4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 akpm@zip.com.au
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/bio.h>
31 #include <linux/wait.h>
32 #include <linux/err.h>
33 #include <linux/blkdev.h>
34 #include <linux/buffer_head.h>
35 #include <linux/rwsem.h>
36 #include <linux/uio.h>
37 #include <asm/atomic.h>
40 * How many user pages to map in one call to get_user_pages(). This determines
41 * the size of a structure on the stack.
46 * This code generally works in units of "dio_blocks". A dio_block is
47 * somewhere between the hard sector size and the filesystem block size. it
48 * is determined on a per-invocation basis. When talking to the filesystem
49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
51 * to bio_block quantities by shifting left by blkfactor.
53 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
57 * This determines whether we need to do the fancy locking which prevents
58 * direct-IO from being able to read uninitialised disk blocks. If its zero
59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
60 * not held for the entire direct write (taken briefly, initially, during a
61 * direct read though, but its never held for the duration of a direct-IO).
65 /* BIO submission state */
66 struct bio
*bio
; /* bio under assembly */
69 loff_t i_size
; /* i_size when submitted */
70 int lock_type
; /* doesn't change */
71 unsigned blkbits
; /* doesn't change */
72 unsigned blkfactor
; /* When we're using an alignment which
73 is finer than the filesystem's soft
74 blocksize, this specifies how much
75 finer. blkfactor=2 means 1/4-block
76 alignment. Does not change */
77 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
78 been performed at the start of a
80 int pages_in_io
; /* approximate total IO pages */
81 size_t size
; /* total request size (doesn't change)*/
82 sector_t block_in_file
; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available
; /* At block_in_file. changes */
85 sector_t final_block_in_request
;/* doesn't change */
86 unsigned first_block_in_page
; /* doesn't change, Used only once */
87 int boundary
; /* prev block is at a boundary */
88 int reap_counter
; /* rate limit reaping */
89 get_blocks_t
*get_blocks
; /* block mapping function */
90 dio_iodone_t
*end_io
; /* IO completion function */
91 sector_t final_block_in_bio
; /* current final block in bio + 1 */
92 sector_t next_block_for_io
; /* next block to be put under IO,
93 in dio_blocks units */
94 struct buffer_head map_bh
; /* last get_blocks() result */
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
101 struct page
*cur_page
; /* The page */
102 unsigned cur_page_offset
; /* Offset into it, in bytes */
103 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block
; /* Where it starts */
107 * Page fetching state. These variables belong to dio_refill_pages().
109 int curr_page
; /* changes */
110 int total_pages
; /* doesn't change */
111 unsigned long curr_user_address
;/* changes */
114 * Page queue. These variables belong to dio_refill_pages() and
117 struct page
*pages
[DIO_PAGES
]; /* page buffer */
118 unsigned head
; /* next page to process */
119 unsigned tail
; /* last valid page + 1 */
120 int page_errors
; /* errno from get_user_pages() */
122 /* BIO completion state */
123 spinlock_t bio_lock
; /* protects BIO fields below */
124 int bio_count
; /* nr bios to be completed */
125 int bios_in_flight
; /* nr bios in flight */
126 struct bio
*bio_list
; /* singly linked via bi_private */
127 struct task_struct
*waiter
; /* waiting task (NULL if none) */
129 /* AIO related stuff */
130 struct kiocb
*iocb
; /* kiocb */
131 int is_async
; /* is IO async ? */
132 ssize_t result
; /* IO result */
136 * How many pages are in the queue?
138 static inline unsigned dio_pages_present(struct dio
*dio
)
140 return dio
->tail
- dio
->head
;
144 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
146 static int dio_refill_pages(struct dio
*dio
)
151 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
152 down_read(¤t
->mm
->mmap_sem
);
153 ret
= get_user_pages(
154 current
, /* Task for fault acounting */
155 current
->mm
, /* whose pages? */
156 dio
->curr_user_address
, /* Where from? */
157 nr_pages
, /* How many pages? */
158 dio
->rw
== READ
, /* Write to memory? */
162 up_read(¤t
->mm
->mmap_sem
);
164 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
== WRITE
)) {
165 struct page
*page
= ZERO_PAGE(dio
->curr_user_address
);
167 * A memory fault, but the filesystem has some outstanding
168 * mapped blocks. We need to use those blocks up to avoid
169 * leaking stale data in the file.
