2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC
int xfs_uuid_mount(xfs_mount_t
*);
49 STATIC
void xfs_unmountfs_wait(xfs_mount_t
*);
53 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
55 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
57 STATIC
int xfs_icsb_modify_counters(xfs_mount_t
*, xfs_sb_field_t
,
59 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
63 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
64 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
65 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
71 short type
; /* 0 = integer
72 * 1 = binary / string (no translation)
75 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
76 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
77 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
78 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
79 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
80 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
81 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
82 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
83 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
84 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
85 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
86 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
87 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
88 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
89 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
90 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
91 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
92 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
93 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
94 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
95 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
96 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
97 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
98 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
99 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
100 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
101 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
102 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
103 { offsetof(xfs_sb_t
, sb_icount
), 0 },
104 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
105 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
106 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
107 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
108 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
109 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
110 { offsetof(xfs_sb_t
, sb_flags
), 0 },
111 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
112 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
113 { offsetof(xfs_sb_t
, sb_unit
), 0 },
114 { offsetof(xfs_sb_t
, sb_width
), 0 },
115 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
116 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
117 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
118 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
119 { offsetof(xfs_sb_t
, sb_features2
), 0 },
120 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
121 { sizeof(xfs_sb_t
), 0 }
125 * Free up the resources associated with a mount structure. Assume that
126 * the structure was initially zeroed, so we can tell which fields got
136 for (agno
= 0; agno
< mp
->m_maxagi
; agno
++)
137 if (mp
->m_perag
[agno
].pagb_list
)
138 kmem_free(mp
->m_perag
[agno
].pagb_list
);
139 kmem_free(mp
->m_perag
);
144 * Check size of device based on the (data/realtime) block count.
145 * Note: this check is used by the growfs code as well as mount.
148 xfs_sb_validate_fsb_count(
152 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
153 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
155 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
156 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
158 #else /* Limited by UINT_MAX of sectors */
159 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
166 * Check the validity of the SB found.
169 xfs_mount_validate_sb(
175 * If the log device and data device have the
176 * same device number, the log is internal.
177 * Consequently, the sb_logstart should be non-zero. If
178 * we have a zero sb_logstart in this case, we may be trying to mount
179 * a volume filesystem in a non-volume manner.
181 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
182 xfs_fs_mount_cmn_err(flags
, "bad magic number");
183 return XFS_ERROR(EWRONGFS
);
186 if (!xfs_sb_good_version(sbp
)) {
187 xfs_fs_mount_cmn_err(flags
, "bad version");
188 return XFS_ERROR(EWRONGFS
);
192 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
193 xfs_fs_mount_cmn_err(flags
,
194 "filesystem is marked as having an external log; "
195 "specify logdev on the\nmount command line.");
196 return XFS_ERROR(EINVAL
);
200 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
201 xfs_fs_mount_cmn_err(flags
,
202 "filesystem is marked as having an internal log; "
203 "do not specify logdev on\nthe mount command line.");
204 return XFS_ERROR(EINVAL
);
208 * More sanity checking. These were stolen directly from
212 sbp
->sb_agcount
<= 0 ||
213 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
214 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
215 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
216 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
217 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
218 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
219 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
220 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
221 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
222 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
223 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
224 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
225 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
226 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
227 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
228 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */))) {
229 xfs_fs_mount_cmn_err(flags
, "SB sanity check 1 failed");
230 return XFS_ERROR(EFSCORRUPTED
);
234 * Sanity check AG count, size fields against data size field
237 sbp
->sb_dblocks
== 0 ||
239 (xfs_drfsbno_t
)sbp
->sb_agcount
* sbp
->sb_agblocks
||
240 sbp
->sb_dblocks
< (xfs_drfsbno_t
)(sbp
->sb_agcount
- 1) *
241 sbp
->sb_agblocks
+ XFS_MIN_AG_BLOCKS
)) {
242 xfs_fs_mount_cmn_err(flags
, "SB sanity check 2 failed");
243 return XFS_ERROR(EFSCORRUPTED
);
247 * Until this is fixed only page-sized or smaller data blocks work.
249 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
250 xfs_fs_mount_cmn_err(flags
,
251 "file system with blocksize %d bytes",
253 xfs_fs_mount_cmn_err(flags
,
254 "only pagesize (%ld) or less will currently work.",
256 return XFS_ERROR(ENOSYS
);
259 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
260 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
261 xfs_fs_mount_cmn_err(flags
,
262 "file system too large to be mounted on this system.");
263 return XFS_ERROR(E2BIG
);
266 if (unlikely(sbp
->sb_inprogress
)) {
267 xfs_fs_mount_cmn_err(flags
, "file system busy");
268 return XFS_ERROR(EFSCORRUPTED
);
272 * Version 1 directory format has never worked on Linux.
274 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
275 xfs_fs_mount_cmn_err(flags
,
276 "file system using version 1 directory format");
277 return XFS_ERROR(ENOSYS
);
284 xfs_initialize_perag_icache(
287 if (!pag
->pag_ici_init
) {
288 rwlock_init(&pag
->pag_ici_lock
);
289 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
290 pag
->pag_ici_init
= 1;
295 xfs_initialize_perag(
297 xfs_agnumber_t agcount
)
299 xfs_agnumber_t index
, max_metadata
;
303 xfs_sb_t
*sbp
= &mp
->m_sb
;
304 xfs_ino_t max_inum
= XFS_MAXINUMBER_32
;
306 /* Check to see if the filesystem can overflow 32 bit inodes */
307 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
308 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
310 /* Clear the mount flag if no inode can overflow 32 bits
311 * on this filesystem, or if specifically requested..
313 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> max_inum
) {
314 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
316 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
319 /* If we can overflow then setup the ag headers accordingly */
320 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
321 /* Calculate how much should be reserved for inodes to
322 * meet the max inode percentage.
