Convert asm/semaphore.h users to linux/semaphore.h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / hamradio / 6pack.c
blob1da55dd2a5a0a07b4e05340a050e618bbf805166
1 /*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
6 * Authors: Andreas Könsgen <ajk@iehk.rwth-aachen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
15 #include <linux/module.h>
16 #include <asm/system.h>
17 #include <asm/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <net/ax25.h>
28 #include <linux/etherdevice.h>
29 #include <linux/skbuff.h>
30 #include <linux/rtnetlink.h>
31 #include <linux/spinlock.h>
32 #include <linux/if_arp.h>
33 #include <linux/init.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/semaphore.h>
37 #include <asm/atomic.h>
39 #define SIXPACK_VERSION "Revision: 0.3.0"
41 /* sixpack priority commands */
42 #define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
43 #define SIXP_TX_URUN 0x48 /* transmit overrun */
44 #define SIXP_RX_ORUN 0x50 /* receive overrun */
45 #define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
47 #define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
49 /* masks to get certain bits out of the status bytes sent by the TNC */
51 #define SIXP_CMD_MASK 0xC0
52 #define SIXP_CHN_MASK 0x07
53 #define SIXP_PRIO_CMD_MASK 0x80
54 #define SIXP_STD_CMD_MASK 0x40
55 #define SIXP_PRIO_DATA_MASK 0x38
56 #define SIXP_TX_MASK 0x20
57 #define SIXP_RX_MASK 0x10
58 #define SIXP_RX_DCD_MASK 0x18
59 #define SIXP_LEDS_ON 0x78
60 #define SIXP_LEDS_OFF 0x60
61 #define SIXP_CON 0x08
62 #define SIXP_STA 0x10
64 #define SIXP_FOUND_TNC 0xe9
65 #define SIXP_CON_ON 0x68
66 #define SIXP_DCD_MASK 0x08
67 #define SIXP_DAMA_OFF 0
69 /* default level 2 parameters */
70 #define SIXP_TXDELAY (HZ/4) /* in 1 s */
71 #define SIXP_PERSIST 50 /* in 256ths */
72 #define SIXP_SLOTTIME (HZ/10) /* in 1 s */
73 #define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
74 #define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
76 /* 6pack configuration. */
77 #define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
78 #define SIXP_MTU 256 /* Default MTU */
80 enum sixpack_flags {
81 SIXPF_ERROR, /* Parity, etc. error */
84 struct sixpack {
85 /* Various fields. */
86 struct tty_struct *tty; /* ptr to TTY structure */
87 struct net_device *dev; /* easy for intr handling */
89 /* These are pointers to the malloc()ed frame buffers. */
90 unsigned char *rbuff; /* receiver buffer */
91 int rcount; /* received chars counter */
92 unsigned char *xbuff; /* transmitter buffer */
93 unsigned char *xhead; /* next byte to XMIT */
94 int xleft; /* bytes left in XMIT queue */
96 unsigned char raw_buf[4];
97 unsigned char cooked_buf[400];
99 unsigned int rx_count;
100 unsigned int rx_count_cooked;
102 /* 6pack interface statistics. */
103 struct net_device_stats stats;
105 int mtu; /* Our mtu (to spot changes!) */
106 int buffsize; /* Max buffers sizes */
108 unsigned long flags; /* Flag values/ mode etc */
109 unsigned char mode; /* 6pack mode */
111 /* 6pack stuff */
112 unsigned char tx_delay;
113 unsigned char persistence;
114 unsigned char slottime;
115 unsigned char duplex;
116 unsigned char led_state;
117 unsigned char status;
118 unsigned char status1;
119 unsigned char status2;
120 unsigned char tx_enable;
121 unsigned char tnc_state;
123 struct timer_list tx_t;
124 struct timer_list resync_t;
125 atomic_t refcnt;
126 struct semaphore dead_sem;
127 spinlock_t lock;
130 #define AX25_6PACK_HEADER_LEN 0
132 static void sixpack_decode(struct sixpack *, unsigned char[], int);
133 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
136 * Perform the persistence/slottime algorithm for CSMA access. If the
137 * persistence check was successful, write the data to the serial driver.