171 if (dio
->page_errors
== 0)
172 dio
->page_errors
= ret
;
173 page_cache_get(page
);
174 dio
->pages
[0] = page
;
182 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
183 dio
->curr_page
+= ret
;
193 * Get another userspace page. Returns an ERR_PTR on error. Pages are
194 * buffered inside the dio so that we can call get_user_pages() against a
195 * decent number of pages, less frequently. To provide nicer use of the
198 static struct page
*dio_get_page(struct dio
*dio
)
200 if (dio_pages_present(dio
) == 0) {
203 ret
= dio_refill_pages(dio
);
206 BUG_ON(dio_pages_present(dio
) == 0);
208 return dio
->pages
[dio
->head
++];
212 * Called when all DIO BIO I/O has been completed - let the filesystem
213 * know, if it registered an interest earlier via get_blocks. Pass the
214 * private field of the map buffer_head so that filesystems can use it
215 * to hold additional state between get_blocks calls and dio_complete.
217 static void dio_complete(struct dio
*dio
, loff_t offset
, ssize_t bytes
)
219 if (dio
->end_io
&& dio
->result
)
220 dio
->end_io(dio
->iocb
, offset
, bytes
, dio
->map_bh
.b_private
);
221 if (dio
->lock_type
== DIO_LOCKING
)
222 up_read(&dio
->inode
->i_alloc_sem
);
226 * Called when a BIO has been processed. If the count goes to zero then IO is
227 * complete and we can signal this to the AIO layer.
229 static void finished_one_bio(struct dio
*dio
)
233 spin_lock_irqsave(&dio
->bio_lock
, flags
);
234 if (dio
->bio_count
== 1) {
240 * Last reference to the dio is going away.
241 * Drop spinlock and complete the DIO.
243 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
245 /* Check for short read case */
246 transferred
= dio
->result
;
247 offset
= dio
->iocb
->ki_pos
;
249 if ((dio
->rw
== READ
) &&
250 ((offset
+ transferred
) > dio
->i_size
))
251 transferred
= dio
->i_size
- offset
;
253 dio_complete(dio
, offset
, transferred
);
255 /* Complete AIO later if falling back to buffered i/o */
256 if (dio
->result
== dio
->size
||
257 ((dio
->rw
== READ
) && dio
->result
)) {
258 aio_complete(dio
->iocb
, transferred
, 0);
263 * Falling back to buffered
265 spin_lock_irqsave(&dio
->bio_lock
, flags
);
268 wake_up_process(dio
->waiter
);
269 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
275 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
278 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
280 * Asynchronous IO callback.
282 static int dio_bio_end_aio(struct bio
*bio
, unsigned int bytes_done
, int error
)
284 struct dio
*dio
= bio
->bi_private
;
289 /* cleanup the bio */
290 dio_bio_complete(dio
, bio
);
295 * The BIO completion handler simply queues the BIO up for the process-context
298 * During I/O bi_private points at the dio. After I/O, bi_private is used to
299 * implement a singly-linked list of completed BIOs, at dio->bio_list.
301 static int dio_bio_end_io(struct bio
*bio
, unsigned int bytes_done
, int error
)
303 struct dio
*dio
= bio
->bi_private
;
309 spin_lock_irqsave(&dio
->bio_lock
, flags
);
310 bio
->bi_private
= dio
->bio_list
;
312 dio
->bios_in_flight
--;
313 if (dio
->waiter
&& dio
->bios_in_flight
== 0)
314 wake_up_process(dio
->waiter
);
315 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
320 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
321 sector_t first_sector
, int nr_vecs
)
325 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
330 bio
->bi_sector
= first_sector
;
332 bio
->bi_end_io
= dio_bio_end_aio
;
334 bio
->bi_end_io
= dio_bio_end_io
;
341 * In the AIO read case we speculatively dirty the pages before starting IO.
