 integ_p
, deriv_p
, prop_p
, sum
;
1413 if (--state
->ticks
!= 0)
1415 state
->ticks
= DRIVES_PID_INTERVAL
;
1419 /* Check fan status */
1420 rc
= get_rpm_fan(DRIVES_FAN_RPM_INDEX
, !RPM_PID_USE_ACTUAL_SPEED
);
1422 printk(KERN_WARNING
"Error %d reading drives fan !\n", rc
);
1423 /* XXX What do we do now ? */
1426 DBG(" current rpm: %d\n", state
->rpm
);
1428 /* Get some sensor readings */
1429 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1431 state
->last_temp
= temp
;
1432 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1433 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET
));
1435 /* Store temperature and error in history array */
1436 state
->cur_sample
= (state
->cur_sample
+ 1) % DRIVES_PID_HISTORY_SIZE
;
1437 state
->sample_history
[state
->cur_sample
] = temp
;
1438 state
->error_history
[state
->cur_sample
] = temp
- DRIVES_PID_INPUT_TARGET
;
1440 /* If first loop, fill the history table */
1442 for (i
= 0; i
< (DRIVES_PID_HISTORY_SIZE
- 1); i
++) {
1443 state
->cur_sample
= (state
->cur_sample
+ 1) %
1444 DRIVES_PID_HISTORY_SIZE
;
1445 state
->sample_history
[state
->cur_sample
] = temp
;
1446 state
->error_history
[state
->cur_sample
] =
1447 temp
- DRIVES_PID_INPUT_TARGET
;
1452 /* Calculate the integral term */
1455 for (i
= 0; i
< DRIVES_PID_HISTORY_SIZE
; i
++)
1456 integral
+= state
->error_history
[i
];
1457 integral
*= DRIVES_PID_INTERVAL
;
1458 DBG(" integral: %08x\n", integral
);
1459 integ_p
= ((s64
)DRIVES_PID_G_r
) * (s64
)integral
;
1460 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1463 /* Calculate the derivative term */
1464 derivative
= state
->error_history
[state
->cur_sample
] -
1465 state
->error_history
[(state
->cur_sample
+ DRIVES_PID_HISTORY_SIZE
- 1)
1466 % DRIVES_PID_HISTORY_SIZE
];
1467 derivative
/= DRIVES_PID_INTERVAL
;
1468 deriv_p
= ((s64
)DRIVES_PID_G_d
) * (s64
)derivative
;
1469 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1472 /* Calculate the proportional term */
1473 prop_p
= ((s64
)DRIVES_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1474 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1480 DBG(" sum: %d\n", (int)sum
);
1481 state
->rpm
+= (s32
)sum
;
1483 state
->rpm
= max(state
->rpm
, DRIVES_PID_OUTPUT_MIN
);
1484 state
->rpm
= min(state
->rpm
, DRIVES_PID_OUTPUT_MAX
);
1486 DBG("** DRIVES RPM: %d\n", (int)state
->rpm
);
1487 set_rpm_fan(DRIVES_FAN_RPM_INDEX
, state
->rpm
);
1491 * Initialize the state structure for the drives bay fan control loop
1493 static int init_drives_state(struct drives_pid_state
*state
)
1501 state
->monitor
= attach_i2c_chip(DRIVES_DALLAS_ID
, "drives_temp");
1502 if (state
->monitor
== NULL
)
1505 err
= device_create_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1506 err
|= device_create_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1508 printk(KERN_WARNING
"Failed to create attribute file(s)"
1509 " for drives bay fan\n");
1515 * Dispose of the state data for the drives control loop
1517 static void dispose_drives_state(struct drives_pid_state
*state
)
1519 if (state
->monitor
== NULL
)
1522 device_remove_file(&of_dev
->dev
, &dev_attr_drives_temperature
);
1523 device_remove_file(&of_dev
->dev
, &dev_attr_drives_fan_rpm
);
1525 state
->monitor
= NULL
;
1529 * DIMMs temp control loop
1531 static void do_monitor_dimms(struct dimm_pid_state
*state
)
1533 s32 temp
, integral
, derivative
, fan_min
;
1534 s64 integ_p
, deriv_p
, prop_p
, sum
;
1537 if (--state
->ticks
!= 0)
1539 state
->ticks
= DIMM_PID_INTERVAL
;
1543 DBG(" current value: %d\n", state
->output
);
1545 temp
= read_lm87_reg(state
->monitor
