2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
44 #define PRINTK(x...) printk(x)
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void unplug_slaves(mddev_t
*mddev
);
57 static void allow_barrier(conf_t
*conf
);
58 static void lower_barrier(conf_t
*conf
);
60 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
62 struct pool_info
*pi
= data
;
64 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
66 /* allocate a r1bio with room for raid_disks entries in the bios array */
67 r1_bio
= kzalloc(size
, gfp_flags
);
68 if (!r1_bio
&& pi
->mddev
)
69 unplug_slaves(pi
->mddev
);
74 static void r1bio_pool_free(void *r1_bio
, void *data
)
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
85 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
87 struct pool_info
*pi
= data
;
93 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
95 unplug_slaves(pi
->mddev
);
100 * Allocate bios : 1 for reading, n-1 for writing
102 for (j
= pi
->raid_disks
; j
-- ; ) {
103 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
106 r1_bio
->bios
[j
] = bio
;
109 * Allocate RESYNC_PAGES data pages and attach them to
111 * If this is a user-requested check/repair, allocate
112 * RESYNC_PAGES for each bio.
114 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
119 bio
= r1_bio
->bios
[j
];
120 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
121 page
= alloc_page(gfp_flags
);
125 bio
->bi_io_vec
[i
].bv_page
= page
;
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
131 for (i
=0; i
<RESYNC_PAGES
; i
++)
132 for (j
=1; j
<pi
->raid_disks
; j
++)
133 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
134 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
137 r1_bio
->master_bio
= NULL
;
142 for (j
=0 ; j
< pi
->raid_disks
; j
++)
143 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
144 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
147 while ( ++j
< pi
->raid_disks
)
148 bio_put(r1_bio
->bios
[j
]);
149 r1bio_pool_free(r1_bio
, data
);
153 static void r1buf_pool_free(void *__r1_bio
, void *data
)
155 struct pool_info
*pi
= data
;
157 r1bio_t
*r1bio
= __r1_bio
;
159 for (i
= 0; i
< RESYNC_PAGES
; i
++)
160 for (j
= pi
->raid_disks
; j
-- ;) {
162 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
163 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
164 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
166 for (i
=0 ; i
< pi
->raid_disks
; i
++)
167 bio_put(r1bio
->bios
[i
]);
169 r1bio_pool_free(r1bio
, data
);
172 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
176 for (i
= 0; i
< conf
->raid_disks
; i
++) {
177 struct bio
**bio
= r1_bio
->bios
+ i
;
178 if (*bio
&& *bio
!= IO_BLOCKED
)
184 static void free_r1bio(r1bio_t
*r1_bio
)
186 conf_t
*conf
= r1_bio
->mddev
->private;
189 * Wake up any possible resync thread that waits for the device
194 put_all_bios(conf
, r1_bio
);
195 mempool_free(r1_bio
, conf
->r1bio_pool
);
198 static void put_buf(r1bio_t
*r1_bio
)
200 conf_t
*conf
= r1_bio
->mddev
->private;
203 for (i
=0; i
<conf
->raid_disks
; i
++) {
204 struct bio
*bio
= r1_bio
->bios
[i
];
206 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
209 mempool_free(r1_bio
, conf
->r1buf_pool
);
214 static void reschedule_retry(r1bio_t
*r1_bio
)
217 mddev_t
*mddev
= r1_bio
->mddev
;
218 conf_t
*conf
= mddev
->private;
220 spin_lock_irqsave(&conf
->device_lock
, flags
);
221 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
223 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
225 wake_up(&conf
->wait_barrier
);
226 md_wakeup_thread(mddev
->thread
);
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
234 static void raid_end_bio_io(r1bio_t
*r1_bio
)
236 struct bio
*bio
= r1_bio
->master_bio
;
238 /* if nobody has done the final endio yet, do it now */
239 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
240 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
241 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
242 (unsigned long long) bio
->bi_sector
,
243 (unsigned long long) bio
->bi_sector
+
244 (bio
->bi_size
>> 9) - 1);
247 test_bit(R1BIO_Uptodate
, &r1_bio
->state
) ? 0 : -EIO
);
253 * Update disk head position estimator based on IRQ completion info.
255 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
257 conf_t
*conf
= r1_bio
->mddev
->private;
259 conf
->mirrors
[disk
].head_position
=
260 r1_bio
->sector
+ (r1_bio
->sectors
);
263 static void raid1_end_read_request(struct bio
*bio
, int error
)
265 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
266 r1bio_t
*r1_bio
= bio
->bi_private
;
268 conf_t
*conf
= r1_bio
->mddev
->private;
270 mirror
= r1_bio
->read_disk
;
272 * this branch is our 'one mirror IO has finished' event handler:
274 update_head_pos(mirror
, r1_bio
);
277 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
279 /* If all other devices have failed, we want to return
280 * the error upwards rather than fail the last device.
281 * Here we redefine "uptodate" to mean "Don't want to retry"
284 spin_lock_irqsave(&conf
->device_lock
, flags
);
285 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
286 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
287 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
289 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
293 raid_end_bio_io(r1_bio
);
298 char b
[BDEVNAME_SIZE
];
299 if (printk_ratelimit())
300 printk(KERN_ERR
"md/raid1:%s: %s: rescheduling sector %llu\n",
302 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,b
), (unsigned long long)r1_bio
->sector
);
303 reschedule_retry(r1_bio
);
306 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
309 static void r1_bio_write_done(r1bio_t
*r1_bio
, int vcnt
, struct bio_vec
*bv
,
312 if (atomic_dec_and_test(&r1_bio
->remaining
))
314 /* it really is the end of this request */
315 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
316 /* free extra copy of the data pages */
319 safe_put_page(bv
[i
].bv_page
);
321 /* clear the bitmap if all writes complete successfully */
322 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
324 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
326 md_write_end(r1_bio
->mddev
);
327 raid_end_bio_io(r1_bio
);
331 static void raid1_end_write_request(struct bio
*bio
, int error
)
333 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
334 r1bio_t
*r1_bio
= bio
->bi_private
;
335 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
336 conf_t
*conf
= r1_bio
->mddev
->private;
337 struct bio
*to_put
= NULL
;
340 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
341 if (r1_bio
->bios
[mirror
] == bio
)
345 * 'one mirror IO has finished' event handler:
347 r1_bio
->bios
[mirror
] = NULL
;
350 md_error(r1_bio
->mddev
, conf
->mirrors
[mirror
].rdev
);
351 /* an I/O failed, we can't clear the bitmap */
352 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
355 * Set R1BIO_Uptodate in our master bio, so that we
356 * will return a good error code for to the higher
357 * levels even if IO on some other mirrored buffer
360 * The 'master' represents the composite IO operation
361 * to user-side. So if something waits for IO, then it
362 * will wait for the 'master' bio.