342 * During IO completion, any of these pages which happen to have been written
343 * back will be redirtied by bio_check_pages_dirty().
345 static void dio_bio_submit(struct dio
*dio
)
347 struct bio
*bio
= dio
->bio
;
350 bio
->bi_private
= dio
;
351 spin_lock_irqsave(&dio
->bio_lock
, flags
);
353 dio
->bios_in_flight
++;
354 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
355 if (dio
->is_async
&& dio
->rw
== READ
)
356 bio_set_pages_dirty(bio
);
357 submit_bio(dio
->rw
, bio
);
364 * Release any resources in case of a failure
366 static void dio_cleanup(struct dio
*dio
)
368 while (dio_pages_present(dio
))
369 page_cache_release(dio_get_page(dio
));
373 * Wait for the next BIO to complete. Remove it and return it.
375 static struct bio
*dio_await_one(struct dio
*dio
)
380 spin_lock_irqsave(&dio
->bio_lock
, flags
);
381 while (dio
->bio_list
== NULL
) {
382 set_current_state(TASK_UNINTERRUPTIBLE
);
383 if (dio
->bio_list
== NULL
) {
384 dio
->waiter
= current
;
385 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
386 blk_run_address_space(dio
->inode
->i_mapping
);
388 spin_lock_irqsave(&dio
->bio_lock
, flags
);
391 set_current_state(TASK_RUNNING
);
394 dio
->bio_list
= bio
->bi_private
;
395 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
400 * Process one completed BIO. No locks are held.
402 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
404 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
405 struct bio_vec
*bvec
= bio
->bi_io_vec
;
411 if (dio
->is_async
&& dio
->rw
== READ
) {
412 bio_check_pages_dirty(bio
); /* transfers ownership */
414 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
415 struct page
*page
= bvec
[page_no
].bv_page
;
417 if (dio
->rw
== READ
&& !PageCompound(page
))
418 set_page_dirty_lock(page
);
419 page_cache_release(page
);
423 finished_one_bio(dio
);
424 return uptodate
? 0 : -EIO
;
428 * Wait on and process all in-flight BIOs.
430 static int dio_await_completion(struct dio
*dio
)
438 * The bio_lock is not held for the read of bio_count.
439 * This is ok since it is the dio_bio_complete() that changes
442 while (dio
->bio_count
) {
443 struct bio
*bio
= dio_await_one(dio
);
446 ret2
= dio_bio_complete(dio
, bio
);
454 * A really large O_DIRECT read or write can generate a lot of BIOs. So
455 * to keep the memory consumption sane we periodically reap any completed BIOs
456 * during the BIO generation phase.
458 * This also helps to limit the peak amount of pinned userspace memory.
460 static int dio_bio_reap(struct dio
*dio
)
464 if (dio
->reap_counter
++ >= 64) {
465 while (dio
->bio_list
) {
470 spin_lock_irqsave(&dio
->bio_lock
, flags
);
472 dio
->bio_list
= bio
->bi_private
;
473 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
474 ret2
= dio_bio_complete(dio
, bio
);
478 dio
->reap_counter
= 0;
484 * Call into the fs to map some more disk blocks. We record the current number
485 * of available blocks at dio->blocks_available. These are in units of the
486 * fs blocksize, (1 << inode->i_blkbits).
488 * The fs is allowed to map lots of blocks at once. If it wants to do that,
489 * it uses the passed inode-relative block number as the file offset, as usual.
491 * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io
492 * has remaining to do. The fs should not map more than this number of blocks.
494 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
495 * indicate how much contiguous disk space has been made available at
498 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
499 * This isn't very efficient...
