x86: disable Voyager temporarily
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_mount.c
blob35300250e86d55fa2d44c7b3b15173fd8aa93767
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC int xfs_uuid_mount(xfs_mount_t *);
49 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
52 #ifdef HAVE_PERCPU_SB
53 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
54 int);
55 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
56 int);
57 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
58 int64_t, int);
59 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61 #else
63 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
64 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
65 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
67 #endif
69 static const struct {
70 short offset;
71 short type; /* 0 = integer
72 * 1 = binary / string (no translation)
74 } xfs_sb_info[] = {
75 { offsetof(xfs_sb_t, sb_magicnum), 0 },
76 { offsetof(xfs_sb_t, sb_blocksize), 0 },
77 { offsetof(xfs_sb_t, sb_dblocks), 0 },
78 { offsetof(xfs_sb_t, sb_rblocks), 0 },
79 { offsetof(xfs_sb_t, sb_rextents), 0 },
80 { offsetof(xfs_sb_t, sb_uuid), 1 },
81 { offsetof(xfs_sb_t, sb_logstart), 0 },
82 { offsetof(xfs_sb_t, sb_rootino), 0 },
83 { offsetof(xfs_sb_t, sb_rbmino), 0 },
84 { offsetof(xfs_sb_t, sb_rsumino), 0 },
85 { offsetof(xfs_sb_t, sb_rextsize), 0 },
86 { offsetof(xfs_sb_t, sb_agblocks), 0 },
87 { offsetof(xfs_sb_t, sb_agcount), 0 },
88 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
89 { offsetof(xfs_sb_t, sb_logblocks), 0 },
90 { offsetof(xfs_sb_t, sb_versionnum), 0 },
91 { offsetof(xfs_sb_t, sb_sectsize), 0 },
92 { offsetof(xfs_sb_t, sb_inodesize), 0 },
93 { offsetof(xfs_sb_t, sb_inopblock), 0 },
94 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
95 { offsetof(xfs_sb_t, sb_blocklog), 0 },
96 { offsetof(xfs_sb_t, sb_sectlog), 0 },
97 { offsetof(xfs_sb_t, sb_inodelog), 0 },
98 { offsetof(xfs_sb_t, sb_inopblog), 0 },
99 { offsetof(xfs_sb_t, sb_agblklog), 0 },
100 { offsetof(xfs_sb_t, sb_rextslog), 0 },
101 { offsetof(xfs_sb_t, sb_inprogress), 0 },
102 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
103 { offsetof(xfs_sb_t, sb_icount), 0 },
104 { offsetof(xfs_sb_t, sb_ifree), 0 },
105 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
106 { offsetof(xfs_sb_t, sb_frextents), 0 },
107 { offsetof(xfs_sb_t, sb_uquotino), 0 },
108 { offsetof(xfs_sb_t, sb_gquotino), 0 },
109 { offsetof(xfs_sb_t, sb_qflags), 0 },
110 { offsetof(xfs_sb_t, sb_flags), 0 },
111 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
112 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
113 { offsetof(xfs_sb_t, sb_unit), 0 },
114 { offsetof(xfs_sb_t, sb_width), 0 },
115 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
116 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
117 { offsetof(xfs_sb_t, sb_logsectsize),0 },
118 { offsetof(xfs_sb_t, sb_logsunit), 0 },
119 { offsetof(xfs_sb_t, sb_features2), 0 },
120 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
121 { sizeof(xfs_sb_t), 0 }
125 * Free up the resources associated with a mount structure. Assume that
126 * the structure was initially zeroed, so we can tell which fields got
127 * initialized.
129 STATIC void
130 xfs_free_perag(
131 xfs_mount_t *mp)
133 if (mp->m_perag) {
134 int agno;
136 for (agno = 0; agno < mp->m_maxagi; agno++)
137 if (mp->m_perag[agno].pagb_list)
138 kmem_free(mp->m_perag[agno].pagb_list);
139 kmem_free(mp->m_perag);
144 * Check size of device based on the (data/realtime) block count.
145 * Note: this check is used by the growfs code as well as mount.
148 xfs_sb_validate_fsb_count(
149 xfs_sb_t *sbp,
150 __uint64_t nblocks)
152 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
153 ASSERT(sbp->sb_blocklog >= BBSHIFT);
155 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
156 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
157 return E2BIG;
158 #else /* Limited by UINT_MAX of sectors */
159 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
160 return E2BIG;
161 #endif
162 return 0;
166 * Check the validity of the SB found.
168 STATIC int
169 xfs_mount_validate_sb(
170 xfs_mount_t *mp,
171 xfs_sb_t *sbp,
172 int flags)
175 * If the log device and data device have the
176 * same device number, the log is internal.
177 * Consequently, the sb_logstart should be non-zero. If
178 * we have a zero sb_logstart in this case, we may be trying to mount
179 * a volume filesystem in a non-volume manner.
181 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
182 xfs_fs_mount_cmn_err(flags, "bad magic number");
183 return XFS_ERROR(EWRONGFS);
186 if (!xfs_sb_good_version(sbp)) {
187 xfs_fs_mount_cmn_err(flags, "bad version");
188 return XFS_ERROR(EWRONGFS);
191 if (unlikely(
192 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
193 xfs_fs_mount_cmn_err(flags,
194 "filesystem is marked as having an external log; "
195 "specify logdev on the\nmount command line.");
196 return XFS_ERROR(EINVAL);
199 if (unlikely(
200 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
201 xfs_fs_mount_cmn_err(flags,
202 "filesystem is marked as having an internal log; "
203 "do not specify logdev on\nthe mount command line.");
204 return XFS_ERROR(EINVAL);
208 * More sanity checking. These were stolen directly from
209 * xfs_repair.
211 if (unlikely(
212 sbp->sb_agcount <= 0 ||
213 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
214 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
215 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
216 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
217 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
218 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
219 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
220 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
221 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
222 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
223 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
224 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
225 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
226 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
227 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
228 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
229 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
230 return XFS_ERROR(EFSCORRUPTED);
234 * Sanity check AG count, size fields against data size field
236 if (unlikely(
237 sbp->sb_dblocks == 0 ||
238 sbp->sb_dblocks >
239 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
240 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
241 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
242 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
243 return XFS_ERROR(EFSCORRUPTED);
247 * Until this is fixed only page-sized or smaller data blocks work.
249 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
250 xfs_fs_mount_cmn_err(flags,
251 "file system with blocksize %d bytes",
252 sbp->sb_blocksize);
253 xfs_fs_mount_cmn_err(flags,
254 "only pagesize (%ld) or less will currently work.",
255 PAGE_SIZE);
256 return XFS_ERROR(ENOSYS);
259 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
260 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
261 xfs_fs_mount_cmn_err(flags,
262 "file system too large to be mounted on this system.");
263 return XFS_ERROR(E2BIG);
266 if (unlikely(sbp->sb_inprogress)) {
267 xfs_fs_mount_cmn_err(flags, "file system busy");
268 return XFS_ERROR(EFSCORRUPTED);
272 * Version 1 directory format has never worked on Linux.
274 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
275 xfs_fs_mount_cmn_err(flags,
276 "file system using version 1 directory format");
277 return XFS_ERROR(ENOSYS);
280 return 0;
283 STATIC void
284 xfs_initialize_perag_icache(
285 xfs_perag_t *pag)
287 if (!pag->pag_ici_init) {
288 rwlock_init(&pag->pag_ici_lock);
289 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
290 pag->pag_ici_init = 1;
294 xfs_agnumber_t
295 xfs_initialize_perag(
296 xfs_mount_t *mp,
297 xfs_agnumber_t agcount)
299 xfs_agnumber_t index, max_metadata;
300 xfs_perag_t *pag;
301 xfs_agino_t agino;
302 xfs_ino_t ino;
303 xfs_sb_t *sbp = &mp->m_sb;
304 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
306 /* Check to see if the filesystem can overflow 32 bit inodes */
307 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
308 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
310 /* Clear the mount flag if no inode can overflow 32 bits
311 * on this filesystem, or if specifically requested..
313 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
314 mp->m_flags |= XFS_MOUNT_32BITINODES;
315 } else {
316 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
319 /* If we can overflow then setup the ag headers accordingly */
320 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
321 /* Calculate how much should be reserved for inodes to
322 * meet the max inode percentage.