138 * Note that in case of DAMA operation, the data is not sent here.
141 static void sp_xmit_on_air(unsigned long channel)
143 struct sixpack *sp = (struct sixpack *) channel;
144 int actual, when = sp->slottime;
145 static unsigned char random;
147 random = random * 17 + 41;
149 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
150 sp->led_state = 0x70;
151 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
152 sp->tx_enable = 1;
153 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2);
154 sp->xleft -= actual;
155 sp->xhead += actual;
156 sp->led_state = 0x60;
157 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
158 sp->status2 = 0;
159 } else
160 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
163 /* ----> 6pack timer interrupt handler and friends. <---- */
165 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
166 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
168 unsigned char *msg, *p = icp;
169 int actual, count;
171 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
172 msg = "oversized transmit packet!";
173 goto out_drop;
176 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
177 msg = "oversized transmit packet!";
178 goto out_drop;
181 if (p[0] > 5) {
182 msg = "invalid KISS command";
183 goto out_drop;
186 if ((p[0] != 0) && (len > 2)) {
187 msg = "KISS control packet too long";
188 goto out_drop;
191 if ((p[0] == 0) && (len < 15)) {
192 msg = "bad AX.25 packet to transmit";
193 goto out_drop;
196 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
197 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
199 switch (p[0]) {
200 case 1: sp->tx_delay = p[1];
201 return;
202 case 2: sp->persistence = p[1];
203 return;
204 case 3: sp->slottime = p[1];
205 return;
206 case 4: /* ignored */
207 return;
208 case 5: sp->duplex = p[1];
209 return;
212 if (p[0] != 0)
213 return;
216 * In case of fullduplex or DAMA operation, we don't take care about the
217 * state of the DCD or of any timers, as the determination of the
218 * correct time to send is the job of the AX.25 layer. We send
219 * immediately after data has arrived.
221 if (sp->duplex == 1) {
222 sp->led_state = 0x70;
223 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
224 sp->tx_enable = 1;
225 actual = sp->tty->driver->write(sp->tty, sp->xbuff, count);
226 sp->xleft = count - actual;
227 sp->xhead = sp->xbuff + actual;
228 sp->led_state = 0x60;
229 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
230 } else {
231 sp->xleft = count;
232 sp->xhead = sp->xbuff;
233 sp->status2 = count;
234 sp_xmit_on_air((unsigned long)sp);
237 return;
239 out_drop:
240 sp->stats.tx_dropped++;
241 netif_start_queue(sp->dev);
242 if (net_ratelimit())
243 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
246 /* Encapsulate an IP datagram and kick it into a TTY queue. */
248 static int sp_xmit(struct sk_buff *skb, struct net_device *dev)
250 struct sixpack *sp = netdev_priv(dev);
252 spin_lock_bh(&sp->lock);
253 /* We were not busy, so we are now... :-) */
254 netif_stop_queue(dev);
255 sp->stats.tx_bytes += skb->len;
256 sp_encaps(sp, skb->data, skb->len);
257 spin_unlock_bh(&sp->lock);
259 dev_kfree_skb(skb);
261 return 0;
264 static int sp_open_dev(struct net_device *dev)
266 struct sixpack *sp = netdev_priv(dev);
268 if (sp->tty == NULL)
269 return -ENODEV;
270 return 0;
273 /* Close the low-level part of the 6pack channel. */
274 static int sp_close(struct net_device *dev)
276 struct sixpack *sp = netdev_priv(dev);
278 spin_lock_bh(&sp->lock);
279 if (sp->tty) {