324 if (mp
->m_maxicount
) {
327 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
329 icount
+= sbp
->sb_agblocks
- 1;
330 do_div(icount
, sbp
->sb_agblocks
);
331 max_metadata
= icount
;
333 max_metadata
= agcount
;
335 for (index
= 0; index
< agcount
; index
++) {
336 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
337 if (ino
> max_inum
) {
342 /* This ag is preferred for inodes */
343 pag
= &mp
->m_perag
[index
];
344 pag
->pagi_inodeok
= 1;
345 if (index
< max_metadata
)
346 pag
->pagf_metadata
= 1;
347 xfs_initialize_perag_icache(pag
);
350 /* Setup default behavior for smaller filesystems */
351 for (index
= 0; index
< agcount
; index
++) {
352 pag
= &mp
->m_perag
[index
];
353 pag
->pagi_inodeok
= 1;
354 xfs_initialize_perag_icache(pag
);
365 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
366 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
367 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
368 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
369 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
370 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
371 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
372 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
373 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
374 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
375 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
376 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
377 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
378 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
379 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
380 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
381 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
382 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
383 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
384 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
385 to
->sb_blocklog
= from
->sb_blocklog
;
386 to
->sb_sectlog
= from
->sb_sectlog
;
387 to
->sb_inodelog
= from
->sb_inodelog
;
388 to
->sb_inopblog
= from
->sb_inopblog
;
389 to
->sb_agblklog
= from
->sb_agblklog
;
390 to
->sb_rextslog
= from
->sb_rextslog
;
391 to
->sb_inprogress
= from
->sb_inprogress
;
392 to
->sb_imax_pct
= from
->sb_imax_pct
;
393 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
394 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
395 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
396 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
397 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
398 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
399 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
400 to
->sb_flags
= from
->sb_flags
;
401 to
->sb_shared_vn
= from
->sb_shared_vn
;
402 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
403 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
404 to
->sb_width
= be32_to_cpu(from
->sb_width
);
405 to
->sb_dirblklog
= from
->sb_dirblklog
;
406 to
->sb_logsectlog
= from
->sb_logsectlog
;
407 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
408 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
409 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
410 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
414 * Copy in core superblock to ondisk one.
416 * The fields argument is mask of superblock fields to copy.
424 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
425 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
435 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
436 first
= xfs_sb_info
[f
].offset
;
437 size
= xfs_sb_info
[f
+ 1].offset
- first
;
439 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
441 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
442 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
446 *(__be16
*)(to_ptr
+ first
) =
447 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
450 *(__be32
*)(to_ptr
+ first
) =
451 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
454 *(__be64
*)(to_ptr
+ first
) =
455 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
462 fields
&= ~(1LL << f
);
469 * Does the initial read of the superblock.
472 xfs_readsb(xfs_mount_t
*mp
, int flags
)
474 unsigned int sector_size
;
475 unsigned int extra_flags
;
479 ASSERT(mp
->m_sb_bp
== NULL
);
480 ASSERT(mp
->m_ddev_targp
!= NULL
);
483 * Allocate a (locked) buffer to hold the superblock.
484 * This will be kept around at all times to optimize
485 * access to the superblock.
487 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
488 extra_flags
= XFS_BUF_LOCK
| XFS_BUF_MANAGE
| XFS_BUF_MAPPED
;
490 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, XFS_SB_DADDR
,
491 BTOBB(sector_size
), extra_flags
);
492 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
493 xfs_fs_mount_cmn_err(flags
, "SB read failed");
494 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
497 ASSERT(XFS_BUF_ISBUSY(bp
));
498 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
501 * Initialize the mount structure from the superblock.
502 * But first do some basic consistency checking.
504 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
506 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
508 xfs_fs_mount_cmn_err(flags
, "SB validate failed");
513 * We must be able to do sector-sized and sector-aligned IO.
515 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
516 xfs_fs_mount_cmn_err(flags
,
517 "device supports only %u byte sectors (not %u)",
518 sector_size
, mp
->m_sb
.sb_sectsize
);
524 * If device sector size is smaller than the superblock size,
525 * re-read the superblock so the buffer is correctly sized.
527 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
528 XFS_BUF_UNMANAGE(bp
);
530 sector_size
= mp
->m_sb
.sb_sectsize
;
531 bp
= xfs_buf_read_flags(mp
->m_ddev_targp
, XFS_SB_DADDR
,
532 BTOBB(sector_size
), extra_flags
);
533 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
534 xfs_fs_mount_cmn_err(flags
, "SB re-read failed");
535 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
538 ASSERT(XFS_BUF_ISBUSY(bp
));
539 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
542 /* Initialize per-cpu counters */
543 xfs_icsb_reinit_counters(mp
);
547 ASSERT(XFS_BUF_VALUSEMA(bp
) > 0);
552 XFS_BUF_UNMANAGE(bp
);
562 * Mount initialization code establishing various mount
563 * fields from the superblock associated with the given
567 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
569 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
570 spin_lock_init(&mp
->m_agirotor_lock
);
571 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
572 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
573 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
574 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
575 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
576 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
577 mp
->m_litino
= sbp
->sb_inodesize
- sizeof(struct xfs_dinode
);
578 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
579 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
580 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
583 * Setup for attributes, in case they get created.
584 * This value is for inodes getting attributes for the first time,
585 * the per-inode value is for old attribute values.
587 ASSERT(sbp
->sb_inodesize
>= 256 && sbp
->sb_inodesize
<= 2048);
588 switch (sbp
->sb_inodesize
) {
590 mp
->m_attroffset
= XFS_LITINO(mp
) -
591 XFS_BMDR_SPACE_CALC(MINABTPTRS
);
596 mp
->m_attroffset
= XFS_BMDR_SPACE_CALC(6 * MINABTPTRS
);
601 ASSERT(mp
->m_attroffset
< XFS_LITINO(mp
));
603 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
604 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
605 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
606 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
608 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
609 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
610 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
611 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
613 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
614 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
615 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
616 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
618 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
619 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
621 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
625 * xfs_initialize_perag_data
627 * Read in each per-ag structure so we can count up the number of
628 * allocated inodes, free inodes and used filesystem blocks as this
629 * information is no longer persistent in the superblock. Once we have
630 * this information, write it into the in-core superblock structure.
633 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
635 xfs_agnumber_t index
;
637 xfs_sb_t
*sbp
= &mp
->m_sb
;
641 uint64_t bfreelst
= 0;
645 for (index
= 0; index
< agcount
; index
++) {
647 * read the agf, then the agi. This gets us
648 * all the inforamtion we need and populates the
649 * per-ag structures for us.
651 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
655 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
658 pag
= &mp
->m_perag
[index
];
659 ifree
+= pag
->pagi_freecount
;
660 ialloc
+= pag
->pagi_count
;
661 bfree
+= pag
->pagf_freeblks
;
662 bfreelst
+= pag
->pagf_flcount
;
663 btree
+= pag
->pagf_btreeblks
;
666 * Overwrite incore superblock counters with just-read data
668 spin_lock(&mp
->m_sb_lock
);
669 sbp
->sb_ifree
= ifree
;
670 sbp
->sb_icount
= ialloc
;
671 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
672 spin_unlock(&mp
->m_sb_lock
);
674 /* Fixup the per-cpu counters as well. */
675 xfs_icsb_reinit_counters(mp
);
681 * Update alignment values based on mount options and sb values
684 xfs_update_alignment(xfs_mount_t
*mp
)
686 xfs_sb_t
*sbp
= &(mp
->m_sb
);
690 * If stripe unit and stripe width are not multiples
691 * of the fs blocksize turn off alignment.
