NET: nl80211, fix lock imbalance and netdev referencing
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / wlags49_h2 / hcf.c
blob6e39f5081e27469a229e11495d6d07db19917056
1 // vim:tw=110:ts=4:
2 /************************************************************************************************************
4 * FILE : HCF.C
6 * DATE : $Date: 2004/08/05 11:47:10 $ $Revision: 1.10 $
7 * Original: 2004/06/02 10:22:22 Revision: 1.85 Tag: hcf7_t20040602_01
8 * Original: 2004/04/15 09:24:41 Revision: 1.63 Tag: hcf7_t7_20040415_01
9 * Original: 2004/04/13 14:22:44 Revision: 1.62 Tag: t7_20040413_01
10 * Original: 2004/04/01 15:32:55 Revision: 1.59 Tag: t7_20040401_01
11 * Original: 2004/03/10 15:39:27 Revision: 1.55 Tag: t20040310_01
12 * Original: 2004/03/04 11:03:37 Revision: 1.53 Tag: t20040304_01
13 * Original: 2004/03/02 14:51:21 Revision: 1.50 Tag: t20040302_03
14 * Original: 2004/02/24 13:00:27 Revision: 1.43 Tag: t20040224_01
15 * Original: 2004/02/19 10:57:25 Revision: 1.39 Tag: t20040219_01
17 * AUTHOR : Nico Valster
19 * SPECIFICATION: ........
21 * DESCRIPTION : HCF Routines for Hermes-II (callable via the Wireless Connection I/F or WCI)
22 * Local Support Routines for above procedures
24 * Customizable via HCFCFG.H, which is included by HCF.H
26 *************************************************************************************************************
29 * SOFTWARE LICENSE
31 * This software is provided subject to the following terms and conditions,
32 * which you should read carefully before using the software. Using this
33 * software indicates your acceptance of these terms and conditions. If you do
34 * not agree with these terms and conditions, do not use the software.
36 * COPYRIGHT © 1994 - 1995 by AT&T. All Rights Reserved
37 * COPYRIGHT © 1996 - 2000 by Lucent Technologies. All Rights Reserved
38 * COPYRIGHT © 2001 - 2004 by Agere Systems Inc. All Rights Reserved
39 * All rights reserved.
41 * Redistribution and use in source or binary forms, with or without
42 * modifications, are permitted provided that the following conditions are met:
44 * . Redistributions of source code must retain the above copyright notice, this
45 * list of conditions and the following Disclaimer as comments in the code as
46 * well as in the documentation and/or other materials provided with the
47 * distribution.
49 * . Redistributions in binary form must reproduce the above copyright notice,
50 * this list of conditions and the following Disclaimer in the documentation
51 * and/or other materials provided with the distribution.
53 * . Neither the name of Agere Systems Inc. nor the names of the contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * Disclaimer
59 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
60 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
62 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
63 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
64 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
66 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
67 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
69 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
70 * DAMAGE.
73 ************************************************************************************************************/
76 /************************************************************************************************************
78 ** Implementation Notes
80 * - a leading marker of //! is used. The purpose of such a sequence is to help to understand the flow
81 * An example is: //!rc = HCF_SUCCESS;
82 * if this is superfluous because rc is already guaranteed to be 0 but it shows to the (maintenance)
83 * programmer it is an intentional omission at the place where someone could consider it most appropriate at
84 * first glance
85 * - using near pointers in a model where ss!=ds is an invitation for disaster, so be aware of how you specify
86 * your model and how you define variables which are used at interrupt time
87 * - remember that sign extension on 32 bit platforms may cause problems unless code is carefully constructed,
88 * e.g. use "(hcf_16)~foo" rather than "~foo"
90 ************************************************************************************************************/
92 #include "hcf.h" // HCF and MSF common include file
93 #include "hcfdef.h" // HCF specific include file
94 #include "mmd.h" // MoreModularDriver common include file
96 #if ! defined offsetof
97 #define offsetof(s,m) ((unsigned int)&(((s *)0)->m))
98 #endif // offsetof
101 /***********************************************************************************************************/
102 /*************************************** PROTOTYPES ******************************************************/
103 /***********************************************************************************************************/
104 HCF_STATIC int cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 );
105 HCF_STATIC int init( IFBP ifbp );
106 HCF_STATIC int put_info( IFBP ifbp, LTVP ltvp );
107 #if (HCF_EXT) & HCF_EXT_MB
108 HCF_STATIC int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp );
109 #endif // HCF_EXT_MB
110 #if (HCF_TYPE) & HCF_TYPE_WPA
111 HCF_STATIC void calc_mic( hcf_32* p, hcf_32 M );
112 void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len );
113 void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len );
114 HCF_STATIC int check_mic( IFBP ifbp );
115 #endif // HCF_TYPE_WPA
117 HCF_STATIC void calibrate( IFBP ifbp );
118 HCF_STATIC int cmd_cmpl( IFBP ifbp );
119 HCF_STATIC hcf_16 get_fid( IFBP ifbp );
120 HCF_STATIC void isr_info( IFBP ifbp );
121 #if HCF_DMA
122 HCF_STATIC DESC_STRCT* get_frame_lst(IFBP ifbp, int tx_rx_flag);
123 #endif // HCF_DMA
124 HCF_STATIC void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) ); //char*, byte count (usually even)
125 #if HCF_DMA
126 HCF_STATIC void put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag );
127 #endif // HCF_DMA