, LM87_INT_TEMP
);
1549 state
->last_temp
= temp
;
1550 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1551 FIX32TOPRINT(DIMM_PID_INPUT_TARGET
));
1553 /* Store temperature and error in history array */
1554 state
->cur_sample
= (state
->cur_sample
+ 1) % DIMM_PID_HISTORY_SIZE
;
1555 state
->sample_history
[state
->cur_sample
] = temp
;
1556 state
->error_history
[state
->cur_sample
] = temp
- DIMM_PID_INPUT_TARGET
;
1558 /* If first loop, fill the history table */
1560 for (i
= 0; i
< (DIMM_PID_HISTORY_SIZE
- 1); i
++) {
1561 state
->cur_sample
= (state
->cur_sample
+ 1) %
1562 DIMM_PID_HISTORY_SIZE
;
1563 state
->sample_history
[state
->cur_sample
] = temp
;
1564 state
->error_history
[state
->cur_sample
] =
1565 temp
- DIMM_PID_INPUT_TARGET
;
1570 /* Calculate the integral term */
1573 for (i
= 0; i
< DIMM_PID_HISTORY_SIZE
; i
++)
1574 integral
+= state
->error_history
[i
];
1575 integral
*= DIMM_PID_INTERVAL
;
1576 DBG(" integral: %08x\n", integral
);
1577 integ_p
= ((s64
)DIMM_PID_G_r
) * (s64
)integral
;
1578 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1581 /* Calculate the derivative term */
1582 derivative
= state
->error_history
[state
->cur_sample
] -
1583 state
->error_history
[(state
->cur_sample
+ DIMM_PID_HISTORY_SIZE
- 1)
1584 % DIMM_PID_HISTORY_SIZE
];
1585 derivative
/= DIMM_PID_INTERVAL
;
1586 deriv_p
= ((s64
)DIMM_PID_G_d
) * (s64
)derivative
;
1587 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1590 /* Calculate the proportional term */
1591 prop_p
= ((s64
)DIMM_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1592 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1598 DBG(" sum: %d\n", (int)sum
);
1599 state
->output
= (s32
)sum
;
1600 state
->output
= max(state
->output
, DIMM_PID_OUTPUT_MIN
);
1601 state
->output
= min(state
->output
, DIMM_PID_OUTPUT_MAX
);
1602 dimm_output_clamp
= state
->output
;
1604 DBG("** DIMM clamp value: %d\n", (int)state
->output
);
1606 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1607 fan_min
= (dimm_output_clamp
* 100) / 14000;
1608 fan_min
= max(fan_min
, backside_params
.output_min
);
1609 if (backside_state
.pwm
< fan_min
) {
1610 backside_state
.pwm
= fan_min
;
1611 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min
);
1612 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX
, fan_min
);
1617 * Initialize the state structure for the DIMM temp control loop
1619 static int init_dimms_state(struct dimm_pid_state
*state
)
1623 state
->output
= 4000;
1625 state
->monitor
= attach_i2c_chip(XSERVE_DIMMS_LM87
, "dimms_temp");
1626 if (state
->monitor
== NULL
)
1629 if (device_create_file(&of_dev
->dev
, &dev_attr_dimms_temperature
))
1630 printk(KERN_WARNING
"Failed to create attribute file"
1631 " for DIMM temperature\n");
1637 * Dispose of the state data for the DIMM control loop
1639 static void dispose_dimms_state(struct dimm_pid_state
*state
)
1641 if (state
->monitor
== NULL
)
1644 device_remove_file(&of_dev
->dev
, &dev_attr_dimms_temperature
);
1646 state
->monitor
= NULL
;
1650 * Slots fan control loop
1652 static void do_monitor_slots(struct slots_pid_state
*state
)
1654 s32 temp
, integral
, derivative
;
1655 s64 integ_p
, deriv_p
, prop_p
, sum
;
1658 if (--state
->ticks
!= 0)
1660 state
->ticks
= SLOTS_PID_INTERVAL
;
1664 /* Check fan status */
1665 rc
= get_pwm_fan(SLOTS_FAN_PWM_INDEX
);
1667 printk(KERN_WARNING
"Error %d reading slots fan !\n", rc
);
1668 /* XXX What do we do now ? */
1671 DBG(" current pwm: %d\n", state
->pwm
);
1673 /* Get some sensor readings */
1674 temp
= le16_to_cpu(i2c_smbus_read_word_data(state
->monitor
,