693 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
694 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
695 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
697 "XFS: alignment check 1 failed");
698 return XFS_ERROR(EINVAL
);
700 mp
->m_dalign
= mp
->m_swidth
= 0;
703 * Convert the stripe unit and width to FSBs.
705 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
706 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
707 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
708 return XFS_ERROR(EINVAL
);
710 xfs_fs_cmn_err(CE_WARN
, mp
,
711 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
712 mp
->m_dalign
, mp
->m_swidth
,
717 } else if (mp
->m_dalign
) {
718 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
720 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
721 xfs_fs_cmn_err(CE_WARN
, mp
,
722 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
725 return XFS_ERROR(EINVAL
);
732 * Update superblock with new values
735 if (xfs_sb_version_hasdalign(sbp
)) {
736 if (sbp
->sb_unit
!= mp
->m_dalign
) {
737 sbp
->sb_unit
= mp
->m_dalign
;
738 mp
->m_update_flags
|= XFS_SB_UNIT
;
740 if (sbp
->sb_width
!= mp
->m_swidth
) {
741 sbp
->sb_width
= mp
->m_swidth
;
742 mp
->m_update_flags
|= XFS_SB_WIDTH
;
745 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
746 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
747 mp
->m_dalign
= sbp
->sb_unit
;
748 mp
->m_swidth
= sbp
->sb_width
;
755 * Set the maximum inode count for this filesystem
758 xfs_set_maxicount(xfs_mount_t
*mp
)
760 xfs_sb_t
*sbp
= &(mp
->m_sb
);
763 if (sbp
->sb_imax_pct
) {
765 * Make sure the maximum inode count is a multiple
766 * of the units we allocate inodes in.
768 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
770 do_div(icount
, mp
->m_ialloc_blks
);
771 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
779 * Set the default minimum read and write sizes unless
780 * already specified in a mount option.
781 * We use smaller I/O sizes when the file system
782 * is being used for NFS service (wsync mount option).
785 xfs_set_rw_sizes(xfs_mount_t
*mp
)
787 xfs_sb_t
*sbp
= &(mp
->m_sb
);
788 int readio_log
, writeio_log
;
790 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
791 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
792 readio_log
= XFS_WSYNC_READIO_LOG
;
793 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
795 readio_log
= XFS_READIO_LOG_LARGE
;
796 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
799 readio_log
= mp
->m_readio_log
;
800 writeio_log
= mp
->m_writeio_log
;
803 if (sbp
->sb_blocklog
> readio_log
) {
804 mp
->m_readio_log
= sbp
->sb_blocklog
;
806 mp
->m_readio_log
= readio_log
;
808 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
809 if (sbp
->sb_blocklog
> writeio_log
) {
810 mp
->m_writeio_log
= sbp
->sb_blocklog
;
812 mp
->m_writeio_log
= writeio_log
;
814 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
818 * Set whether we're using inode alignment.
821 xfs_set_inoalignment(xfs_mount_t
*mp
)
823 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
824 mp
->m_sb
.sb_inoalignmt
>=
825 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
826 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
828 mp
->m_inoalign_mask
= 0;
830 * If we are using stripe alignment, check whether
831 * the stripe unit is a multiple of the inode alignment
833 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
834 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
835 mp
->m_sinoalign
= mp
->m_dalign
;
841 * Check that the data (and log if separate) are an ok size.
844 xfs_check_sizes(xfs_mount_t
*mp
)
850 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
851 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
852 cmn_err(CE_WARN
, "XFS: size check 1 failed");
853 return XFS_ERROR(E2BIG
);
855 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
856 d
- XFS_FSS_TO_BB(mp
, 1),
857 XFS_FSS_TO_BB(mp
, 1), 0, &bp
);
861 cmn_err(CE_WARN
, "XFS: size check 2 failed");
863 error
= XFS_ERROR(E2BIG
);
867 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
868 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
869 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
870 cmn_err(CE_WARN
, "XFS: size check 3 failed");
871 return XFS_ERROR(E2BIG
);
873 error
= xfs_read_buf(mp
, mp
->m_logdev_targp
,
874 d
- XFS_FSB_TO_BB(mp
, 1),
875 XFS_FSB_TO_BB(mp
, 1), 0, &bp
);
879 cmn_err(CE_WARN
, "XFS: size check 3 failed");
881 error
= XFS_ERROR(E2BIG
);
891 * This function does the following on an initial mount of a file system:
892 * - reads the superblock from disk and init the mount struct
893 * - if we're a 32-bit kernel, do a size check on the superblock
894 * so we don't mount terabyte filesystems
895 * - init mount struct realtime fields
896 * - allocate inode hash table for fs
897 * - init directory manager
898 * - perform recovery and init the log manager
904 xfs_sb_t
*sbp
= &(mp
->m_sb
);
907 uint quotamount
, quotaflags
;
908 int uuid_mounted
= 0;
911 xfs_mount_common(mp
, sbp
);
914 * Check for a mismatched features2 values. Older kernels
915 * read & wrote into the wrong sb offset for sb_features2
916 * on some platforms due to xfs_sb_t not being 64bit size aligned
917 * when sb_features2 was added, which made older superblock
918 * reading/writing routines swap it as a 64-bit value.
920 * For backwards compatibility, we make both slots equal.
922 * If we detect a mismatched field, we OR the set bits into the
923 * existing features2 field in case it has already been modified; we
924 * don't want to lose any features. We then update the bad location
925 * with the ORed value so that older kernels will see any features2
926 * flags, and mark the two fields as needing updates once the
927 * transaction subsystem is online.
929 if (xfs_sb_has_mismatched_features2(sbp
)) {
931 "XFS: correcting sb_features alignment problem");
932 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
933 sbp
->sb_bad_features2
= sbp
->sb_features2
;
934 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
937 * Re-check for ATTR2 in case it was found in bad_features2
940 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
941 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
942 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
945 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
946 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
947 xfs_sb_version_removeattr2(&mp
->m_sb
);
948 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
950 /* update sb_versionnum for the clearing of the morebits */
951 if (!sbp
->sb_features2
)
952 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
956 * Check if sb_agblocks is aligned at stripe boundary
957 * If sb_agblocks is NOT aligned turn off m_dalign since
958 * allocator alignment is within an ag, therefore ag has
959 * to be aligned at stripe boundary.
