4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
60 static void exit_mm(struct task_struct
* tsk
);
62 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
65 detach_pid(p
, PIDTYPE_PID
);
67 detach_pid(p
, PIDTYPE_PGID
);
68 detach_pid(p
, PIDTYPE_SID
);
70 list_del_rcu(&p
->tasks
);
71 list_del_init(&p
->sibling
);
72 __this_cpu_dec(process_counts
);
74 list_del_rcu(&p
->thread_group
);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct
*tsk
)
82 struct signal_struct
*sig
= tsk
->signal
;
83 bool group_dead
= thread_group_leader(tsk
);
84 struct sighand_struct
*sighand
;
85 struct tty_struct
*uninitialized_var(tty
);
87 sighand
= rcu_dereference_check(tsk
->sighand
,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand
->siglock
);
92 posix_cpu_timers_exit(tsk
);
94 posix_cpu_timers_exit_group(tsk
);
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
103 if (unlikely(has_group_leader_pid(tsk
)))
104 posix_cpu_timers_exit_group(tsk
);
107 * If there is any task waiting for the group exit
110 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
111 wake_up_process(sig
->group_exit_task
);
113 if (tsk
== sig
->curr_target
)
114 sig
->curr_target
= next_thread(tsk
);
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
125 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
126 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
127 sig
->gtime
= cputime_add(sig
->gtime
, tsk
->gtime
);
128 sig
->min_flt
+= tsk
->min_flt
;
129 sig
->maj_flt
+= tsk
->maj_flt
;
130 sig
->nvcsw
+= tsk
->nvcsw
;
131 sig
->nivcsw
+= tsk
->nivcsw
;
132 sig
->inblock
+= task_io_get_inblock(tsk
);
133 sig
->oublock
+= task_io_get_oublock(tsk
);
134 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
135 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
139 __unhash_process(tsk
, group_dead
);
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 flush_sigqueue(&tsk
->pending
);
147 spin_unlock(&sighand
->siglock
);
149 __cleanup_sighand(sighand
);
150 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
152 flush_sigqueue(&sig
->shared_pending
);
157 static void delayed_put_task_struct(struct rcu_head
*rhp
)
159 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
161 perf_event_delayed_put(tsk
);
162 trace_sched_process_free(tsk
);
163 put_task_struct(tsk
);
167 void release_task(struct task_struct
* p
)
169 struct task_struct
*leader
;
172 tracehook_prepare_release_task(p
);
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 atomic_dec(&__task_cred(p
)->user
->processes
);
181 write_lock_irq(&tasklist_lock
);
182 tracehook_finish_release_task(p
);
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
191 leader
= p
->group_leader
;
192 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
193 BUG_ON(task_detached(leader
));
194 do_notify_parent(leader
, leader
->exit_signal
);
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 * do_notify_parent() will have marked it self-reaping in
203 zap_leader
= task_detached(leader
);
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
210 leader
->exit_state
= EXIT_DEAD
;
213 write_unlock_irq(&tasklist_lock
);
215 call_rcu(&p
->rcu
, delayed_put_task_struct
);
218 if (unlikely(zap_leader
))
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * The caller must hold rcu lock or the tasklist lock.
229 struct pid
*session_of_pgrp(struct pid
*pgrp
)
231 struct task_struct
*p
;
232 struct pid
*sid
= NULL
;
234 p
= pid_task(pgrp
, PIDTYPE_PGID
);
236 p
= pid_task(pgrp
, PIDTYPE_PID
);
238 sid
= task_session(p
);
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
249 * "I ask you, have you ever known what it is to be an orphan?"
251 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
253 struct task_struct
*p
;
255 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
256 if ((p
== ignored_task
) ||
257 (p
->exit_state
&& thread_group_empty(p
)) ||
258 is_global_init(p
->real_parent
))
261 if (task_pgrp(p
->real_parent
) != pgrp
&&
262 task_session(p
->real_parent
) == task_session(p
))
264 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
269 int is_current_pgrp_orphaned(void)
273 read_lock(&tasklist_lock
);
274 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
275 read_unlock(&tasklist_lock
);
280 static int has_stopped_jobs(struct pid
*pgrp
)
283 struct task_struct
*p
;
285 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
286 if (!task_is_stopped(p
))
290 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
300 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
302 struct pid
*pgrp
= task_pgrp(tsk
);
303 struct task_struct
*ignored_task
= tsk
;
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent
= tsk
->real_parent
;
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
316 if (task_pgrp(parent
) != pgrp
&&
317 task_session(parent
) == task_session(tsk
) &&
318 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
319 has_stopped_jobs(pgrp
)) {
320 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
321 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 static void reparent_to_kthreadd(void)
339 write_lock_irq(&tasklist_lock
);
341 ptrace_unlink(current
);
342 /* Reparent to init */
343 current
->real_parent
= current
->parent
= kthreadd_task
;
344 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current
->exit_signal
= SIGCHLD
;
349 if (task_nice(current
) < 0)
350 set_user_nice(current
, 0);
354 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
355 sizeof(current
->signal
->rlim
));
357 atomic_inc(&init_cred
.usage
);
358 commit_creds(&init_cred
);
359 write_unlock_irq(&tasklist_lock
);
362 void __set_special_pids(struct pid
*pid
)
364 struct task_struct
*curr
= current
->group_leader
;
366 if (task_session(curr
) != pid
)
367 change_pid(curr
, PIDTYPE_SID
, pid
);
369 if (task_pgrp(curr
) != pid
)
370 change_pid(curr
, PIDTYPE_PGID
, pid
);
373 static void set_special_pids(struct pid
*pid
)
375 write_lock_irq(&tasklist_lock
);
376 __set_special_pids(pid
);
377 write_unlock_irq(&tasklist_lock
);
381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
384 int allow_signal(int sig
)
386 if (!valid_signal(sig
) || sig
< 1)
389 spin_lock_irq(¤t
->sighand
->siglock
);
390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(¤t
->blocked
, sig
);
393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped.