280 /* TTY discipline is running. */
281 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
283 netif_stop_queue(dev);
284 spin_unlock_bh(&sp->lock);
286 return 0;
289 /* Return the frame type ID */
290 static int sp_header(struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned len)
294 #ifdef CONFIG_INET
295 if (type != ETH_P_AX25)
296 return ax25_hard_header(skb, dev, type, daddr, saddr, len);
297 #endif
298 return 0;
301 static struct net_device_stats *sp_get_stats(struct net_device *dev)
303 struct sixpack *sp = netdev_priv(dev);
304 return &sp->stats;
307 static int sp_set_mac_address(struct net_device *dev, void *addr)
309 struct sockaddr_ax25 *sa = addr;
311 netif_tx_lock_bh(dev);
312 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
313 netif_tx_unlock_bh(dev);
315 return 0;
318 static int sp_rebuild_header(struct sk_buff *skb)
320 #ifdef CONFIG_INET
321 return ax25_rebuild_header(skb);
322 #else
323 return 0;
324 #endif
327 static const struct header_ops sp_header_ops = {
328 .create = sp_header,
329 .rebuild = sp_rebuild_header,
332 static void sp_setup(struct net_device *dev)
334 /* Finish setting up the DEVICE info. */
335 dev->mtu = SIXP_MTU;
336 dev->hard_start_xmit = sp_xmit;
337 dev->open = sp_open_dev;
338 dev->destructor = free_netdev;
339 dev->stop = sp_close;
341 dev->get_stats = sp_get_stats;
342 dev->set_mac_address = sp_set_mac_address;
343 dev->hard_header_len = AX25_MAX_HEADER_LEN;
344 dev->header_ops = &sp_header_ops;
346 dev->addr_len = AX25_ADDR_LEN;
347 dev->type = ARPHRD_AX25;
348 dev->tx_queue_len = 10;
349 dev->tx_timeout = NULL;
351 /* Only activated in AX.25 mode */
352 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
353 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
355 dev->flags = 0;
358 /* Send one completely decapsulated IP datagram to the IP layer. */
361 * This is the routine that sends the received data to the kernel AX.25.
362 * 'cmd' is the KISS command. For AX.25 data, it is zero.
365 static void sp_bump(struct sixpack *sp, char cmd)
367 struct sk_buff *skb;
368 int count;
369 unsigned char *ptr;
371 count = sp->rcount + 1;
373 sp->stats.rx_bytes += count;
375 if ((skb = dev_alloc_skb(count)) == NULL)
376 goto out_mem;
378 ptr = skb_put(skb, count);
379 *ptr++ = cmd; /* KISS command */
381 memcpy(ptr, sp->cooked_buf + 1, count);
382 skb->protocol = ax25_type_trans(skb, sp->dev);
383 netif_rx(skb);
384 sp->dev->last_rx = jiffies;
385 sp->stats.rx_packets++;
387 return;
389 out_mem:
390 sp->stats.rx_dropped++;
394 /* ----------------------------------------------------------------------- */
397 * We have a potential race on dereferencing tty->disc_data, because the tty
398 * layer provides no locking at all - thus one cpu could be running
399 * sixpack_receive_buf while another calls sixpack_close, which zeroes
400 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
401 * best way to fix this is to use a rwlock in the tty struct, but for now we
402 * use a single global rwlock for all ttys in ppp line discipline.
404 static DEFINE_RWLOCK(disc_data_lock);
406 static struct sixpack *sp_get(struct tty_struct *tty)
408 struct sixpack *sp;
410 read_lock(&disc_data_lock);
411 sp = tty->disc_data;
412 if (sp)
413 atomic_inc(&sp->refcnt);
414 read_unlock(&disc_data_lock);
416 return sp;
419 static void sp_put(struct sixpack *sp)
421 if (atomic_dec_and_test(&sp->refcnt))
422 up(&sp->dead_sem);
426 * Called by the TTY driver when there's room for more data. If we have
427 * more packets to send, we send them here.