128 HCF_STATIC void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) );
129 HCF_STATIC void put_frag_finalize( IFBP ifbp );
130 HCF_STATIC int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type );
131 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
132 static int fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp);
133 #endif // HCF_ASSERT_PRINTF
135 HCF_STATIC int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp );
136 #if (HCF_ENCAP) & HCF_ENC
137 HCF_STATIC hcf_8 hcf_encap( wci_bufp type );
138 #endif // HCF_ENCAP
139 HCF_STATIC hcf_8 null_addr[4] = { 0, 0, 0, 0 };
140 #if ! defined IN_PORT_WORD //replace I/O Macros with logging facility
141 extern FILE *log_file;
143 #define IN_PORT_WORD(port) in_port_word( (hcf_io)(port) )
145 static hcf_16 in_port_word( hcf_io port ) {
146 hcf_16 i = (hcf_16)_inpw( port );
147 if ( log_file ) {
148 fprintf( log_file, "\nR %2.2x %4.4x", (port)&0xFF, i);
150 return i;
151 } // in_port_word
153 #define OUT_PORT_WORD(port, value) out_port_word( (hcf_io)(port), (hcf_16)(value) )
155 static void out_port_word( hcf_io port, hcf_16 value ) {
156 _outpw( port, value );
157 if ( log_file ) {
158 fprintf( log_file, "\nW %2.02x %4.04x", (port)&0xFF, value );
162 void IN_PORT_STRING_32( hcf_io prt, hcf_32 FAR * dst, int n) {
163 int i = 0;
164 hcf_16 FAR * p;
165 if ( log_file ) {
166 fprintf( log_file, "\nread string_32 length %04x (%04d) at port %02.2x to addr %lp",
167 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst);
169 while ( n-- ) {
170 p = (hcf_16 FAR *)dst;
171 *p++ = (hcf_16)_inpw( prt );
172 *p = (hcf_16)_inpw( prt );
173 if ( log_file ) {
174 fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *dst);
176 dst++;
178 } // IN_PORT_STRING_32
180 void IN_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * dst, int n) { //also handles byte alignment problems
181 hcf_16 FAR * p = (hcf_16 FAR *)dst; //this needs more elaborate code in non-x86 platforms
182 int i = 0;
183 if ( log_file ) {
184 fprintf( log_file, "\nread string_16 length %04x (%04d) at port %02.2x to addr %lp",
185 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF, dst );
187 while ( n-- ) {
188 *p =(hcf_16)_inpw( prt);
189 if ( log_file ) {
190 if ( i++ % 0x10 ) {
191 fprintf( log_file, "%04x ", *p);
192 } else {
193 fprintf( log_file, "\n%04x ", *p);
196 p++;
198 } // IN_PORT_STRING_8_16
200 void OUT_PORT_STRING_32( hcf_io prt, hcf_32 FAR * src, int n) {
201 int i = 0;
202 hcf_16 FAR * p;
203 if ( log_file ) {
204 fprintf( log_file, "\nwrite string_32 length %04x (%04d) at port %02.2x",
205 (hcf_16)n, (hcf_16)n, (hcf_16)(prt)&0xFF);
207 while ( n-- ) {
208 p = (hcf_16 FAR *)src;
209 _outpw( prt, *p++ );
210 _outpw( prt, *p );
211 if ( log_file ) {
212 fprintf( log_file, "%s%08lx ", i++ % 0x08 ? " " : "\n", *src);
214 src++;
216 } // OUT_PORT_STRING_32
218 void OUT_PORT_STRING_8_16( hcf_io prt, hcf_8 FAR * src, int n) { //also handles byte alignment problems
219 hcf_16 FAR * p = (hcf_16 FAR *)src; //this needs more elaborate code in non-x86 platforms
220 int i = 0;
221 if ( log_file ) {
222 fprintf( log_file, "\nwrite string_16 length %04x (%04d) at port %04x", n, n, (hcf_16)prt);
224 while ( n-- ) {
225 (void)_outpw( prt, *p);
226 if ( log_file ) {
227 if ( i++ % 0x10 ) {
228 fprintf( log_file, "%04x ", *p);
229 } else {
230 fprintf( log_file, "\n%04x ", *p);
233 p++;
235 } // OUT_PORT_STRING_8_16
237 #endif // IN_PORT_WORD
239 /************************************************************************************************************
240 ******************************* D A T A D E F I N I T I O N S ********************************************
241 ************************************************************************************************************/
243 #if HCF_ASSERT
244 IFBP BASED assert_ifbp = NULL; //to make asserts easily work under MMD and DHF
245 #endif // HCF_ASSERT
247 #if HCF_ENCAP
248 /* SNAP header to be inserted in Ethernet-II frames */
249 HCF_STATIC hcf_8 BASED snap_header[] = { 0xAA, 0xAA, 0x03, 0x00, 0x00, //5 bytes signature +
250 0 }; //1 byte protocol identifier
251 #endif // HCF_ENCAP
253 #if (HCF_TYPE) & HCF_TYPE_WPA
254 HCF_STATIC hcf_8 BASED mic_pad[8] = { 0x5A, 0, 0, 0, 0, 0, 0, 0 }; //MIC padding of message
255 #endif // HCF_TYPE_WPA
257 #if defined MSF_COMPONENT_ID
258 CFG_IDENTITY_STRCT BASED cfg_drv_identity = {
259 sizeof(cfg_drv_identity)/sizeof(hcf_16) - 1, //length of RID
260 CFG_DRV_IDENTITY, // (0x0826)
261 MSF_COMPONENT_ID,
262 MSF_COMPONENT_VAR,
263 MSF_COMPONENT_MAJOR_VER,
264 MSF_COMPONENT_MINOR_VER
267 CFG_RANGES_STRCT BASED cfg_drv_sup_range = {
268 sizeof(cfg_drv_sup_range)/sizeof(hcf_16) - 1, //length of RID
269 CFG_DRV_SUP_RANGE, // (0x0827)
271 COMP_ROLE_SUPL,
272 COMP_ID_DUI,
273 {{ DUI_COMPAT_VAR,
274 DUI_COMPAT_BOT,
275 DUI_COMPAT_TOP
279 struct CFG_RANGE3_STRCT BASED cfg_drv_act_ranges_pri = {
280 sizeof(cfg_drv_act_ranges_pri)/sizeof(hcf_16) - 1, //length of RID
281 CFG_DRV_ACT_RANGES_PRI, // (0x0828)
283 COMP_ROLE_ACT,
284 COMP_ID_PRI,
286 { 0, 0, 0 }, // HCF_PRI_VAR_1 not supported by HCF 7
287 { 0, 0, 0 }, // HCF_PRI_VAR_2 not supported by HCF 7
288 { 3, //var_rec[2] - Variant number
289 CFG_DRV_ACT_RANGES_PRI_3_BOTTOM, // - Bottom Compatibility
290 CFG_DRV_ACT_RANGES_PRI_3_TOP // - Top Compatibility
296 struct CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_sta = {
297 sizeof(cfg_drv_act_ranges_sta)/sizeof(hcf_16) - 1, //length of RID
298 CFG_DRV_ACT_RANGES_STA, // (0x0829)
300 COMP_ROLE_ACT,
301 COMP_ID_STA,
303 #if defined HCF_STA_VAR_1
304 { 1, //var_rec[1] - Variant number
305 CFG_DRV_ACT_RANGES_STA_1_BOTTOM, // - Bottom Compatibility
306 CFG_DRV_ACT_RANGES_STA_1_TOP // - Top Compatibility
308 #else
309 { 0, 0, 0 },
310 #endif // HCF_STA_VAR_1
311 #if defined HCF_STA_VAR_2
312 { 2, //var_rec[1] - Variant number
313 CFG_DRV_ACT_RANGES_STA_2_BOTTOM, // - Bottom Compatibility
314 CFG_DRV_ACT_RANGES_STA_2_TOP // - Top Compatibility
316 #else
317 { 0, 0, 0 },
318 #endif // HCF_STA_VAR_2
319 // For Native_USB (Not used!)