501 * In the case of filesystem holes: the fs may return an arbitrarily-large
502 * hole by returning an appropriate value in b_size and by clearing
503 * buffer_mapped(). However the direct-io code will only process holes one
504 * block at a time - it will repeatedly call get_blocks() as it walks the hole.
506 static int get_more_blocks(struct dio
*dio
)
509 struct buffer_head
*map_bh
= &dio
->map_bh
;
510 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
511 unsigned long fs_count
; /* Number of filesystem-sized blocks */
512 unsigned long dio_count
;/* Number of dio_block-sized blocks */
513 unsigned long blkmask
;
517 * If there was a memory error and we've overwritten all the
518 * mapped blocks then we can now return that memory error
520 ret
= dio
->page_errors
;
524 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
525 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
526 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
527 fs_count
= dio_count
>> dio
->blkfactor
;
528 blkmask
= (1 << dio
->blkfactor
) - 1;
529 if (dio_count
& blkmask
)
532 create
= dio
->rw
== WRITE
;
533 if (dio
->lock_type
== DIO_LOCKING
) {
534 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
537 } else if (dio
->lock_type
== DIO_NO_LOCKING
) {
541 * For writes inside i_size we forbid block creations: only
542 * overwrites are permitted. We fall back to buffered writes
543 * at a higher level for inside-i_size block-instantiating
546 ret
= (*dio
->get_blocks
)(dio
->inode
, fs_startblk
, fs_count
,
553 * There is no bio. Make one now.
555 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
560 ret
= dio_bio_reap(dio
);
563 sector
= start_sector
<< (dio
->blkbits
- 9);
564 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
565 BUG_ON(nr_pages
<= 0);
566 ret
= dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
573 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
574 * that was successful then update final_block_in_bio and take a ref against
575 * the just-added page.
577 * Return zero on success. Non-zero means the caller needs to start a new BIO.
579 static int dio_bio_add_page(struct dio
*dio
)
583 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
584 dio
->cur_page_len
, dio
->cur_page_offset
);
585 if (ret
== dio
->cur_page_len
) {
587 * Decrement count only, if we are done with this page
589 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
591 page_cache_get(dio
->cur_page
);
592 dio
->final_block_in_bio
= dio
->cur_page_block
+
593 (dio
->cur_page_len
>> dio
->blkbits
);
602 * Put cur_page under IO. The section of cur_page which is described by
603 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
604 * starts on-disk at cur_page_block.
606 * We take a ref against the page here (on behalf of its presence in the bio).
608 * The caller of this function is responsible for removing cur_page from the
609 * dio, and for dropping the refcount which came from that presence.
611 static int dio_send_cur_page(struct dio
*dio
)
617 * See whether this new request is contiguous with the old
619 if (dio
->final_block_in_bio
!= dio
->cur_page_block
)
622 * Submit now if the underlying fs is about to perform a
629 if (dio
->bio
== NULL
) {
630 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
635 if (dio_bio_add_page(dio
) != 0) {
637 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
639 ret
= dio_bio_add_page(dio
);
648 * An autonomous function to put a chunk of a page under deferred IO.
650 * The caller doesn't actually know (or care) whether this piece of page is in
651 * a BIO, or is under IO or whatever. We just take care of all possible
652 * situations here. The separation between the logic of do_direct_IO() and
653 * that of submit_page_section() is important for clarity. Please don't break.
655 * The chunk of page starts on-disk at blocknr.
657 * We perform deferred IO, by recording the last-submitted page inside our
658 * private part of the dio structure. If possible, we just expand the IO
659 * across that page here.
661 * If that doesn't work out then we put the old page into the bio and add this
662 * page to the dio instead.
665 submit_page_section(struct dio
*dio
, struct page
*page
,
666 unsigned offset
, unsigned len
, sector_t blocknr
)
671 * Can we just grow the current page's presence in the dio?
673 if ( (dio
->cur_page
== page
) &&
674 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
675 (dio
->cur_page_block
+
676 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
677 dio
->cur_page_len
+= len
;
680 * If dio->boundary then we want to schedule the IO now to
681 * avoid metadata seeks.