397 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
399 spin_unlock_irq(¤t
->sighand
->siglock
);
403 EXPORT_SYMBOL(allow_signal
);
405 int disallow_signal(int sig
)
407 if (!valid_signal(sig
) || sig
< 1)
410 spin_lock_irq(¤t
->sighand
->siglock
);
411 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
413 spin_unlock_irq(¤t
->sighand
->siglock
);
417 EXPORT_SYMBOL(disallow_signal
);
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
424 void daemonize(const char *name
, ...)
429 va_start(args
, name
);
430 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
440 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 * or suspend transition begins right now.
443 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
445 if (current
->nsproxy
!= &init_nsproxy
) {
446 get_nsproxy(&init_nsproxy
);
447 switch_task_namespaces(current
, &init_nsproxy
);
449 set_special_pids(&init_struct_pid
);
450 proc_clear_tty(current
);
452 /* Block and flush all signals */
453 sigfillset(&blocked
);
454 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
455 flush_signals(current
);
457 /* Become as one with the init task */
459 daemonize_fs_struct();
461 current
->files
= init_task
.files
;
462 atomic_inc(¤t
->files
->count
);
464 reparent_to_kthreadd();
467 EXPORT_SYMBOL(daemonize
);
469 static void close_files(struct files_struct
* files
)
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure. But use RCU to shut RCU-lockdep up.
482 fdt
= files_fdtable(files
);
487 if (i
>= fdt
->max_fds
)
489 set
= fdt
->open_fds
->fds_bits
[j
++];
492 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
494 filp_close(file
, files
);
504 struct files_struct
*get_files_struct(struct task_struct
*task
)
506 struct files_struct
*files
;
511 atomic_inc(&files
->count
);
517 void put_files_struct(struct files_struct
*files
)
521 if (atomic_dec_and_test(&files
->count
)) {
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
530 fdt
= files_fdtable(files
);
531 if (fdt
!= &files
->fdtab
)
532 kmem_cache_free(files_cachep
, files
);
538 void reset_files_struct(struct files_struct
*files
)
540 struct task_struct
*tsk
= current
;
541 struct files_struct
*old
;
547 put_files_struct(old
);
550 void exit_files(struct task_struct
*tsk
)
552 struct files_struct
* files
= tsk
->files
;
558 put_files_struct(files
);
562 #ifdef CONFIG_MM_OWNER
564 * Task p is exiting and it owned mm, lets find a new owner for it
567 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
570 * If there are other users of the mm and the owner (us) is exiting
571 * we need to find a new owner to take on the responsibility.
573 if (atomic_read(&mm
->mm_users
) <= 1)
580 void mm_update_next_owner(struct mm_struct
*mm
)
582 struct task_struct
*c
, *g
, *p
= current
;
585 if (!mm_need_new_owner(mm
, p
))
588 read_lock(&tasklist_lock
);
590 * Search in the children
592 list_for_each_entry(c
, &p
->children
, sibling
) {
594 goto assign_new_owner
;
598 * Search in the siblings
600 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
602 goto assign_new_owner
;
606 * Search through everything else. We should not get
609 do_each_thread(g
, c
) {
611 goto assign_new_owner
;
612 } while_each_thread(g
, c
);
614 read_unlock(&tasklist_lock
);
616 * We found no owner yet mm_users > 1: this implies that we are
617 * most likely racing with swapoff (try_to_unuse()) or /proc or
618 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
627 * The task_lock protects c->mm from changing.