961 error
= xfs_update_alignment(mp
);
965 xfs_alloc_compute_maxlevels(mp
);
966 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
967 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
968 xfs_ialloc_compute_maxlevels(mp
);
970 xfs_set_maxicount(mp
);
972 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
975 * XFS uses the uuid from the superblock as the unique
976 * identifier for fsid. We can not use the uuid from the volume
977 * since a single partition filesystem is identical to a single
978 * partition volume/filesystem.
980 if ((mp
->m_flags
& XFS_MOUNT_NOUUID
) == 0) {
981 if (xfs_uuid_mount(mp
)) {
982 error
= XFS_ERROR(EINVAL
);
989 * Set the minimum read and write sizes
991 xfs_set_rw_sizes(mp
);
994 * Set the inode cluster size.
995 * This may still be overridden by the file system
996 * block size if it is larger than the chosen cluster size.
998 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1001 * Set inode alignment fields
1003 xfs_set_inoalignment(mp
);
1006 * Check that the data (and log if separate) are an ok size.
1008 error
= xfs_check_sizes(mp
);
1013 * Initialize realtime fields in the mount structure
1015 error
= xfs_rtmount_init(mp
);
1017 cmn_err(CE_WARN
, "XFS: RT mount failed");
1022 * Copies the low order bits of the timestamp and the randomly
1023 * set "sequence" number out of a UUID.
1025 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1027 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1032 * Initialize the attribute manager's entries.
1034 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1037 * Initialize the precomputed transaction reservations values.
1042 * Allocate and initialize the per-ag data.
1044 init_rwsem(&mp
->m_peraglock
);
1045 mp
->m_perag
= kmem_zalloc(sbp
->sb_agcount
* sizeof(xfs_perag_t
),
1050 mp
->m_maxagi
= xfs_initialize_perag(mp
, sbp
->sb_agcount
);
1053 * log's mount-time initialization. Perform 1st part recovery if needed
1055 if (likely(sbp
->sb_logblocks
> 0)) { /* check for volume case */
1056 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1057 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1058 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1060 cmn_err(CE_WARN
, "XFS: log mount failed");
1063 } else { /* No log has been defined */
1064 cmn_err(CE_WARN
, "XFS: no log defined");
1065 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW
, mp
);
1066 error
= XFS_ERROR(EFSCORRUPTED
);
1071 * Now the log is mounted, we know if it was an unclean shutdown or
1072 * not. If it was, with the first phase of recovery has completed, we
1073 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1074 * but they are recovered transactionally in the second recovery phase
1077 * Hence we can safely re-initialise incore superblock counters from
1078 * the per-ag data. These may not be correct if the filesystem was not
1079 * cleanly unmounted, so we need to wait for recovery to finish before
1082 * If the filesystem was cleanly unmounted, then we can trust the
1083 * values in the superblock to be correct and we don't need to do
1086 * If we are currently making the filesystem, the initialisation will
1087 * fail as the perag data is in an undefined state.
1090 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1091 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1092 !mp
->m_sb
.sb_inprogress
) {
1093 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1099 * Get and sanity-check the root inode.
1100 * Save the pointer to it in the mount structure.
1102 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
, 0);
1104 cmn_err(CE_WARN
, "XFS: failed to read root inode");
1108 ASSERT(rip
!= NULL
);
1110 if (unlikely((rip
->i_d
.di_mode
& S_IFMT
) != S_IFDIR
)) {
1111 cmn_err(CE_WARN
, "XFS: corrupted root inode");
1112 cmn_err(CE_WARN
, "Device %s - root %llu is not a directory",
1113 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
1114 (unsigned long long)rip
->i_ino
);
1115 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1116 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1118 error
= XFS_ERROR(EFSCORRUPTED
);
1121 mp
->m_rootip
= rip
; /* save it */
1123 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1126 * Initialize realtime inode pointers in the mount structure
1128 error
= xfs_rtmount_inodes(mp
);
1131 * Free up the root inode.
1133 cmn_err(CE_WARN
, "XFS: failed to read RT inodes");
1138 * If this is a read-only mount defer the superblock updates until
1139 * the next remount into writeable mode. Otherwise we would never
1140 * perform the update e.g. for the root filesystem.
1142 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1143 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1145 cmn_err(CE_WARN
, "XFS: failed to write sb changes");
1151 * Initialise the XFS quota management subsystem for this mount
1153 error
= XFS_QM_INIT(mp
, "amount
, "aflags
);
1158 * Finish recovering the file system. This part needed to be
1159 * delayed until after the root and real-time bitmap inodes
1160 * were consistently read in.
1162 error
= xfs_log_mount_finish(mp
);
1164 cmn_err(CE_WARN
, "XFS: log mount finish failed");
1169 * Complete the quota initialisation, post-log-replay component.
1171 error
= XFS_QM_MOUNT(mp
, quotamount
, quotaflags
);
1176 * Now we are mounted, reserve a small amount of unused space for
1177 * privileged transactions. This is needed so that transaction
1178 * space required for critical operations can dip into this pool
1179 * when at ENOSPC. This is needed for operations like create with
1180 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1181 * are not allowed to use this reserved space.
1183 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1184 * This may drive us straight to ENOSPC on mount, but that implies
1185 * we were already there on the last unmount. Warn if this occurs.
1187 resblks
= mp
->m_sb
.sb_dblocks
;
1188 do_div(resblks
, 20);
1189 resblks
= min_t(__uint64_t
, resblks
, 1024);
1190 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1192 cmn_err(CE_WARN
, "XFS: Unable to allocate reserve blocks. "
1193 "Continuing without a reserve pool.");
1199 * Free up the root inode.
1203 xfs_log_unmount_dealloc(mp
);
1208 uuid_table_remove(&mp
->m_sb
.sb_uuid
);
1213 * This flushes out the inodes,dquots and the superblock, unmounts the
1214 * log and makes sure that incore structures are freed.
1218 struct xfs_mount
*mp
)
1224 * Release dquot that rootinode, rbmino and rsumino might be holding,
1225 * and release the quota inodes.
1232 IRELE(mp
->m_rsumip
);
1233 IRELE(mp
->m_rootip
);
1236 * We can potentially deadlock here if we have an inode cluster
1237 * that has been freed has it's buffer still pinned in memory because
1238 * the transaction is still sitting in a iclog. The stale inodes
1239 * on that buffer will have their flush locks held until the
1240 * transaction hits the disk and the callbacks run. the inode
1241 * flush takes the flush lock unconditionally and with nothing to
1242 * push out the iclog we will never get that unlocked. hence we
1243 * need to force the log first.