684 ret
= dio_send_cur_page(dio
);
685 page_cache_release(dio
->cur_page
);
686 dio
->cur_page
= NULL
;
692 * If there's a deferred page already there then send it.
695 ret
= dio_send_cur_page(dio
);
696 page_cache_release(dio
->cur_page
);
697 dio
->cur_page
= NULL
;
702 page_cache_get(page
); /* It is in dio */
703 dio
->cur_page
= page
;
704 dio
->cur_page_offset
= offset
;
705 dio
->cur_page_len
= len
;
706 dio
->cur_page_block
= blocknr
;
712 * Clean any dirty buffers in the blockdev mapping which alias newly-created
713 * file blocks. Only called for S_ISREG files - blockdevs do not set
716 static void clean_blockdev_aliases(struct dio
*dio
)
721 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
723 for (i
= 0; i
< nblocks
; i
++) {
724 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
725 dio
->map_bh
.b_blocknr
+ i
);
730 * If we are not writing the entire block and get_block() allocated
731 * the block for us, we need to fill-in the unused portion of the
732 * block with zeros. This happens only if user-buffer, fileoffset or
733 * io length is not filesystem block-size multiple.
735 * `end' is zero if we're doing the start of the IO, 1 at the end of the
738 static void dio_zero_block(struct dio
*dio
, int end
)
740 unsigned dio_blocks_per_fs_block
;
741 unsigned this_chunk_blocks
; /* In dio_blocks */
742 unsigned this_chunk_bytes
;
745 dio
->start_zero_done
= 1;
746 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
749 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
750 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
752 if (!this_chunk_blocks
)
756 * We need to zero out part of an fs block. It is either at the
757 * beginning or the end of the fs block.
760 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
762 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
764 page
= ZERO_PAGE(dio
->curr_user_address
);
765 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
766 dio
->next_block_for_io
))
769 dio
->next_block_for_io
+= this_chunk_blocks
;
773 * Walk the user pages, and the file, mapping blocks to disk and generating
774 * a sequence of (page,offset,len,block) mappings. These mappings are injected
775 * into submit_page_section(), which takes care of the next stage of submission
777 * Direct IO against a blockdev is different from a file. Because we can
778 * happily perform page-sized but 512-byte aligned IOs. It is important that
779 * blockdev IO be able to have fine alignment and large sizes.
781 * So what we do is to permit the ->get_blocks function to populate bh.b_size
782 * with the size of IO which is permitted at this offset and this i_blkbits.
784 * For best results, the blockdev should be set up with 512-byte i_blkbits and
785 * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives
786 * fine alignment but still allows this function to work in PAGE_SIZE units.
788 static int do_direct_IO(struct dio
*dio
)
790 const unsigned blkbits
= dio
->blkbits
;
791 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
793 unsigned block_in_page
;
794 struct buffer_head
*map_bh
= &dio
->map_bh
;
797 /* The I/O can start at any block offset within the first page */
798 block_in_page
= dio
->first_block_in_page
;
800 while (dio
->block_in_file
< dio
->final_block_in_request
) {
801 page
= dio_get_page(dio
);
807 while (block_in_page
< blocks_per_page
) {
808 unsigned offset_in_page
= block_in_page
<< blkbits
;
809 unsigned this_chunk_bytes
; /* # of bytes mapped */
810 unsigned this_chunk_blocks
; /* # of blocks */
813 if (dio
->blocks_available
== 0) {
815 * Need to go and map some more disk
817 unsigned long blkmask
;
818 unsigned long dio_remainder
;
820 ret
= get_more_blocks(dio
);
822 page_cache_release(page
);