628 * We always want mm->owner->mm == mm
632 * Delay read_unlock() till we have the task_lock()
633 * to ensure that c does not slip away underneath us
635 read_unlock(&tasklist_lock
);
645 #endif /* CONFIG_MM_OWNER */
648 * Turn us into a lazy TLB process if we
651 static void exit_mm(struct task_struct
* tsk
)
653 struct mm_struct
*mm
= tsk
->mm
;
654 struct core_state
*core_state
;
660 * Serialize with any possible pending coredump.
661 * We must hold mmap_sem around checking core_state
662 * and clearing tsk->mm. The core-inducing thread
663 * will increment ->nr_threads for each thread in the
664 * group with ->mm != NULL.
666 down_read(&mm
->mmap_sem
);
667 core_state
= mm
->core_state
;
669 struct core_thread self
;
670 up_read(&mm
->mmap_sem
);
673 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
675 * Implies mb(), the result of xchg() must be visible
676 * to core_state->dumper.
678 if (atomic_dec_and_test(&core_state
->nr_threads
))
679 complete(&core_state
->startup
);
682 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
683 if (!self
.task
) /* see coredump_finish() */
687 __set_task_state(tsk
, TASK_RUNNING
);
688 down_read(&mm
->mmap_sem
);
690 atomic_inc(&mm
->mm_count
);
691 BUG_ON(mm
!= tsk
->active_mm
);
692 /* more a memory barrier than a real lock */
695 up_read(&mm
->mmap_sem
);
696 enter_lazy_tlb(mm
, current
);
697 /* We don't want this task to be frozen prematurely */
698 clear_freeze_flag(tsk
);
699 if (tsk
->signal
->oom_score_adj
== OOM_SCORE_ADJ_MIN
)
700 atomic_dec(&mm
->oom_disable_count
);
702 mm_update_next_owner(mm
);
707 * When we die, we re-parent all our children.
708 * Try to give them to another thread in our thread
709 * group, and if no such member exists, give it to
710 * the child reaper process (ie "init") in our pid
713 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
714 __releases(&tasklist_lock
)
715 __acquires(&tasklist_lock
)
717 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
718 struct task_struct
*thread
;
721 while_each_thread(father
, thread
) {
722 if (thread
->flags
& PF_EXITING
)
724 if (unlikely(pid_ns
->child_reaper
== father
))
725 pid_ns
->child_reaper
= thread
;
729 if (unlikely(pid_ns
->child_reaper
== father
)) {
730 write_unlock_irq(&tasklist_lock
);
731 if (unlikely(pid_ns
== &init_pid_ns
))
732 panic("Attempted to kill init!");
734 zap_pid_ns_processes(pid_ns
);
735 write_lock_irq(&tasklist_lock
);
737 * We can not clear ->child_reaper or leave it alone.
738 * There may by stealth EXIT_DEAD tasks on ->children,
739 * forget_original_parent() must move them somewhere.
741 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
744 return pid_ns
->child_reaper
;
748 * Any that need to be release_task'd are put on the @dead list.
750 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
751 struct list_head
*dead
)
753 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
755 if (task_detached(p
))
758 * If this is a threaded reparent there is no need to
759 * notify anyone anything has happened.
761 if (same_thread_group(p
->real_parent
, father
))
764 /* We don't want people slaying init. */
765 p
->exit_signal
= SIGCHLD
;
767 /* If it has exited notify the new parent about this child's death. */
768 if (!task_ptrace(p
) &&
769 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
770 do_notify_parent(p
, p
->exit_signal
);
771 if (task_detached(p
)) {
772 p
->exit_state
= EXIT_DEAD
;
773 list_move_tail(&p
->sibling
, dead
);
777 kill_orphaned_pgrp(p
, father
);
780 static void forget_original_parent(struct task_struct
*father
)
782 struct task_struct
*p
, *n
, *reaper
;
783 LIST_HEAD(dead_children
);
785 write_lock_irq(&tasklist_lock
);
787 * Note that exit_ptrace() and find_new_reaper() might
788 * drop tasklist_lock and reacquire it.
791 reaper
= find_new_reaper(father
);
793 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
794 struct task_struct
*t
= p
;
796 t
->real_parent
= reaper
;
797 if (t
->parent
== father
) {
798 BUG_ON(task_ptrace(t
));
799 t
->parent
= t
->real_parent
;
801 if (t
->pdeath_signal
)
802 group_send_sig_info(t
->pdeath_signal
,
804 } while_each_thread(p
, t
);
805 reparent_leader(father
, p
, &dead_children
);
807 write_unlock_irq(&tasklist_lock
);
809 BUG_ON(!list_empty(&father
->children
));
811 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
812 list_del_init(&p
->sibling
);
818 * Send signals to all our closest relatives so that they know
819 * to properly mourn us..