364 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
366 update_head_pos(mirror
, r1_bio
);
369 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
370 atomic_dec(&r1_bio
->behind_remaining
);
373 * In behind mode, we ACK the master bio once the I/O
374 * has safely reached all non-writemostly
375 * disks. Setting the Returned bit ensures that this
376 * gets done only once -- we don't ever want to return
377 * -EIO here, instead we'll wait
379 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
380 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
381 /* Maybe we can return now */
382 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
383 struct bio
*mbio
= r1_bio
->master_bio
;
384 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
385 (unsigned long long) mbio
->bi_sector
,
386 (unsigned long long) mbio
->bi_sector
+
387 (mbio
->bi_size
>> 9) - 1);
392 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
395 * Let's see if all mirrored write operations have finished
398 r1_bio_write_done(r1_bio
, bio
->bi_vcnt
, bio
->bi_io_vec
, behind
);
406 * This routine returns the disk from which the requested read should
407 * be done. There is a per-array 'next expected sequential IO' sector
408 * number - if this matches on the next IO then we use the last disk.
409 * There is also a per-disk 'last know head position' sector that is
410 * maintained from IRQ contexts, both the normal and the resync IO
411 * completion handlers update this position correctly. If there is no
412 * perfect sequential match then we pick the disk whose head is closest.
414 * If there are 2 mirrors in the same 2 devices, performance degrades
415 * because position is mirror, not device based.
417 * The rdev for the device selected will have nr_pending incremented.
419 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
)
421 const sector_t this_sector
= r1_bio
->sector
;
422 const int sectors
= r1_bio
->sectors
;
426 sector_t new_distance
, current_distance
;
432 * Check if we can balance. We can balance on the whole
433 * device if no resync is going on, or below the resync window.
434 * We take the first readable disk when above the resync window.
437 if (conf
->mddev
->recovery_cp
< MaxSector
&&
438 (this_sector
+ sectors
>= conf
->next_resync
)) {
443 start_disk
= conf
->last_used
;
446 /* make sure the disk is operational */
447 for (i
= 0 ; i
< conf
->raid_disks
; i
++) {
448 int disk
= start_disk
+ i
;
449 if (disk
>= conf
->raid_disks
)
450 disk
-= conf
->raid_disks
;
452 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
453 if (r1_bio
->bios
[disk
] == IO_BLOCKED
455 || !test_bit(In_sync
, &rdev
->flags
))
459 if (!test_bit(WriteMostly
, &rdev
->flags
))
463 if (new_disk
< 0 || choose_first
)
467 * Don't change to another disk for sequential reads:
469 if (conf
->next_seq_sect
== this_sector
)
471 if (this_sector
== conf
->mirrors
[new_disk
].head_position
)
474 current_distance
= abs(this_sector
475 - conf
->mirrors
[new_disk
].head_position
);
477 /* look for a better disk - i.e. head is closer */
478 start_disk
= new_disk
;
479 for (i
= 1; i
< conf
->raid_disks
; i
++) {
480 int disk
= start_disk
+ 1;
481 if (disk
>= conf
->raid_disks
)
482 disk
-= conf
->raid_disks
;
484 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
485 if (r1_bio
->bios
[disk
] == IO_BLOCKED
487 || !test_bit(In_sync
, &rdev
->flags
)
488 || test_bit(WriteMostly
, &rdev
->flags
))
491 if (!atomic_read(&rdev
->nr_pending
)) {
495 new_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
496 if (new_distance
< current_distance
) {
497 current_distance
= new_distance
;
504 rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
507 atomic_inc(&rdev
->nr_pending
);
508 if (!test_bit(In_sync
, &rdev
->flags
)) {
509 /* cannot risk returning a device that failed
510 * before we inc'ed nr_pending
512 rdev_dec_pending(rdev
, conf
->mddev
);
515 conf
->next_seq_sect
= this_sector
+ sectors
;
516 conf
->last_used
= new_disk
;
523 static void unplug_slaves(mddev_t
*mddev
)
525 conf_t
*conf
= mddev
->private;
529 for (i
=0; i
<mddev
->raid_disks
; i
++) {
530 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
531 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
532 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
534 atomic_inc(&rdev
->nr_pending
);
539 rdev_dec_pending(rdev
, mddev
);
546 static void raid1_unplug(struct request_queue
*q
)
548 mddev_t
*mddev
= q
->queuedata
;
550 unplug_slaves(mddev
);
551 md_wakeup_thread(mddev
->thread
);
554 static int raid1_congested(void *data
, int bits
)
556 mddev_t
*mddev
= data
;
557 conf_t
*conf
= mddev
->private;
560 if (mddev_congested(mddev
, bits
))
564 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
565 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
566 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
567 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
569 /* Note the '|| 1' - when read_balance prefers
570 * non-congested targets, it can be removed
572 if ((bits
& (1<<BDI_async_congested
)) || 1)
573 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
575 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
583 static int flush_pending_writes(conf_t
*conf
)
585 /* Any writes that have been queued but are awaiting
586 * bitmap updates get flushed here.
587 * We return 1 if any requests were actually submitted.
591 spin_lock_irq(&conf
->device_lock
);
593 if (conf
->pending_bio_list
.head
) {
595 bio
= bio_list_get(&conf
->pending_bio_list
);
596 blk_remove_plug(conf
->mddev
->queue
);
597 spin_unlock_irq(&conf
->device_lock
);
598 /* flush any pending bitmap writes to
599 * disk before proceeding w/ I/O */
600 bitmap_unplug(conf
->mddev
->bitmap
);
602 while (bio
) { /* submit pending writes */
603 struct bio
*next
= bio
->bi_next
;
605 generic_make_request(bio
);
610 spin_unlock_irq(&conf
->device_lock
);
615 * Sometimes we need to suspend IO while we do something else,
616 * either some resync/recovery, or reconfigure the array.
617 * To do this we raise a 'barrier'.
618 * The 'barrier' is a counter that can be raised multiple times
619 * to count how many activities are happening which preclude
621 * We can only raise the barrier if there is no pending IO.
622 * i.e. if nr_pending == 0.
623 * We choose only to raise the barrier if no-one is waiting for the
624 * barrier to go down. This means that as soon as an IO request
625 * is ready, no other operations which require a barrier will start
626 * until the IO request has had a chance.
628 * So: regular IO calls 'wait_barrier'. When that returns there
629 * is no backgroup IO happening, It must arrange to call
630 * allow_barrier when it has finished its IO.
631 * backgroup IO calls must call raise_barrier. Once that returns
632 * there is no normal IO happeing. It must arrange to call
633 * lower_barrier when the particular background IO completes.