825 if (!buffer_mapped(map_bh
))
828 dio
->blocks_available
=
829 map_bh
->b_size
>> dio
->blkbits
;
830 dio
->next_block_for_io
=
831 map_bh
->b_blocknr
<< dio
->blkfactor
;
832 if (buffer_new(map_bh
))
833 clean_blockdev_aliases(dio
);
838 blkmask
= (1 << dio
->blkfactor
) - 1;
839 dio_remainder
= (dio
->block_in_file
& blkmask
);
842 * If we are at the start of IO and that IO
843 * starts partway into a fs-block,
844 * dio_remainder will be non-zero. If the IO
845 * is a read then we can simply advance the IO
846 * cursor to the first block which is to be
847 * read. But if the IO is a write and the
848 * block was newly allocated we cannot do that;
849 * the start of the fs block must be zeroed out
852 if (!buffer_new(map_bh
))
853 dio
->next_block_for_io
+= dio_remainder
;
854 dio
->blocks_available
-= dio_remainder
;
858 if (!buffer_mapped(map_bh
)) {
860 loff_t i_size_aligned
;
862 /* AKPM: eargh, -ENOTBLK is a hack */
863 if (dio
->rw
== WRITE
) {
864 page_cache_release(page
);
869 * Be sure to account for a partial block as the
870 * last block in the file
872 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
874 if (dio
->block_in_file
>=
875 i_size_aligned
>> blkbits
) {
877 page_cache_release(page
);
880 kaddr
= kmap_atomic(page
, KM_USER0
);
881 memset(kaddr
+ (block_in_page
<< blkbits
),
883 flush_dcache_page(page
);
884 kunmap_atomic(kaddr
, KM_USER0
);
885 dio
->block_in_file
++;
891 * If we're performing IO which has an alignment which
892 * is finer than the underlying fs, go check to see if
893 * we must zero out the start of this block.
895 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
896 dio_zero_block(dio
, 0);
899 * Work out, in this_chunk_blocks, how much disk we
900 * can add to this page
902 this_chunk_blocks
= dio
->blocks_available
;
903 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
904 if (this_chunk_blocks
> u
)
905 this_chunk_blocks
= u
;
906 u
= dio
->final_block_in_request
- dio
->block_in_file
;
907 if (this_chunk_blocks
> u
)
908 this_chunk_blocks
= u
;
909 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
910 BUG_ON(this_chunk_bytes
== 0);
912 dio
->boundary
= buffer_boundary(map_bh
);
913 ret
= submit_page_section(dio
, page
, offset_in_page
,
914 this_chunk_bytes
, dio
->next_block_for_io
);
916 page_cache_release(page
);
919 dio
->next_block_for_io
+= this_chunk_blocks
;
921 dio
->block_in_file
+= this_chunk_blocks
;
922 block_in_page
+= this_chunk_blocks
;
923 dio
->blocks_available
-= this_chunk_blocks
;
925 if (dio
->block_in_file
> dio
->final_block_in_request
)
927 if (dio
->block_in_file
== dio
->final_block_in_request
)
931 /* Drop the ref which was taken in get_user_pages() */
932 page_cache_release(page
);
940 * Releases both i_mutex and i_alloc_sem
943 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
944 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
945 unsigned blkbits
, get_blocks_t get_blocks
, dio_iodone_t end_io
,
948 unsigned long user_addr
;
957 dio
->blkbits
= blkbits
;
958 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
959 dio
->start_zero_done
= 0;
961 dio
->block_in_file
= offset
>> blkbits
;
962 dio
->blocks_available
= 0;
963 dio
->cur_page
= NULL
;
966 dio
->reap_counter
= 0;
967 dio
->get_blocks
= get_blocks
;
968 dio
->end_io
= end_io
;
969 dio
->map_bh
.b_private
= NULL
;
970 dio
->final_block_in_bio
= -1;
971 dio
->next_block_for_io
= -1;
973 dio
->page_errors
= 0;
976 dio
->i_size
= i_size_read(inode
);
979 * BIO completion state.
981 * ->bio_count starts out at one, and we decrement it to zero after all
982 * BIOs are submitted. This to avoid the situation where a really fast
983 * (or synchronous) device could take the count to zero while we're
984 * still submitting BIOs.