821 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
827 * This does two things:
829 * A. Make init inherit all the child processes
830 * B. Check to see if any process groups have become orphaned
831 * as a result of our exiting, and if they have any stopped
832 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
834 forget_original_parent(tsk
);
835 exit_task_namespaces(tsk
);
837 write_lock_irq(&tasklist_lock
);
839 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
841 /* Let father know we died
843 * Thread signals are configurable, but you aren't going to use
844 * that to send signals to arbitrary processes.
845 * That stops right now.
847 * If the parent exec id doesn't match the exec id we saved
848 * when we started then we know the parent has changed security
851 * If our self_exec id doesn't match our parent_exec_id then
852 * we have changed execution domain as these two values started
853 * the same after a fork.
855 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
856 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
857 tsk
->self_exec_id
!= tsk
->parent_exec_id
))
858 tsk
->exit_signal
= SIGCHLD
;
860 signal
= tracehook_notify_death(tsk
, &cookie
, group_dead
);
862 signal
= do_notify_parent(tsk
, signal
);
864 tsk
->exit_state
= signal
== DEATH_REAP
? EXIT_DEAD
: EXIT_ZOMBIE
;
866 /* mt-exec, de_thread() is waiting for group leader */
867 if (unlikely(tsk
->signal
->notify_count
< 0))
868 wake_up_process(tsk
->signal
->group_exit_task
);
869 write_unlock_irq(&tasklist_lock
);
871 tracehook_report_death(tsk
, signal
, cookie
, group_dead
);
873 /* If the process is dead, release it - nobody will wait for it */
874 if (signal
== DEATH_REAP
)
878 #ifdef CONFIG_DEBUG_STACK_USAGE
879 static void check_stack_usage(void)
881 static DEFINE_SPINLOCK(low_water_lock
);
882 static int lowest_to_date
= THREAD_SIZE
;
885 free
= stack_not_used(current
);
887 if (free
>= lowest_to_date
)
890 spin_lock(&low_water_lock
);
891 if (free
< lowest_to_date
) {
892 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
894 current
->comm
, free
);
895 lowest_to_date
= free
;
897 spin_unlock(&low_water_lock
);
900 static inline void check_stack_usage(void) {}
903 NORET_TYPE
void do_exit(long code
)
905 struct task_struct
*tsk
= current
;
908 profile_task_exit(tsk
);
910 WARN_ON(atomic_read(&tsk
->fs_excl
));
911 WARN_ON(blk_needs_flush_plug(tsk
));
913 if (unlikely(in_interrupt()))
914 panic("Aiee, killing interrupt handler!");
915 if (unlikely(!tsk
->pid
))
916 panic("Attempted to kill the idle task!");
919 * If do_exit is called because this processes oopsed, it's possible
920 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
921 * continuing. Amongst other possible reasons, this is to prevent
922 * mm_release()->clear_child_tid() from writing to a user-controlled
927 tracehook_report_exit(&code
);
929 validate_creds_for_do_exit(tsk
);
932 * We're taking recursive faults here in do_exit. Safest is to just
933 * leave this task alone and wait for reboot.
935 if (unlikely(tsk
->flags
& PF_EXITING
)) {
937 "Fixing recursive fault but reboot is needed!\n");
939 * We can do this unlocked here. The futex code uses
940 * this flag just to verify whether the pi state
941 * cleanup has been done or not. In the worst case it
942 * loops once more. We pretend that the cleanup was
943 * done as there is no way to return. Either the
944 * OWNER_DIED bit is set by now or we push the blocked
945 * task into the wait for ever nirwana as well.
947 tsk
->flags
|= PF_EXITPIDONE
;
948 set_current_state(TASK_UNINTERRUPTIBLE
);
954 exit_signals(tsk
); /* sets PF_EXITING */
956 * tsk->flags are checked in the futex code to protect against
957 * an exiting task cleaning up the robust pi futexes.
960 raw_spin_unlock_wait(&tsk
->pi_lock
);
962 if (unlikely(in_atomic()))
963 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
964 current
->comm
, task_pid_nr(current
),
967 acct_update_integrals(tsk
);
968 /* sync mm's RSS info before statistics gathering */
970 sync_mm_rss(tsk
, tsk
->mm
);
971 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
973 hrtimer_cancel(&tsk
->signal
->real_timer
);
974 exit_itimers(tsk
->signal
);
976 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
978 acct_collect(code
, group_dead
);
981 if (unlikely(tsk
->audit_context
))
984 tsk
->exit_code
= code
;
985 taskstats_exit(tsk
, group_dead
);
991 trace_sched_process_exit(tsk
);
1000 * Flush inherited counters to the parent - before the parent
1001 * gets woken up by child-exit notifications.