635 #define RESYNC_DEPTH 32
637 static void raise_barrier(conf_t
*conf
)
639 spin_lock_irq(&conf
->resync_lock
);
641 /* Wait until no block IO is waiting */
642 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
644 raid1_unplug(conf
->mddev
->queue
));
646 /* block any new IO from starting */
649 /* Now wait for all pending IO to complete */
650 wait_event_lock_irq(conf
->wait_barrier
,
651 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
653 raid1_unplug(conf
->mddev
->queue
));
655 spin_unlock_irq(&conf
->resync_lock
);
658 static void lower_barrier(conf_t
*conf
)
661 BUG_ON(conf
->barrier
<= 0);
662 spin_lock_irqsave(&conf
->resync_lock
, flags
);
664 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
665 wake_up(&conf
->wait_barrier
);
668 static void wait_barrier(conf_t
*conf
)
670 spin_lock_irq(&conf
->resync_lock
);
673 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
675 raid1_unplug(conf
->mddev
->queue
));
679 spin_unlock_irq(&conf
->resync_lock
);
682 static void allow_barrier(conf_t
*conf
)
685 spin_lock_irqsave(&conf
->resync_lock
, flags
);
687 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
688 wake_up(&conf
->wait_barrier
);
691 static void freeze_array(conf_t
*conf
)
693 /* stop syncio and normal IO and wait for everything to
695 * We increment barrier and nr_waiting, and then
696 * wait until nr_pending match nr_queued+1
697 * This is called in the context of one normal IO request
698 * that has failed. Thus any sync request that might be pending
699 * will be blocked by nr_pending, and we need to wait for
700 * pending IO requests to complete or be queued for re-try.
701 * Thus the number queued (nr_queued) plus this request (1)
702 * must match the number of pending IOs (nr_pending) before
705 spin_lock_irq(&conf
->resync_lock
);
708 wait_event_lock_irq(conf
->wait_barrier
,
709 conf
->nr_pending
== conf
->nr_queued
+1,
711 ({ flush_pending_writes(conf
);
712 raid1_unplug(conf
->mddev
->queue
); }));
713 spin_unlock_irq(&conf
->resync_lock
);
715 static void unfreeze_array(conf_t
*conf
)
717 /* reverse the effect of the freeze */
718 spin_lock_irq(&conf
->resync_lock
);
721 wake_up(&conf
->wait_barrier
);
722 spin_unlock_irq(&conf
->resync_lock
);
726 /* duplicate the data pages for behind I/O
727 * We return a list of bio_vec rather than just page pointers
728 * as it makes freeing easier
730 static struct bio_vec
*alloc_behind_pages(struct bio
*bio
)
733 struct bio_vec
*bvec
;
734 struct bio_vec
*pages
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
736 if (unlikely(!pages
))
739 bio_for_each_segment(bvec
, bio
, i
) {
740 pages
[i
].bv_page
= alloc_page(GFP_NOIO
);
741 if (unlikely(!pages
[i
].bv_page
))
743 memcpy(kmap(pages
[i
].bv_page
) + bvec
->bv_offset
,
744 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
745 kunmap(pages
[i
].bv_page
);
746 kunmap(bvec
->bv_page
);
753 for (i
= 0; i
< bio
->bi_vcnt
&& pages
[i
].bv_page
; i
++)
754 put_page(pages
[i
].bv_page
);
756 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
760 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
762 conf_t
*conf
= mddev
->private;
763 mirror_info_t
*mirror
;
765 struct bio
*read_bio
;
766 int i
, targets
= 0, disks
;
767 struct bitmap
*bitmap
;
769 struct bio_vec
*behind_pages
= NULL
;
770 const int rw
= bio_data_dir(bio
);
771 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
772 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
773 mdk_rdev_t
*blocked_rdev
;
776 * Register the new request and wait if the reconstruction
777 * thread has put up a bar for new requests.
778 * Continue immediately if no resync is active currently.
781 md_write_start(mddev
, bio
); /* wait on superblock update early */
783 if (bio_data_dir(bio
) == WRITE
&&
784 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
785 bio
->bi_sector
< mddev
->suspend_hi
) {
786 /* As the suspend_* range is controlled by
787 * userspace, we want an interruptible
792 flush_signals(current
);
793 prepare_to_wait(&conf
->wait_barrier
,
794 &w
, TASK_INTERRUPTIBLE
);
795 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
796 bio
->bi_sector
>= mddev
->suspend_hi
)
800 finish_wait(&conf
->wait_barrier
, &w
);
805 bitmap
= mddev
->bitmap
;
808 * make_request() can abort the operation when READA is being
809 * used and no empty request is available.
812 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
814 r1_bio
->master_bio
= bio
;
815 r1_bio
->sectors
= bio
->bi_size
>> 9;
817 r1_bio
->mddev
= mddev
;
818 r1_bio
->sector
= bio
->bi_sector
;
822 * read balancing logic:
824 int rdisk
= read_balance(conf
, r1_bio
);
827 /* couldn't find anywhere to read from */
828 raid_end_bio_io(r1_bio
);
831 mirror
= conf
->mirrors
+ rdisk
;
833 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
835 /* Reading from a write-mostly device must
836 * take care not to over-take any writes
839 wait_event(bitmap
->behind_wait
,
840 atomic_read(&bitmap
->behind_writes
) == 0);
842 r1_bio
->read_disk
= rdisk
;
844 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
846 r1_bio
->bios
[rdisk
] = read_bio
;
848 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
849 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
850 read_bio
->bi_end_io
= raid1_end_read_request
;
851 read_bio
->bi_rw
= READ
| do_sync
;
852 read_bio
->bi_private
= r1_bio
;
854 generic_make_request(read_bio
);
861 /* first select target devices under spinlock and
862 * inc refcount on their rdev. Record them by setting
865 disks
= conf
->raid_disks
;
869 for (i
= 0; i
< disks
; i
++) {
870 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
871 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
872 atomic_inc(&rdev
->nr_pending
);
876 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
877 atomic_inc(&rdev
->nr_pending
);
878 if (test_bit(Faulty
, &rdev
->flags
)) {
879 rdev_dec_pending(rdev
, mddev
);
880 r1_bio
->bios
[i
] = NULL
;
882 r1_bio
->bios
[i
] = bio
;
886 r1_bio
->bios
[i
] = NULL
;
890 if (unlikely(blocked_rdev
)) {
891 /* Wait for this device to become unblocked */
894 for (j
= 0; j
< i
; j
++)
896 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
899 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
904 BUG_ON(targets
== 0); /* we never fail the last device */
906 if (targets
< conf
->raid_disks
) {
907 /* array is degraded, we will not clear the bitmap
908 * on I/O completion (see raid1_end_write_request) */
909 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
913 * Not if there are too many, or cannot allocate memory,
914 * or a reader on WriteMostly is waiting for behind writes
917 (atomic_read(&bitmap
->behind_writes
)
918 < mddev
->bitmap_info
.max_write_behind
) &&
919 !waitqueue_active(&bitmap
->behind_wait
) &&
920 (behind_pages
= alloc_behind_pages(bio