1676 state
->last_temp
= temp
;
1677 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp
),
1678 FIX32TOPRINT(SLOTS_PID_INPUT_TARGET
));
1680 /* Store temperature and error in history array */
1681 state
->cur_sample
= (state
->cur_sample
+ 1) % SLOTS_PID_HISTORY_SIZE
;
1682 state
->sample_history
[state
->cur_sample
] = temp
;
1683 state
->error_history
[state
->cur_sample
] = temp
- SLOTS_PID_INPUT_TARGET
;
1685 /* If first loop, fill the history table */
1687 for (i
= 0; i
< (SLOTS_PID_HISTORY_SIZE
- 1); i
++) {
1688 state
->cur_sample
= (state
->cur_sample
+ 1) %
1689 SLOTS_PID_HISTORY_SIZE
;
1690 state
->sample_history
[state
->cur_sample
] = temp
;
1691 state
->error_history
[state
->cur_sample
] =
1692 temp
- SLOTS_PID_INPUT_TARGET
;
1697 /* Calculate the integral term */
1700 for (i
= 0; i
< SLOTS_PID_HISTORY_SIZE
; i
++)
1701 integral
+= state
->error_history
[i
];
1702 integral
*= SLOTS_PID_INTERVAL
;
1703 DBG(" integral: %08x\n", integral
);
1704 integ_p
= ((s64
)SLOTS_PID_G_r
) * (s64
)integral
;
1705 DBG(" integ_p: %d\n", (int)(integ_p
>> 36));
1708 /* Calculate the derivative term */
1709 derivative
= state
->error_history
[state
->cur_sample
] -
1710 state
->error_history
[(state
->cur_sample
+ SLOTS_PID_HISTORY_SIZE
- 1)
1711 % SLOTS_PID_HISTORY_SIZE
];
1712 derivative
/= SLOTS_PID_INTERVAL
;
1713 deriv_p
= ((s64
)SLOTS_PID_G_d
) * (s64
)derivative
;
1714 DBG(" deriv_p: %d\n", (int)(deriv_p
>> 36));
1717 /* Calculate the proportional term */
1718 prop_p
= ((s64
)SLOTS_PID_G_p
) * (s64
)(state
->error_history
[state
->cur_sample
]);
1719 DBG(" prop_p: %d\n", (int)(prop_p
>> 36));
1725 DBG(" sum: %d\n", (int)sum
);
1726 state
->pwm
= (s32
)sum
;
1728 state
->pwm
= max(state
->pwm
, SLOTS_PID_OUTPUT_MIN
);
1729 state
->pwm
= min(state
->pwm
, SLOTS_PID_OUTPUT_MAX
);
1731 DBG("** DRIVES PWM: %d\n", (int)state
->pwm
);
1732 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, state
->pwm
);
1736 * Initialize the state structure for the slots bay fan control loop
1738 static int init_slots_state(struct slots_pid_state
*state
)
1746 state
->monitor
= attach_i2c_chip(XSERVE_SLOTS_LM75
, "slots_temp");
1747 if (state
->monitor
== NULL
)
1750 err
= device_create_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1751 err
|= device_create_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1753 printk(KERN_WARNING
"Failed to create attribute file(s)"
1754 " for slots bay fan\n");
1760 * Dispose of the state data for the slots control loop
1762 static void dispose_slots_state(struct slots_pid_state
*state
)
1764 if (state
->monitor
== NULL
)
1767 device_remove_file(&of_dev
->dev
, &dev_attr_slots_temperature
);
1768 device_remove_file(&of_dev
->dev
, &dev_attr_slots_fan_pwm
);
1770 state
->monitor
= NULL
;
1774 static int call_critical_overtemp(void)
1776 char *argv
[] = { critical_overtemp_path
, NULL
};
1777 static char *envp
[] = { "HOME=/",
1779 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1782 return call_usermodehelper(critical_overtemp_path
,
1783 argv
, envp
, UMH_WAIT_EXEC
);
1788 * Here's the kernel thread that calls the various control loops
1790 static int main_control_loop(void *x
)
1792 DBG("main_control_loop started\n");
1794 mutex_lock(&driver_lock
);
1796 if (start_fcu() < 0) {
1797 printk(KERN_ERR
"kfand: failed to start FCU\n");
1798 mutex_unlock(&driver_lock
);
1802 /* Set the PCI fan once for now on non-RackMac */
1804 set_pwm_fan(SLOTS_FAN_PWM_INDEX
, SLOTS_FAN_DEFAULT_PWM
);
1806 /* Initialize ADCs */
1807 initialize_adc(&cpu_state
[0]);
1808 if (cpu_state
[1].monitor
!= NULL
)
1809 initialize_adc(&cpu_state