324 if (mp->m_maxicount) {
325 __uint64_t icount;
327 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
328 do_div(icount, 100);
329 icount += sbp->sb_agblocks - 1;
330 do_div(icount, sbp->sb_agblocks);
331 max_metadata = icount;
332 } else {
333 max_metadata = agcount;
335 for (index = 0; index < agcount; index++) {
336 ino = XFS_AGINO_TO_INO(mp, index, agino);
337 if (ino > max_inum) {
338 index++;
339 break;
342 /* This ag is preferred for inodes */
343 pag = &mp->m_perag[index];
344 pag->pagi_inodeok = 1;
345 if (index < max_metadata)
346 pag->pagf_metadata = 1;
347 xfs_initialize_perag_icache(pag);
349 } else {
350 /* Setup default behavior for smaller filesystems */
351 for (index = 0; index < agcount; index++) {
352 pag = &mp->m_perag[index];
353 pag->pagi_inodeok = 1;
354 xfs_initialize_perag_icache(pag);
357 return index;
360 void
361 xfs_sb_from_disk(
362 xfs_sb_t *to,
363 xfs_dsb_t *from)
365 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
366 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
367 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
368 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
369 to->sb_rextents = be64_to_cpu(from->sb_rextents);
370 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
371 to->sb_logstart = be64_to_cpu(from->sb_logstart);
372 to->sb_rootino = be64_to_cpu(from->sb_rootino);
373 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
374 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
375 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
376 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
377 to->sb_agcount = be32_to_cpu(from->sb_agcount);
378 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
379 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
380 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
381 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
382 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
383 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
384 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
385 to->sb_blocklog = from->sb_blocklog;
386 to->sb_sectlog = from->sb_sectlog;
387 to->sb_inodelog = from->sb_inodelog;
388 to->sb_inopblog = from->sb_inopblog;
389 to->sb_agblklog = from->sb_agblklog;
390 to->sb_rextslog = from->sb_rextslog;
391 to->sb_inprogress = from->sb_inprogress;
392 to->sb_imax_pct = from->sb_imax_pct;
393 to->sb_icount = be64_to_cpu(from->sb_icount);
394 to->sb_ifree = be64_to_cpu(from->sb_ifree);
395 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
396 to->sb_frextents = be64_to_cpu(from->sb_frextents);
397 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
398 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
399 to->sb_qflags = be16_to_cpu(from->sb_qflags);
400 to->sb_flags = from->sb_flags;
401 to->sb_shared_vn = from->sb_shared_vn;
402 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
403 to->sb_unit = be32_to_cpu(from->sb_unit);
404 to->sb_width = be32_to_cpu(from->sb_width);
405 to->sb_dirblklog = from->sb_dirblklog;
406 to->sb_logsectlog = from->sb_logsectlog;
407 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
408 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
409 to->sb_features2 = be32_to_cpu(from->sb_features2);
410 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
414 * Copy in core superblock to ondisk one.
416 * The fields argument is mask of superblock fields to copy.
418 void
419 xfs_sb_to_disk(
420 xfs_dsb_t *to,
421 xfs_sb_t *from,
422 __int64_t fields)
424 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
425 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
426 xfs_sb_field_t f;
427 int first;
428 int size;
430 ASSERT(fields);
431 if (!fields)
432 return;
434 while (fields) {
435 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
436 first = xfs_sb_info[f].offset;
437 size = xfs_sb_info[f + 1].offset - first;
439 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
441 if (size == 1 || xfs_sb_info[f].type == 1) {
442 memcpy(to_ptr + first, from_ptr + first, size);
443 } else {
444 switch (size) {
445 case 2:
446 *(__be16 *)(to_ptr + first) =
447 cpu_to_be16(*(__u16 *)(from_ptr + first));
448 break;
449 case 4:
450 *(__be32 *)(to_ptr + first) =
451 cpu_to_be32(*(__u32 *)(from_ptr + first));
452 break;
453 case 8:
454 *(__be64 *)(to_ptr + first) =
455 cpu_to_be64(*(__u64 *)(from_ptr + first));
456 break;
457 default:
458 ASSERT(0);
462 fields &= ~(1LL << f);
467 * xfs_readsb
469 * Does the initial read of the superblock.
472 xfs_readsb(xfs_mount_t *mp, int flags)
474 unsigned int sector_size;
475 unsigned int extra_flags;
476 xfs_buf_t *bp;
477 int error;
479 ASSERT(mp->m_sb_bp == NULL);
480 ASSERT(mp->m_ddev_targp != NULL);
483 * Allocate a (locked) buffer to hold the superblock.
484 * This will be kept around at all times to optimize
485 * access to the superblock.
487 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
488 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
490 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
491 BTOBB(sector_size), extra_flags);
492 if (!bp || XFS_BUF_ISERROR(bp)) {
493 xfs_fs_mount_cmn_err(flags, "SB read failed");
494 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
495 goto fail;
497 ASSERT(XFS_BUF_ISBUSY(bp));
498 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
501 * Initialize the mount structure from the superblock.
502 * But first do some basic consistency checking.
504 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
506 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
507 if (error) {
508 xfs_fs_mount_cmn_err(flags, "SB validate failed");
509 goto fail;
513 * We must be able to do sector-sized and sector-aligned IO.
515 if (sector_size > mp->m_sb.sb_sectsize) {
516 xfs_fs_mount_cmn_err(flags,
517 "device supports only %u byte sectors (not %u)",
518 sector_size, mp->m_sb.sb_sectsize);
519 error = ENOSYS;
520 goto fail;
524 * If device sector size is smaller than the superblock size,
525 * re-read the superblock so the buffer is correctly sized.
527 if (sector_size < mp->m_sb.sb_sectsize) {
528 XFS_BUF_UNMANAGE(bp);
529 xfs_buf_relse(bp);
530 sector_size = mp->m_sb.sb_sectsize;
531 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
532 BTOBB(sector_size), extra_flags);
533 if (!bp || XFS_BUF_ISERROR(bp)) {
534 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
535 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
536 goto fail;
538 ASSERT(XFS_BUF_ISBUSY(bp));
539 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
542 /* Initialize per-cpu counters */
543 xfs_icsb_reinit_counters(mp);
545 mp->m_sb_bp = bp;
546 xfs_buf_relse(bp);
547 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
548 return 0;
550 fail:
551 if (bp) {
552 XFS_BUF_UNMANAGE(bp);
553 xfs_buf_relse(bp);
555 return error;
560 * xfs_mount_common
562 * Mount initialization code establishing various mount
563 * fields from the superblock associated with the given
564 * mount structure
566 STATIC void
567 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
569 mp->m_agfrotor = mp->m_agirotor = 0;
570 spin_lock_init(&mp->m_agirotor_lock);
571 mp->m_maxagi = mp->m_sb.sb_agcount;
572 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
573 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
574 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
575 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
576 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
577 mp->m_litino = sbp->sb_inodesize - sizeof(struct xfs_dinode);
578 mp->m_blockmask = sbp->sb_blocksize - 1;
579 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
580 mp->m_blockwmask = mp->m_blockwsize - 1;
583 * Setup for attributes, in case they get created.
584 * This value is for inodes getting attributes for the first time,
585 * the per-inode value is for old attribute values.
587 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
588 switch (sbp->sb_inodesize) {
589 case 256:
590 mp->m_attroffset = XFS_LITINO(mp) -
591 XFS_BMDR_SPACE_CALC(MINABTPTRS);
592 break;
593 case 512:
594 case 1024:
595 case 2048:
596 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
597 break;
598 default:
599 ASSERT(0);
601 ASSERT(mp->m_attroffset < XFS_LITINO(mp));
603 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
604 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
605 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
606 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
608 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
609 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
610 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
611 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
613 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
614 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
615 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
616 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
618 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
619 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
620 sbp->sb_inopblock);
621 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
625 * xfs_initialize_perag_data
627 * Read in each per-ag structure so we can count up the number of
628 * allocated inodes, free inodes and used filesystem blocks as this
629 * information is no longer persistent in the superblock. Once we have
630 * this information, write it into the in-core superblock structure.
632 STATIC int
633 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
635 xfs_agnumber_t index;
636 xfs_perag_t *pag;
637 xfs_sb_t *sbp = &mp->m_sb;
638 uint64_t ifree = 0;
639 uint64_t ialloc = 0;
640 uint64_t bfree = 0;
641 uint64_t bfreelst = 0;
642 uint64_t btree = 0;
643 int error;
645 for (index = 0; index < agcount; index++) {
647 * read the agf, then the agi. This gets us
648 * all the inforamtion we need and populates the
649 * per-ag structures for us.