320 #if defined HCF_STA_VAR_3
321 { 3, //var_rec[1] - Variant number
322 CFG_DRV_ACT_RANGES_STA_3_BOTTOM, // - Bottom Compatibility
323 CFG_DRV_ACT_RANGES_STA_3_TOP // - Top Compatibility
325 #else
326 { 0, 0, 0 },
327 #endif // HCF_STA_VAR_3
328 // Warp
329 #if defined HCF_STA_VAR_4
330 { 4, //var_rec[1] - Variant number
331 CFG_DRV_ACT_RANGES_STA_4_BOTTOM, // - Bottom Compatibility
332 CFG_DRV_ACT_RANGES_STA_4_TOP // - Top Compatibility
334 #else
335 { 0, 0, 0 }
336 #endif // HCF_STA_VAR_4
341 struct CFG_RANGE6_STRCT BASED cfg_drv_act_ranges_hsi = {
342 sizeof(cfg_drv_act_ranges_hsi)/sizeof(hcf_16) - 1, //length of RID
343 CFG_DRV_ACT_RANGES_HSI, // (0x082A)
344 COMP_ROLE_ACT,
345 COMP_ID_HSI,
347 #if defined HCF_HSI_VAR_0 // Controlled deployment
348 { 0, // var_rec[1] - Variant number
349 CFG_DRV_ACT_RANGES_HSI_0_BOTTOM, // - Bottom Compatibility
350 CFG_DRV_ACT_RANGES_HSI_0_TOP // - Top Compatibility
352 #else
353 { 0, 0, 0 },
354 #endif // HCF_HSI_VAR_0
355 { 0, 0, 0 }, // HCF_HSI_VAR_1 not supported by HCF 7
356 { 0, 0, 0 }, // HCF_HSI_VAR_2 not supported by HCF 7
357 { 0, 0, 0 }, // HCF_HSI_VAR_3 not supported by HCF 7
358 #if defined HCF_HSI_VAR_4 // Hermes-II all types
359 { 4, // var_rec[1] - Variant number
360 CFG_DRV_ACT_RANGES_HSI_4_BOTTOM, // - Bottom Compatibility
361 CFG_DRV_ACT_RANGES_HSI_4_TOP // - Top Compatibility
363 #else
364 { 0, 0, 0 },
365 #endif // HCF_HSI_VAR_4
366 #if defined HCF_HSI_VAR_5 // WARP Hermes-2.5
367 { 5, // var_rec[1] - Variant number
368 CFG_DRV_ACT_RANGES_HSI_5_BOTTOM, // - Bottom Compatibility
369 CFG_DRV_ACT_RANGES_HSI_5_TOP // - Top Compatibility
371 #else
372 { 0, 0, 0 }
373 #endif // HCF_HSI_VAR_5
378 CFG_RANGE4_STRCT BASED cfg_drv_act_ranges_apf = {
379 sizeof(cfg_drv_act_ranges_apf)/sizeof(hcf_16) - 1, //length of RID
380 CFG_DRV_ACT_RANGES_APF, // (0x082B)
382 COMP_ROLE_ACT,
383 COMP_ID_APF,
385 #if defined HCF_APF_VAR_1 //(Fake) Hermes-I
386 { 1, //var_rec[1] - Variant number
387 CFG_DRV_ACT_RANGES_APF_1_BOTTOM, // - Bottom Compatibility
388 CFG_DRV_ACT_RANGES_APF_1_TOP // - Top Compatibility
390 #else
391 { 0, 0, 0 },
392 #endif // HCF_APF_VAR_1
393 #if defined HCF_APF_VAR_2 //Hermes-II
394 { 2, // var_rec[1] - Variant number
395 CFG_DRV_ACT_RANGES_APF_2_BOTTOM, // - Bottom Compatibility
396 CFG_DRV_ACT_RANGES_APF_2_TOP // - Top Compatibility
398 #else
399 { 0, 0, 0 },
400 #endif // HCF_APF_VAR_2
401 #if defined HCF_APF_VAR_3 // Native_USB
402 { 3, // var_rec[1] - Variant number
403 CFG_DRV_ACT_RANGES_APF_3_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!!
404 CFG_DRV_ACT_RANGES_APF_3_TOP // - Top Compatibility
406 #else
407 { 0, 0, 0 },
408 #endif // HCF_APF_VAR_3
409 #if defined HCF_APF_VAR_4 // WARP Hermes 2.5
410 { 4, // var_rec[1] - Variant number
411 CFG_DRV_ACT_RANGES_APF_4_BOTTOM, // - Bottom Compatibility !!!!!see note below!!!!!!!
412 CFG_DRV_ACT_RANGES_APF_4_TOP // - Top Compatibility
414 #else
415 { 0, 0, 0 }
416 #endif // HCF_APF_VAR_4
419 #define HCF_VERSION TEXT( "HCF$Revision: 1.10 $" )
421 static struct /*CFG_HCF_OPT_STRCT*/ {
422 hcf_16 len; //length of cfg_hcf_opt struct
423 hcf_16 typ; //type 0x082C
424 hcf_16 v0; //offset HCF_VERSION
425 hcf_16 v1; // MSF_COMPONENT_ID
426 hcf_16 v2; // HCF_ALIGN
427 hcf_16 v3; // HCF_ASSERT
428 hcf_16 v4; // HCF_BIG_ENDIAN
429 hcf_16 v5; // /* HCF_DLV | HCF_DLNV */
430 hcf_16 v6; // HCF_DMA
431 hcf_16 v7; // HCF_ENCAP
432 hcf_16 v8; // HCF_EXT
433 hcf_16 v9; // HCF_INT_ON
434 hcf_16 v10; // HCF_IO
435 hcf_16 v11; // HCF_LEGACY
436 hcf_16 v12; // HCF_MAX_LTV
437 hcf_16 v13; // HCF_PROT_TIME
438 hcf_16 v14; // HCF_SLEEP
439 hcf_16 v15; // HCF_TALLIES
440 hcf_16 v16; // HCF_TYPE
441 hcf_16 v17; // HCF_NIC_TAL_CNT
442 hcf_16 v18; // HCF_HCF_TAL_CNT
443 hcf_16 v19; // offset tallies
444 TCHAR val[sizeof(HCF_VERSION)];
445 } BASED cfg_hcf_opt = {
446 sizeof(cfg_hcf_opt)/sizeof(hcf_16) -1,
447 CFG_HCF_OPT, // (0x082C)
448 ( sizeof(cfg_hcf_opt) - sizeof(HCF_VERSION) - 4 )/sizeof(hcf_16),
449 #if defined MSF_COMPONENT_ID
450 MSF_COMPONENT_ID,
451 #else
453 #endif // MSF_COMPONENT_ID
454 HCF_ALIGN,
455 HCF_ASSERT,
456 HCF_BIG_ENDIAN,
457 0, // /* HCF_DLV | HCF_DLNV*/,
458 HCF_DMA,
459 HCF_ENCAP,
460 HCF_EXT,
461 HCF_INT_ON,
462 HCF_IO,
463 HCF_LEGACY,
464 HCF_MAX_LTV,
465 HCF_PROT_TIME,
466 HCF_SLEEP,
467 HCF_TALLIES,
468 HCF_TYPE,
469 #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
470 HCF_NIC_TAL_CNT,
471 HCF_HCF_TAL_CNT,
472 offsetof(IFB_STRCT, IFB_TallyLen ),
473 #else
474 0, 0, 0,
475 #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
476 HCF_VERSION
477 }; // cfg_hcf_opt
478 #endif // MSF_COMPONENT_ID
480 #if defined HCF_TALLIES_EXTRA
481 replaced by HCF_EXT_TALLIES_FW ;
482 #endif // HCF_TALLIES_EXTRA
484 #if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB
485 #if (HCF_EXT) & HCF_EXT_MB
486 HCF_STATIC LTV_STRCT BASED cfg_null = { 1, CFG_NULL, {0} };
487 #endif // HCF_EXT_MB
488 HCF_STATIC hcf_16* BASED xxxx[ ] = {
489 #if (HCF_EXT) & HCF_EXT_MB
490 &cfg_null.len, //CFG_NULL 0x0820
491 #endif // HCF_EXT_MB
492 #if defined MSF_COMPONENT_ID
493 &cfg_drv_identity.len, //CFG_DRV_IDENTITY 0x0826
494 &cfg_drv_sup_range.len, //CFG_DRV_SUP_RANGE 0x0827
495 &cfg_drv_act_ranges_pri.len, //CFG_DRV_ACT_RANGES_PRI 0x0828
496 &cfg_drv_act_ranges_sta.len, //CFG_DRV_ACT_RANGES_STA 0x0829
497 &cfg_drv_act_ranges_hsi.len, //CFG_DRV_ACT_RANGES_HSI 0x082A
498 &cfg_drv_act_ranges_apf.len, //CFG_DRV_ACT_RANGES_APF 0x082B
499 &cfg_hcf_opt.len, //CFG_HCF_OPT 0x082C
500 NULL, //IFB_PRIIdentity placeholder 0xFD02
501 NULL, //IFB_PRISup placeholder 0xFD03
502 #endif // MSF_COMPONENT_ID
503 NULL //endsentinel
505 #define xxxx_PRI_IDENTITY_OFFSET (sizeof(xxxx)/sizeof(xxxx[0]) - 3)
507 #endif // MSF_COMPONENT_ID / HCF_EXT_MB
510 /************************************************************************************************************
511 ************************** T O P L E V E L H C F R O U T I N E S **************************************
512 ************************************************************************************************************/
514 #if (HCF_DL_ONLY) == 0
515 /************************************************************************************************************
517 *.MODULE int hcf_action( IFBP ifbp, hcf_16 action )
518 *.PURPOSE Changes the run-time Card behavior.