)) != NULL
)
921 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
923 atomic_set(&r1_bio
->remaining
, 1);
924 atomic_set(&r1_bio
->behind_remaining
, 0);
926 bitmap_startwrite(bitmap
, bio
->bi_sector
, r1_bio
->sectors
,
927 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
928 for (i
= 0; i
< disks
; i
++) {
930 if (!r1_bio
->bios
[i
])
933 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
934 r1_bio
->bios
[i
] = mbio
;
936 mbio
->bi_sector
= r1_bio
->sector
+ conf
->mirrors
[i
].rdev
->data_offset
;
937 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
938 mbio
->bi_end_io
= raid1_end_write_request
;
939 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
940 mbio
->bi_private
= r1_bio
;
943 struct bio_vec
*bvec
;
946 /* Yes, I really want the '__' version so that
947 * we clear any unused pointer in the io_vec, rather
948 * than leave them unchanged. This is important
949 * because when we come to free the pages, we won't
950 * know the original bi_idx, so we just free
953 __bio_for_each_segment(bvec
, mbio
, j
, 0)
954 bvec
->bv_page
= behind_pages
[j
].bv_page
;
955 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
956 atomic_inc(&r1_bio
->behind_remaining
);
959 atomic_inc(&r1_bio
->remaining
);
960 spin_lock_irqsave(&conf
->device_lock
, flags
);
961 bio_list_add(&conf
->pending_bio_list
, mbio
);
962 blk_plug_device(mddev
->queue
);
963 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
965 r1_bio_write_done(r1_bio
, bio
->bi_vcnt
, behind_pages
, behind_pages
!= NULL
);
966 kfree(behind_pages
); /* the behind pages are attached to the bios now */
968 /* In case raid1d snuck in to freeze_array */
969 wake_up(&conf
->wait_barrier
);
972 md_wakeup_thread(mddev
->thread
);
977 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
979 conf_t
*conf
= mddev
->private;
982 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
983 conf
->raid_disks
- mddev
->degraded
);
985 for (i
= 0; i
< conf
->raid_disks
; i
++) {
986 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
987 seq_printf(seq
, "%s",
988 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
991 seq_printf(seq
, "]");
995 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
997 char b
[BDEVNAME_SIZE
];
998 conf_t
*conf
= mddev
->private;
1001 * If it is not operational, then we have already marked it as dead
1002 * else if it is the last working disks, ignore the error, let the
1003 * next level up know.
1004 * else mark the drive as failed
1006 if (test_bit(In_sync
, &rdev
->flags
)
1007 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1009 * Don't fail the drive, act as though we were just a
1010 * normal single drive.
1011 * However don't try a recovery from this drive as
1012 * it is very likely to fail.
1014 mddev
->recovery_disabled
= 1;
1017 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1018 unsigned long flags
;
1019 spin_lock_irqsave(&conf
->device_lock
, flags
);
1021 set_bit(Faulty
, &rdev
->flags
);
1022 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1024 * if recovery is running, make sure it aborts.
1026 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1028 set_bit(Faulty
, &rdev
->flags
);
1029 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1030 printk(KERN_ALERT
"md/raid1:%s: Disk failure on %s, disabling device.\n"
1031 KERN_ALERT
"md/raid1:%s: Operation continuing on %d devices.\n",
1032 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1033 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1036 static void print_conf(conf_t
*conf
)
1040 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1042 printk(KERN_DEBUG
"(!conf)\n");
1045 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1049 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1050 char b
[BDEVNAME_SIZE
];
1051 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1053 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1054 i
, !test_bit(In_sync
, &rdev
->flags
),
1055 !test_bit(Faulty
, &rdev
->flags
),
1056 bdevname(rdev
->bdev
,b
));
1061 static void close_sync(conf_t
*conf
)
1064 allow_barrier(conf
);
1066 mempool_destroy(conf
->r1buf_pool
);
1067 conf
->r1buf_pool
= NULL
;
1070 static int raid1_spare_active(mddev_t
*mddev
)
1073 conf_t
*conf
= mddev
->private;
1075 unsigned long flags
;
1078 * Find all failed disks within the RAID1 configuration
1079 * and mark them readable.
1080 * Called under mddev lock, so rcu protection not needed.
1082 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1083 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1085 && !test_bit(Faulty
, &rdev
->flags
)
1086 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1088 sysfs_notify_dirent(rdev
->sysfs_state
);
1091 spin_lock_irqsave(&conf
->device_lock
, flags
);
1092 mddev
->degraded
-= count
;
1093 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1100 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1102 conf_t
*conf
= mddev
->private;
1107 int last
= mddev
->raid_disks
- 1;
1109 if (rdev
->raid_disk
>= 0)
1110 first
= last
= rdev
->raid_disk
;
1112 for (mirror
= first
; mirror
<= last
; mirror
++)
1113 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1115 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1116 rdev
->data_offset
<< 9);
1117 /* as we don't honour merge_bvec_fn, we must
1118 * never risk violating it, so limit
1119 * ->max_segments to one lying with a single
1120 * page, as a one page request is never in
1123 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1124 blk_queue_max_segments(mddev
->queue
, 1);
1125 blk_queue_segment_boundary(mddev
->queue
,
1126 PAGE_CACHE_SIZE
- 1);
1129 p
->head_position
= 0;
1130 rdev
->raid_disk
= mirror
;
1132 /* As all devices are equivalent, we don't need a full recovery
1133 * if this was recently any drive of the array
1135 if (rdev
->saved_raid_disk
< 0)
1137 rcu_assign_pointer(p
->rdev
, rdev
);
1140 md_integrity_add_rdev(rdev
, mddev
);
1145 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1147 conf_t
*conf
= mddev
->private;
1150 mirror_info_t
*p
= conf
->mirrors
+ number
;
1155 if (test_bit(In_sync
, &rdev
->flags
) ||
1156 atomic_read(&rdev
->nr_pending
)) {
1160 /* Only remove non-faulty devices if recovery
1163 if (!test_bit(Faulty
, &rdev
->flags
) &&
1164 !mddev
->recovery_disabled
&&
1165 mddev
->degraded
< conf
->raid_disks
) {
1171 if (atomic_read(&rdev
->nr_pending
)) {
1172 /* lost the race, try later */
1177 md_integrity_register(mddev
);
1186 static void end_sync_read(struct bio
*bio
, int error
)
1188 r1bio_t
*r1_bio
= bio
->bi_private
;
1191 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1192 if (r1_bio
->bios
[i
] == bio
)
1195 update_head_pos(i
, r1_bio
);
1197 * we have read a block, now it needs to be re-written,
1198 * or re-read if the read failed.