1245 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
| XFS_LOG_SYNC
);
1246 xfs_reclaim_inodes(mp
, 0, XFS_IFLUSH_ASYNC
);
1248 XFS_QM_DQPURGEALL(mp
, XFS_QMOPT_QUOTALL
| XFS_QMOPT_UMOUNTING
);
1250 if (mp
->m_quotainfo
)
1254 * Flush out the log synchronously so that we know for sure
1255 * that nothing is pinned. This is important because bflush()
1256 * will skip pinned buffers.
1258 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
| XFS_LOG_SYNC
);
1260 xfs_binval(mp
->m_ddev_targp
);
1261 if (mp
->m_rtdev_targp
) {
1262 xfs_binval(mp
->m_rtdev_targp
);
1266 * Unreserve any blocks we have so that when we unmount we don't account
1267 * the reserved free space as used. This is really only necessary for
1268 * lazy superblock counting because it trusts the incore superblock
1269 * counters to be aboslutely correct on clean unmount.
1271 * We don't bother correcting this elsewhere for lazy superblock
1272 * counting because on mount of an unclean filesystem we reconstruct the
1273 * correct counter value and this is irrelevant.
1275 * For non-lazy counter filesystems, this doesn't matter at all because
1276 * we only every apply deltas to the superblock and hence the incore
1277 * value does not matter....
1280 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1282 cmn_err(CE_WARN
, "XFS: Unable to free reserved block pool. "
1283 "Freespace may not be correct on next mount.");
1285 error
= xfs_log_sbcount(mp
, 1);
1287 cmn_err(CE_WARN
, "XFS: Unable to update superblock counters. "
1288 "Freespace may not be correct on next mount.");
1289 xfs_unmountfs_writesb(mp
);
1290 xfs_unmountfs_wait(mp
); /* wait for async bufs */
1291 xfs_log_unmount(mp
); /* Done! No more fs ops. */
1293 if ((mp
->m_flags
& XFS_MOUNT_NOUUID
) == 0)
1294 uuid_table_remove(&mp
->m_sb
.sb_uuid
);
1297 xfs_errortag_clearall(mp
, 0);
1303 xfs_unmountfs_wait(xfs_mount_t
*mp
)
1305 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1306 xfs_wait_buftarg(mp
->m_logdev_targp
);
1307 if (mp
->m_rtdev_targp
)
1308 xfs_wait_buftarg(mp
->m_rtdev_targp
);
1309 xfs_wait_buftarg(mp
->m_ddev_targp
);
1313 xfs_fs_writable(xfs_mount_t
*mp
)
1315 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1316 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1322 * Called either periodically to keep the on disk superblock values
1323 * roughly up to date or from unmount to make sure the values are
1324 * correct on a clean unmount.
1326 * Note this code can be called during the process of freezing, so
1327 * we may need to use the transaction allocator which does not not
1328 * block when the transaction subsystem is in its frozen state.
1338 if (!xfs_fs_writable(mp
))
1341 xfs_icsb_sync_counters(mp
, 0);
1344 * we don't need to do this if we are updating the superblock
1345 * counters on every modification.
1347 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1350 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
);
1351 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1352 XFS_DEFAULT_LOG_COUNT
);
1354 xfs_trans_cancel(tp
, 0);
1358 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1360 xfs_trans_set_sync(tp
);
1361 error
= xfs_trans_commit(tp
, 0);
1366 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1372 * skip superblock write if fs is read-only, or
1373 * if we are doing a forced umount.
1375 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1376 XFS_FORCED_SHUTDOWN(mp
))) {
1378 sbp
= xfs_getsb(mp
, 0);
1380 XFS_BUF_UNDONE(sbp
);
1381 XFS_BUF_UNREAD(sbp
);
1382 XFS_BUF_UNDELAYWRITE(sbp
);
1384 XFS_BUF_UNASYNC(sbp
);
1385 ASSERT(XFS_BUF_TARGET(sbp
) == mp
->m_ddev_targp
);
1386 xfsbdstrat(mp
, sbp
);
1387 error
= xfs_iowait(sbp
);
1389 xfs_ioerror_alert("xfs_unmountfs_writesb",
1390 mp
, sbp
, XFS_BUF_ADDR(sbp
));
1397 * xfs_mod_sb() can be used to copy arbitrary changes to the
1398 * in-core superblock into the superblock buffer to be logged.
1399 * It does not provide the higher level of locking that is
1400 * needed to protect the in-core superblock from concurrent
1404 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1416 bp
= xfs_trans_getsb(tp
, mp
, 0);
1417 first
= sizeof(xfs_sb_t
);
1420 /* translate/copy */
1422 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1424 /* find modified range */
1426 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1427 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1428 first
= xfs_sb_info
[f
].offset
;
1430 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1431 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1432 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1434 xfs_trans_log_buf(tp
, bp
, first
, last
);
1439 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1440 * a delta to a specified field in the in-core superblock. Simply
1441 * switch on the field indicated and apply the delta to that field.
1442 * Fields are not allowed to dip below zero, so if the delta would
1443 * do this do not apply it and return EINVAL.
1445 * The m_sb_lock must be held when this routine is called.
1448 xfs_mod_incore_sb_unlocked(
1450 xfs_sb_field_t field
,
1454 int scounter
; /* short counter for 32 bit fields */
1455 long long lcounter
; /* long counter for 64 bit fields */
1456 long long res_used
, rem
;
1459 * With the in-core superblock spin lock held, switch
1460 * on the indicated field. Apply the delta to the
1461 * proper field. If the fields value would dip below
1462 * 0, then do not apply the delta and return EINVAL.