429 static void sixpack_write_wakeup(struct tty_struct *tty)
431 struct sixpack *sp = sp_get(tty);
432 int actual;
434 if (!sp)
435 return;
436 if (sp->xleft <= 0) {
437 /* Now serial buffer is almost free & we can start
438 * transmission of another packet */
439 sp->stats.tx_packets++;
440 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
441 sp->tx_enable = 0;
442 netif_wake_queue(sp->dev);
443 goto out;
446 if (sp->tx_enable) {
447 actual = tty->driver->write(tty, sp->xhead, sp->xleft);
448 sp->xleft -= actual;
449 sp->xhead += actual;
452 out:
453 sp_put(sp);
456 /* ----------------------------------------------------------------------- */
459 * Handle the 'receiver data ready' interrupt.
460 * This function is called by the 'tty_io' module in the kernel when
461 * a block of 6pack data has been received, which can now be decapsulated
462 * and sent on to some IP layer for further processing.
464 static void sixpack_receive_buf(struct tty_struct *tty,
465 const unsigned char *cp, char *fp, int count)
467 struct sixpack *sp;
468 unsigned char buf[512];
469 int count1;
471 if (!count)
472 return;
474 sp = sp_get(tty);
475 if (!sp)
476 return;
478 memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
480 /* Read the characters out of the buffer */
482 count1 = count;
483 while (count) {
484 count--;
485 if (fp && *fp++) {
486 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
487 sp->stats.rx_errors++;
488 continue;
491 sixpack_decode(sp, buf, count1);
493 sp_put(sp);
494 if (test_and_clear_bit(TTY_THROTTLED, &tty->flags)
495 && tty->driver->unthrottle)
496 tty->driver->unthrottle(tty);
500 * Try to resync the TNC. Called by the resync timer defined in
501 * decode_prio_command
504 #define TNC_UNINITIALIZED 0
505 #define TNC_UNSYNC_STARTUP 1
506 #define TNC_UNSYNCED 2
507 #define TNC_IN_SYNC 3
509 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
511 char *msg;
513 switch (new_tnc_state) {
514 default: /* gcc oh piece-o-crap ... */
515 case TNC_UNSYNC_STARTUP:
516 msg = "Synchronizing with TNC";
517 break;
518 case TNC_UNSYNCED:
519 msg = "Lost synchronization with TNC\n";
520 break;
521 case TNC_IN_SYNC:
522 msg = "Found TNC";
523 break;
526 sp->tnc_state = new_tnc_state;
527 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
530 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
532 int old_tnc_state = sp->tnc_state;
534 if (old_tnc_state != new_tnc_state)
535 __tnc_set_sync_state(sp, new_tnc_state);
538 static void resync_tnc(unsigned long channel)
540 struct sixpack *sp = (struct sixpack *) channel;
541 static char resync_cmd = 0xe8;
543 /* clear any data that might have been received */
545 sp->rx_count = 0;
546 sp->rx_count_cooked = 0;
548 /* reset state machine */
550 sp->status = 1;
551 sp->status1 = 1;
552 sp->status2 = 0;
554 /* resync the TNC */
556 sp->led_state = 0x60;
557 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
558 sp->tty->driver->write(sp->tty, &resync_cmd, 1);
561 /* Start resync timer again -- the TNC might be still absent */
563 del_timer(&sp->resync_t);
564 sp->resync_t.data = (unsigned long) sp;
565 sp->resync_t.function = resync_tnc;
566 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
567 add_timer(&sp->resync_t);
570 static inline int tnc_init(struct sixpack *sp)
572 unsigned char inbyte = 0xe8;
574 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
576 sp->tty->driver->write(sp->tty, &inbyte, 1);
578 del_timer(&sp->resync_t);
579 sp->resync_t.data = (unsigned long) sp;
580 sp->resync_t.function = resync_tnc;
581 sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
582 add_timer(&sp->resync_t);
584 return 0;
588 * Open the high-level part of the 6pack channel.
589 * This function is called by the TTY module when the
590 * 6pack line discipline is called for. Because we are
591 * sure the tty line exists, we only have to link it to
592 * a free 6pcack channel...