519 * Performs Miscellanuous actions.
521 *.ARGUMENTS
522 * ifbp address of the Interface Block
523 * action number identifying the type of change
524 * - HCF_ACT_CCX_OFF disable CKIP
525 * - HCF_ACT_CCX_ON enable CKIP
526 * - HCF_ACT_INT_FORCE_ON enable interrupt generation by WaveLAN NIC
527 * - HCF_ACT_INT_OFF disable interrupt generation by WaveLAN NIC
528 * - HCF_ACT_INT_ON compensate 1 HCF_ACT_INT_OFF, enable interrupt generation if balance reached
529 * - HCF_ACT_PRS_SCAN Hermes Probe Respons Scan (F102) command
530 * - HCF_ACT_RX_ACK acknowledge non-DMA receiver to Hermes
531 * - HCF_ACT_SCAN Hermes Inquire Scan (F101) command (non-WARP only)
532 * - HCF_ACT_SLEEP DDS Sleep request
533 * - HCF_ACT_TALLIES Hermes Inquire Tallies (F100) command
535 *.RETURNS
536 * HCF_SUCCESS all (including invalid)
537 * HCF_INT_PENDING HCF_ACT_INT_OFF, interrupt pending
538 * HCF_ERR_NO_NIC HCF_ACT_INT_OFF, NIC presence check fails
540 *.CONDITIONS
541 * Except for hcf_action with HCF_ACT_INT_FORCE_ON or HCF_ACT_INT_OFF as parameter or hcf_connect with an I/O
542 * address (i.e. not HCF_DISCONNECT), all hcf-function calls MUST be preceeded by a call of hcf_action with
543 * HCF_ACT_INT_OFF as parameter.
544 * Note that hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
545 * was called.
547 *.DESCRIPTION
548 * hcf_action supports the following mode changing action-code pairs that are antonyms
549 * - HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
550 * - HCF_ACT_INT_[FORCE_]ON / HCF_ACT_INT_OFF
552 * Additionally hcf_action can start the following actions in the NIC:
553 * - HCF_ACT_PRS_SCAN
554 * - HCF_ACT_RX_ACK
555 * - HCF_ACT_SCAN
556 * - HCF_ACT_SLEEP
557 * - HCF_ACT_TALLIES
559 * o HCF_ACT_INT_OFF: Sets NIC Interrupts mode Disabled.
560 * This command, and the associated [Force] Enable NIC interrupts command, are only available if the HCF_INT_ON
561 * compile time option is not set at 0x0000.
563 * o HCF_ACT_INT_ON: Sets NIC Interrupts mode Enabled.
564 * Enable NIC Interrupts, depending on the number of preceding Disable NIC Interrupt calls.
566 * o HCF_ACT_INT_FORCE_ON: Force NIC Interrupts mode Enabled.
567 * Sets NIC Interrupts mode Enabled, regardless off the number of preceding Disable NIC Interrupt calls.
569 * The disabling and enabling of interrupts are antonyms.
570 * These actions must be balanced.
571 * For each "disable interrupts" there must be a matching "enable interrupts".
572 * The disable interrupts may be executed multiple times in a row without intervening enable interrupts, in
573 * other words, the disable interrupts may be nested.
574 * The interrupt generation mechanism is disabled at the first call with HCF_ACT_INT_OFF.
575 * The interrupt generation mechanism is re-enabled when the number of calls with HCF_ACT_INT_ON matches the
576 * number of calls with INT_OFF.
578 * It is not allowed to have more Enable NIC Interrupts calls than Disable NIC Interrupts calls.
579 * The interrupt generation mechanism is initially (i.e. after hcf_connect) disabled.
580 * An MSF based on a interrupt strategy must call hcf_action with INT_ON in its initialization logic.
582 *! The INT_OFF/INT_ON housekeeping is initialized at 0x0000 by hcf_connect, causing the interrupt generation
583 * mechanism to be disabled at first. This suits MSF implementation based on a polling strategy.
585 * o HCF_ACT_CCX_OFF / HCF_ACT_CCX_ON
586 *!! This can use some more explanation;?
587 * Disables and Enables support in the HCF runtime code for the CCX feature. Each time one of these action
588 * codes is used, the effects of the preceding use cease.
590 * o HCF_ACT_SLEEP: Initiates the Disconnected DeepSleep process
591 * This command is only available if the HCF_DDS compile time option is set. It triggers the F/W to start the
592 * sleep handshaking. Regardless whether the Host initiates a Disconnected DeepSleep (DDS) or the F/W initiates
593 * a Connected DeepSleep (CDS), the Host-F/W sleep handshaking is completed when the NIC Interrupts mode is
594 * enabled (by means of the balancing HCF_ACT_INT_ON), i.e. at that moment the F/W really goes into sleep mode.
595 * The F/W is wokenup by the HCF when the NIC Interrupts mode are disabled, i.e. at the first HCF_ACT_INT_OFF
596 * after going into sleep.
598 * The following Miscellanuous actions are defined:
600 * o HCF_ACT_RX_ACK: Receiver Acknowledgement (non-DMA, non-USB mode only)
601 * Acking the receiver, frees the NIC memory used to hold the Rx frame and allows the F/W to
602 * report the existence of the next Rx frame.
603 * If the MSF does not need access (any longer) to the current frame, e.g. because it is rejected based on the
604 * look ahead or copied to another buffer, the receiver may be acked. Acking earlier is assumed to have the
605 * potential of improving the performance.
