[ALSA] hda-codec - Add model entry for ASUS M9 laptop
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-vr41xx.c
blob4d49fd501198fee4b8d1d0080c829935a80f50d2
1 /*
2 * Driver for NEC VR4100 series Real Time Clock unit.
4 * Copyright (C) 2003-2006 Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/fs.h>
21 #include <linux/init.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/rtc.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
30 #include <asm/div64.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 #include <asm/vr41xx/vr41xx.h>
35 MODULE_AUTHOR("Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>");
36 MODULE_DESCRIPTION("NEC VR4100 series RTC driver");
37 MODULE_LICENSE("GPL");
39 #define RTC1_TYPE1_START 0x0b0000c0UL
40 #define RTC1_TYPE1_END 0x0b0000dfUL
41 #define RTC2_TYPE1_START 0x0b0001c0UL
42 #define RTC2_TYPE1_END 0x0b0001dfUL
44 #define RTC1_TYPE2_START 0x0f000100UL
45 #define RTC1_TYPE2_END 0x0f00011fUL
46 #define RTC2_TYPE2_START 0x0f000120UL
47 #define RTC2_TYPE2_END 0x0f00013fUL
49 #define RTC1_SIZE 0x20
50 #define RTC2_SIZE 0x20
52 /* RTC 1 registers */
53 #define ETIMELREG 0x00
54 #define ETIMEMREG 0x02
55 #define ETIMEHREG 0x04
56 /* RFU */
57 #define ECMPLREG 0x08
58 #define ECMPMREG 0x0a
59 #define ECMPHREG 0x0c
60 /* RFU */
61 #define RTCL1LREG 0x10
62 #define RTCL1HREG 0x12
63 #define RTCL1CNTLREG 0x14
64 #define RTCL1CNTHREG 0x16
65 #define RTCL2LREG 0x18
66 #define RTCL2HREG 0x1a
67 #define RTCL2CNTLREG 0x1c
68 #define RTCL2CNTHREG 0x1e
70 /* RTC 2 registers */
71 #define TCLKLREG 0x00
72 #define TCLKHREG 0x02
73 #define TCLKCNTLREG 0x04
74 #define TCLKCNTHREG 0x06
75 /* RFU */
76 #define RTCINTREG 0x1e
77 #define TCLOCK_INT 0x08
78 #define RTCLONG2_INT 0x04
79 #define RTCLONG1_INT 0x02
80 #define ELAPSEDTIME_INT 0x01
82 #define RTC_FREQUENCY 32768
83 #define MAX_PERIODIC_RATE 6553
84 #define MAX_USER_PERIODIC_RATE 64
86 static void __iomem *rtc1_base;
87 static void __iomem *rtc2_base;
89 #define rtc1_read(offset) readw(rtc1_base + (offset))
90 #define rtc1_write(offset, value) writew((value), rtc1_base + (offset))
92 #define rtc2_read(offset) readw(rtc2_base + (offset))
93 #define rtc2_write(offset, value) writew((value), rtc2_base + (offset))
95 static unsigned long epoch = 1970; /* Jan 1 1970 00:00:00 */
97 static spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
98 static char rtc_name[] = "RTC";
99 static unsigned long periodic_frequency;
100 static unsigned long periodic_count;
102 struct resource rtc_resource[2] = {
103 { .name = rtc_name,
104 .flags = IORESOURCE_MEM, },
105 { .name = rtc_name,
106 .flags = IORESOURCE_MEM, },
109 static inline unsigned long read_elapsed_second(void)
112 unsigned long first_low, first_mid, first_high;
114 unsigned long second_low, second_mid, second_high;
116 do {
117 first_low = rtc1_read(ETIMELREG);
118 first_mid = rtc1_read(ETIMEMREG);
119 first_high = rtc1_read(ETIMEHREG);
120 second_low = rtc1_read(ETIMELREG);
121 second_mid = rtc1_read(ETIMEMREG);
122 second_high = rtc1_read(ETIMEHREG);
123 } while (first_low != second_low || first_mid != second_mid ||
124 first_high != second_high);
126 return (first_high << 17) | (first_mid << 1) | (first_low >> 15);
129 static inline void write_elapsed_second(unsigned long sec)
131 spin_lock_irq(&rtc_lock);
133 rtc1_write(ETIMELREG, (uint16_t)(sec << 15));
134 rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1));
135 rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17));
137 spin_unlock_irq(&rtc_lock);
140 static void vr41xx_rtc_release(struct device *dev)
143 spin_lock_irq(&rtc_lock);
145 rtc1_write(ECMPLREG, 0);
146 rtc1_write(ECMPMREG, 0);
147 rtc1_write(ECMPHREG, 0);
148 rtc1_write(RTCL1LREG, 0);
149 rtc1_write(RTCL1HREG, 0);
151 spin_unlock_irq(&rtc_lock);