651 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
652 if (error)
653 return error;
655 error = xfs_ialloc_pagi_init(mp, NULL, index);
656 if (error)
657 return error;
658 pag = &mp->m_perag[index];
659 ifree += pag->pagi_freecount;
660 ialloc += pag->pagi_count;
661 bfree += pag->pagf_freeblks;
662 bfreelst += pag->pagf_flcount;
663 btree += pag->pagf_btreeblks;
666 * Overwrite incore superblock counters with just-read data
668 spin_lock(&mp->m_sb_lock);
669 sbp->sb_ifree = ifree;
670 sbp->sb_icount = ialloc;
671 sbp->sb_fdblocks = bfree + bfreelst + btree;
672 spin_unlock(&mp->m_sb_lock);
674 /* Fixup the per-cpu counters as well. */
675 xfs_icsb_reinit_counters(mp);
677 return 0;
681 * Update alignment values based on mount options and sb values
683 STATIC int
684 xfs_update_alignment(xfs_mount_t *mp)
686 xfs_sb_t *sbp = &(mp->m_sb);
688 if (mp->m_dalign) {
690 * If stripe unit and stripe width are not multiples
691 * of the fs blocksize turn off alignment.
693 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
694 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
695 if (mp->m_flags & XFS_MOUNT_RETERR) {
696 cmn_err(CE_WARN,
697 "XFS: alignment check 1 failed");
698 return XFS_ERROR(EINVAL);
700 mp->m_dalign = mp->m_swidth = 0;
701 } else {
703 * Convert the stripe unit and width to FSBs.
705 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
706 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
707 if (mp->m_flags & XFS_MOUNT_RETERR) {
708 return XFS_ERROR(EINVAL);
710 xfs_fs_cmn_err(CE_WARN, mp,
711 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
712 mp->m_dalign, mp->m_swidth,
713 sbp->sb_agblocks);
715 mp->m_dalign = 0;
716 mp->m_swidth = 0;
717 } else if (mp->m_dalign) {
718 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
719 } else {
720 if (mp->m_flags & XFS_MOUNT_RETERR) {
721 xfs_fs_cmn_err(CE_WARN, mp,
722 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
723 mp->m_dalign,
724 mp->m_blockmask +1);
725 return XFS_ERROR(EINVAL);
727 mp->m_swidth = 0;
732 * Update superblock with new values
733 * and log changes
735 if (xfs_sb_version_hasdalign(sbp)) {
736 if (sbp->sb_unit != mp->m_dalign) {
737 sbp->sb_unit = mp->m_dalign;
738 mp->m_update_flags |= XFS_SB_UNIT;
740 if (sbp->sb_width != mp->m_swidth) {
741 sbp->sb_width = mp->m_swidth;
742 mp->m_update_flags |= XFS_SB_WIDTH;
745 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
746 xfs_sb_version_hasdalign(&mp->m_sb)) {
747 mp->m_dalign = sbp->sb_unit;
748 mp->m_swidth = sbp->sb_width;
751 return 0;
755 * Set the maximum inode count for this filesystem
757 STATIC void
758 xfs_set_maxicount(xfs_mount_t *mp)
760 xfs_sb_t *sbp = &(mp->m_sb);
761 __uint64_t icount;
763 if (sbp->sb_imax_pct) {
765 * Make sure the maximum inode count is a multiple
766 * of the units we allocate inodes in.
768 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
769 do_div(icount, 100);
770 do_div(icount, mp->m_ialloc_blks);
771 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
772 sbp->sb_inopblog;
773 } else {
774 mp->m_maxicount = 0;
779 * Set the default minimum read and write sizes unless
780 * already specified in a mount option.
781 * We use smaller I/O sizes when the file system
782 * is being used for NFS service (wsync mount option).
784 STATIC void
785 xfs_set_rw_sizes(xfs_mount_t *mp)
787 xfs_sb_t *sbp = &(mp->m_sb);
788 int readio_log, writeio_log;
790 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
791 if (mp->m_flags & XFS_MOUNT_WSYNC) {
792 readio_log = XFS_WSYNC_READIO_LOG;
793 writeio_log = XFS_WSYNC_WRITEIO_LOG;
794 } else {
795 readio_log = XFS_READIO_LOG_LARGE;
796 writeio_log = XFS_WRITEIO_LOG_LARGE;
798 } else {
799 readio_log = mp->m_readio_log;
800 writeio_log = mp->m_writeio_log;
803 if (sbp->sb_blocklog > readio_log) {
804 mp->m_readio_log = sbp->sb_blocklog;
805 } else {
806 mp->m_readio_log = readio_log;
808 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
809 if (sbp->sb_blocklog > writeio_log) {
810 mp->m_writeio_log = sbp->sb_blocklog;
811 } else {
812 mp->m_writeio_log = writeio_log;
814 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
818 * Set whether we're using inode alignment.
820 STATIC void
821 xfs_set_inoalignment(xfs_mount_t *mp)
823 if (xfs_sb_version_hasalign(&mp->m_sb) &&
824 mp->m_sb.sb_inoalignmt >=
825 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
826 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
827 else
828 mp->m_inoalign_mask = 0;
830 * If we are using stripe alignment, check whether
831 * the stripe unit is a multiple of the inode alignment
833 if (mp->m_dalign && mp->m_inoalign_mask &&
834 !(mp->m_dalign & mp->m_inoalign_mask))
835 mp->m_sinoalign = mp->m_dalign;
836 else
837 mp->m_sinoalign = 0;
841 * Check that the data (and log if separate) are an ok size.
843 STATIC int
844 xfs_check_sizes(xfs_mount_t *mp)
846 xfs_buf_t *bp;
847 xfs_daddr_t d;
848 int error;
850 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
851 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
852 cmn_err(CE_WARN, "XFS: size check 1 failed");
853 return XFS_ERROR(E2BIG);
855 error = xfs_read_buf(mp, mp->m_ddev_targp,
856 d - XFS_FSS_TO_BB(mp, 1),
857 XFS_FSS_TO_BB(mp, 1), 0, &bp);
858 if (!error) {
859 xfs_buf_relse(bp);
860 } else {
861 cmn_err(CE_WARN, "XFS: size check 2 failed");
862 if (error == ENOSPC)
863 error = XFS_ERROR(E2BIG);
864 return error;
867 if (mp->m_logdev_targp != mp->m_ddev_targp) {
868 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
869 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
870 cmn_err(CE_WARN, "XFS: size check 3 failed");
871 return XFS_ERROR(E2BIG);
873 error = xfs_read_buf(mp, mp->m_logdev_targp,
874 d - XFS_FSB_TO_BB(mp, 1),
875 XFS_FSB_TO_BB(mp, 1), 0, &bp);
876 if (!error) {
877 xfs_buf_relse(bp);
878 } else {
879 cmn_err(CE_WARN, "XFS: size check 3 failed");
880 if (error == ENOSPC)
881 error = XFS_ERROR(E2BIG);
882 return error;
885 return 0;
889 * xfs_mountfs
891 * This function does the following on an initial mount of a file system:
892 * - reads the superblock from disk and init the mount struct
893 * - if we're a 32-bit kernel, do a size check on the superblock
894 * so we don't mount terabyte filesystems
895 * - init mount struct realtime fields
896 * - allocate inode hash table for fs
897 * - init directory manager
898 * - perform recovery and init the log manager
901 xfs_mountfs(
902 xfs_mount_t *mp)
904 xfs_sb_t *sbp = &(mp->m_sb);
905 xfs_inode_t *rip;
906 __uint64_t resblks;
907 uint quotamount, quotaflags;
908 int uuid_mounted = 0;
909 int error = 0;
911 xfs_mount_common(mp, sbp);
914 * Check for a mismatched features2 values. Older kernels
915 * read & wrote into the wrong sb offset for sb_features2
916 * on some platforms due to xfs_sb_t not being 64bit size aligned
917 * when sb_features2 was added, which made older superblock
918 * reading/writing routines swap it as a 64-bit value.
920 * For backwards compatibility, we make both slots equal.