1199 * We don't do much here, just schedule handling by raid1d
1201 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1202 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1204 if (atomic_dec_and_test(&r1_bio
->remaining
))
1205 reschedule_retry(r1_bio
);
1208 static void end_sync_write(struct bio
*bio
, int error
)
1210 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1211 r1bio_t
*r1_bio
= bio
->bi_private
;
1212 mddev_t
*mddev
= r1_bio
->mddev
;
1213 conf_t
*conf
= mddev
->private;
1217 for (i
= 0; i
< conf
->raid_disks
; i
++)
1218 if (r1_bio
->bios
[i
] == bio
) {
1223 sector_t sync_blocks
= 0;
1224 sector_t s
= r1_bio
->sector
;
1225 long sectors_to_go
= r1_bio
->sectors
;
1226 /* make sure these bits doesn't get cleared. */
1228 bitmap_end_sync(mddev
->bitmap
, s
,
1231 sectors_to_go
-= sync_blocks
;
1232 } while (sectors_to_go
> 0);
1233 md_error(mddev
, conf
->mirrors
[mirror
].rdev
);
1236 update_head_pos(mirror
, r1_bio
);
1238 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1239 sector_t s
= r1_bio
->sectors
;
1241 md_done_sync(mddev
, s
, uptodate
);
1245 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1247 conf_t
*conf
= mddev
->private;
1249 int disks
= conf
->raid_disks
;
1250 struct bio
*bio
, *wbio
;
1252 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1255 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1256 /* We have read all readable devices. If we haven't
1257 * got the block, then there is no hope left.
1258 * If we have, then we want to do a comparison
1259 * and skip the write if everything is the same.
1260 * If any blocks failed to read, then we need to
1261 * attempt an over-write
1264 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1265 for (i
=0; i
<mddev
->raid_disks
; i
++)
1266 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
)
1267 md_error(mddev
, conf
->mirrors
[i
].rdev
);
1269 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1273 for (primary
=0; primary
<mddev
->raid_disks
; primary
++)
1274 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1275 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1276 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1277 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1280 r1_bio
->read_disk
= primary
;
1281 for (i
=0; i
<mddev
->raid_disks
; i
++)
1282 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
) {
1284 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1285 struct bio
*pbio
= r1_bio
->bios
[primary
];
1286 struct bio
*sbio
= r1_bio
->bios
[i
];
1288 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1289 for (j
= vcnt
; j
-- ; ) {
1291 p
= pbio
->bi_io_vec
[j
].bv_page
;
1292 s
= sbio
->bi_io_vec
[j
].bv_page
;
1293 if (memcmp(page_address(p
),
1301 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1302 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1303 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1304 sbio
->bi_end_io
= NULL
;
1305 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1307 /* fixup the bio for reuse */
1309 sbio
->bi_vcnt
= vcnt
;
1310 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1312 sbio
->bi_phys_segments
= 0;
1313 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1314 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1315 sbio
->bi_next
= NULL
;
1316 sbio
->bi_sector
= r1_bio
->sector
+
1317 conf
->mirrors
[i
].rdev
->data_offset
;
1318 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1319 size
= sbio
->bi_size
;
1320 for (j
= 0; j
< vcnt
; j
++) {
1322 bi
= &sbio
->bi_io_vec
[j
];
1324 if (size
> PAGE_SIZE
)
1325 bi
->bv_len
= PAGE_SIZE
;
1329 memcpy(page_address(bi
->bv_page
),
1330 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1337 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1338 /* ouch - failed to read all of that.
1339 * Try some synchronous reads of other devices to get
1340 * good data, much like with normal read errors. Only
1341 * read into the pages we already have so we don't
1342 * need to re-issue the read request.
1343 * We don't need to freeze the array, because being in an
1344 * active sync request, there is no normal IO, and
1345 * no overlapping syncs.
1347 sector_t sect
= r1_bio
->sector
;
1348 int sectors
= r1_bio
->sectors
;
1353 int d
= r1_bio
->read_disk
;
1357 if (s
> (PAGE_SIZE
>>9))
1360 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1361 /* No rcu protection needed here devices
1362 * can only be removed when no resync is
1363 * active, and resync is currently active
1365 rdev
= conf
->mirrors
[d
].rdev
;
1366 if (sync_page_io(rdev
,
1367 sect
+ rdev
->data_offset
,
1369 bio
->bi_io_vec
[idx
].bv_page
,
1376 if (d
== conf
->raid_disks
)
1378 } while (!success
&& d
!= r1_bio
->read_disk
);
1382 /* write it back and re-read */
1383 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1384 while (d
!= r1_bio
->read_disk
) {
1386 d
= conf
->raid_disks
;
1388 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1390 rdev
= conf
->mirrors
[d
].rdev
;
1391 atomic_add(s
, &rdev
->corrected_errors
);
1392 if (sync_page_io(rdev
,
1393 sect
+ rdev
->data_offset
,
1395 bio
->bi_io_vec
[idx
].bv_page
,
1397 md_error(mddev
, rdev
);
1400 while (d
!= r1_bio
->read_disk
) {
1402 d
= conf
->raid_disks
;
1404 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1406 rdev
= conf
->mirrors
[d
].rdev
;
1407 if (sync_page_io(rdev
,
1408 sect
+ rdev
->data_offset
,
1410 bio
->bi_io_vec
[idx
].bv_page
,
1412 md_error(mddev
, rdev
);
1415 char b
[BDEVNAME_SIZE
];
1416 /* Cannot read from anywhere, array is toast */
1417 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1418 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1419 " for block %llu\n",
1421 bdevname(bio
->bi_bdev
, b
),
1422 (unsigned long long)r1_bio
->sector
);
1423 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1436 atomic_set(&r1_bio
->remaining
, 1);
1437 for (i
= 0; i
< disks
; i
++) {
1438 wbio
= r1_bio
->bios
[i
];
1439 if (wbio
->bi_end_io
== NULL
||
1440 (wbio
->bi_end_io
== end_sync_read
&&
1441 (i
== r1_bio
->read_disk
||
1442 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1445 wbio
->bi_rw
= WRITE
;
1446 wbio
->bi_end_io
= end_sync_write
;
1447 atomic_inc(&r1_bio
->remaining
);
1448 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1450 generic_make_request(wbio
);
1453 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1454 /* if we're here, all write(s) have completed, so clean up */
1455 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1461 * This is a kernel thread which:
1463 * 1. Retries failed read operations on working mirrors.
1464 * 2. Updates the raid superblock when problems encounter.