606 * If the MSF does not explitly ack te receiver, the acking is done implicitly if:
607 * - the received frame fits in the look ahead buffer, by the hcf_service_nic call that reported the Rx frame
608 * - if not in the above step, by hcf_rcv_msg (assuming hcf_rcv_msg is called)
609 * - if neither of the above implicit acks nor an explicit ack by the MSF, by the first hcf_service_nic after
610 * the hcf_service_nic that reported the Rx frame.
611 * Note: If an Rx frame is already acked, an explicit ACK by the MSF acts as a NoOperation.
613 * o HCF_ACT_TALLIES: Inquire Tallies command
614 * This command is only operational if the F/W is enabled.
615 * The Inquire Tallies command requests the F/W to provide its current set of tallies.
616 * See also hcf_get_info with CFG_TALLIES as parameter.
618 * o HCF_ACT_PRS_SCAN: Inquire Probe Respons Scan command
619 * This command is only operational if the F/W is enabled.
620 * The Probe Respons Scan command starts a scan sequence.
621 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
623 * o HCF_ACT_SCAN: Inquire Scan command
624 * This command is only supported for HII F/W (i.e. pre-WARP) and it is operational if the F/W is enabled.
625 * The Inquire Scan command starts a scan sequence.
626 * The HCF puts the result of this action in an MSF defined buffer (see CFG_RID_LOG_STRCT).
628 * Assert fails if
629 * - ifbp has a recognizable out-of-range value.
630 * - NIC interrupts are not disabled while required by parameter action.
631 * - an invalid code is specified in parameter action.
632 * - HCF_ACT_INT_ON commands outnumber the HCF_ACT_INT_OFF commands.
633 * - reentrancy, may be caused by calling hcf_functions without adequate protection against NIC interrupts or
634 * multi-threading
636 * - Since the HCF does not maintain status information relative to the F/W enabled state, it is not asserted
637 * whether HCF_ACT_SCAN, HCF_ACT_PRS_SCAN or HCF_ACT_TALLIES are only used while F/W is enabled.
639 *.DIAGRAM
640 * 0: The assert embedded in HCFLOGENTRY checks against re-entrancy. Re-entrancy could be caused by a MSF logic
641 * at task-level calling hcf_functions without shielding with HCF_ACT_ON/_OFF. However the HCF_ACT_INT_OFF
642 * action itself can per definition not be protected this way. Based on code inspection, it can be concluded,
643 * that there is no re-entrancy PROBLEM in this particular flow. It does not seem worth the trouble to
644 * explicitly check for this condition (although there was a report of an MSF which ran into this assert.
645 * 2:IFB_IntOffCnt is used to balance the INT_OFF and INT_ON calls. Disabling of the interrupts is achieved by
646 * writing a zero to the Hermes IntEn register. In a shared interrupt environment (e.g. the mini-PCI NDIS
647 * driver) it is considered more correct to return the status HCF_INT_PENDING if and only if, the current
648 * invocation of hcf_service_nic is (apparently) called in the ISR when the ISR was activated as result of a
649 * change in HREG_EV_STAT matching a bit in HREG_INT_EN, i.e. not if invoked as result of another device
650 * generating an interrupt on the shared interrupt line.
651 * Note 1: it has been observed that under certain adverse conditions on certain platforms the writing of
652 * HREG_INT_EN can apparently fail, therefor it is paramount that HREG_INT_EN is written again with 0 for
653 * each and every call to HCF_ACT_INT_OFF.
654 * Note 2: it has been observed that under certain H/W & S/W architectures this logic is called when there is
655 * no NIC at all. To cater for this, the value of HREG_INT_EN is validated. If the unused bit 0x0100 is set,
656 * it is assumed there is no NIC.
657 * Note 3: During the download process, some versions of the F/W reset HREG_SW_0, hence checking this
658 * register for HCF_MAGIC (the classical NIC presence test) when HCF_ACT_INT_OFF is called due to another
659 * card interrupting via a shared IRQ during a download, fails.
660 *4: The construction "if ( ifbp->IFB_IntOffCnt-- == 0 )" is optimal (in the sense of shortest/quickest
661 * path in error free flows) but NOT fail safe in case of too many INT_ON invocations compared to INT_OFF).
662 * Enabling of the interrupts is achieved by writing the Hermes IntEn register.
663 * - If the HCF is in Defunct mode, the interrupts stay disabled.
664 * - Under "normal" conditions, the HCF is only interested in Info Events, Rx Events and Notify Events.
665 * - When the HCF is out of Tx/Notify resources, the HCF is also interested in Alloc Events.
666 * - via HCF_EXT, the MSF programmer can also request HREG_EV_TICK and/or HREG_EV_TX_EXC interrupts.
667 * For DMA operation, the DMA hardware handles the alloc events. The DMA engine will generate a 'TxDmaDone'
668 * event as soon as it has pumped a frame from host ram into NIC-RAM (note that the frame does not have to be
669 * transmitted then), and a 'RxDmaDone' event as soon as a received frame has been pumped from NIC-RAM into
670 * host ram. Note that the 'alloc' event has been removed from the event-mask, because the DMA engine will
671 * react to and acknowledge this event.
672 *6: ack the "old" Rx-event. See "Rx Buffer free strategy" in hcf_service_nic above for more explanation.
673 * IFB_RxFID and IFB_RxLen must be cleared to bring both the internal HCF house keeping and the information
674 * supplied to the MSF in the state "no frame received".
675 *8: The HCF_ACT_SCAN, HCF_ACT_PRS_SCAN and HCF_ACT_TALLIES activity are merged by "clever" algebraic
676 * manipulations of the RID-values and action codes, so foregoing robustness against migration problems for
677 * ease of implementation. The assumptions about numerical relationships between CFG_TALLIES etc and
678 * HCF_ACT_TALLIES etc are checked by the "#if" statements just prior to the body of this routine, resulting
679 * in: err "maintenance" during compilation if the assumptions are no longer met. The writing of HREG_PARAM_1
680 * with 0x3FFF in case of an PRS scan, is a kludge to get around lack of specification, hence different
681 * implementation in F/W and Host.
682 * When there is no NIC RAM available, some versions of the Hermes F/W do report 0x7F00 as error in the
683 * Result field of the Status register and some F/W versions don't. To mask this difference to the MSF all
684 * return codes of the Hermes are ignored ("best" and "most simple" solution to these types of analomies with
685 * an acceptable loss due to ignoring all error situations as well).
686 * The "No inquire space" is reported via the Hermes tallies.