1003 * because of cgroup mode, must be called before cgroup_exit()
1005 perf_event_exit_task(tsk
);
1007 cgroup_exit(tsk
, 1);
1010 disassociate_ctty(1);
1012 module_put(task_thread_info(tsk
)->exec_domain
->module
);
1014 proc_exit_connector(tsk
);
1017 * FIXME: do that only when needed, using sched_exit tracepoint
1019 ptrace_put_breakpoints(tsk
);
1021 exit_notify(tsk
, group_dead
);
1024 mpol_put(tsk
->mempolicy
);
1025 tsk
->mempolicy
= NULL
;
1029 if (unlikely(current
->pi_state_cache
))
1030 kfree(current
->pi_state_cache
);
1033 * Make sure we are holding no locks:
1035 debug_check_no_locks_held(tsk
);
1037 * We can do this unlocked here. The futex code uses this flag
1038 * just to verify whether the pi state cleanup has been done
1039 * or not. In the worst case it loops once more.
1041 tsk
->flags
|= PF_EXITPIDONE
;
1043 if (tsk
->io_context
)
1044 exit_io_context(tsk
);
1046 if (tsk
->splice_pipe
)
1047 __free_pipe_info(tsk
->splice_pipe
);
1049 validate_creds_for_do_exit(tsk
);
1053 /* causes final put_task_struct in finish_task_switch(). */
1054 tsk
->state
= TASK_DEAD
;
1057 /* Avoid "noreturn function does return". */
1059 cpu_relax(); /* For when BUG is null */
1062 EXPORT_SYMBOL_GPL(do_exit
);
1064 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1072 EXPORT_SYMBOL(complete_and_exit
);
1074 SYSCALL_DEFINE1(exit
, int, error_code
)
1076 do_exit((error_code
&0xff)<<8);
1080 * Take down every thread in the group. This is called by fatal signals
1081 * as well as by sys_exit_group (below).
1084 do_group_exit(int exit_code
)
1086 struct signal_struct
*sig
= current
->signal
;
1088 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1090 if (signal_group_exit(sig
))
1091 exit_code
= sig
->group_exit_code
;
1092 else if (!thread_group_empty(current
)) {
1093 struct sighand_struct
*const sighand
= current
->sighand
;
1094 spin_lock_irq(&sighand
->siglock
);
1095 if (signal_group_exit(sig
))
1096 /* Another thread got here before we took the lock. */
1097 exit_code
= sig
->group_exit_code
;
1099 sig
->group_exit_code
= exit_code
;
1100 sig
->flags
= SIGNAL_GROUP_EXIT
;
1101 zap_other_threads(current
);
1103 spin_unlock_irq(&sighand
->siglock
);
1111 * this kills every thread in the thread group. Note that any externally
1112 * wait4()-ing process will get the correct exit code - even if this
1113 * thread is not the thread group leader.
1115 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1117 do_group_exit((error_code
& 0xff) << 8);
1123 enum pid_type wo_type
;
1127 struct siginfo __user
*wo_info
;
1128 int __user
*wo_stat
;
1129 struct rusage __user
*wo_rusage
;
1131 wait_queue_t child_wait
;
1136 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1138 if (type
!= PIDTYPE_PID
)
1139 task
= task
->group_leader
;
1140 return task
->pids
[type
].pid
;
1143 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1145 return wo
->wo_type
== PIDTYPE_MAX
||
1146 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1149 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
1151 if (!eligible_pid(wo
, p
))
1153 /* Wait for all children (clone and not) if __WALL is set;
1154 * otherwise, wait for clone children *only* if __WCLONE is
1155 * set; otherwise, wait for non-clone children *only*. (Note:
1156 * A "clone" child here is one that reports to its parent
1157 * using a signal other than SIGCHLD.) */
1158 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1159 && !(wo
->wo_flags
& __WALL
))
1165 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
1166 pid_t pid
, uid_t uid
, int why
, int status
)
1168 struct siginfo __user
*infop
;
1169 int retval
= wo
->wo_rusage
1170 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1173 infop
= wo
->wo_info
;
1176 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1178 retval
= put_user(0, &infop
->si_errno
);
1180 retval
= put_user((short)why
, &infop
->si_code
);
1182 retval
= put_user(pid
, &infop
->si_pid
);
1184 retval
= put_user(uid
, &infop
->si_uid
);
1186 retval
= put_user(status
, &infop
->si_status
);
1194 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1195 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1196 * the lock and this task is uninteresting. If we return nonzero, we have
1197 * released the lock and the system call should return.
1199 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1201 unsigned long state
;
1202 int retval
, status
, traced
;
1203 pid_t pid
= task_pid_vnr(p
);
1204 uid_t uid
= __task_cred(p
)->uid
;
1205 struct siginfo __user
*infop
;
1207 if (!likely(wo
->wo_flags
& WEXITED
))
1210 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1211 int exit_code
= p
->exit_code
;
1215 read_unlock(&tasklist_lock
);
1216 if ((exit_code
& 0x7f) == 0) {
1218 status
= exit_code
>> 8;
1220 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1221 status
= exit_code
& 0x7f;
1223 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1227 * Try to move the task's state to DEAD
1228 * only one thread is allowed to do this:
1230 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1231 if (state
!= EXIT_ZOMBIE
) {
1232 BUG_ON(state
!= EXIT_DEAD
);
1236 traced
= ptrace_reparented(p
);
1238 * It can be ptraced but not reparented, check
1239 * !task_detached() to filter out sub-threads.