1465 case XFS_SBS_ICOUNT
:
1466 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1470 return XFS_ERROR(EINVAL
);
1472 mp
->m_sb
.sb_icount
= lcounter
;
1475 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1479 return XFS_ERROR(EINVAL
);
1481 mp
->m_sb
.sb_ifree
= lcounter
;
1483 case XFS_SBS_FDBLOCKS
:
1484 lcounter
= (long long)
1485 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1486 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1488 if (delta
> 0) { /* Putting blocks back */
1489 if (res_used
> delta
) {
1490 mp
->m_resblks_avail
+= delta
;
1492 rem
= delta
- res_used
;
1493 mp
->m_resblks_avail
= mp
->m_resblks
;
1496 } else { /* Taking blocks away */
1501 * If were out of blocks, use any available reserved blocks if
1507 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1509 return XFS_ERROR(ENOSPC
);
1511 mp
->m_resblks_avail
= lcounter
;
1513 } else { /* not reserved */
1514 return XFS_ERROR(ENOSPC
);
1519 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1521 case XFS_SBS_FREXTENTS
:
1522 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1525 return XFS_ERROR(ENOSPC
);
1527 mp
->m_sb
.sb_frextents
= lcounter
;
1529 case XFS_SBS_DBLOCKS
:
1530 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1534 return XFS_ERROR(EINVAL
);
1536 mp
->m_sb
.sb_dblocks
= lcounter
;
1538 case XFS_SBS_AGCOUNT
:
1539 scounter
= mp
->m_sb
.sb_agcount
;
1543 return XFS_ERROR(EINVAL
);
1545 mp
->m_sb
.sb_agcount
= scounter
;
1547 case XFS_SBS_IMAX_PCT
:
1548 scounter
= mp
->m_sb
.sb_imax_pct
;
1552 return XFS_ERROR(EINVAL
);
1554 mp
->m_sb
.sb_imax_pct
= scounter
;
1556 case XFS_SBS_REXTSIZE
:
1557 scounter
= mp
->m_sb
.sb_rextsize
;
1561 return XFS_ERROR(EINVAL
);
1563 mp
->m_sb
.sb_rextsize
= scounter
;
1565 case XFS_SBS_RBMBLOCKS
:
1566 scounter
= mp
->m_sb
.sb_rbmblocks
;
1570 return XFS_ERROR(EINVAL
);
1572 mp
->m_sb
.sb_rbmblocks
= scounter
;
1574 case XFS_SBS_RBLOCKS
:
1575 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1579 return XFS_ERROR(EINVAL
);
1581 mp
->m_sb
.sb_rblocks
= lcounter
;
1583 case XFS_SBS_REXTENTS
:
1584 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1588 return XFS_ERROR(EINVAL
);
1590 mp
->m_sb
.sb_rextents
= lcounter
;
1592 case XFS_SBS_REXTSLOG
:
1593 scounter
= mp
->m_sb
.sb_rextslog
;
1597 return XFS_ERROR(EINVAL
);
1599 mp
->m_sb
.sb_rextslog
= scounter
;
1603 return XFS_ERROR(EINVAL
);
1608 * xfs_mod_incore_sb() is used to change a field in the in-core
1609 * superblock structure by the specified delta. This modification
1610 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1611 * routine to do the work.
1616 xfs_sb_field_t field
,
1622 /* check for per-cpu counters */
1624 #ifdef HAVE_PERCPU_SB
1625 case XFS_SBS_ICOUNT
:
1627 case XFS_SBS_FDBLOCKS
:
1628 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1629 status
= xfs_icsb_modify_counters(mp
, field
,
1636 spin_lock(&mp
->m_sb_lock
);
1637 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1638 spin_unlock(&mp
->m_sb_lock
);
1646 * xfs_mod_incore_sb_batch() is used to change more than one field
1647 * in the in-core superblock structure at a time. This modification
1648 * is protected by a lock internal to this module. The fields and
1649 * changes to those fields are specified in the array of xfs_mod_sb
1650 * structures passed in.
1652 * Either all of the specified deltas will be applied or none of
1653 * them will. If any modified field dips below 0, then all modifications
1654 * will be backed out and EINVAL will be returned.
1657 xfs_mod_incore_sb_batch(xfs_mount_t
*mp
, xfs_mod_sb_t
*msb
, uint nmsb
, int rsvd
)
1663 * Loop through the array of mod structures and apply each
1664 * individually. If any fail, then back out all those
1665 * which have already been applied. Do all of this within
1666 * the scope of the m_sb_lock so that all of the changes will
1669 spin_lock(&mp
->m_sb_lock
);
1671 for (msbp
= &msbp
[0]; msbp
< (msb
+ nmsb
); msbp
++) {
1673 * Apply the delta at index n. If it fails, break
1674 * from the loop so we'll fall into the undo loop
1677 switch (msbp
->msb_field
) {
1678 #ifdef HAVE_PERCPU_SB
1679 case XFS_SBS_ICOUNT
:
1681 case XFS_SBS_FDBLOCKS
:
1682 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1683 spin_unlock(&mp
->m_sb_lock
);
1684 status
= xfs_icsb_modify_counters(mp
,
1686 msbp
->msb_delta
, rsvd
);
1687 spin_lock(&mp
->m_sb_lock
);
1693 status
= xfs_mod_incore_sb_unlocked(mp
,
1695 msbp
->msb_delta
, rsvd
);
1705 * If we didn't complete the loop above, then back out
1706 * any changes made to the superblock. If you add code
1707 * between the loop above and here, make sure that you
1708 * preserve the value of status. Loop back until
1709 * we step below the beginning of the array. Make sure
1710 * we don't touch anything back there.
1714 while (msbp
>= msb
) {
1715 switch (msbp
->msb_field
) {
1716 #ifdef HAVE_PERCPU_SB
1717 case XFS_SBS_ICOUNT
:
1719 case XFS_SBS_FDBLOCKS
:
1720 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1721 spin_unlock(&mp
->m_sb_lock
);
1722 status
= xfs_icsb_modify_counters(mp
,
1726 spin_lock(&mp
->m_sb_lock
);
1732 status
= xfs_mod_incore_sb_unlocked(mp
,
1738 ASSERT(status
== 0);
1742 spin_unlock(&mp
->m_sb_lock
);
1747 * xfs_getsb() is called to obtain the buffer for the superblock.
1748 * The buffer is returned locked and read in from disk.
1749 * The buffer should be released with a call to xfs_brelse().
1751 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1752 * the superblock buffer if it can be locked without sleeping.
1753 * If it can't then we'll return NULL.
1762 ASSERT(mp
->m_sb_bp
!= NULL
);
1764 if (flags
& XFS_BUF_TRYLOCK
) {
1765 if (!XFS_BUF_CPSEMA(bp
)) {
1769 XFS_BUF_PSEMA(bp
, PRIBIO
);
1772 ASSERT(XFS_BUF_ISDONE(bp
));
1777 * Used to free the superblock along various error paths.
1786 * Use xfs_getsb() so that the buffer will be locked
1787 * when we call xfs_buf_relse().
1789 bp
= xfs_getsb(mp
, 0);
1790 XFS_BUF_UNMANAGE(bp
);
1796 * See if the UUID is unique among mounted XFS filesystems.
1797 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1803 if (uuid_is_nil(&mp
->m_sb
.sb_uuid
)) {
1805 "XFS: Filesystem %s has nil UUID - can't mount",
1809 if (!uuid_table_insert(&mp
->m_sb
.sb_uuid
)) {
1811 "XFS: Filesystem %s has duplicate UUID - can't mount",
1819 * Used to log changes to the superblock unit and width fields which could
1820 * be altered by the mount options, as well as any potential sb_features2
1821 * fixup. Only the first superblock is updated.