687 *30: do not HCFASSERT( rc, rc ) since rc == HCF_INT_PENDING is no error
689 *.ENDDOC END DOCUMENTATION
691 ************************************************************************************************************/
692 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
693 #if CFG_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_SCAN
694 err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
695 #endif
696 #endif // HCF_TYPE_HII5
697 #if CFG_PRS_SCAN != CFG_TALLIES - HCF_ACT_TALLIES + HCF_ACT_PRS_SCAN
698 err: "maintenance" apparently inviolated the underlying assumption about the numerical values of these macros
699 #endif
701 hcf_action( IFBP ifbp, hcf_16 action )
703 int rc = HCF_SUCCESS;
705 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
706 #if HCF_INT_ON
707 HCFLOGENTRY( action == HCF_ACT_INT_FORCE_ON ? HCF_TRACE_ACTION_KLUDGE : HCF_TRACE_ACTION, action ) /* 0 */
708 #if (HCF_SLEEP)
709 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE || action == HCF_ACT_INT_OFF,
710 MERGE_2( action, ifbp->IFB_IntOffCnt ) )
711 #else
712 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, action )
713 #endif // HCF_SLEEP
714 HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFF ||
715 action == HCF_ACT_INT_OFF || action == HCF_ACT_INT_FORCE_ON, action )
716 HCFASSERT( ifbp->IFB_IntOffCnt <= 16 || ifbp->IFB_IntOffCnt >= 0xFFFE,
717 MERGE_2( action, ifbp->IFB_IntOffCnt ) ) //nesting more than 16 deep seems unreasonable
718 #endif // HCF_INT_ON
720 switch (action) {
721 #if HCF_INT_ON
722 hcf_16 i;
723 case HCF_ACT_INT_OFF: // Disable Interrupt generation
724 #if HCF_SLEEP
725 if ( ifbp->IFB_IntOffCnt == 0xFFFE ) { // WakeUp test ;?tie this to the "new" super-LinkStat
726 ifbp->IFB_IntOffCnt++; // restore conventional I/F
727 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit
728 OPW(HREG_IO, HREG_IO_WAKEUP_ASYNC ); // set wakeup bit to counteract the clearing by F/W
729 // 800 us latency before FW switches to high power
730 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
731 //OOR if ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_DS_OOR ) { // OutOfRange
732 // printk( "<5>ACT_INT_OFF: Deepsleep phase terminated, enable and go to AwaitConnection\n" ); //;?remove me 1 day
733 // hcf_cntl( ifbp, HCF_CNTL_ENABLE );
734 // }
735 // ifbp->IFB_DSLinkStat &= ~( CFG_LINK_STAT_DS_IR | CFG_LINK_STAT_DS_OOR); //clear IR/OOR state
737 #endif // HCF_SLEEP
738 /*2*/ ifbp->IFB_IntOffCnt++;
739 //! rc = 0;
740 i = IPW( HREG_INT_EN );
741 OPW( HREG_INT_EN, 0 );
742 if ( i & 0x1000 ) {
743 rc = HCF_ERR_NO_NIC;
744 } else {
745 if ( i & IPW( HREG_EV_STAT ) ) {
746 rc = HCF_INT_PENDING;
749 break;
751 case HCF_ACT_INT_FORCE_ON: // Enforce Enable Interrupt generation
752 ifbp->IFB_IntOffCnt = 0;
753 //Fall through in HCF_ACT_INT_ON
755 case HCF_ACT_INT_ON: // Enable Interrupt generation
756 /*4*/ if ( ifbp->IFB_IntOffCnt-- == 0 && ifbp->IFB_CardStat == 0 ) {
757 //determine Interrupt Event mask
758 #if HCF_DMA
759 if ( ifbp->IFB_CntlOpt & USE_DMA ) {
760 i = HREG_EV_INFO | HREG_EV_RDMAD | HREG_EV_TDMAD | HREG_EV_TX_EXT; //mask when DMA active
761 } else
762 #endif // HCF_DMA
764 i = HREG_EV_INFO | HREG_EV_RX | HREG_EV_TX_EXT; //mask when DMA not active
765 if ( ifbp->IFB_RscInd == 0 ) {
766 i |= HREG_EV_ALLOC; //mask when no TxFID available
769 #if HCF_SLEEP
770 if ( ( IPW(HREG_EV_STAT) & ( i | HREG_EV_SLEEP_REQ ) ) == HREG_EV_SLEEP_REQ ) {
771 // firmware indicates it would like to go into sleep modus
772 // only acknowledge this request if no other events that can cause an interrupt are pending
773 ifbp->IFB_IntOffCnt--; //becomes 0xFFFE
774 OPW( HREG_INT_EN, i | HREG_EV_TICK );
775 OPW( HREG_EV_ACK, HREG_EV_SLEEP_REQ | HREG_EV_TICK | HREG_EV_ACK_REG_READY );
776 } else
777 #endif // HCF_SLEEP
779 OPW( HREG_INT_EN, i | HREG_EV_SLEEP_REQ );
782 break;
783 #endif // HCF_INT_ON
785 #if (HCF_SLEEP) & HCF_DDS
786 case HCF_ACT_SLEEP: // DDS Sleep request
787 hcf_cntl( ifbp, HCF_CNTL_DISABLE );
788 cmd_exe( ifbp, HCMD_SLEEP, 0 );
789 break;
790 // case HCF_ACT_WAKEUP: // DDS Wakeup request
791 // HCFASSERT( ifbp->IFB_IntOffCnt == 0xFFFE, ifbp->IFB_IntOffCnt )
792 // ifbp->IFB_IntOffCnt++; // restore conventional I/F
793 // OPW( HREG_IO, HREG_IO_WAKEUP_ASYNC );
794 // MSF_WAIT(800); // MSF-defined function to wait n microseconds.
795 // rc = hcf_action( ifbp, HCF_ACT_INT_OFF ); /*bogus, IFB_IntOffCnt == 0xFFFF, so if you carefully look
796 // *at the #if HCF_DDS statements, HCF_ACT_INT_OFF is empty
797 // *for DDS. "Much" better would be to merge the flows for
798 // *DDS and DEEP_SLEEP
799 // */
800 // break;
801 #endif // HCF_DDS
803 #if (HCF_TYPE) & HCF_TYPE_CCX
804 case HCF_ACT_CCX_ON: // enable CKIP
805 case HCF_ACT_CCX_OFF: // disable CKIP
806 ifbp->IFB_CKIPStat = action;
807 break;
808 #endif // HCF_TYPE_CCX
810 case HCF_ACT_RX_ACK: //Receiver ACK
811 /*6*/ if ( ifbp->IFB_RxFID ) {
812 DAWA_ACK( HREG_EV_RX );
814 ifbp->IFB_RxFID = ifbp->IFB_RxLen = 0;
815 break;
817 /*8*/ case HCF_ACT_PRS_SCAN: // Hermes PRS Scan (F102)
818 OPW( HREG_PARAM_1, 0x3FFF );
819 //Fall through in HCF_ACT_TALLIES
820 case HCF_ACT_TALLIES: // Hermes Inquire Tallies (F100)
821 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
822 case HCF_ACT_SCAN: // Hermes Inquire Scan (F101)
823 #endif // HCF_TYPE_HII5
824 /*!! the assumptions about numerical relationships between CFG_TALLIES etc and HCF_ACT_TALLIES etc
825 * are checked by #if statements just prior to this routine resulting in: err "maintenance" */
826 cmd_exe( ifbp, HCMD_INQUIRE, action - HCF_ACT_TALLIES + CFG_TALLIES );
827 break;
829 default:
830 HCFASSERT( DO_ASSERT, action )
831 break;
833 //! do not HCFASSERT( rc == HCF_SUCCESS, rc ) /* 30*/
834 HCFLOGEXIT( HCF_TRACE_ACTION )
835 return rc;
836 } // hcf_action
837 #endif // HCF_DL_ONLY
840 /************************************************************************************************************
842 *.MODULE int hcf_cntl( IFBP ifbp, hcf_16 cmd )
843 *.PURPOSE Connect or disconnect a specific port to a specific network.