[1]);
1811 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1813 mutex_unlock(&driver_lock
);
1815 while (state
== state_attached
) {
1816 unsigned long elapsed
, start
;
1820 mutex_lock(&driver_lock
);
1822 /* Tickle the FCU just in case */
1823 if (--fcu_tickle_ticks
< 0) {
1824 fcu_tickle_ticks
= FCU_TICKLE_TICKS
;
1828 /* First, we always calculate the new DIMMs state on an Xserve */
1830 do_monitor_dimms(&dimms_state
);
1832 /* Then, the CPUs */
1833 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1834 do_monitor_cpu_combined();
1835 else if (cpu_pid_type
== CPU_PID_TYPE_RACKMAC
) {
1836 do_monitor_cpu_rack(&cpu_state
[0]);
1837 if (cpu_state
[1].monitor
!= NULL
)
1838 do_monitor_cpu_rack(&cpu_state
[1]);
1839 // better deal with UP
1841 do_monitor_cpu_split(&cpu_state
[0]);
1842 if (cpu_state
[1].monitor
!= NULL
)
1843 do_monitor_cpu_split(&cpu_state
[1]);
1844 // better deal with UP
1846 /* Then, the rest */
1847 do_monitor_backside(&backside_state
);
1849 do_monitor_slots(&slots_state
);
1851 do_monitor_drives(&drives_state
);
1852 mutex_unlock(&driver_lock
);
1854 if (critical_state
== 1) {
1855 printk(KERN_WARNING
"Temperature control detected a critical condition\n");
1856 printk(KERN_WARNING
"Attempting to shut down...\n");
1857 if (call_critical_overtemp()) {
1858 printk(KERN_WARNING
"Can't call %s, power off now!\n",
1859 critical_overtemp_path
);
1860 machine_power_off();
1863 if (critical_state
> 0)
1865 if (critical_state
> MAX_CRITICAL_STATE
) {
1866 printk(KERN_WARNING
"Shutdown timed out, power off now !\n");
1867 machine_power_off();
1870 // FIXME: Deal with signals
1871 elapsed
= jiffies
- start
;
1873 schedule_timeout_interruptible(HZ
- elapsed
);
1877 DBG("main_control_loop ended\n");
1880 complete_and_exit(&ctrl_complete
, 0);
1884 * Dispose the control loops when tearing down
1886 static void dispose_control_loops(void)
1888 dispose_cpu_state(&cpu_state
[0]);
1889 dispose_cpu_state(&cpu_state
[1]);
1890 dispose_backside_state(&backside_state
);
1891 dispose_drives_state(&drives_state
);
1892 dispose_slots_state(&slots_state
);
1893 dispose_dimms_state(&dimms_state
);
1897 * Create the control loops. U3-0 i2c bus is up, so we can now
1898 * get to the various sensors
1900 static int create_control_loops(void)
1902 struct device_node
*np
;
1904 /* Count CPUs from the device-tree, we don't care how many are
1905 * actually used by Linux
1908 for (np
= NULL
; NULL
!= (np
= of_find_node_by_type(np
, "cpu"));)
1911 DBG("counted %d CPUs in the device-tree\n", cpu_count
);
1913 /* Decide the type of PID algorithm to use based on the presence of
1914 * the pumps, though that may not be the best way, that is good enough
1918 cpu_pid_type
= CPU_PID_TYPE_RACKMAC
;
1919 else if (of_machine_is_compatible("PowerMac7,3")
1921 && fcu_fans
[CPUA_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
1922 && fcu_fans
[CPUB_PUMP_RPM_INDEX
].id
!= FCU_FAN_ABSENT_ID
) {
1923 printk(KERN_INFO
"Liquid cooling pumps detected, using new algorithm !\n");
1924 cpu_pid_type
= CPU_PID_TYPE_COMBINED
;
1926 cpu_pid_type
= CPU_PID_TYPE_SPLIT
;
1928 /* Create control loops for everything. If any fail, everything
1931 if (init_cpu_state(&cpu_state
[0], 0))
1933 if (cpu_pid_type
== CPU_PID_TYPE_COMBINED
)
1934 fetch_cpu_pumps_minmax();
1936 if (cpu_count
> 1 && init_cpu_state(&cpu_state
[1], 1))
1938 if (init_backside_state(&backside_state
))
1940 if (rackmac
&& init_dimms_state(&dimms_state
))
1942 if (rackmac
&& init_slots_state(&slots_state
))
1944 if (!rackmac
&& init_drives_state(&drives_state
))
1947 DBG("all control loops up !\n");