1465 * 3. Performs writes following reads for array syncronising.
1468 static void fix_read_error(conf_t
*conf
, int read_disk
,
1469 sector_t sect
, int sectors
)
1471 mddev_t
*mddev
= conf
->mddev
;
1479 if (s
> (PAGE_SIZE
>>9))
1483 /* Note: no rcu protection needed here
1484 * as this is synchronous in the raid1d thread
1485 * which is the thread that might remove
1486 * a device. If raid1d ever becomes multi-threaded....
1488 rdev
= conf
->mirrors
[d
].rdev
;
1490 test_bit(In_sync
, &rdev
->flags
) &&
1492 sect
+ rdev
->data_offset
,
1494 conf
->tmppage
, READ
))
1498 if (d
== conf
->raid_disks
)
1501 } while (!success
&& d
!= read_disk
);
1504 /* Cannot read from anywhere -- bye bye array */
1505 md_error(mddev
, conf
->mirrors
[read_disk
].rdev
);
1508 /* write it back and re-read */
1510 while (d
!= read_disk
) {
1512 d
= conf
->raid_disks
;
1514 rdev
= conf
->mirrors
[d
].rdev
;
1516 test_bit(In_sync
, &rdev
->flags
)) {
1517 if (sync_page_io(rdev
,
1518 sect
+ rdev
->data_offset
,
1519 s
<<9, conf
->tmppage
, WRITE
)
1521 /* Well, this device is dead */
1522 md_error(mddev
, rdev
);
1526 while (d
!= read_disk
) {
1527 char b
[BDEVNAME_SIZE
];
1529 d
= conf
->raid_disks
;
1531 rdev
= conf
->mirrors
[d
].rdev
;
1533 test_bit(In_sync
, &rdev
->flags
)) {
1534 if (sync_page_io(rdev
,
1535 sect
+ rdev
->data_offset
,
1536 s
<<9, conf
->tmppage
, READ
)
1538 /* Well, this device is dead */
1539 md_error(mddev
, rdev
);
1541 atomic_add(s
, &rdev
->corrected_errors
);
1543 "md/raid1:%s: read error corrected "
1544 "(%d sectors at %llu on %s)\n",
1546 (unsigned long long)(sect
+
1548 bdevname(rdev
->bdev
, b
));
1557 static void raid1d(mddev_t
*mddev
)
1561 unsigned long flags
;
1562 conf_t
*conf
= mddev
->private;
1563 struct list_head
*head
= &conf
->retry_list
;
1567 md_check_recovery(mddev
);
1570 char b
[BDEVNAME_SIZE
];
1572 unplug
+= flush_pending_writes(conf
);
1574 spin_lock_irqsave(&conf
->device_lock
, flags
);
1575 if (list_empty(head
)) {
1576 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1579 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
1580 list_del(head
->prev
);
1582 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1584 mddev
= r1_bio
->mddev
;
1585 conf
= mddev
->private;
1586 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
1587 sync_request_write(mddev
, r1_bio
);
1592 /* we got a read error. Maybe the drive is bad. Maybe just
1593 * the block and we can fix it.
1594 * We freeze all other IO, and try reading the block from
1595 * other devices. When we find one, we re-write
1596 * and check it that fixes the read error.
1597 * This is all done synchronously while the array is
1600 if (mddev
->ro
== 0) {
1602 fix_read_error(conf
, r1_bio
->read_disk
,
1605 unfreeze_array(conf
);
1608 conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1610 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1611 if ((disk
=read_balance(conf
, r1_bio
)) == -1) {
1612 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
1613 " read error for block %llu\n",
1615 bdevname(bio
->bi_bdev
,b
),
1616 (unsigned long long)r1_bio
->sector
);
1617 raid_end_bio_io(r1_bio
);
1619 const unsigned long do_sync
= r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
1620 r1_bio
->bios
[r1_bio
->read_disk
] =
1621 mddev
->ro
? IO_BLOCKED
: NULL
;
1622 r1_bio
->read_disk
= disk
;
1624 bio
= bio_clone_mddev(r1_bio
->master_bio
,
1626 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1627 rdev
= conf
->mirrors
[disk
].rdev
;
1628 if (printk_ratelimit())
1629 printk(KERN_ERR
"md/raid1:%s: redirecting sector %llu to"
1630 " other mirror: %s\n",
1632 (unsigned long long)r1_bio
->sector
,
1633 bdevname(rdev
->bdev
,b
));
1634 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1635 bio
->bi_bdev
= rdev
->bdev
;
1636 bio
->bi_end_io
= raid1_end_read_request
;
1637 bio
->bi_rw
= READ
| do_sync
;
1638 bio
->bi_private
= r1_bio
;
1640 generic_make_request(bio
);
1646 unplug_slaves(mddev
);
1650 static int init_resync(conf_t
*conf
)
1654 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1655 BUG_ON(conf
->r1buf_pool
);
1656 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
1658 if (!conf
->r1buf_pool
)
1660 conf
->next_resync
= 0;
1665 * perform a "sync" on one "block"
1667 * We need to make sure that no normal I/O request - particularly write
1668 * requests - conflict with active sync requests.
1670 * This is achieved by tracking pending requests and a 'barrier' concept
1671 * that can be installed to exclude normal IO requests.
1674 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1676 conf_t
*conf
= mddev
->private;
1679 sector_t max_sector
, nr_sectors
;
1683 int write_targets
= 0, read_targets
= 0;
1684 sector_t sync_blocks
;
1685 int still_degraded
= 0;
1687 if (!conf
->r1buf_pool
)
1688 if (init_resync(conf
))
1691 max_sector
= mddev
->dev_sectors
;
1692 if (sector_nr
>= max_sector
) {
1693 /* If we aborted, we need to abort the
1694 * sync on the 'current' bitmap chunk (there will
1695 * only be one in raid1 resync.
1696 * We can find the current addess in mddev->curr_resync
1698 if (mddev
->curr_resync
< max_sector
) /* aborted */
1699 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1701 else /* completed sync */
1704 bitmap_close_sync(mddev
->bitmap
);
1709 if (mddev
->bitmap
== NULL
&&
1710 mddev
->recovery_cp
== MaxSector
&&
1711 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
1712 conf
->fullsync
== 0) {
1714 return max_sector
- sector_nr
;
1716 /* before building a request, check if we can skip these blocks..
1717 * This call the bitmap_start_sync doesn't actually record anything
1719 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
1720 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1721 /* We can skip this block, and probably several more */
1726 * If there is non-resync activity waiting for a turn,
1727 * and resync is going fast enough,
1728 * then let it though before starting on this new sync request.