594 static int sixpack_open(struct tty_struct *tty)
596 char *rbuff = NULL, *xbuff = NULL;
597 struct net_device *dev;
598 struct sixpack *sp;
599 unsigned long len;
600 int err = 0;
602 if (!capable(CAP_NET_ADMIN))
603 return -EPERM;
605 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
606 if (!dev) {
607 err = -ENOMEM;
608 goto out;
611 sp = netdev_priv(dev);
612 sp->dev = dev;
614 spin_lock_init(&sp->lock);
615 atomic_set(&sp->refcnt, 1);
616 init_MUTEX_LOCKED(&sp->dead_sem);
618 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
620 len = dev->mtu * 2;
622 rbuff = kmalloc(len + 4, GFP_KERNEL);
623 xbuff = kmalloc(len + 4, GFP_KERNEL);
625 if (rbuff == NULL || xbuff == NULL) {
626 err = -ENOBUFS;
627 goto out_free;
630 spin_lock_bh(&sp->lock);
632 sp->tty = tty;
634 sp->rbuff = rbuff;
635 sp->xbuff = xbuff;
637 sp->mtu = AX25_MTU + 73;
638 sp->buffsize = len;
639 sp->rcount = 0;
640 sp->rx_count = 0;
641 sp->rx_count_cooked = 0;
642 sp->xleft = 0;
644 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
646 sp->duplex = 0;
647 sp->tx_delay = SIXP_TXDELAY;
648 sp->persistence = SIXP_PERSIST;
649 sp->slottime = SIXP_SLOTTIME;
650 sp->led_state = 0x60;
651 sp->status = 1;
652 sp->status1 = 1;
653 sp->status2 = 0;
654 sp->tx_enable = 0;
656 netif_start_queue(dev);
658 init_timer(&sp->tx_t);
659 sp->tx_t.function = sp_xmit_on_air;
660 sp->tx_t.data = (unsigned long) sp;
662 init_timer(&sp->resync_t);
664 spin_unlock_bh(&sp->lock);
666 /* Done. We have linked the TTY line to a channel. */
667 tty->disc_data = sp;
668 tty->receive_room = 65536;
670 /* Now we're ready to register. */
671 if (register_netdev(dev))
672 goto out_free;
674 tnc_init(sp);
676 return 0;
678 out_free:
679 kfree(xbuff);
680 kfree(rbuff);
682 if (dev)
683 free_netdev(dev);
685 out:
686 return err;
691 * Close down a 6pack channel.
692 * This means flushing out any pending queues, and then restoring the
693 * TTY line discipline to what it was before it got hooked to 6pack
694 * (which usually is TTY again).
696 static void sixpack_close(struct tty_struct *tty)
698 struct sixpack *sp;
700 write_lock(&disc_data_lock);
701 sp = tty->disc_data;
702 tty->disc_data = NULL;
703 write_unlock(&disc_data_lock);
704 if (!sp)
705 return;
708 * We have now ensured that nobody can start using ap from now on, but
709 * we have to wait for all existing users to finish.