1952 DBG("failure creating control loops, disposing\n");
1954 dispose_control_loops();
1960 * Start the control loops after everything is up, that is create
1961 * the thread that will make them run
1963 static void start_control_loops(void)
1965 init_completion(&ctrl_complete
);
1967 ctrl_task
= kthread_run(main_control_loop
, NULL
, "kfand");
1971 * Stop the control loops when tearing down
1973 static void stop_control_loops(void)
1976 wait_for_completion(&ctrl_complete
);
1980 * Attach to the i2c FCU after detecting U3-1 bus
1982 static int attach_fcu(void)
1984 fcu
= attach_i2c_chip(FAN_CTRLER_ID
, "fcu");
1988 DBG("FCU attached\n");
1994 * Detach from the i2c FCU when tearing down
1996 static void detach_fcu(void)
2002 * Attach to the i2c controller. We probe the various chips based
2003 * on the device-tree nodes and build everything for the driver to
2004 * run, we then kick the driver monitoring thread
2006 static int therm_pm72_attach(struct i2c_adapter
*adapter
)
2008 mutex_lock(&driver_lock
);
2011 if (state
== state_detached
)
2012 state
= state_attaching
;
2013 if (state
!= state_attaching
) {
2014 mutex_unlock(&driver_lock
);
2018 /* Check if we are looking for one of these */
2019 if (u3_0
== NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2021 DBG("found U3-0\n");
2023 if (create_control_loops())
2025 } else if (u3_1
== NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2027 DBG("found U3-1, attaching FCU\n");
2030 } else if (k2
== NULL
&& !strcmp(adapter
->name
, "mac-io 0")) {
2033 if (u3_0
&& rackmac
)
2034 if (create_control_loops())
2037 /* We got all we need, start control loops */
2038 if (u3_0
!= NULL
&& u3_1
!= NULL
&& (k2
|| !rackmac
)) {
2039 DBG("everything up, starting control loops\n");
2040 state
= state_attached
;
2041 start_control_loops();
2043 mutex_unlock(&driver_lock
);
2048 static int therm_pm72_probe(struct i2c_client
*client
,
2049 const struct i2c_device_id
*id
)
2051 /* Always succeed, the real work was done in therm_pm72_attach() */
2056 * Called when any of the devices which participates into thermal management
2059 static int therm_pm72_remove(struct i2c_client
*client
)
2061 struct i2c_adapter
*adapter
= client
->adapter
;
2063 mutex_lock(&driver_lock
);
2065 if (state
!= state_detached
)
2066 state
= state_detaching
;
2068 /* Stop control loops if any */
2069 DBG("stopping control loops\n");
2070 mutex_unlock(&driver_lock
);
2071 stop_control_loops();
2072 mutex_lock(&driver_lock
);
2074 if (u3_0
!= NULL
&& !strcmp(adapter
->name
, "u3 0")) {
2075 DBG("lost U3-0, disposing control loops\n");
2076 dispose_control_loops();
2080 if (u3_1
!= NULL
&& !strcmp(adapter
->name
, "u3 1")) {
2081 DBG("lost U3-1, detaching FCU\n");
2085 if (u3_0
== NULL
&& u3_1
== NULL
)
2086 state
= state_detached
;
2088 mutex_unlock(&driver_lock
);
2094 * i2c_driver structure to attach to the host i2c controller
2097 static const struct i2c_device_id therm_pm72_id
[] = {
2099 * Fake device name, thermal management is done by several
2100 * chips but we don't need to differentiate between them at
2103 { "therm_pm72", 0 },
2107 static struct i2c_driver therm_pm72_driver
= {
2109 .name
= "therm_pm72",
2111 .attach_adapter
= therm_pm72_attach
,
2112 .probe
= therm_pm72_probe
,
2113 .remove
= therm_pm72_remove
,
2114 .id_table
= therm_pm72_id
,
2117 static int fan_check_loc_match(const char *loc
, int fan
)
2122 strlcpy(tmp
, fcu_fans
[fan
].loc
, 64);
2129 if (strcmp(loc
, c
) == 0)
2138 static void fcu_lookup_fans(struct device_node
*fcu_node
)
2140 struct device_node
*np
= NULL
;