1831 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1832 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1833 XFS_SB_VERSIONNUM
));
1835 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1836 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1837 XFS_DEFAULT_LOG_COUNT
);
1839 xfs_trans_cancel(tp
, 0);
1842 xfs_mod_sb(tp
, fields
);
1843 error
= xfs_trans_commit(tp
, 0);
1848 #ifdef HAVE_PERCPU_SB
1850 * Per-cpu incore superblock counters
1852 * Simple concept, difficult implementation
1854 * Basically, replace the incore superblock counters with a distributed per cpu
1855 * counter for contended fields (e.g. free block count).
1857 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1858 * hence needs to be accurately read when we are running low on space. Hence
1859 * there is a method to enable and disable the per-cpu counters based on how
1860 * much "stuff" is available in them.
1862 * Basically, a counter is enabled if there is enough free resource to justify
1863 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1864 * ENOSPC), then we disable the counters to synchronise all callers and
1865 * re-distribute the available resources.
1867 * If, once we redistributed the available resources, we still get a failure,
1868 * we disable the per-cpu counter and go through the slow path.
1870 * The slow path is the current xfs_mod_incore_sb() function. This means that
1871 * when we disable a per-cpu counter, we need to drain it's resources back to
1872 * the global superblock. We do this after disabling the counter to prevent
1873 * more threads from queueing up on the counter.
1875 * Essentially, this means that we still need a lock in the fast path to enable
1876 * synchronisation between the global counters and the per-cpu counters. This
1877 * is not a problem because the lock will be local to a CPU almost all the time
1878 * and have little contention except when we get to ENOSPC conditions.
1880 * Basically, this lock becomes a barrier that enables us to lock out the fast
1881 * path while we do things like enabling and disabling counters and
1882 * synchronising the counters.
1886 * 1. m_sb_lock before picking up per-cpu locks
1887 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1888 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1889 * 4. modifying per-cpu counters requires holding per-cpu lock
1890 * 5. modifying global counters requires holding m_sb_lock
1891 * 6. enabling or disabling a counter requires holding the m_sb_lock
1892 * and _none_ of the per-cpu locks.
1894 * Disabled counters are only ever re-enabled by a balance operation
1895 * that results in more free resources per CPU than a given threshold.
1896 * To ensure counters don't remain disabled, they are rebalanced when
1897 * the global resource goes above a higher threshold (i.e. some hysteresis
1898 * is present to prevent thrashing).
1901 #ifdef CONFIG_HOTPLUG_CPU
1903 * hot-plug CPU notifier support.
1905 * We need a notifier per filesystem as we need to be able to identify
1906 * the filesystem to balance the counters out. This is achieved by
1907 * having a notifier block embedded in the xfs_mount_t and doing pointer
1908 * magic to get the mount pointer from the notifier block address.
1911 xfs_icsb_cpu_notify(
1912 struct notifier_block
*nfb
,
1913 unsigned long action
,
1916 xfs_icsb_cnts_t
*cntp
;
1919 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
1920 cntp
= (xfs_icsb_cnts_t
*)
1921 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
1923 case CPU_UP_PREPARE
:
1924 case CPU_UP_PREPARE_FROZEN
:
1925 /* Easy Case - initialize the area and locks, and
1926 * then rebalance when online does everything else for us. */
1927 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1930 case CPU_ONLINE_FROZEN
:
1932 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1933 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1934 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1935 xfs_icsb_unlock(mp
);
1938 case CPU_DEAD_FROZEN
:
1939 /* Disable all the counters, then fold the dead cpu's
1940 * count into the total on the global superblock and
1941 * re-enable the counters. */
1943 spin_lock(&mp
->m_sb_lock
);
1944 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
1945 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
1946 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
1948 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
1949 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
1950 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
1952 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1954 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
1955 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
1956 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
1957 spin_unlock(&mp
->m_sb_lock
);
1958 xfs_icsb_unlock(mp
);
1964 #endif /* CONFIG_HOTPLUG_CPU */
1967 xfs_icsb_init_counters(
1970 xfs_icsb_cnts_t
*cntp
;
1973 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
1974 if (mp
->m_sb_cnts
== NULL
)
1977 #ifdef CONFIG_HOTPLUG_CPU
1978 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
1979 mp
->m_icsb_notifier
.priority
= 0;
1980 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
1981 #endif /* CONFIG_HOTPLUG_CPU */
1983 for_each_online_cpu(i
) {
1984 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1985 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1988 mutex_init(&mp
->m_icsb_mutex
);
1991 * start with all counters disabled so that the
1992 * initial balance kicks us off correctly
1994 mp
->m_icsb_counters
= -1;
1999 xfs_icsb_reinit_counters(
2004 * start with all counters disabled so that the
2005 * initial balance kicks us off correctly
2007 mp
->m_icsb_counters
= -1;
2008 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2009 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2010 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2011 xfs_icsb_unlock(mp
);
2015 xfs_icsb_destroy_counters(
2018 if (mp
->m_sb_cnts
) {
2019 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2020 free_percpu(mp
->m_sb_cnts
);
2022 mutex_destroy(&mp
->m_icsb_mutex
);
2027 xfs_icsb_cnts_t
*icsbp
)
2029 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2035 xfs_icsb_unlock_cntr(
2036 xfs_icsb_cnts_t
*icsbp
)
2038 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2043 xfs_icsb_lock_all_counters(
2046 xfs_icsb_cnts_t
*cntp
;
2049 for_each_online_cpu(i
) {
2050 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2051 xfs_icsb_lock_cntr(cntp
);
2056 xfs_icsb_unlock_all_counters(
2059 xfs_icsb_cnts_t
*cntp
;
2062 for_each_online_cpu(i
) {
2063 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2064 xfs_icsb_unlock_cntr(cntp
);
2071 xfs_icsb_cnts_t
*cnt
,
2074 xfs_icsb_cnts_t
*cntp
;
2077 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2079 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2080 xfs_icsb_lock_all_counters(mp
);
2082 for_each_online_cpu(i
) {
2083 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2084 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2085 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2086 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2089 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2090 xfs_icsb_unlock_all_counters(mp