1730 if (!go_faster
&& conf
->nr_waiting
)
1731 msleep_interruptible(1000);
1733 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1734 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
1735 raise_barrier(conf
);
1737 conf
->next_resync
= sector_nr
;
1741 * If we get a correctably read error during resync or recovery,
1742 * we might want to read from a different device. So we
1743 * flag all drives that could conceivably be read from for READ,
1744 * and any others (which will be non-In_sync devices) for WRITE.
1745 * If a read fails, we try reading from something else for which READ
1749 r1_bio
->mddev
= mddev
;
1750 r1_bio
->sector
= sector_nr
;
1752 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
1754 for (i
=0; i
< conf
->raid_disks
; i
++) {
1756 bio
= r1_bio
->bios
[i
];
1758 /* take from bio_init */
1759 bio
->bi_next
= NULL
;
1760 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
1761 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1762 bio
->bi_comp_cpu
= -1;
1766 bio
->bi_phys_segments
= 0;
1768 bio
->bi_end_io
= NULL
;
1769 bio
->bi_private
= NULL
;
1771 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1773 test_bit(Faulty
, &rdev
->flags
)) {
1776 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
1778 bio
->bi_end_io
= end_sync_write
;
1781 /* may need to read from here */
1783 bio
->bi_end_io
= end_sync_read
;
1784 if (test_bit(WriteMostly
, &rdev
->flags
)) {
1793 atomic_inc(&rdev
->nr_pending
);
1794 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
1795 bio
->bi_bdev
= rdev
->bdev
;
1796 bio
->bi_private
= r1_bio
;
1801 r1_bio
->read_disk
= disk
;
1803 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
1804 /* extra read targets are also write targets */
1805 write_targets
+= read_targets
-1;
1807 if (write_targets
== 0 || read_targets
== 0) {
1808 /* There is nowhere to write, so all non-sync
1809 * drives must be failed - so we are finished
1811 sector_t rv
= max_sector
- sector_nr
;
1817 if (max_sector
> mddev
->resync_max
)
1818 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1823 int len
= PAGE_SIZE
;
1824 if (sector_nr
+ (len
>>9) > max_sector
)
1825 len
= (max_sector
- sector_nr
) << 9;
1828 if (sync_blocks
== 0) {
1829 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1830 &sync_blocks
, still_degraded
) &&
1832 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1834 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
1835 if ((len
>> 9) > sync_blocks
)
1836 len
= sync_blocks
<<9;
1839 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
1840 bio
= r1_bio
->bios
[i
];
1841 if (bio
->bi_end_io
) {
1842 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1843 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1845 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1848 bio
= r1_bio
->bios
[i
];
1849 if (bio
->bi_end_io
==NULL
)
1851 /* remove last page from this bio */
1853 bio
->bi_size
-= len
;
1854 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1860 nr_sectors
+= len
>>9;
1861 sector_nr
+= len
>>9;
1862 sync_blocks
-= (len
>>9);
1863 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
1865 r1_bio
->sectors
= nr_sectors
;
1867 /* For a user-requested sync, we read all readable devices and do a
1870 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1871 atomic_set(&r1_bio
->remaining
, read_targets
);
1872 for (i
=0; i
<conf
->raid_disks
; i
++) {
1873 bio
= r1_bio
->bios
[i
];
1874 if (bio
->bi_end_io
== end_sync_read
) {
1875 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1876 generic_make_request(bio
);
1880 atomic_set(&r1_bio
->remaining
, 1);
1881 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1882 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1883 generic_make_request(bio
);
1889 static sector_t
raid1_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
1894 return mddev
->dev_sectors
;
1897 static conf_t
*setup_conf(mddev_t
*mddev
)
1901 mirror_info_t
*disk
;
1905 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
1909 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1914 conf
->tmppage
= alloc_page(GFP_KERNEL
);
1918 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
1919 if (!conf
->poolinfo
)
1921 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
1922 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
1925 if (!conf
->r1bio_pool
)
1928 conf
->poolinfo
->mddev
= mddev
;
1930 spin_lock_init(&conf
->device_lock
);
1931 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
1932 int disk_idx
= rdev
->raid_disk
;
1933 if (disk_idx
>= mddev
->raid_disks
1936 disk
= conf
->mirrors
+ disk_idx
;
1940 disk
->head_position
= 0;
1942 conf
->raid_disks
= mddev
->raid_disks
;
1943 conf
->mddev
= mddev
;
1944 INIT_LIST_HEAD(&conf
->retry_list
);
1946 spin_lock_init(&conf
->resync_lock
);
1947 init_waitqueue_head(&conf
->wait_barrier
);
1949 bio_list_init(&conf
->pending_bio_list
);
1951 conf
->last_used
= -1;
1952 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1954 disk
= conf
->mirrors
+ i
;
1957 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
1958 disk
->head_position
= 0;
1961 } else if (conf
->last_used
< 0)
1963 * The first working device is used as a
1964 * starting point to read balancing.
1966 conf
->last_used
= i
;
1970 if (conf
->last_used
< 0) {
1971 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
1976 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
1977 if (!conf
->thread
) {
1979 "md/raid1:%s: couldn't allocate thread\n",
1988 if (conf
->r1bio_pool
)
1989 mempool_destroy(conf
->r1bio_pool
);
1990 kfree(conf
->mirrors
);
1991 safe_put_page(conf
->tmppage
);
1992 kfree(conf
->poolinfo
);
1995 return ERR_PTR(err
);
1998 static int run(mddev_t
*mddev
)
2004 if (mddev
->level
!= 1) {
2005 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2006 mdname(mddev
), mddev
->level
);
2009 if (mddev
->reshape_position
!= MaxSector
) {
2010 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2015 * copy the already verified devices into our private RAID1
2016 * bookkeeping area. [whatever we allocate in run(),
2017 * should be freed in stop()]
2019 if (mddev
->private == NULL
)
2020 conf
= setup_conf(mddev
);
2022 conf
= mddev
->private;
2025 return PTR_ERR(conf
);
2027 mddev
->queue
->queue_lock
= &conf
->device_lock
;
2028 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2029 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2030 rdev
->data_offset
<< 9);
2031 /* as we don't honour merge_bvec_fn, we must never risk
2032 * violating it, so limit ->max_segments to 1 lying within
2033 * a single page, as a one page request is never in violation.