922 * If we detect a mismatched field, we OR the set bits into the
923 * existing features2 field in case it has already been modified; we
924 * don't want to lose any features. We then update the bad location
925 * with the ORed value so that older kernels will see any features2
926 * flags, and mark the two fields as needing updates once the
927 * transaction subsystem is online.
929 if (xfs_sb_has_mismatched_features2(sbp)) {
930 cmn_err(CE_WARN,
931 "XFS: correcting sb_features alignment problem");
932 sbp->sb_features2 |= sbp->sb_bad_features2;
933 sbp->sb_bad_features2 = sbp->sb_features2;
934 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
937 * Re-check for ATTR2 in case it was found in bad_features2
938 * slot.
940 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
941 !(mp->m_flags & XFS_MOUNT_NOATTR2))
942 mp->m_flags |= XFS_MOUNT_ATTR2;
945 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
946 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
947 xfs_sb_version_removeattr2(&mp->m_sb);
948 mp->m_update_flags |= XFS_SB_FEATURES2;
950 /* update sb_versionnum for the clearing of the morebits */
951 if (!sbp->sb_features2)
952 mp->m_update_flags |= XFS_SB_VERSIONNUM;
956 * Check if sb_agblocks is aligned at stripe boundary
957 * If sb_agblocks is NOT aligned turn off m_dalign since
958 * allocator alignment is within an ag, therefore ag has
959 * to be aligned at stripe boundary.
961 error = xfs_update_alignment(mp);
962 if (error)
963 goto error1;
965 xfs_alloc_compute_maxlevels(mp);
966 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
967 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
968 xfs_ialloc_compute_maxlevels(mp);
970 xfs_set_maxicount(mp);
972 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
975 * XFS uses the uuid from the superblock as the unique
976 * identifier for fsid. We can not use the uuid from the volume
977 * since a single partition filesystem is identical to a single
978 * partition volume/filesystem.
980 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
981 if (xfs_uuid_mount(mp)) {
982 error = XFS_ERROR(EINVAL);
983 goto error1;
985 uuid_mounted=1;
989 * Set the minimum read and write sizes
991 xfs_set_rw_sizes(mp);
994 * Set the inode cluster size.
995 * This may still be overridden by the file system
996 * block size if it is larger than the chosen cluster size.
998 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1001 * Set inode alignment fields
1003 xfs_set_inoalignment(mp);
1006 * Check that the data (and log if separate) are an ok size.
1008 error = xfs_check_sizes(mp);
1009 if (error)
1010 goto error1;
1013 * Initialize realtime fields in the mount structure
1015 error = xfs_rtmount_init(mp);
1016 if (error) {
1017 cmn_err(CE_WARN, "XFS: RT mount failed");
1018 goto error1;
1022 * Copies the low order bits of the timestamp and the randomly
1023 * set "sequence" number out of a UUID.
1025 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1027 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1029 xfs_dir_mount(mp);
1032 * Initialize the attribute manager's entries.
1034 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1037 * Initialize the precomputed transaction reservations values.
1039 xfs_trans_init(mp);
1042 * Allocate and initialize the per-ag data.
1044 init_rwsem(&mp->m_peraglock);
1045 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1046 KM_MAYFAIL);
1047 if (!mp->m_perag)
1048 goto error1;
1050 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1053 * log's mount-time initialization. Perform 1st part recovery if needed
1055 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */
1056 error = xfs_log_mount(mp, mp->m_logdev_targp,
1057 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1058 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1059 if (error) {
1060 cmn_err(CE_WARN, "XFS: log mount failed");
1061 goto error2;
1063 } else { /* No log has been defined */
1064 cmn_err(CE_WARN, "XFS: no log defined");
1065 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1066 error = XFS_ERROR(EFSCORRUPTED);
1067 goto error2;
1071 * Now the log is mounted, we know if it was an unclean shutdown or
1072 * not. If it was, with the first phase of recovery has completed, we
1073 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1074 * but they are recovered transactionally in the second recovery phase
1075 * later.
1077 * Hence we can safely re-initialise incore superblock counters from
1078 * the per-ag data. These may not be correct if the filesystem was not
1079 * cleanly unmounted, so we need to wait for recovery to finish before
1080 * doing this.
1082 * If the filesystem was cleanly unmounted, then we can trust the
1083 * values in the superblock to be correct and we don't need to do
1084 * anything here.
1086 * If we are currently making the filesystem, the initialisation will
1087 * fail as the perag data is in an undefined state.
1090 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1091 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1092 !mp->m_sb.sb_inprogress) {
1093 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1094 if (error) {
1095 goto error2;
1099 * Get and sanity-check the root inode.
1100 * Save the pointer to it in the mount structure.
1102 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1103 if (error) {
1104 cmn_err(CE_WARN, "XFS: failed to read root inode");
1105 goto error3;
1108 ASSERT(rip != NULL);
1110 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1111 cmn_err(CE_WARN, "XFS: corrupted root inode");
1112 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1113 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1114 (unsigned long long)rip->i_ino);
1115 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1116 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1117 mp);
1118 error = XFS_ERROR(EFSCORRUPTED);
1119 goto error4;
1121 mp->m_rootip = rip; /* save it */
1123 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1126 * Initialize realtime inode pointers in the mount structure
1128 error = xfs_rtmount_inodes(mp);
1129 if (error) {
1131 * Free up the root inode.
1133 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1134 goto error4;
1138 * If this is a read-only mount defer the superblock updates until
1139 * the next remount into writeable mode. Otherwise we would never
1140 * perform the update e.g. for the root filesystem.
1142 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1143 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1144 if (error) {
1145 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1146 goto error4;
1151 * Initialise the XFS quota management subsystem for this mount
1153 error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1154 if (error)
1155 goto error4;
1158 * Finish recovering the file system. This part needed to be
1159 * delayed until after the root and real-time bitmap inodes
1160 * were consistently read in.
1162 error = xfs_log_mount_finish(mp);
1163 if (error) {
1164 cmn_err(CE_WARN, "XFS: log mount finish failed");
1165 goto error4;
1169 * Complete the quota initialisation, post-log-replay component.
1171 error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1172 if (error)
1173 goto error4;
1176 * Now we are mounted, reserve a small amount of unused space for
1177 * privileged transactions. This is needed so that transaction
1178 * space required for critical operations can dip into this pool
1179 * when at ENOSPC. This is needed for operations like create with
1180 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1181 * are not allowed to use this reserved space.
1183 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1184 * This may drive us straight to ENOSPC on mount, but that implies
1185 * we were already there on the last unmount. Warn if this occurs.
1187 resblks = mp->m_sb.sb_dblocks;
1188 do_div(resblks, 20);
1189 resblks = min_t(__uint64_t, resblks, 1024);
1190 error = xfs_reserve_blocks(mp, &resblks, NULL);
1191 if (error)
1192 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1193 "Continuing without a reserve pool.");
1195 return 0;
1197 error4:
1199 * Free up the root inode.
1201 IRELE(rip);
1202 error3:
1203 xfs_log_unmount_dealloc(mp);
1204 error2:
1205 xfs_free_perag(mp);
1206 error1:
1207 if (uuid_mounted)
1208 uuid_table_remove(&mp->m_sb.sb_uuid);
1209 return error;
1213 * This flushes out the inodes,dquots and the superblock, unmounts the
1214 * log and makes sure that incore structures are freed.
1216 void
1217 xfs_unmountfs(
1218 struct xfs_mount *mp)
1220 __uint64_t resblks;
1221 int error;
1224 * Release dquot that rootinode, rbmino and rsumino might be holding,
1225 * and release the quota inodes.
1227 XFS_QM_UNMOUNT(mp);
1229 if (mp->m_rbmip)
1230 IRELE(mp->m_rbmip);
1231 if (mp->m_rsumip)
1232 IRELE(mp->m_rsumip);
1233 IRELE(mp->m_rootip);
1236 * We can potentially deadlock here if we have an inode cluster
1237 * that has been freed has it's buffer still pinned in memory because
1238 * the transaction is still sitting in a iclog. The stale inodes
1239 * on that buffer will have their flush locks held until the
1240 * transaction hits the disk and the callbacks run. the inode
1241 * flush takes the flush lock unconditionally and with nothing to
1242 * push out the iclog we will never get that unlocked. hence we
1243 * need to force the log first.
1245 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1246 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC);
1248 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1250 if (mp->m_quotainfo)
1251 XFS_QM_DONE(mp);
1254 * Flush out the log synchronously so that we know for sure
1255 * that nothing is pinned. This is important because bflush()
1256 * will skip pinned buffers.