844 *!! ;???????????????? continue needs more explanation
845 * recovers by means of "continue" when the connect proces in CCX mode fails
846 * Enables or disables data transmission and reception for the NIC.
847 * Activates static NIC configuration for a specific port at connect.
848 * Activates static configuration for all ports at enable.
850 *.ARGUMENTS
851 * ifbp address of the Interface Block
852 * cmd 0x001F: Hermes command (disable, enable, connect, disconnect, continue)
853 * HCF_CNTL_ENABLE Enable
854 * HCF_CNTL_DISABLE Disable
855 * HCF_CNTL_CONTINUE Continue
856 * HCF_CNTL_CONNECT Connect
857 * HCF_CNTL_DISCONNECT Disconnect
858 * 0x0100: command qualifier (continue)
859 * HCMD_RETRY retry flag
860 * 0x0700: port number (connect/disconnect)
861 * HCF_PORT_0 MAC Port 0
862 * HCF_PORT_1 MAC Port 1
863 * HCF_PORT_2 MAC Port 2
864 * HCF_PORT_3 MAC Port 3
865 * HCF_PORT_4 MAC Port 4
866 * HCF_PORT_5 MAC Port 5
867 * HCF_PORT_6 MAC Port 6
869 *.RETURNS
870 * HCF_SUCCESS
871 *!! via cmd_exe
872 * HCF_ERR_NO_NIC
873 * HCF_ERR_DEFUNCT_...
874 * HCF_ERR_TIME_OUT
876 *.DESCRIPTION
877 * The parameter cmd contains a number of subfields.
878 * The actual value for cmd is created by logical or-ing the appropriate mnemonics for the subfields.
879 * The field 0x001F contains the command code
880 * - HCF_CNTL_ENABLE
881 * - HCF_CNTL_DISABLE
882 * - HCF_CNTL_CONNECT
883 * - HCF_CNTL_DISCONNECT
884 * - HCF_CNTL_CONTINUE
886 * For HCF_CNTL_CONTINUE, the field 0x0100 contains the retry flag HCMD_RETRY.
887 * For HCF_CNTL_CONNECT and HCF_CNTL_DISCONNECT, the field 0x0700 contains the port number as HCF_PORT_#.
888 * For Station as well as AccessPoint F/W, MAC Port 0 is the "normal" communication channel.
889 * For AccessPoint F/W, MAC Port 1 through 6 control the WDS links.
891 * Note that despite the names HCF_CNTL_DISABLE and HCF_CNTL_ENABLE, hcf_cntl does not influence the NIC
892 * Interrupts mode.
894 * The Connect is used by the MSF to bring a particular port in an inactive state as far as data transmission
895 * and reception are concerned.
896 * When a particular port is disconnected:
897 * - the F/W disables the receiver for that port.
898 * - the F/W ignores send commands for that port.
899 * - all frames (Receive as well as pending Transmit) for that port on the NIC are discarded.
901 * When the NIC is disabled, above list applies to all ports, i.e. the result is like all ports are
902 * disconnected.
904 * When a particular port is connected:
905 * - the F/W effectuates the static configuration for that port.
906 * - enables the receiver for that port.
907 * - accepts send commands for that port.
909 * Enabling has the following effects:
910 * - the F/W effectuates the static configuration for all ports.
911 * The F/W only updates its static configuration at a transition from disabled to enabled or from
912 * disconnected to connected.
913 * In order to enforce the static configuration, the MSF must assure that such a transition takes place.
914 * Due to such a disable/enable or disconnect/connect sequence, Rx/Tx frames may be lost, in other words,
915 * configuration may impact communication.
916 * - The DMA Engine (if applicable) is enabled.
917 * Note that the Enable Function by itself only enables data transmission and reception, it
918 * does not enable the Interrupt Generation mechanism. This is done by hcf_action.
920 * Disabling has the following effects:
921 *!! ;?????is the following statement really true
922 * - it acts as a disconnect on all ports.
923 * - The DMA Engine (if applicable) is disabled.
925 * For impact of the disable command on the behavior of hcf_dma_tx/rx_get see the appropriate sections.
927 * Although the Enable/Disable and Connect/Disconnect are antonyms, there is no restriction on their sequencing,
928 * in other words, they may be called multiple times in arbitrary sequence without being paired or balanced.
929 * Each time one of these functions is called, the effects of the preceding calls cease.
931 * Assert fails if
932 * - ifbp has a recognizable out-of-range value.
933 * - NIC interrupts are not disabled.
934 * - A command other than Continue, Enable, Disable, Connect or Disconnect is given.
935 * - An invalid combination of the subfields is given or a bit outside the subfields is given.
936 * - any return code besides HCF_SUCCESS.
937 * - reentrancy, may be caused by calling a hcf_function without adequate protection against NIC interrupts or
938 * multi-threading
940 *.DIAGRAM
941 * hcf_cntl takes successively the following actions:
942 *2: If the HCF is in Defunct mode or incompatible with the Primary or Station Supplier in the Hermes,
943 * hcf_cntl() returns immediately with HCF_ERR_NO_NIC;? as status.
944 *8: when the port is disabled, the DMA engine needs to be de-activated, so the host can safely reclaim tx
945 * packets from the tx descriptor chain.
947 *.ENDDOC END DOCUMENTATION
949 ************************************************************************************************************/
951 hcf_cntl( IFBP ifbp, hcf_16 cmd )
953 int rc = HCF_ERR_INCOMP_FW;
954 #if HCF_ASSERT
955 { int x = cmd & HCMD_CMD_CODE;
956 if ( x == HCF_CNTL_CONTINUE ) x &= ~HCMD_RETRY;
957 else if ( (x == HCMD_DISABLE || x == HCMD_ENABLE) && ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ) {
958 x &= ~HFS_TX_CNTL_PORT;
960 HCFASSERT( x==HCF_CNTL_ENABLE || x==HCF_CNTL_DISABLE || HCF_CNTL_CONTINUE ||
961 x==HCF_CNTL_CONNECT || x==HCF_CNTL_DISCONNECT, cmd )
963 #endif // HCF_ASSERT
964 // #if (HCF_SLEEP) & HCF_DDS
965 // HCFASSERT( ifbp->IFB_IntOffCnt != 0xFFFE, cmd )
966 // #endif // HCF_DDS
967 HCFLOGENTRY( HCF_TRACE_CNTL, cmd )
968 if ( ifbp->IFB_CardStat == 0 ) { /*2*/
969 /*6*/ rc = cmd_exe( ifbp, cmd, 0 );
970 #if (HCF_SLEEP) & HCF_DDS
971 ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
972 #endif // HCF_DDS
974 #if HCF_DMA
975 //!rlav : note that this piece of code is always executed, regardless of the DEFUNCT bit in IFB_CardStat.
976 // The reason behind this is that the MSF should be able to get all its DMA resources back from the HCF,
977 // even if the hardware is disfunctional. Practical example under Windows : surprise removal.