987 dio
->bios_in_flight
= 0;
988 spin_lock_init(&dio
->bio_lock
);
989 dio
->bio_list
= NULL
;
993 * In case of non-aligned buffers, we may need 2 more
994 * pages since we need to zero out first and last block.
996 if (unlikely(dio
->blkfactor
))
997 dio
->pages_in_io
= 2;
999 dio
->pages_in_io
= 0;
1001 for (seg
= 0; seg
< nr_segs
; seg
++) {
1002 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1004 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
1005 - user_addr
/PAGE_SIZE
);
1008 for (seg
= 0; seg
< nr_segs
; seg
++) {
1009 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1010 dio
->size
+= bytes
= iov
[seg
].iov_len
;
1012 /* Index into the first page of the first block */
1013 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
1014 dio
->final_block_in_request
= dio
->block_in_file
+
1016 /* Page fetching state */
1021 dio
->total_pages
= 0;
1022 if (user_addr
& (PAGE_SIZE
-1)) {
1024 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1026 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1027 dio
->curr_user_address
= user_addr
;
1029 ret
= do_direct_IO(dio
);
1031 dio
->result
+= iov
[seg
].iov_len
-
1032 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1039 } /* end iovec loop */
1041 if (ret
== -ENOTBLK
&& rw
== WRITE
) {
1043 * The remaining part of the request will be
1044 * be handled by buffered I/O when we return
1049 * There may be some unwritten disk at the end of a part-written
1050 * fs-block-sized block. Go zero that now.
1052 dio_zero_block(dio
, 1);
1054 if (dio
->cur_page
) {
1055 ret2
= dio_send_cur_page(dio
);
1058 page_cache_release(dio
->cur_page
);
1059 dio
->cur_page
= NULL
;
1062 dio_bio_submit(dio
);
1065 * It is possible that, we return short IO due to end of file.
1066 * In that case, we need to release all the pages we got hold on.
1071 * All block lookups have been performed. For READ requests
1072 * we can let i_mutex go now that its achieved its purpose
1073 * of protecting us from looking up uninitialized blocks.
1075 if ((rw
== READ
) && (dio
->lock_type
== DIO_LOCKING
))
1076 mutex_unlock(&dio
->inode
->i_mutex
);
1079 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1080 * reflect the number of to-be-processed BIOs.
1082 if (dio
->is_async
) {
1083 int should_wait
= 0;
1085 if (dio
->result
< dio
->size
&& rw
== WRITE
) {
1086 dio
->waiter
= current
;
1091 finished_one_bio(dio
); /* This can free the dio */
1092 blk_run_address_space(inode
->i_mapping
);
1094 unsigned long flags
;
1096 * Wait for already issued I/O to drain out and
1097 * release its references to user-space pages
1098 * before returning to fallback on buffered I/O
1101 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1102 set_current_state(TASK_UNINTERRUPTIBLE
);
1103 while (dio
->bio_count
) {
1104 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1106 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1107 set_current_state(TASK_UNINTERRUPTIBLE
);
1109 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1110 set_current_state(TASK_RUNNING
);
1114 ssize_t transferred
= 0;
1116 finished_one_bio(dio
);
1117 ret2
= dio_await_completion(dio
);
1121 ret
= dio
->page_errors
;
1123 loff_t i_size
= i_size_read(inode
);
1125 transferred
= dio
->result
;
1127 * Adjust the return value if the read crossed a
1128 * non-block-aligned EOF.
1130 if (rw
== READ
&& (offset
+ transferred
> i_size
))
1131 transferred
= i_size
- offset
;
1133 dio_complete(dio
, offset
, transferred
);
1137 /* We could have also come here on an AIO file extend */
1138 if (!is_sync_kiocb(iocb
) && rw
== WRITE
&&
1139 ret
>= 0 && dio
->result
== dio
->size
)
1141 * For AIO writes where we have completed the
1142 * i/o, we have to mark the the aio complete.
1144 aio_complete(iocb
, ret
, 0);
1151 * This is a library function for use by filesystem drivers.
1152 * The locking rules are governed by the dio_lock_type parameter.