1241 if (likely(!traced
) && likely(!task_detached(p
))) {
1242 struct signal_struct
*psig
;
1243 struct signal_struct
*sig
;
1244 unsigned long maxrss
;
1245 cputime_t tgutime
, tgstime
;
1248 * The resource counters for the group leader are in its
1249 * own task_struct. Those for dead threads in the group
1250 * are in its signal_struct, as are those for the child
1251 * processes it has previously reaped. All these
1252 * accumulate in the parent's signal_struct c* fields.
1254 * We don't bother to take a lock here to protect these
1255 * p->signal fields, because they are only touched by
1256 * __exit_signal, which runs with tasklist_lock
1257 * write-locked anyway, and so is excluded here. We do
1258 * need to protect the access to parent->signal fields,
1259 * as other threads in the parent group can be right
1260 * here reaping other children at the same time.
1262 * We use thread_group_times() to get times for the thread
1263 * group, which consolidates times for all threads in the
1264 * group including the group leader.
1266 thread_group_times(p
, &tgutime
, &tgstime
);
1267 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1268 psig
= p
->real_parent
->signal
;
1271 cputime_add(psig
->cutime
,
1272 cputime_add(tgutime
,
1275 cputime_add(psig
->cstime
,
1276 cputime_add(tgstime
,
1279 cputime_add(psig
->cgtime
,
1280 cputime_add(p
->gtime
,
1281 cputime_add(sig
->gtime
,
1284 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1286 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1288 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1290 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1292 task_io_get_inblock(p
) +
1293 sig
->inblock
+ sig
->cinblock
;
1295 task_io_get_oublock(p
) +
1296 sig
->oublock
+ sig
->coublock
;
1297 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1298 if (psig
->cmaxrss
< maxrss
)
1299 psig
->cmaxrss
= maxrss
;
1300 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1301 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1302 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1306 * Now we are sure this task is interesting, and no other
1307 * thread can reap it because we set its state to EXIT_DEAD.
1309 read_unlock(&tasklist_lock
);
1311 retval
= wo
->wo_rusage
1312 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1313 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1314 ? p
->signal
->group_exit_code
: p
->exit_code
;
1315 if (!retval
&& wo
->wo_stat
)
1316 retval
= put_user(status
, wo
->wo_stat
);
1318 infop
= wo
->wo_info
;
1319 if (!retval
&& infop
)
1320 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1321 if (!retval
&& infop
)
1322 retval
= put_user(0, &infop
->si_errno
);
1323 if (!retval
&& infop
) {
1326 if ((status
& 0x7f) == 0) {
1330 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1333 retval
= put_user((short)why
, &infop
->si_code
);
1335 retval
= put_user(status
, &infop
->si_status
);
1337 if (!retval
&& infop
)
1338 retval
= put_user(pid
, &infop
->si_pid
);
1339 if (!retval
&& infop
)
1340 retval
= put_user(uid
, &infop
->si_uid
);
1345 write_lock_irq(&tasklist_lock
);
1346 /* We dropped tasklist, ptracer could die and untrace */
1349 * If this is not a detached task, notify the parent.
1350 * If it's still not detached after that, don't release
1353 if (!task_detached(p
)) {
1354 do_notify_parent(p
, p
->exit_signal
);
1355 if (!task_detached(p
)) {
1356 p
->exit_state
= EXIT_ZOMBIE
;
1360 write_unlock_irq(&tasklist_lock
);
1368 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1371 if (task_is_stopped_or_traced(p
))
1372 return &p
->exit_code
;
1374 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1375 return &p
->signal
->group_exit_code
;
1381 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1383 * @ptrace: is the wait for ptrace
1384 * @p: task to wait for
1386 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1389 * read_lock(&tasklist_lock), which is released if return value is
1390 * non-zero. Also, grabs and releases @p->sighand->siglock.
1393 * 0 if wait condition didn't exist and search for other wait conditions
1394 * should continue. Non-zero return, -errno on failure and @p's pid on
1395 * success, implies that tasklist_lock is released and wait condition
1396 * search should terminate.
1398 static int wait_task_stopped(struct wait_opts
*wo
,
1399 int ptrace
, struct task_struct
*p
)
1401 struct siginfo __user
*infop
;
1402 int retval
, exit_code
, *p_code
, why
;
1403 uid_t uid
= 0; /* unneeded, required by compiler */
1407 * Traditionally we see ptrace'd stopped tasks regardless of options.