1258 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1260 xfs_binval(mp->m_ddev_targp);
1261 if (mp->m_rtdev_targp) {
1262 xfs_binval(mp->m_rtdev_targp);
1266 * Unreserve any blocks we have so that when we unmount we don't account
1267 * the reserved free space as used. This is really only necessary for
1268 * lazy superblock counting because it trusts the incore superblock
1269 * counters to be aboslutely correct on clean unmount.
1271 * We don't bother correcting this elsewhere for lazy superblock
1272 * counting because on mount of an unclean filesystem we reconstruct the
1273 * correct counter value and this is irrelevant.
1275 * For non-lazy counter filesystems, this doesn't matter at all because
1276 * we only every apply deltas to the superblock and hence the incore
1277 * value does not matter....
1279 resblks = 0;
1280 error = xfs_reserve_blocks(mp, &resblks, NULL);
1281 if (error)
1282 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1283 "Freespace may not be correct on next mount.");
1285 error = xfs_log_sbcount(mp, 1);
1286 if (error)
1287 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1288 "Freespace may not be correct on next mount.");
1289 xfs_unmountfs_writesb(mp);
1290 xfs_unmountfs_wait(mp); /* wait for async bufs */
1291 xfs_log_unmount(mp); /* Done! No more fs ops. */
1293 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1294 uuid_table_remove(&mp->m_sb.sb_uuid);
1296 #if defined(DEBUG)
1297 xfs_errortag_clearall(mp, 0);
1298 #endif
1299 xfs_free_perag(mp);
1302 STATIC void
1303 xfs_unmountfs_wait(xfs_mount_t *mp)
1305 if (mp->m_logdev_targp != mp->m_ddev_targp)
1306 xfs_wait_buftarg(mp->m_logdev_targp);
1307 if (mp->m_rtdev_targp)
1308 xfs_wait_buftarg(mp->m_rtdev_targp);
1309 xfs_wait_buftarg(mp->m_ddev_targp);
1313 xfs_fs_writable(xfs_mount_t *mp)
1315 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1316 (mp->m_flags & XFS_MOUNT_RDONLY));
1320 * xfs_log_sbcount
1322 * Called either periodically to keep the on disk superblock values
1323 * roughly up to date or from unmount to make sure the values are
1324 * correct on a clean unmount.
1326 * Note this code can be called during the process of freezing, so
1327 * we may need to use the transaction allocator which does not not
1328 * block when the transaction subsystem is in its frozen state.
1331 xfs_log_sbcount(
1332 xfs_mount_t *mp,
1333 uint sync)
1335 xfs_trans_t *tp;
1336 int error;
1338 if (!xfs_fs_writable(mp))
1339 return 0;
1341 xfs_icsb_sync_counters(mp, 0);
1344 * we don't need to do this if we are updating the superblock
1345 * counters on every modification.
1347 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1348 return 0;
1350 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1351 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1352 XFS_DEFAULT_LOG_COUNT);
1353 if (error) {
1354 xfs_trans_cancel(tp, 0);
1355 return error;
1358 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1359 if (sync)
1360 xfs_trans_set_sync(tp);
1361 error = xfs_trans_commit(tp, 0);
1362 return error;
1366 xfs_unmountfs_writesb(xfs_mount_t *mp)
1368 xfs_buf_t *sbp;
1369 int error = 0;
1372 * skip superblock write if fs is read-only, or
1373 * if we are doing a forced umount.
1375 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1376 XFS_FORCED_SHUTDOWN(mp))) {
1378 sbp = xfs_getsb(mp, 0);
1380 XFS_BUF_UNDONE(sbp);
1381 XFS_BUF_UNREAD(sbp);
1382 XFS_BUF_UNDELAYWRITE(sbp);
1383 XFS_BUF_WRITE(sbp);
1384 XFS_BUF_UNASYNC(sbp);
1385 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1386 xfsbdstrat(mp, sbp);
1387 error = xfs_iowait(sbp);
1388 if (error)
1389 xfs_ioerror_alert("xfs_unmountfs_writesb",
1390 mp, sbp, XFS_BUF_ADDR(sbp));
1391 xfs_buf_relse(sbp);
1393 return error;
1397 * xfs_mod_sb() can be used to copy arbitrary changes to the
1398 * in-core superblock into the superblock buffer to be logged.
1399 * It does not provide the higher level of locking that is
1400 * needed to protect the in-core superblock from concurrent
1401 * access.
1403 void
1404 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1406 xfs_buf_t *bp;
1407 int first;
1408 int last;
1409 xfs_mount_t *mp;
1410 xfs_sb_field_t f;
1412 ASSERT(fields);
1413 if (!fields)
1414 return;
1415 mp = tp->t_mountp;
1416 bp = xfs_trans_getsb(tp, mp, 0);
1417 first = sizeof(xfs_sb_t);
1418 last = 0;
1420 /* translate/copy */
1422 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1424 /* find modified range */
1426 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1427 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1428 first = xfs_sb_info[f].offset;
1430 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1431 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1432 last = xfs_sb_info[f + 1].offset - 1;
1434 xfs_trans_log_buf(tp, bp, first, last);
1439 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1440 * a delta to a specified field in the in-core superblock. Simply
1441 * switch on the field indicated and apply the delta to that field.
1442 * Fields are not allowed to dip below zero, so if the delta would
1443 * do this do not apply it and return EINVAL.
1445 * The m_sb_lock must be held when this routine is called.
1448 xfs_mod_incore_sb_unlocked(
1449 xfs_mount_t *mp,
1450 xfs_sb_field_t field,
1451 int64_t delta,
1452 int rsvd)
1454 int scounter; /* short counter for 32 bit fields */
1455 long long lcounter; /* long counter for 64 bit fields */
1456 long long res_used, rem;
1459 * With the in-core superblock spin lock held, switch
1460 * on the indicated field. Apply the delta to the
1461 * proper field. If the fields value would dip below
1462 * 0, then do not apply the delta and return EINVAL.
1464 switch (field) {
1465 case XFS_SBS_ICOUNT:
1466 lcounter = (long long)mp->m_sb.sb_icount;
1467 lcounter += delta;
1468 if (lcounter < 0) {
1469 ASSERT(0);
1470 return XFS_ERROR(EINVAL);
1472 mp->m_sb.sb_icount = lcounter;
1473 return 0;
1474 case XFS_SBS_IFREE:
1475 lcounter = (long long)mp->m_sb.sb_ifree;
1476 lcounter += delta;
1477 if (lcounter < 0) {
1478 ASSERT(0);
1479 return XFS_ERROR(EINVAL);
1481 mp->m_sb.sb_ifree = lcounter;
1482 return 0;
1483 case XFS_SBS_FDBLOCKS:
1484 lcounter = (long long)
1485 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1486 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1488 if (delta > 0) { /* Putting blocks back */
1489 if (res_used > delta) {
1490 mp->m_resblks_avail += delta;
1491 } else {
1492 rem = delta - res_used;
1493 mp->m_resblks_avail = mp->m_resblks;
1494 lcounter += rem;
1496 } else { /* Taking blocks away */
1498 lcounter += delta;
1501 * If were out of blocks, use any available reserved blocks if
1502 * were allowed to.