);
2094 xfs_icsb_counter_disabled(
2096 xfs_sb_field_t field
)
2098 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2099 return test_bit(field
, &mp
->m_icsb_counters
);
2103 xfs_icsb_disable_counter(
2105 xfs_sb_field_t field
)
2107 xfs_icsb_cnts_t cnt
;
2109 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2112 * If we are already disabled, then there is nothing to do
2113 * here. We check before locking all the counters to avoid
2114 * the expensive lock operation when being called in the
2115 * slow path and the counter is already disabled. This is
2116 * safe because the only time we set or clear this state is under
2119 if (xfs_icsb_counter_disabled(mp
, field
))
2122 xfs_icsb_lock_all_counters(mp
);
2123 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2124 /* drain back to superblock */
2126 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2128 case XFS_SBS_ICOUNT
:
2129 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2132 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2134 case XFS_SBS_FDBLOCKS
:
2135 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2142 xfs_icsb_unlock_all_counters(mp
);
2146 xfs_icsb_enable_counter(
2148 xfs_sb_field_t field
,
2152 xfs_icsb_cnts_t
*cntp
;
2155 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2157 xfs_icsb_lock_all_counters(mp
);
2158 for_each_online_cpu(i
) {
2159 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2161 case XFS_SBS_ICOUNT
:
2162 cntp
->icsb_icount
= count
+ resid
;
2165 cntp
->icsb_ifree
= count
+ resid
;
2167 case XFS_SBS_FDBLOCKS
:
2168 cntp
->icsb_fdblocks
= count
+ resid
;
2176 clear_bit(field
, &mp
->m_icsb_counters
);
2177 xfs_icsb_unlock_all_counters(mp
);
2181 xfs_icsb_sync_counters_locked(
2185 xfs_icsb_cnts_t cnt
;
2187 xfs_icsb_count(mp
, &cnt
, flags
);
2189 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2190 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2191 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2192 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2193 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2194 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2198 * Accurate update of per-cpu counters to incore superblock
2201 xfs_icsb_sync_counters(
2205 spin_lock(&mp
->m_sb_lock
);
2206 xfs_icsb_sync_counters_locked(mp
, flags
);
2207 spin_unlock(&mp
->m_sb_lock
);
2211 * Balance and enable/disable counters as necessary.
2213 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2214 * chosen to be the same number as single on disk allocation chunk per CPU, and
2215 * free blocks is something far enough zero that we aren't going thrash when we
2216 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2217 * prevent looping endlessly when xfs_alloc_space asks for more than will
2218 * be distributed to a single CPU but each CPU has enough blocks to be
2221 * Note that we can be called when counters are already disabled.
2222 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2223 * prevent locking every per-cpu counter needlessly.
2226 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2227 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2228 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2230 xfs_icsb_balance_counter_locked(
2232 xfs_sb_field_t field
,
2235 uint64_t count
, resid
;
2236 int weight
= num_online_cpus();
2237 uint64_t min
= (uint64_t)min_per_cpu
;
2239 /* disable counter and sync counter */
2240 xfs_icsb_disable_counter(mp
, field
);
2242 /* update counters - first CPU gets residual*/
2244 case XFS_SBS_ICOUNT
:
2245 count
= mp
->m_sb
.sb_icount
;
2246 resid
= do_div(count
, weight
);
2247 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2251 count
= mp
->m_sb
.sb_ifree
;
2252 resid
= do_div(count
, weight
);
2253 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2256 case XFS_SBS_FDBLOCKS
:
2257 count
= mp
->m_sb
.sb_fdblocks
;
2258 resid
= do_div(count
, weight
);
2259 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2264 count
= resid
= 0; /* quiet, gcc */
2268 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2272 xfs_icsb_balance_counter(
2274 xfs_sb_field_t fields
,
2277 spin_lock(&mp
->m_sb_lock
);
2278 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2279 spin_unlock(&mp
->m_sb_lock
);
2283 xfs_icsb_modify_counters(
2285 xfs_sb_field_t field
,
2289 xfs_icsb_cnts_t
*icsbp
;
2290 long long lcounter
; /* long counter for 64 bit fields */
2296 icsbp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, cpu
);
2299 * if the counter is disabled, go to slow path
2301 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2303 xfs_icsb_lock_cntr(icsbp
);
2304 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2305 xfs_icsb_unlock_cntr(icsbp
);
2310 case XFS_SBS_ICOUNT
:
2311 lcounter
= icsbp
->icsb_icount
;
2313 if (unlikely(lcounter
< 0))
2314 goto balance_counter
;
2315 icsbp
->icsb_icount
= lcounter
;
2319 lcounter
= icsbp
->icsb_ifree
;
2321 if (unlikely(lcounter
< 0))
2322 goto balance_counter
;
2323 icsbp
->icsb_ifree
= lcounter
;
2326 case XFS_SBS_FDBLOCKS
:
2327 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2329 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2331 if (unlikely(lcounter
< 0))
2332 goto balance_counter
;
2333 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2339 xfs_icsb_unlock_cntr(icsbp
);
2347 * serialise with a mutex so we don't burn lots of cpu on
2348 * the superblock lock. We still need to hold the superblock
2349 * lock, however, when we modify the global structures.
2354 * Now running atomically.
2356 * If the counter is enabled, someone has beaten us to rebalancing.
2357 * Drop the lock and try again in the fast path....
2359 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2360 xfs_icsb_unlock(mp
);
2365 * The counter is currently disabled. Because we are
2366 * running atomically here, we know a rebalance cannot
2367 * be in progress. Hence we can go straight to operating
2368 * on the global superblock. We do not call xfs_mod_incore_sb()
2369 * here even though we need to get the m_sb_lock. Doing so
2370 * will cause us to re-enter this function and deadlock.
2371 * Hence we get the m_sb_lock ourselves and then call
2372 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2373 * directly on the global counters.
2375 spin_lock(&mp
->m_sb_lock
);
2376 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2377 spin_unlock(&mp
->m_sb_lock
);
2380 * Now that we've modified the global superblock, we
2381 * may be able to re-enable the distributed counters
2382 * (e.g. lots of space just got freed). After that
2386 xfs_icsb_balance_counter(mp
, field
, 0);
2387 xfs_icsb_unlock(mp
);
2391 xfs_icsb_unlock_cntr(icsbp
);
2395 * We may have multiple threads here if multiple per-cpu
2396 * counters run dry at the same time. This will mean we can
2397 * do more balances than strictly necessary but it is not
2398 * the common slowpath case.
2403 * running atomically.
2405 * This will leave the counter in the correct state for future
2406 * accesses. After the rebalance, we simply try again and our retry
2407 * will either succeed through the fast path or slow path without
2408 * another balance operation being required.
2410 xfs_icsb_balance_counter(mp
, field
, delta
);
2411 xfs_icsb_unlock(mp
);