1409 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1412 if (!task_stopped_code(p
, ptrace
))
1416 spin_lock_irq(&p
->sighand
->siglock
);
1418 p_code
= task_stopped_code(p
, ptrace
);
1419 if (unlikely(!p_code
))
1422 exit_code
= *p_code
;
1426 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1431 spin_unlock_irq(&p
->sighand
->siglock
);
1436 * Now we are pretty sure this task is interesting.
1437 * Make sure it doesn't get reaped out from under us while we
1438 * give up the lock and then examine it below. We don't want to
1439 * keep holding onto the tasklist_lock while we call getrusage and
1440 * possibly take page faults for user memory.
1443 pid
= task_pid_vnr(p
);
1444 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1445 read_unlock(&tasklist_lock
);
1447 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1448 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1450 retval
= wo
->wo_rusage
1451 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1452 if (!retval
&& wo
->wo_stat
)
1453 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1455 infop
= wo
->wo_info
;
1456 if (!retval
&& infop
)
1457 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1458 if (!retval
&& infop
)
1459 retval
= put_user(0, &infop
->si_errno
);
1460 if (!retval
&& infop
)
1461 retval
= put_user((short)why
, &infop
->si_code
);
1462 if (!retval
&& infop
)
1463 retval
= put_user(exit_code
, &infop
->si_status
);
1464 if (!retval
&& infop
)
1465 retval
= put_user(pid
, &infop
->si_pid
);
1466 if (!retval
&& infop
)
1467 retval
= put_user(uid
, &infop
->si_uid
);
1477 * Handle do_wait work for one task in a live, non-stopped state.
1478 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1479 * the lock and this task is uninteresting. If we return nonzero, we have
1480 * released the lock and the system call should return.
1482 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1488 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1491 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1494 spin_lock_irq(&p
->sighand
->siglock
);
1495 /* Re-check with the lock held. */
1496 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1497 spin_unlock_irq(&p
->sighand
->siglock
);
1500 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1501 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1503 spin_unlock_irq(&p
->sighand
->siglock
);
1505 pid
= task_pid_vnr(p
);
1507 read_unlock(&tasklist_lock
);
1510 retval
= wo
->wo_rusage
1511 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1513 if (!retval
&& wo
->wo_stat
)
1514 retval
= put_user(0xffff, wo
->wo_stat
);
1518 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1519 CLD_CONTINUED
, SIGCONT
);
1520 BUG_ON(retval
== 0);
1527 * Consider @p for a wait by @parent.
1529 * -ECHILD should be in ->notask_error before the first call.
1530 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1531 * Returns zero if the search for a child should continue;
1532 * then ->notask_error is 0 if @p is an eligible child,
1533 * or another error from security_task_wait(), or still -ECHILD.
1535 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1536 struct task_struct
*p
)
1538 int ret
= eligible_child(wo
, p
);
1542 ret
= security_task_wait(p
);
1543 if (unlikely(ret
< 0)) {
1545 * If we have not yet seen any eligible child,
1546 * then let this error code replace -ECHILD.
1547 * A permission error will give the user a clue
1548 * to look for security policy problems, rather
1549 * than for mysterious wait bugs.
1551 if (wo
->notask_error
)
1552 wo
->notask_error
= ret
;
1556 /* dead body doesn't have much to contribute */
1557 if (p
->exit_state
== EXIT_DEAD
)
1561 if (p
->exit_state
== EXIT_ZOMBIE
) {
1563 * A zombie ptracee is only visible to its ptracer.
1564 * Notification and reaping will be cascaded to the real
1565 * parent when the ptracer detaches.
1567 if (likely(!ptrace
) && unlikely(task_ptrace(p
))) {
1568 /* it will become visible, clear notask_error */
1569 wo
->notask_error
= 0;
1573 /* we don't reap group leaders with subthreads */
1574 if (!delay_group_leader(p
))
1575 return wait_task_zombie(wo
, p
);
1578 * Allow access to stopped/continued state via zombie by
1579 * falling through. Clearing of notask_error is complex.
1583 * If WEXITED is set, notask_error should naturally be
1584 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1585 * so, if there are live subthreads, there are events to
1586 * wait for. If all subthreads are dead, it's still safe
1587 * to clear - this function will be called again in finite
1588 * amount time once all the subthreads are released and
1589 * will then return without clearing.
1593 * Stopped state is per-task and thus can't change once the
1594 * target task dies. Only continued and exited can happen.
1595 * Clear notask_error if WCONTINUED | WEXITED.
1597 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1598 wo
->notask_error
= 0;
1601 * If @p is ptraced by a task in its real parent's group,
1602 * hide group stop/continued state when looking at @p as
1603 * the real parent; otherwise, a single stop can be
1604 * reported twice as group and ptrace stops.