1505 if (lcounter < 0) {
1506 if (rsvd) {
1507 lcounter = (long long)mp->m_resblks_avail + delta;
1508 if (lcounter < 0) {
1509 return XFS_ERROR(ENOSPC);
1511 mp->m_resblks_avail = lcounter;
1512 return 0;
1513 } else { /* not reserved */
1514 return XFS_ERROR(ENOSPC);
1519 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1520 return 0;
1521 case XFS_SBS_FREXTENTS:
1522 lcounter = (long long)mp->m_sb.sb_frextents;
1523 lcounter += delta;
1524 if (lcounter < 0) {
1525 return XFS_ERROR(ENOSPC);
1527 mp->m_sb.sb_frextents = lcounter;
1528 return 0;
1529 case XFS_SBS_DBLOCKS:
1530 lcounter = (long long)mp->m_sb.sb_dblocks;
1531 lcounter += delta;
1532 if (lcounter < 0) {
1533 ASSERT(0);
1534 return XFS_ERROR(EINVAL);
1536 mp->m_sb.sb_dblocks = lcounter;
1537 return 0;
1538 case XFS_SBS_AGCOUNT:
1539 scounter = mp->m_sb.sb_agcount;
1540 scounter += delta;
1541 if (scounter < 0) {
1542 ASSERT(0);
1543 return XFS_ERROR(EINVAL);
1545 mp->m_sb.sb_agcount = scounter;
1546 return 0;
1547 case XFS_SBS_IMAX_PCT:
1548 scounter = mp->m_sb.sb_imax_pct;
1549 scounter += delta;
1550 if (scounter < 0) {
1551 ASSERT(0);
1552 return XFS_ERROR(EINVAL);
1554 mp->m_sb.sb_imax_pct = scounter;
1555 return 0;
1556 case XFS_SBS_REXTSIZE:
1557 scounter = mp->m_sb.sb_rextsize;
1558 scounter += delta;
1559 if (scounter < 0) {
1560 ASSERT(0);
1561 return XFS_ERROR(EINVAL);
1563 mp->m_sb.sb_rextsize = scounter;
1564 return 0;
1565 case XFS_SBS_RBMBLOCKS:
1566 scounter = mp->m_sb.sb_rbmblocks;
1567 scounter += delta;
1568 if (scounter < 0) {
1569 ASSERT(0);
1570 return XFS_ERROR(EINVAL);
1572 mp->m_sb.sb_rbmblocks = scounter;
1573 return 0;
1574 case XFS_SBS_RBLOCKS:
1575 lcounter = (long long)mp->m_sb.sb_rblocks;
1576 lcounter += delta;
1577 if (lcounter < 0) {
1578 ASSERT(0);
1579 return XFS_ERROR(EINVAL);
1581 mp->m_sb.sb_rblocks = lcounter;
1582 return 0;
1583 case XFS_SBS_REXTENTS:
1584 lcounter = (long long)mp->m_sb.sb_rextents;
1585 lcounter += delta;
1586 if (lcounter < 0) {
1587 ASSERT(0);
1588 return XFS_ERROR(EINVAL);
1590 mp->m_sb.sb_rextents = lcounter;
1591 return 0;
1592 case XFS_SBS_REXTSLOG:
1593 scounter = mp->m_sb.sb_rextslog;
1594 scounter += delta;
1595 if (scounter < 0) {
1596 ASSERT(0);
1597 return XFS_ERROR(EINVAL);
1599 mp->m_sb.sb_rextslog = scounter;
1600 return 0;
1601 default:
1602 ASSERT(0);
1603 return XFS_ERROR(EINVAL);
1608 * xfs_mod_incore_sb() is used to change a field in the in-core
1609 * superblock structure by the specified delta. This modification
1610 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1611 * routine to do the work.
1614 xfs_mod_incore_sb(
1615 xfs_mount_t *mp,
1616 xfs_sb_field_t field,
1617 int64_t delta,
1618 int rsvd)
1620 int status;
1622 /* check for per-cpu counters */
1623 switch (field) {
1624 #ifdef HAVE_PERCPU_SB
1625 case XFS_SBS_ICOUNT:
1626 case XFS_SBS_IFREE:
1627 case XFS_SBS_FDBLOCKS:
1628 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1629 status = xfs_icsb_modify_counters(mp, field,
1630 delta, rsvd);
1631 break;
1633 /* FALLTHROUGH */
1634 #endif
1635 default:
1636 spin_lock(&mp->m_sb_lock);
1637 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1638 spin_unlock(&mp->m_sb_lock);
1639 break;
1642 return status;
1646 * xfs_mod_incore_sb_batch() is used to change more than one field
1647 * in the in-core superblock structure at a time. This modification
1648 * is protected by a lock internal to this module. The fields and
1649 * changes to those fields are specified in the array of xfs_mod_sb
1650 * structures passed in.
1652 * Either all of the specified deltas will be applied or none of
1653 * them will. If any modified field dips below 0, then all modifications
1654 * will be backed out and EINVAL will be returned.
1657 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1659 int status=0;
1660 xfs_mod_sb_t *msbp;
1663 * Loop through the array of mod structures and apply each
1664 * individually. If any fail, then back out all those
1665 * which have already been applied. Do all of this within
1666 * the scope of the m_sb_lock so that all of the changes will
1667 * be atomic.
1669 spin_lock(&mp->m_sb_lock);
1670 msbp = &msb[0];
1671 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1673 * Apply the delta at index n. If it fails, break
1674 * from the loop so we'll fall into the undo loop
1675 * below.
1677 switch (msbp->msb_field) {
1678 #ifdef HAVE_PERCPU_SB
1679 case XFS_SBS_ICOUNT:
1680 case XFS_SBS_IFREE:
1681 case XFS_SBS_FDBLOCKS:
1682 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1683 spin_unlock(&mp->m_sb_lock);
1684 status = xfs_icsb_modify_counters(mp,
1685 msbp->msb_field,
1686 msbp->msb_delta, rsvd);
1687 spin_lock(&mp->m_sb_lock);
1688 break;
1690 /* FALLTHROUGH */
1691 #endif
1692 default:
1693 status = xfs_mod_incore_sb_unlocked(mp,
1694 msbp->msb_field,
1695 msbp->msb_delta, rsvd);
1696 break;
1699 if (status != 0) {
1700 break;
1705 * If we didn't complete the loop above, then back out
1706 * any changes made to the superblock. If you add code
1707 * between the loop above and here, make sure that you
1708 * preserve the value of status. Loop back until
1709 * we step below the beginning of the array. Make sure
1710 * we don't touch anything back there.
1712 if (status != 0) {
1713 msbp--;
1714 while (msbp >= msb) {
1715 switch (msbp->msb_field) {
1716 #ifdef HAVE_PERCPU_SB
1717 case XFS_SBS_ICOUNT:
1718 case XFS_SBS_IFREE:
1719 case XFS_SBS_FDBLOCKS:
1720 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1721 spin_unlock(&mp->m_sb_lock);
1722 status = xfs_icsb_modify_counters(mp,
1723 msbp->msb_field,
1724 -(msbp->msb_delta),
1725 rsvd);
1726 spin_lock(&mp->m_sb_lock);
1727 break;
1729 /* FALLTHROUGH */
1730 #endif
1731 default:
1732 status = xfs_mod_incore_sb_unlocked(mp,
1733 msbp->msb_field,
1734 -(msbp->msb_delta),
1735 rsvd);
1736 break;
1738 ASSERT(status == 0);
1739 msbp--;
1742 spin_unlock(&mp->m_sb_lock);
1743 return status;
1747 * xfs_getsb() is called to obtain the buffer for the superblock.
1748 * The buffer is returned locked and read in from disk.
1749 * The buffer should be released with a call to xfs_brelse().
1751 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1752 * the superblock buffer if it can be locked without sleeping.
1753 * If it can't then we'll return NULL.
1755 xfs_buf_t *
1756 xfs_getsb(
1757 xfs_mount_t *mp,
1758 int flags)
1760 xfs_buf_t *bp;
1762 ASSERT(mp->m_sb_bp != NULL);
1763 bp = mp->m_sb_bp;
1764 if (flags & XFS_BUF_TRYLOCK) {
1765 if (!XFS_BUF_CPSEMA(bp)) {
1766 return NULL;
1768 } else {
1769 XFS_BUF_PSEMA(bp, PRIBIO);
1771 XFS_BUF_HOLD(bp);
1772 ASSERT(XFS_BUF_ISDONE(bp));
1773 return bp;
1777 * Used to free the superblock along various error paths.
1779 void
1780 xfs_freesb(
1781 xfs_mount_t *mp)
1783 xfs_buf_t *bp;
1786 * Use xfs_getsb() so that the buffer will be locked
1787 * when we call xfs_buf_relse().
1789 bp = xfs_getsb(mp, 0);
1790 XFS_BUF_UNMANAGE(bp);
1791 xfs_buf_relse(bp);
1792 mp->m_sb_bp = NULL;
1796 * See if the UUID is unique among mounted XFS filesystems.
1797 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1799 STATIC int
1800 xfs_uuid_mount(
1801 xfs_mount_t *mp)
1803 if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1804 cmn_err(CE_WARN,
1805 "XFS: Filesystem %s has nil UUID - can't mount",
1806 mp->m_fsname);
1807 return -1;
1809 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1810 cmn_err(CE_WARN,
1811 "XFS: Filesystem %s has duplicate UUID - can't mount",
1812 mp->m_fsname);
1813 return -1;
1815 return 0;
1819 * Used to log changes to the superblock unit and width fields which could
1820 * be altered by the mount options, as well as any potential sb_features2
1821 * fixup. Only the first superblock is updated.