711 if (!atomic_dec_and_test(&sp->refcnt))
712 down(&sp->dead_sem);
714 unregister_netdev(sp->dev);
716 del_timer(&sp->tx_t);
717 del_timer(&sp->resync_t);
719 /* Free all 6pack frame buffers. */
720 kfree(sp->rbuff);
721 kfree(sp->xbuff);
724 /* Perform I/O control on an active 6pack channel. */
725 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
726 unsigned int cmd, unsigned long arg)
728 struct sixpack *sp = sp_get(tty);
729 struct net_device *dev = sp->dev;
730 unsigned int tmp, err;
732 if (!sp)
733 return -ENXIO;
735 switch(cmd) {
736 case SIOCGIFNAME:
737 err = copy_to_user((void __user *) arg, dev->name,
738 strlen(dev->name) + 1) ? -EFAULT : 0;
739 break;
741 case SIOCGIFENCAP:
742 err = put_user(0, (int __user *) arg);
743 break;
745 case SIOCSIFENCAP:
746 if (get_user(tmp, (int __user *) arg)) {
747 err = -EFAULT;
748 break;
751 sp->mode = tmp;
752 dev->addr_len = AX25_ADDR_LEN;
753 dev->hard_header_len = AX25_KISS_HEADER_LEN +
754 AX25_MAX_HEADER_LEN + 3;
755 dev->type = ARPHRD_AX25;
757 err = 0;
758 break;
760 case SIOCSIFHWADDR: {
761 char addr[AX25_ADDR_LEN];
763 if (copy_from_user(&addr,
764 (void __user *) arg, AX25_ADDR_LEN)) {
765 err = -EFAULT;
766 break;
769 netif_tx_lock_bh(dev);
770 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
771 netif_tx_unlock_bh(dev);
773 err = 0;
774 break;
777 default:
778 err = tty_mode_ioctl(tty, file, cmd, arg);
781 sp_put(sp);
783 return err;
786 static struct tty_ldisc sp_ldisc = {
787 .owner = THIS_MODULE,
788 .magic = TTY_LDISC_MAGIC,
789 .name = "6pack",
790 .open = sixpack_open,
791 .close = sixpack_close,
792 .ioctl = sixpack_ioctl,
793 .receive_buf = sixpack_receive_buf,
794 .write_wakeup = sixpack_write_wakeup,
797 /* Initialize 6pack control device -- register 6pack line discipline */
799 static char msg_banner[] __initdata = KERN_INFO \
800 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
801 static char msg_regfail[] __initdata = KERN_ERR \
802 "6pack: can't register line discipline (err = %d)\n";
804 static int __init sixpack_init_driver(void)
806 int status;
808 printk(msg_banner);
810 /* Register the provided line protocol discipline */
811 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
812 printk(msg_regfail, status);
814 return status;
817 static const char msg_unregfail[] __exitdata = KERN_ERR \
818 "6pack: can't unregister line discipline (err = %d)\n";
820 static void __exit sixpack_exit_driver(void)
822 int ret;
824 if ((ret = tty_unregister_ldisc(N_6PACK)))
825 printk(msg_unregfail, ret);
828 /* encode an AX.25 packet into 6pack */
830 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
831 int length, unsigned char tx_delay)
833 int count = 0;
834 unsigned char checksum = 0, buf[400];
835 int raw_count = 0;
837 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
838 tx_buf_raw[raw_count++] = SIXP_SEOF;
840 buf[0] = tx_delay;
841 for (count = 1; count < length; count++)
842 buf[count] = tx_buf[count];
844 for (count = 0; count < length; count++)
845 checksum += buf[count];
846 buf[length] = (unsigned char) 0xff - checksum;
848 for (count = 0; count <= length; count++) {
849 if ((count % 3) == 0) {
850 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
851 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
852 } else if ((count % 3) == 1) {
853 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
854 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
855 } else {
856 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
857 tx_buf_raw[raw_count++] = (buf[count] >> 2);
860 if ((length % 3) != 2)
861 raw_count++;
862 tx_buf_raw[raw_count++] = SIXP_SEOF;
863 return raw_count;
866 /* decode 4 sixpack-encoded bytes into 3 data bytes */
868 static void decode_data(struct sixpack *sp, unsigned char inbyte)
870 unsigned char *buf;
872 if (sp->rx_count != 3) {
873 sp->raw_buf[sp->rx_count++] = inbyte;
875 return;
878 buf = sp->raw_buf;
879 sp->cooked_buf[sp->rx_count_cooked++] =
880 buf[0] | ((buf[1] << 2) & 0xc0);
881 sp->cooked_buf[sp->rx_count_cooked++] =
882 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