2035 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
2036 blk_queue_max_segments(mddev
->queue
, 1);
2037 blk_queue_segment_boundary(mddev
->queue
,
2038 PAGE_CACHE_SIZE
- 1);
2042 mddev
->degraded
= 0;
2043 for (i
=0; i
< conf
->raid_disks
; i
++)
2044 if (conf
->mirrors
[i
].rdev
== NULL
||
2045 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2046 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2049 if (conf
->raid_disks
- mddev
->degraded
== 1)
2050 mddev
->recovery_cp
= MaxSector
;
2052 if (mddev
->recovery_cp
!= MaxSector
)
2053 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2054 " -- starting background reconstruction\n",
2057 "md/raid1:%s: active with %d out of %d mirrors\n",
2058 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2062 * Ok, everything is just fine now
2064 mddev
->thread
= conf
->thread
;
2065 conf
->thread
= NULL
;
2066 mddev
->private = conf
;
2068 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2070 mddev
->queue
->unplug_fn
= raid1_unplug
;
2071 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2072 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2073 md_integrity_register(mddev
);
2077 static int stop(mddev_t
*mddev
)
2079 conf_t
*conf
= mddev
->private;
2080 struct bitmap
*bitmap
= mddev
->bitmap
;
2082 /* wait for behind writes to complete */
2083 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2084 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2086 /* need to kick something here to make sure I/O goes? */
2087 wait_event(bitmap
->behind_wait
,
2088 atomic_read(&bitmap
->behind_writes
) == 0);
2091 raise_barrier(conf
);
2092 lower_barrier(conf
);
2094 md_unregister_thread(mddev
->thread
);
2095 mddev
->thread
= NULL
;
2096 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2097 if (conf
->r1bio_pool
)
2098 mempool_destroy(conf
->r1bio_pool
);
2099 kfree(conf
->mirrors
);
2100 kfree(conf
->poolinfo
);
2102 mddev
->private = NULL
;
2106 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2108 /* no resync is happening, and there is enough space
2109 * on all devices, so we can resize.
2110 * We need to make sure resync covers any new space.
2111 * If the array is shrinking we should possibly wait until
2112 * any io in the removed space completes, but it hardly seems
2115 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2116 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2118 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2119 revalidate_disk(mddev
->gendisk
);
2120 if (sectors
> mddev
->dev_sectors
&&
2121 mddev
->recovery_cp
== MaxSector
) {
2122 mddev
->recovery_cp
= mddev
->dev_sectors
;
2123 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2125 mddev
->dev_sectors
= sectors
;
2126 mddev
->resync_max_sectors
= sectors
;
2130 static int raid1_reshape(mddev_t
*mddev
)
2133 * 1/ resize the r1bio_pool
2134 * 2/ resize conf->mirrors
2136 * We allocate a new r1bio_pool if we can.
2137 * Then raise a device barrier and wait until all IO stops.
2138 * Then resize conf->mirrors and swap in the new r1bio pool.
2140 * At the same time, we "pack" the devices so that all the missing
2141 * devices have the higher raid_disk numbers.
2143 mempool_t
*newpool
, *oldpool
;
2144 struct pool_info
*newpoolinfo
;
2145 mirror_info_t
*newmirrors
;
2146 conf_t
*conf
= mddev
->private;
2147 int cnt
, raid_disks
;
2148 unsigned long flags
;
2151 /* Cannot change chunk_size, layout, or level */
2152 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2153 mddev
->layout
!= mddev
->new_layout
||
2154 mddev
->level
!= mddev
->new_level
) {
2155 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2156 mddev
->new_layout
= mddev
->layout
;
2157 mddev
->new_level
= mddev
->level
;
2161 err
= md_allow_write(mddev
);
2165 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2167 if (raid_disks
< conf
->raid_disks
) {
2169 for (d
= 0; d
< conf
->raid_disks
; d
++)
2170 if (conf
->mirrors
[d
].rdev
)
2172 if (cnt
> raid_disks
)
2176 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2179 newpoolinfo
->mddev
= mddev
;
2180 newpoolinfo
->raid_disks
= raid_disks
;
2182 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2183 r1bio_pool_free
, newpoolinfo
);
2188 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2191 mempool_destroy(newpool
);
2195 raise_barrier(conf
);
2197 /* ok, everything is stopped */
2198 oldpool
= conf
->r1bio_pool
;
2199 conf
->r1bio_pool
= newpool
;
2201 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2202 mdk_rdev_t
*rdev
= conf
->mirrors
[d
].rdev
;
2203 if (rdev
&& rdev
->raid_disk
!= d2
) {
2205 sprintf(nm
, "rd%d", rdev
->raid_disk
);
2206 sysfs_remove_link(&mddev
->kobj
, nm
);
2207 rdev
->raid_disk
= d2
;
2208 sprintf(nm
, "rd%d", rdev
->raid_disk
);
2209 sysfs_remove_link(&mddev
->kobj
, nm
);
2210 if (sysfs_create_link(&mddev
->kobj
,
2213 "md/raid1:%s: cannot register "
2218 newmirrors
[d2
++].rdev
= rdev
;
2220 kfree(conf
->mirrors
);
2221 conf
->mirrors
= newmirrors
;
2222 kfree(conf
->poolinfo
);
2223 conf
->poolinfo
= newpoolinfo
;
2225 spin_lock_irqsave(&conf
->device_lock
, flags
);
2226 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2227 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2228 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2229 mddev
->delta_disks
= 0;
2231 conf
->last_used
= 0; /* just make sure it is in-range */
2232 lower_barrier(conf
);
2234 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2235 md_wakeup_thread(mddev
->thread
);
2237 mempool_destroy(oldpool
);
2241 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2243 conf_t
*conf
= mddev
->private;
2246 case 2: /* wake for suspend */
2247 wake_up(&conf
->wait_barrier
);
2250 raise_barrier(conf
);
2253 lower_barrier(conf
);
2258 static void *raid1_takeover(mddev_t
*mddev
)
2260 /* raid1 can take over:
2261 * raid5 with 2 devices, any layout or chunk size
2263 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2265 mddev
->new_level
= 1;
2266 mddev
->new_layout
= 0;
2267 mddev
->new_chunk_sectors
= 0;
2268 conf
= setup_conf(mddev
);
2273 return ERR_PTR(-EINVAL
);
2276 static struct mdk_personality raid1_personality
=
2280 .owner
= THIS_MODULE
,
2281 .make_request
= make_request
,
2285 .error_handler
= error
,
2286 .hot_add_disk
= raid1_add_disk
,
2287 .hot_remove_disk
= raid1_remove_disk
,
2288 .spare_active
= raid1_spare_active
,
2289 .sync_request
= sync_request
,
2290 .resize
= raid1_resize
,
2292 .check_reshape
= raid1_reshape
,
2293 .quiesce
= raid1_quiesce
,
2294 .takeover
= raid1_takeover
,
2297 static int __init
raid_init(void)
2299 return register_md_personality(&raid1_personality
);
2302 static void raid_exit(void)
2304 unregister_md_personality(&raid1_personality
);
2307 module_init(raid_init
);
2308 module_exit(raid_exit
);
2309 MODULE_LICENSE("GPL");
2310 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2311 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2312 MODULE_ALIAS("md-raid1");
2313 MODULE_ALIAS("md-level-1");