1824 xfs_mount_log_sb(
1825 xfs_mount_t *mp,
1826 __int64_t fields)
1828 xfs_trans_t *tp;
1829 int error;
1831 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1832 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1833 XFS_SB_VERSIONNUM));
1835 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1836 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1837 XFS_DEFAULT_LOG_COUNT);
1838 if (error) {
1839 xfs_trans_cancel(tp, 0);
1840 return error;
1842 xfs_mod_sb(tp, fields);
1843 error = xfs_trans_commit(tp, 0);
1844 return error;
1848 #ifdef HAVE_PERCPU_SB
1850 * Per-cpu incore superblock counters
1852 * Simple concept, difficult implementation
1854 * Basically, replace the incore superblock counters with a distributed per cpu
1855 * counter for contended fields (e.g. free block count).
1857 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1858 * hence needs to be accurately read when we are running low on space. Hence
1859 * there is a method to enable and disable the per-cpu counters based on how
1860 * much "stuff" is available in them.
1862 * Basically, a counter is enabled if there is enough free resource to justify
1863 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1864 * ENOSPC), then we disable the counters to synchronise all callers and
1865 * re-distribute the available resources.
1867 * If, once we redistributed the available resources, we still get a failure,
1868 * we disable the per-cpu counter and go through the slow path.
1870 * The slow path is the current xfs_mod_incore_sb() function. This means that
1871 * when we disable a per-cpu counter, we need to drain it's resources back to
1872 * the global superblock. We do this after disabling the counter to prevent
1873 * more threads from queueing up on the counter.
1875 * Essentially, this means that we still need a lock in the fast path to enable
1876 * synchronisation between the global counters and the per-cpu counters. This
1877 * is not a problem because the lock will be local to a CPU almost all the time
1878 * and have little contention except when we get to ENOSPC conditions.
1880 * Basically, this lock becomes a barrier that enables us to lock out the fast
1881 * path while we do things like enabling and disabling counters and
1882 * synchronising the counters.
1884 * Locking rules:
1886 * 1. m_sb_lock before picking up per-cpu locks
1887 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1888 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1889 * 4. modifying per-cpu counters requires holding per-cpu lock
1890 * 5. modifying global counters requires holding m_sb_lock
1891 * 6. enabling or disabling a counter requires holding the m_sb_lock
1892 * and _none_ of the per-cpu locks.
1894 * Disabled counters are only ever re-enabled by a balance operation
1895 * that results in more free resources per CPU than a given threshold.
1896 * To ensure counters don't remain disabled, they are rebalanced when
1897 * the global resource goes above a higher threshold (i.e. some hysteresis
1898 * is present to prevent thrashing).
1901 #ifdef CONFIG_HOTPLUG_CPU
1903 * hot-plug CPU notifier support.
1905 * We need a notifier per filesystem as we need to be able to identify
1906 * the filesystem to balance the counters out. This is achieved by
1907 * having a notifier block embedded in the xfs_mount_t and doing pointer
1908 * magic to get the mount pointer from the notifier block address.
1910 STATIC int
1911 xfs_icsb_cpu_notify(
1912 struct notifier_block *nfb,
1913 unsigned long action,
1914 void *hcpu)
1916 xfs_icsb_cnts_t *cntp;
1917 xfs_mount_t *mp;
1919 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1920 cntp = (xfs_icsb_cnts_t *)
1921 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1922 switch (action) {
1923 case CPU_UP_PREPARE:
1924 case CPU_UP_PREPARE_FROZEN:
1925 /* Easy Case - initialize the area and locks, and
1926 * then rebalance when online does everything else for us. */
1927 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1928 break;
1929 case CPU_ONLINE:
1930 case CPU_ONLINE_FROZEN:
1931 xfs_icsb_lock(mp);
1932 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1933 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1934 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1935 xfs_icsb_unlock(mp);
1936 break;
1937 case CPU_DEAD:
1938 case CPU_DEAD_FROZEN:
1939 /* Disable all the counters, then fold the dead cpu's
1940 * count into the total on the global superblock and
1941 * re-enable the counters. */
1942 xfs_icsb_lock(mp);
1943 spin_lock(&mp->m_sb_lock);
1944 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1945 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1946 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1948 mp->m_sb.sb_icount += cntp->icsb_icount;
1949 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1950 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1952 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1954 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1955 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1956 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1957 spin_unlock(&mp->m_sb_lock);
1958 xfs_icsb_unlock(mp);
1959 break;
1962 return NOTIFY_OK;
1964 #endif /* CONFIG_HOTPLUG_CPU */
1967 xfs_icsb_init_counters(
1968 xfs_mount_t *mp)
1970 xfs_icsb_cnts_t *cntp;
1971 int i;
1973 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1974 if (mp->m_sb_cnts == NULL)
1975 return -ENOMEM;
1977 #ifdef CONFIG_HOTPLUG_CPU
1978 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1979 mp->m_icsb_notifier.priority = 0;
1980 register_hotcpu_notifier(&mp->m_icsb_notifier);
1981 #endif /* CONFIG_HOTPLUG_CPU */
1983 for_each_online_cpu(i) {
1984 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1985 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1988 mutex_init(&mp->m_icsb_mutex);
1991 * start with all counters disabled so that the
1992 * initial balance kicks us off correctly
1994 mp->m_icsb_counters = -1;
1995 return 0;
1998 void
1999 xfs_icsb_reinit_counters(
2000 xfs_mount_t *mp)
2002 xfs_icsb_lock(mp);
2004 * start with all counters disabled so that the
2005 * initial balance kicks us off correctly
2007 mp->m_icsb_counters = -1;
2008 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2009 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2010 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2011 xfs_icsb_unlock(mp);
2014 void
2015 xfs_icsb_destroy_counters(
2016 xfs_mount_t *mp)
2018 if (mp->m_sb_cnts) {
2019 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2020 free_percpu(mp->m_sb_cnts);
2022 mutex_destroy(&mp->m_icsb_mutex);
2025 STATIC_INLINE void
2026 xfs_icsb_lock_cntr(
2027 xfs_icsb_cnts_t *icsbp)
2029 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2030 ndelay(1000);
2034 STATIC_INLINE void
2035 xfs_icsb_unlock_cntr(
2036 xfs_icsb_cnts_t *icsbp)
2038 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2042 STATIC_INLINE void
2043 xfs_icsb_lock_all_counters(
2044 xfs_mount_t *mp)
2046 xfs_icsb_cnts_t *cntp;
2047 int i;
2049 for_each_online_cpu(i) {
2050 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2051 xfs_icsb_lock_cntr(cntp);
2055 STATIC_INLINE void
2056 xfs_icsb_unlock_all_counters(
2057 xfs_mount_t *mp)
2059 xfs_icsb_cnts_t *cntp;
2060 int i;
2062 for_each_online_cpu(i) {
2063 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2064 xfs_icsb_unlock_cntr(cntp);
2068 STATIC void
2069 xfs_icsb_count(
2070 xfs_mount_t *mp,
2071 xfs_icsb_cnts_t *cnt,
2072 int flags)
2074 xfs_icsb_cnts_t *cntp;
2075 int i;
2077 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2079 if (!(flags & XFS_ICSB_LAZY_COUNT))
2080 xfs_icsb_lock_all_counters(mp);
2082 for_each_online_cpu(i) {
2083 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2084 cnt->icsb_icount += cntp->icsb_icount;
2085 cnt->icsb_ifree += cntp->icsb_ifree;
2086 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2089 if (!(flags & XFS_ICSB_LAZY_COUNT))
2090 xfs_icsb_unlock_all_counters(mp);
2093 STATIC int
2094 xfs_icsb_counter_disabled(
2095 xfs_mount_t *mp,
2096 xfs_sb_field_t field)
2098 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2099 return test_bit(field, &mp->m_icsb_counters);
2102 STATIC void
2103 xfs_icsb_disable_counter(
2104 xfs_mount_t *mp,
2105 xfs_sb_field_t field)
2107 xfs_icsb_cnts_t cnt;
2109 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2112 * If we are already disabled, then there is nothing to do
2113 * here. We check before locking all the counters to avoid
2114 * the expensive lock operation when being called in the
2115 * slow path and the counter is already disabled. This is
2116 * safe because the only time we set or clear this state is under
2117 * the m_icsb_mutex.