883 sp->cooked_buf[sp->rx_count_cooked++] =
884 (buf[2] & 0x03) | (inbyte << 2);
885 sp->rx_count = 0;
888 /* identify and execute a 6pack priority command byte */
890 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
892 unsigned char channel;
893 int actual;
895 channel = cmd & SIXP_CHN_MASK;
896 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
898 /* RX and DCD flags can only be set in the same prio command,
899 if the DCD flag has been set without the RX flag in the previous
900 prio command. If DCD has not been set before, something in the
901 transmission has gone wrong. In this case, RX and DCD are
902 cleared in order to prevent the decode_data routine from
903 reading further data that might be corrupt. */
905 if (((sp->status & SIXP_DCD_MASK) == 0) &&
906 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
907 if (sp->status != 1)
908 printk(KERN_DEBUG "6pack: protocol violation\n");
909 else
910 sp->status = 0;
911 cmd &= ~SIXP_RX_DCD_MASK;
913 sp->status = cmd & SIXP_PRIO_DATA_MASK;
914 } else { /* output watchdog char if idle */
915 if ((sp->status2 != 0) && (sp->duplex == 1)) {
916 sp->led_state = 0x70;
917 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
918 sp->tx_enable = 1;
919 actual = sp->tty->driver->write(sp->tty, sp->xbuff, sp->status2);
920 sp->xleft -= actual;
921 sp->xhead += actual;
922 sp->led_state = 0x60;
923 sp->status2 = 0;
928 /* needed to trigger the TNC watchdog */
929 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
931 /* if the state byte has been received, the TNC is present,
932 so the resync timer can be reset. */
934 if (sp->tnc_state == TNC_IN_SYNC) {
935 del_timer(&sp->resync_t);
936 sp->resync_t.data = (unsigned long) sp;
937 sp->resync_t.function = resync_tnc;
938 sp->resync_t.expires = jiffies + SIXP_INIT_RESYNC_TIMEOUT;
939 add_timer(&sp->resync_t);
942 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
945 /* identify and execute a standard 6pack command byte */
947 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
949 unsigned char checksum = 0, rest = 0, channel;
950 short i;
952 channel = cmd & SIXP_CHN_MASK;
953 switch (cmd & SIXP_CMD_MASK) { /* normal command */
954 case SIXP_SEOF:
955 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
956 if ((sp->status & SIXP_RX_DCD_MASK) ==
957 SIXP_RX_DCD_MASK) {
958 sp->led_state = 0x68;
959 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
961 } else {
962 sp->led_state = 0x60;
963 /* fill trailing bytes with zeroes */
964 sp->tty->driver->write(sp->tty, &sp->led_state, 1);
965 rest = sp->rx_count;
966 if (rest != 0)
967 for (i = rest; i <= 3; i++)
968 decode_data(sp, 0);
969 if (rest == 2)
970 sp->rx_count_cooked -= 2;
971 else if (rest == 3)
972 sp->rx_count_cooked -= 1;
973 for (i = 0; i < sp->rx_count_cooked; i++)
974 checksum += sp->cooked_buf[i];
975 if (checksum != SIXP_CHKSUM) {
976 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
977 } else {
978 sp->rcount = sp->rx_count_cooked-2;
979 sp_bump(sp, 0);
981 sp->rx_count_cooked = 0;
983 break;
984 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
985 break;
986 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
987 break;
988 case SIXP_RX_BUF_OVL:
989 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
993 /* decode a 6pack packet */
995 static void
996 sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
998 unsigned char inbyte;
999 int count1;
1001 for (count1 = 0; count1 < count; count1++) {
1002 inbyte = pre_rbuff[count1];
1003 if (inbyte == SIXP_FOUND_TNC) {
1004 tnc_set_sync_state(sp, TNC_IN_SYNC);
1005 del_timer(&sp->resync_t);
1007 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1008 decode_prio_command(sp, inbyte);
1009 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1010 decode_std_command(sp, inbyte);
1011 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
1012 decode_data(sp, inbyte);
1016 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1017 MODULE_DESCRIPTION("6pack driver for AX.25");
1018 MODULE_LICENSE("GPL");
1019 MODULE_ALIAS_LDISC(N_6PACK);
1021 module_init(sixpack_init_driver);
1022 module_exit(sixpack_exit_driver);