1606 * If a ptracer wants to distinguish the two events for its
1607 * own children, it should create a separate process which
1608 * takes the role of real parent.
1610 if (likely(!ptrace
) && task_ptrace(p
) &&
1611 same_thread_group(p
->parent
, p
->real_parent
))
1615 * @p is alive and it's gonna stop, continue or exit, so
1616 * there always is something to wait for.
1618 wo
->notask_error
= 0;
1622 * Wait for stopped. Depending on @ptrace, different stopped state
1623 * is used and the two don't interact with each other.
1625 ret
= wait_task_stopped(wo
, ptrace
, p
);
1630 * Wait for continued. There's only one continued state and the
1631 * ptracer can consume it which can confuse the real parent. Don't
1632 * use WCONTINUED from ptracer. You don't need or want it.
1634 return wait_task_continued(wo
, p
);
1638 * Do the work of do_wait() for one thread in the group, @tsk.
1640 * -ECHILD should be in ->notask_error before the first call.
1641 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1642 * Returns zero if the search for a child should continue; then
1643 * ->notask_error is 0 if there were any eligible children,
1644 * or another error from security_task_wait(), or still -ECHILD.
1646 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1648 struct task_struct
*p
;
1650 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1651 int ret
= wait_consider_task(wo
, 0, p
);
1659 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1661 struct task_struct
*p
;
1663 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1664 int ret
= wait_consider_task(wo
, 1, p
);
1672 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1673 int sync
, void *key
)
1675 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1677 struct task_struct
*p
= key
;
1679 if (!eligible_pid(wo
, p
))
1682 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1685 return default_wake_function(wait
, mode
, sync
, key
);
1688 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1690 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1691 TASK_INTERRUPTIBLE
, 1, p
);
1694 static long do_wait(struct wait_opts
*wo
)
1696 struct task_struct
*tsk
;
1699 trace_sched_process_wait(wo
->wo_pid
);
1701 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1702 wo
->child_wait
.private = current
;
1703 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1706 * If there is nothing that can match our critiera just get out.
1707 * We will clear ->notask_error to zero if we see any child that
1708 * might later match our criteria, even if we are not able to reap
1711 wo
->notask_error
= -ECHILD
;
1712 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1713 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1716 set_current_state(TASK_INTERRUPTIBLE
);
1717 read_lock(&tasklist_lock
);
1720 retval
= do_wait_thread(wo
, tsk
);
1724 retval
= ptrace_do_wait(wo
, tsk
);
1728 if (wo
->wo_flags
& __WNOTHREAD
)
1730 } while_each_thread(current
, tsk
);
1731 read_unlock(&tasklist_lock
);
1734 retval
= wo
->notask_error
;
1735 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1736 retval
= -ERESTARTSYS
;
1737 if (!signal_pending(current
)) {
1743 __set_current_state(TASK_RUNNING
);
1744 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1748 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1749 infop
, int, options
, struct rusage __user
*, ru
)
1751 struct wait_opts wo
;
1752 struct pid
*pid
= NULL
;
1756 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1758 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1771 type
= PIDTYPE_PGID
;
1779 if (type
< PIDTYPE_MAX
)
1780 pid
= find_get_pid(upid
);
1784 wo
.wo_flags
= options
;
1794 * For a WNOHANG return, clear out all the fields
1795 * we would set so the user can easily tell the
1799 ret
= put_user(0, &infop
->si_signo
);
1801 ret
= put_user(0, &infop
->si_errno
);
1803 ret
= put_user(0, &infop
->si_code
);
1805 ret
= put_user(0, &infop
->si_pid
);
1807 ret
= put_user(0, &infop
->si_uid
);
1809 ret
= put_user(0, &infop
->si_status
);
1814 /* avoid REGPARM breakage on x86: */
1815 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1819 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1820 int, options
, struct rusage __user
*, ru
)
1822 struct wait_opts wo
;
1823 struct pid
*pid
= NULL
;
1827 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1828 __WNOTHREAD
|__WCLONE
|__WALL
))
1833 else if (upid
< 0) {
1834 type
= PIDTYPE_PGID
;
1835 pid
= find_get_pid(-upid
);
1836 } else if (upid
== 0) {
1837 type
= PIDTYPE_PGID
;
1838 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1839 } else /* upid > 0 */ {
1841 pid
= find_get_pid(upid
);
1846 wo
.wo_flags
= options
| WEXITED
;
1848 wo
.wo_stat
= stat_addr
;
1853 /* avoid REGPARM breakage on x86: */
1854 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1858 #ifdef __ARCH_WANT_SYS_WAITPID
1861 * sys_waitpid() remains for compatibility. waitpid() should be
1862 * implemented by calling sys_wait4() from libc.a.
1864 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1866 return sys_wait4(pid
, stat_addr
, options
, NULL
);