2119 if (xfs_icsb_counter_disabled(mp, field))
2120 return;
2122 xfs_icsb_lock_all_counters(mp);
2123 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2124 /* drain back to superblock */
2126 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2127 switch(field) {
2128 case XFS_SBS_ICOUNT:
2129 mp->m_sb.sb_icount = cnt.icsb_icount;
2130 break;
2131 case XFS_SBS_IFREE:
2132 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2133 break;
2134 case XFS_SBS_FDBLOCKS:
2135 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2136 break;
2137 default:
2138 BUG();
2142 xfs_icsb_unlock_all_counters(mp);
2145 STATIC void
2146 xfs_icsb_enable_counter(
2147 xfs_mount_t *mp,
2148 xfs_sb_field_t field,
2149 uint64_t count,
2150 uint64_t resid)
2152 xfs_icsb_cnts_t *cntp;
2153 int i;
2155 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2157 xfs_icsb_lock_all_counters(mp);
2158 for_each_online_cpu(i) {
2159 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2160 switch (field) {
2161 case XFS_SBS_ICOUNT:
2162 cntp->icsb_icount = count + resid;
2163 break;
2164 case XFS_SBS_IFREE:
2165 cntp->icsb_ifree = count + resid;
2166 break;
2167 case XFS_SBS_FDBLOCKS:
2168 cntp->icsb_fdblocks = count + resid;
2169 break;
2170 default:
2171 BUG();
2172 break;
2174 resid = 0;
2176 clear_bit(field, &mp->m_icsb_counters);
2177 xfs_icsb_unlock_all_counters(mp);
2180 void
2181 xfs_icsb_sync_counters_locked(
2182 xfs_mount_t *mp,
2183 int flags)
2185 xfs_icsb_cnts_t cnt;
2187 xfs_icsb_count(mp, &cnt, flags);
2189 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2190 mp->m_sb.sb_icount = cnt.icsb_icount;
2191 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2192 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2193 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2194 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2198 * Accurate update of per-cpu counters to incore superblock
2200 void
2201 xfs_icsb_sync_counters(
2202 xfs_mount_t *mp,
2203 int flags)
2205 spin_lock(&mp->m_sb_lock);
2206 xfs_icsb_sync_counters_locked(mp, flags);
2207 spin_unlock(&mp->m_sb_lock);
2211 * Balance and enable/disable counters as necessary.
2213 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2214 * chosen to be the same number as single on disk allocation chunk per CPU, and
2215 * free blocks is something far enough zero that we aren't going thrash when we
2216 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2217 * prevent looping endlessly when xfs_alloc_space asks for more than will
2218 * be distributed to a single CPU but each CPU has enough blocks to be
2219 * reenabled.
2221 * Note that we can be called when counters are already disabled.
2222 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2223 * prevent locking every per-cpu counter needlessly.
2226 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2227 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2228 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2229 STATIC void
2230 xfs_icsb_balance_counter_locked(
2231 xfs_mount_t *mp,
2232 xfs_sb_field_t field,
2233 int min_per_cpu)
2235 uint64_t count, resid;
2236 int weight = num_online_cpus();
2237 uint64_t min = (uint64_t)min_per_cpu;
2239 /* disable counter and sync counter */
2240 xfs_icsb_disable_counter(mp, field);
2242 /* update counters - first CPU gets residual*/
2243 switch (field) {
2244 case XFS_SBS_ICOUNT:
2245 count = mp->m_sb.sb_icount;
2246 resid = do_div(count, weight);
2247 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2248 return;
2249 break;
2250 case XFS_SBS_IFREE:
2251 count = mp->m_sb.sb_ifree;
2252 resid = do_div(count, weight);
2253 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2254 return;
2255 break;
2256 case XFS_SBS_FDBLOCKS:
2257 count = mp->m_sb.sb_fdblocks;
2258 resid = do_div(count, weight);
2259 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2260 return;
2261 break;
2262 default:
2263 BUG();
2264 count = resid = 0; /* quiet, gcc */
2265 break;
2268 xfs_icsb_enable_counter(mp, field, count, resid);
2271 STATIC void
2272 xfs_icsb_balance_counter(
2273 xfs_mount_t *mp,
2274 xfs_sb_field_t fields,
2275 int min_per_cpu)
2277 spin_lock(&mp->m_sb_lock);
2278 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2279 spin_unlock(&mp->m_sb_lock);
2282 STATIC int
2283 xfs_icsb_modify_counters(
2284 xfs_mount_t *mp,
2285 xfs_sb_field_t field,
2286 int64_t delta,
2287 int rsvd)
2289 xfs_icsb_cnts_t *icsbp;
2290 long long lcounter; /* long counter for 64 bit fields */
2291 int cpu, ret = 0;
2293 might_sleep();
2294 again:
2295 cpu = get_cpu();
2296 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2299 * if the counter is disabled, go to slow path
2301 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2302 goto slow_path;
2303 xfs_icsb_lock_cntr(icsbp);
2304 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2305 xfs_icsb_unlock_cntr(icsbp);
2306 goto slow_path;
2309 switch (field) {
2310 case XFS_SBS_ICOUNT:
2311 lcounter = icsbp->icsb_icount;
2312 lcounter += delta;
2313 if (unlikely(lcounter < 0))
2314 goto balance_counter;
2315 icsbp->icsb_icount = lcounter;
2316 break;
2318 case XFS_SBS_IFREE:
2319 lcounter = icsbp->icsb_ifree;
2320 lcounter += delta;
2321 if (unlikely(lcounter < 0))
2322 goto balance_counter;
2323 icsbp->icsb_ifree = lcounter;
2324 break;
2326 case XFS_SBS_FDBLOCKS:
2327 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2329 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2330 lcounter += delta;
2331 if (unlikely(lcounter < 0))
2332 goto balance_counter;
2333 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2334 break;
2335 default:
2336 BUG();
2337 break;
2339 xfs_icsb_unlock_cntr(icsbp);
2340 put_cpu();
2341 return 0;
2343 slow_path:
2344 put_cpu();
2347 * serialise with a mutex so we don't burn lots of cpu on
2348 * the superblock lock. We still need to hold the superblock
2349 * lock, however, when we modify the global structures.
2351 xfs_icsb_lock(mp);
2354 * Now running atomically.
2356 * If the counter is enabled, someone has beaten us to rebalancing.
2357 * Drop the lock and try again in the fast path....
2359 if (!(xfs_icsb_counter_disabled(mp, field))) {
2360 xfs_icsb_unlock(mp);
2361 goto again;
2365 * The counter is currently disabled. Because we are
2366 * running atomically here, we know a rebalance cannot
2367 * be in progress. Hence we can go straight to operating
2368 * on the global superblock. We do not call xfs_mod_incore_sb()
2369 * here even though we need to get the m_sb_lock. Doing so
2370 * will cause us to re-enter this function and deadlock.
2371 * Hence we get the m_sb_lock ourselves and then call
2372 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2373 * directly on the global counters.
2375 spin_lock(&mp->m_sb_lock);
2376 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2377 spin_unlock(&mp->m_sb_lock);
2380 * Now that we've modified the global superblock, we
2381 * may be able to re-enable the distributed counters
2382 * (e.g. lots of space just got freed). After that
2383 * we are done.
2385 if (ret != ENOSPC)
2386 xfs_icsb_balance_counter(mp, field, 0);
2387 xfs_icsb_unlock(mp);
2388 return ret;
2390 balance_counter:
2391 xfs_icsb_unlock_cntr(icsbp);
2392 put_cpu();
2395 * We may have multiple threads here if multiple per-cpu
2396 * counters run dry at the same time. This will mean we can
2397 * do more balances than strictly necessary but it is not
2398 * the common slowpath case.
2400 xfs_icsb_lock(mp);
2403 * running atomically.
2405 * This will leave the counter in the correct state for future
2406 * accesses. After the rebalance, we simply try again and our retry
2407 * will either succeed through the fast path or slow path without
2408 * another balance operation being required.
2410 xfs_icsb_balance_counter(mp, field, delta);
2411 xfs_icsb_unlock(mp);
2412 goto again;
2415 #endif