153 disable_irq(ELAPSEDTIME_IRQ);
154 disable_irq(RTCLONG1_IRQ);
157 static int vr41xx_rtc_read_time(struct device *dev, struct rtc_time *time)
159 unsigned long epoch_sec, elapsed_sec;
161 epoch_sec = mktime(epoch, 1, 1, 0, 0, 0);
162 elapsed_sec = read_elapsed_second();
164 rtc_time_to_tm(epoch_sec + elapsed_sec, time);
166 return 0;
169 static int vr41xx_rtc_set_time(struct device *dev, struct rtc_time *time)
171 unsigned long epoch_sec, current_sec;
173 epoch_sec = mktime(epoch, 1, 1, 0, 0, 0);
174 current_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday,
175 time->tm_hour, time->tm_min, time->tm_sec);
177 write_elapsed_second(current_sec - epoch_sec);
179 return 0;
182 static int vr41xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
184 unsigned long low, mid, high;
185 struct rtc_time *time = &wkalrm->time;
187 spin_lock_irq(&rtc_lock);
189 low = rtc1_read(ECMPLREG);
190 mid = rtc1_read(ECMPMREG);
191 high = rtc1_read(ECMPHREG);
193 spin_unlock_irq(&rtc_lock);
195 rtc_time_to_tm((high << 17) | (mid << 1) | (low >> 15), time);
197 return 0;
200 static int vr41xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
202 unsigned long alarm_sec;
203 struct rtc_time *time = &wkalrm->time;
205 alarm_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday,
206 time->tm_hour, time->tm_min, time->tm_sec);
208 spin_lock_irq(&rtc_lock);
210 rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15));
211 rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1));
212 rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17));
214 spin_unlock_irq(&rtc_lock);
216 return 0;
219 static int vr41xx_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
221 unsigned long count;
223 switch (cmd) {
224 case RTC_AIE_ON:
225 enable_irq(ELAPSEDTIME_IRQ);
226 break;
227 case RTC_AIE_OFF:
228 disable_irq(ELAPSEDTIME_IRQ);
229 break;
230 case RTC_PIE_ON:
231 enable_irq(RTCLONG1_IRQ);
232 break;
233 case RTC_PIE_OFF:
234 disable_irq(RTCLONG1_IRQ);
235 break;
236 case RTC_IRQP_READ:
237 return put_user(periodic_frequency, (unsigned long __user *)arg);
238 break;
239 case RTC_IRQP_SET:
240 if (arg > MAX_PERIODIC_RATE)
241 return -EINVAL;
243 if (arg > MAX_USER_PERIODIC_RATE && capable(CAP_SYS_RESOURCE) == 0)
244 return -EACCES;
246 periodic_frequency = arg;
248 count = RTC_FREQUENCY;
249 do_div(count, arg);
251 periodic_count = count;
253 spin_lock_irq(&rtc_lock);
255 rtc1_write(RTCL1LREG, count);
256 rtc1_write(RTCL1HREG, count >> 16);
258 spin_unlock_irq(&rtc_lock);
259 break;
260 case RTC_EPOCH_READ:
261 return put_user(epoch, (unsigned long __user *)arg);
262 case RTC_EPOCH_SET:
263 /* Doesn't support before 1900 */
264 if (arg < 1900)
265 return -EINVAL;
267 if (capable(CAP_SYS_TIME) == 0)
268 return -EACCES;
270 epoch = arg;
271 break;
272 default:
273 return -EINVAL;
276 return 0;
279 static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id, struct pt_regs *regs)
281 struct platform_device *pdev = (struct platform_device *)dev_id;
282 struct rtc_device *rtc = platform_get_drvdata(pdev);
284 rtc2_write(RTCINTREG, ELAPSEDTIME_INT);
286 rtc_update_irq(&rtc->class_dev, 1, RTC_AF);
288 return IRQ_HANDLED;
291 static irqreturn_t rtclong1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
293 struct platform_device *pdev = (struct platform_device *)dev_id;
294 struct rtc_device *rtc = platform_get_drvdata(pdev);
295 unsigned long count = periodic_count;
297 rtc2_write(RTCINTREG, RTCLONG1_INT);
299 rtc1_write(RTCL1LREG, count);
300 rtc1_write(RTCL1HREG, count >> 16);
302 rtc_update_irq(&rtc->class_dev, 1, RTC_PF);
304 return IRQ_HANDLED;
307 static struct rtc_class_ops vr41xx_rtc_ops = {
308 .release = vr41xx_rtc_release,
309 .ioctl = vr41xx_rtc_ioctl,
310 .read_time = vr41xx_rtc_read_time,