1154 * DIO_NO_LOCKING (no locking, for raw block device access)
1155 * For writes, i_mutex is not held on entry; it is never taken.
1157 * DIO_LOCKING (simple locking for regular files)
1158 * For writes we are called under i_mutex and return with i_mutex held, even though
1159 * it is internally dropped.
1160 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1163 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1164 * uninitialised data, allowing parallel direct readers and writers)
1165 * For writes we are called without i_mutex, return without it, never touch it.
1166 * For reads, i_mutex is held on entry and will be released before returning.
1168 * Additional i_alloc_sem locking requirements described inline below.
1171 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1172 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1173 unsigned long nr_segs
, get_blocks_t get_blocks
, dio_iodone_t end_io
,
1179 unsigned blkbits
= inode
->i_blkbits
;
1180 unsigned bdev_blkbits
= 0;
1181 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1182 ssize_t retval
= -EINVAL
;
1183 loff_t end
= offset
;
1185 int reader_with_isem
= (rw
== READ
&& dio_lock_type
== DIO_OWN_LOCKING
);
1188 current
->flags
|= PF_SYNCWRITE
;
1191 bdev_blkbits
= blksize_bits(bdev_hardsect_size(bdev
));
1193 if (offset
& blocksize_mask
) {
1195 blkbits
= bdev_blkbits
;
1196 blocksize_mask
= (1 << blkbits
) - 1;
1197 if (offset
& blocksize_mask
)
1201 /* Check the memory alignment. Blocks cannot straddle pages */
1202 for (seg
= 0; seg
< nr_segs
; seg
++) {
1203 addr
= (unsigned long)iov
[seg
].iov_base
;
1204 size
= iov
[seg
].iov_len
;
1206 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1208 blkbits
= bdev_blkbits
;
1209 blocksize_mask
= (1 << blkbits
) - 1;
1210 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1215 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1221 * For block device access DIO_NO_LOCKING is used,
1222 * neither readers nor writers do any locking at all
1223 * For regular files using DIO_LOCKING,
1224 * readers need to grab i_mutex and i_alloc_sem
1225 * writers need to grab i_alloc_sem only (i_mutex is already held)
1226 * For regular files using DIO_OWN_LOCKING,
1227 * neither readers nor writers take any locks here
1228 * (i_mutex is already held and release for writers here)
1230 dio
->lock_type
= dio_lock_type
;
1231 if (dio_lock_type
!= DIO_NO_LOCKING
) {
1232 /* watch out for a 0 len io from a tricksy fs */
1233 if (rw
== READ
&& end
> offset
) {
1234 struct address_space
*mapping
;
1236 mapping
= iocb
->ki_filp
->f_mapping
;
1237 if (dio_lock_type
!= DIO_OWN_LOCKING
) {
1238 mutex_lock(&inode
->i_mutex
);
1239 reader_with_isem
= 1;
1242 retval
= filemap_write_and_wait_range(mapping
, offset
,
1249 if (dio_lock_type
== DIO_OWN_LOCKING
) {
1250 mutex_unlock(&inode
->i_mutex
);
1251 reader_with_isem
= 0;
1255 if (dio_lock_type
== DIO_LOCKING
)
1256 down_read(&inode
->i_alloc_sem
);
1260 * For file extending writes updating i_size before data
1261 * writeouts complete can expose uninitialized blocks. So
1262 * even for AIO, we need to wait for i/o to complete before
1263 * returning in this case.
1265 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
== WRITE
) &&
1266 (end
> i_size_read(inode
)));
1268 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1269 nr_segs
, blkbits
, get_blocks
, end_io
, dio
);
1271 if (rw
== READ
&& dio_lock_type
== DIO_LOCKING
)
1272 reader_with_isem
= 0;
1275 if (reader_with_isem
)
1276 mutex_unlock(&inode
->i_mutex
);
1278 current
->flags
&= ~PF_SYNCWRITE
;
1281 EXPORT_SYMBOL(__blockdev_direct_IO
);