2143 /* The table is filled by default with values that are suitable
2144 * for the old machines without device-tree informations. We scan
2145 * the device-tree and override those values with whatever is
2149 DBG("Looking up FCU controls in device-tree...\n");
2151 while ((np
= of_get_next_child(fcu_node
, np
)) != NULL
) {
2156 DBG(" control: %s, type: %s\n", np
->name
, np
->type
);
2158 /* Detect control type */
2159 if (!strcmp(np
->type
, "fan-rpm-control") ||
2160 !strcmp(np
->type
, "fan-rpm"))
2162 if (!strcmp(np
->type
, "fan-pwm-control") ||
2163 !strcmp(np
->type
, "fan-pwm"))
2165 /* Only care about fans for now */
2169 /* Lookup for a matching location */
2170 loc
= of_get_property(np
, "location", NULL
);
2171 reg
= of_get_property(np
, "reg", NULL
);
2172 if (loc
== NULL
|| reg
== NULL
)
2174 DBG(" matching location: %s, reg: 0x%08x\n", loc
, *reg
);
2176 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2179 if (!fan_check_loc_match(loc
, i
))
2181 DBG(" location match, index: %d\n", i
);
2182 fcu_fans
[i
].id
= FCU_FAN_ABSENT_ID
;
2183 if (type
!= fcu_fans
[i
].type
) {
2184 printk(KERN_WARNING
"therm_pm72: Fan type mismatch "
2185 "in device-tree for %s\n", np
->full_name
);
2188 if (type
== FCU_FAN_RPM
)
2189 fan_id
= ((*reg
) - 0x10) / 2;
2191 fan_id
= ((*reg
) - 0x30) / 2;
2193 printk(KERN_WARNING
"therm_pm72: Can't parse "
2194 "fan ID in device-tree for %s\n", np
->full_name
);
2197 DBG(" fan id -> %d, type -> %d\n", fan_id
, type
);
2198 fcu_fans
[i
].id
= fan_id
;
2202 /* Now dump the array */
2203 printk(KERN_INFO
"Detected fan controls:\n");
2204 for (i
= 0; i
< FCU_FAN_COUNT
; i
++) {
2205 if (fcu_fans
[i
].id
== FCU_FAN_ABSENT_ID
)
2207 printk(KERN_INFO
" %d: %s fan, id %d, location: %s\n", i
,
2208 fcu_fans
[i
].type
== FCU_FAN_RPM
? "RPM" : "PWM",
2209 fcu_fans
[i
].id
, fcu_fans
[i
].loc
);
2213 static int fcu_of_probe(struct of_device
* dev
, const struct of_device_id
*match
)
2215 state
= state_detached
;
2217 /* Lookup the fans in the device tree */
2218 fcu_lookup_fans(dev
->dev
.of_node
);
2220 /* Add the driver */
2221 return i2c_add_driver(&therm_pm72_driver
);
2224 static int fcu_of_remove(struct of_device
* dev
)
2226 i2c_del_driver(&therm_pm72_driver
);
2231 static const struct of_device_id fcu_match
[] =
2239 static struct of_platform_driver fcu_of_platform_driver
=
2241 .name
= "temperature",
2242 .match_table
= fcu_match
,
2243 .probe
= fcu_of_probe
,
2244 .remove
= fcu_of_remove
2248 * Check machine type, attach to i2c controller
2250 static int __init
therm_pm72_init(void)
2252 struct device_node
*np
;
2254 rackmac
= of_machine_is_compatible("RackMac3,1");
2256 if (!of_machine_is_compatible("PowerMac7,2") &&
2257 !of_machine_is_compatible("PowerMac7,3") &&
2261 printk(KERN_INFO
"PowerMac G5 Thermal control driver %s\n", VERSION
);
2263 np
= of_find_node_by_type(NULL
, "fcu");
2265 /* Some machines have strangely broken device-tree */
2266 np
= of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2268 printk(KERN_ERR
"Can't find FCU in device-tree !\n");
2272 of_dev
= of_platform_device_create(np
, "temperature", NULL
);
2273 if (of_dev
== NULL
) {
2274 printk(KERN_ERR
"Can't register FCU platform device !\n");
2278 of_register_platform_driver(&fcu_of_platform_driver
);
2283 static void __exit
therm_pm72_exit(void)
2285 of_unregister_platform_driver(&fcu_of_platform_driver
);
2288 of_device_unregister(of_dev
);
2291 module_init(therm_pm72_init
);
2292 module_exit(therm_pm72_exit
);
2294 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2295 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2296 MODULE_LICENSE("GPL");