311 .set_time = vr41xx_rtc_set_time,
312 .read_alarm = vr41xx_rtc_read_alarm,
313 .set_alarm = vr41xx_rtc_set_alarm,
316 static int __devinit rtc_probe(struct platform_device *pdev)
318 struct rtc_device *rtc;
319 unsigned int irq;
320 int retval;
322 if (pdev->num_resources != 2)
323 return -EBUSY;
325 rtc1_base = ioremap(pdev->resource[0].start, RTC1_SIZE);
326 if (rtc1_base == NULL)
327 return -EBUSY;
329 rtc2_base = ioremap(pdev->resource[1].start, RTC2_SIZE);
330 if (rtc2_base == NULL) {
331 iounmap(rtc1_base);
332 rtc1_base = NULL;
333 return -EBUSY;
336 rtc = rtc_device_register(rtc_name, &pdev->dev, &vr41xx_rtc_ops, THIS_MODULE);
337 if (IS_ERR(rtc)) {
338 iounmap(rtc1_base);
339 iounmap(rtc2_base);
340 rtc1_base = NULL;
341 rtc2_base = NULL;
342 return PTR_ERR(rtc);
345 spin_lock_irq(&rtc_lock);
347 rtc1_write(ECMPLREG, 0);
348 rtc1_write(ECMPMREG, 0);
349 rtc1_write(ECMPHREG, 0);
350 rtc1_write(RTCL1LREG, 0);
351 rtc1_write(RTCL1HREG, 0);
353 spin_unlock_irq(&rtc_lock);
355 irq = ELAPSEDTIME_IRQ;
356 retval = request_irq(irq, elapsedtime_interrupt, SA_INTERRUPT,
357 "elapsed_time", pdev);
358 if (retval == 0) {
359 irq = RTCLONG1_IRQ;
360 retval = request_irq(irq, rtclong1_interrupt, SA_INTERRUPT,
361 "rtclong1", pdev);
364 if (retval < 0) {
365 printk(KERN_ERR "rtc: IRQ%d is busy\n", irq);
366 rtc_device_unregister(rtc);
367 if (irq == RTCLONG1_IRQ)
368 free_irq(ELAPSEDTIME_IRQ, NULL);
369 iounmap(rtc1_base);
370 iounmap(rtc2_base);
371 rtc1_base = NULL;
372 rtc2_base = NULL;
373 return retval;
376 platform_set_drvdata(pdev, rtc);
378 disable_irq(ELAPSEDTIME_IRQ);
379 disable_irq(RTCLONG1_IRQ);
381 printk(KERN_INFO "rtc: Real Time Clock of NEC VR4100 series\n");
383 return 0;
386 static int __devexit rtc_remove(struct platform_device *pdev)
388 struct rtc_device *rtc;
390 rtc = platform_get_drvdata(pdev);
391 if (rtc != NULL)
392 rtc_device_unregister(rtc);
394 platform_set_drvdata(pdev, NULL);
396 free_irq(ELAPSEDTIME_IRQ, NULL);
397 free_irq(RTCLONG1_IRQ, NULL);
398 if (rtc1_base != NULL)
399 iounmap(rtc1_base);
400 if (rtc2_base != NULL)
401 iounmap(rtc2_base);
403 return 0;
406 static struct platform_device *rtc_platform_device;
408 static struct platform_driver rtc_platform_driver = {
409 .probe = rtc_probe,
410 .remove = __devexit_p(rtc_remove),
411 .driver = {
412 .name = rtc_name,
413 .owner = THIS_MODULE,
417 static int __init vr41xx_rtc_init(void)
419 int retval;
421 switch (current_cpu_data.cputype) {
422 case CPU_VR4111:
423 case CPU_VR4121:
424 rtc_resource[0].start = RTC1_TYPE1_START;
425 rtc_resource[0].end = RTC1_TYPE1_END;
426 rtc_resource[1].start = RTC2_TYPE1_START;
427 rtc_resource[1].end = RTC2_TYPE1_END;
428 break;
429 case CPU_VR4122:
430 case CPU_VR4131:
431 case CPU_VR4133:
432 rtc_resource[0].start = RTC1_TYPE2_START;
433 rtc_resource[0].end = RTC1_TYPE2_END;
434 rtc_resource[1].start = RTC2_TYPE2_START;
435 rtc_resource[1].end = RTC2_TYPE2_END;
436 break;
437 default:
438 return -ENODEV;
439 break;
442 rtc_platform_device = platform_device_alloc("RTC", -1);
443 if (rtc_platform_device == NULL)
444 return -ENOMEM;
446 retval = platform_device_add_resources(rtc_platform_device,
447 rtc_resource, ARRAY_SIZE(rtc_resource));
449 if (retval == 0)
450 retval = platform_device_add(rtc_platform_device);
452 if (retval < 0) {
453 platform_device_put(rtc_platform_device);
454 return retval;
457 retval = platform_driver_register(&rtc_platform_driver);
458 if (retval < 0)
459 platform_device_unregister(rtc_platform_device);
461 return retval;
464 static void __exit vr41xx_rtc_exit(void)
466 platform_driver_unregister(&rtc_platform_driver);
467 platform_device_unregister(rtc_platform_device);
470 module_init(vr41xx_rtc_init);
471 module_exit(vr41xx_rtc_exit);