978 if ( ifbp->IFB_CntlOpt & USE_DMA ) {
979 hcf_io io_port = ifbp->IFB_IOBase;
980 DESC_STRCT *p;
981 if ( cmd == HCF_CNTL_DISABLE || cmd == HCF_CNTL_ENABLE ) {
982 OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_RESET); /*8*/
983 ifbp->IFB_CntlOpt &= ~DMA_ENABLED;
985 if ( cmd == HCF_CNTL_ENABLE ) {
986 OUT_PORT_DWORD( (io_port + HREG_DMA_CTRL), DMA_CTRLSTAT_GO);
987 /* ;? by rewriting hcf_dma_rx_put you can probably just call hcf_dma_rx_put( ifbp->IFB_FirstDesc[DMA_RX] )
988 * as additional beneficiary side effect, the SOP and EOP bits will also be cleared
990 ifbp->IFB_CntlOpt |= DMA_ENABLED;
991 HCFASSERT( NT_ASSERT, NEVER_TESTED )
992 // make the entire rx descriptor chain DMA-owned, so the DMA engine can (re-)use it.
993 if ( ( p = ifbp->IFB_FirstDesc[DMA_RX] ) != NULL ) { //;? Think this over again in the light of the new chaining strategy
994 if ( 1 ) { //begin alternative
995 HCFASSERT( NT_ASSERT, NEVER_TESTED )
996 put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX], DMA_RX );
997 if ( ifbp->IFB_FirstDesc[DMA_RX] ) {
998 put_frame_lst( ifbp, ifbp->IFB_FirstDesc[DMA_RX]->next_desc_addr, DMA_RX );
1000 } else {
1001 while ( p ) {
1002 //p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1003 p->BUF_CNT |= DESC_DMA_OWNED;
1004 p = p->next_desc_addr;
1006 // a rx chain is available so hand it over to the DMA engine
1007 p = ifbp->IFB_FirstDesc[DMA_RX];
1008 OUT_PORT_DWORD( (io_port + HREG_RXDMA_PTR32), p->desc_phys_addr);
1009 } //end alternative
1013 #endif // HCF_DMA
1014 HCFASSERT( rc == HCF_SUCCESS, rc )
1015 HCFLOGEXIT( HCF_TRACE_CNTL )
1016 return rc;
1017 } // hcf_cntl
1020 /************************************************************************************************************
1022 *.MODULE int hcf_connect( IFBP ifbp, hcf_io io_base )
1023 *.PURPOSE Grants access right for the HCF to the IFB.
1024 * Initializes Card and HCF housekeeping.
1026 *.ARGUMENTS
1027 * ifbp (near) address of the Interface Block
1028 * io_base non-USB: I/O Base address of the NIC (connect)
1029 * non-USB: HCF_DISCONNECT
1030 * USB: HCF_CONNECT, HCF_DISCONNECT
1032 *.RETURNS
1033 * HCF_SUCCESS
1034 * HCF_ERR_INCOMP_PRI
1035 * HCF_ERR_INCOMP_FW
1036 * HCF_ERR_DEFUNCT_CMD_SEQ
1037 *!! HCF_ERR_NO_NIC really returned ;?
1038 * HCF_ERR_NO_NIC
1039 * HCF_ERR_TIME_OUT
1041 * MSF-accessible fields of Result Block:
1042 * IFB_IOBase entry parameter io_base
1043 * IFB_IORange HREG_IO_RANGE (0x40/0x80)
1044 * IFB_Version version of the IFB layout
1045 * IFB_FWIdentity CFG_FW_IDENTITY_STRCT, specifies the identity of the
1046 * "running" F/W, i.e. tertiary F/W under normal conditions
1047 * IFB_FWSup CFG_SUP_RANGE_STRCT, specifies the supplier range of
1048 * the "running" F/W, i.e. tertiary F/W under normal conditions
1049 * IFB_HSISup CFG_SUP_RANGE_STRCT, specifies the HW/SW I/F range of the NIC
1050 * IFB_PRIIdentity CFG_PRI_IDENTITY_STRCT, specifies the Identity of the Primary F/W
1051 * IFB_PRISup CFG_SUP_RANGE_STRCT, specifies the supplier range of the Primary F/W
1052 * all other all MSF accessible fields, which are not specified above, are zero-filled
1054 *.CONDITIONS
1055 * It is the responsibility of the MSF to assure the correctness of the I/O Base address.
1057 * Note: hcf_connect defaults to NIC interrupt disabled mode, i.e. as if hcf_action( HCF_ACT_INT_OFF )
1058 * was called.
1060 *.DESCRIPTION
1061 * hcf_connect passes the MSF-defined location of the IFB to the HCF and grants or revokes access right for the
1062 * HCF to the IFB. Revoking is done by specifying HCF_DISCONNECT rather than an I/O address for the parameter
1063 * io_base. Every call of hcf_connect in "connect" mode, must eventually be followed by a call of hcf_connect
1064 * in "disconnect" mode. Clalling hcf_connect in "connect"/"disconnect" mode can not be nested.
1065 * The IFB address must be used as a handle with all subsequent HCF-function calls and the HCF uses the IFB
1066 * address as a handle when it performs a call(back) of an MSF-function (i.e. msf_assert).
1068 * Note that not only the MSF accessible fields are cleared, but also all internal housekeeping
1069 * information is re-initialized.
1070 * This implies that all settings which are done via hcf_action and hcf_put_info (e.g. CFG_MB_ASSERT, CFG_REG_MB,
1071 * CFG_REG_INFO_LOG) must be done again. The only field which is not cleared, is IFB_MSFSup.
1073 * If HCF_INT_ON is selected as compile option, NIC interrupts are disabled.
1075 * Assert fails if
1076 * - ifbp is not properly aligned ( ref chapter HCF_ALIGN in 4.1.1)
1077 * - I/O Base Address is not a multiple of 0x40 (note: 0x0000 is explicitly allowed).
1079 *.DIAGRAM
1081 *0: Throughout hcf_connect you need to distinguish the connect from the disconnect case, which requires
1082 * some attention about what to use as "I/O" address when for which purpose.
1084 *2a: Reset H-II by toggling reset bit in IO-register on and off.
1085 * The HCF_TYPE_PRELOADED caters for the DOS environment where H-II is loaded by a separate program to
1086 * overcome the 64k size limit posed on DOS drivers.
1087 * The macro OPW is not yet useable because the IFB_IOBase field is not set.
1088 * Note 1: hopefully the clearing and initializing of the IFB (see below) acts as a delay which meets the
1089 * specification for S/W reset
1090 * Note 2: it turns out that on some H/W constellations, the clock to access the EEProm is not lowered
1091 * to an appropriate frequency by HREG_IO_SRESET. By giving an HCMD_INI first, this problem is worked around.
1092 *2b: Experimentally it is determined over a wide range of F/W versions that waiting for the for Cmd bit in
1093 * Ev register gives a workable strategy. The available documentation does not give much clues.
1094 *4: clear and initialize the IFB
1095 * The HCF house keeping info is designed such that zero is the appropriate initial value for as much as
1096 * feasible IFB-items.
1097 * The readable fields mentioned in the description section and some HCF specific fields are given their
1098 * actual value.
1099 * IFB_TickIni is initialized at best guess before calibration
1100 * Hcf_connect defaults to "no interrupt generation" (implicitly achieved by the zero-filling).
1101 *6: Register compile-time linked MSF Routine and set default filter level
1102 * cast needed to get around the "near" problem in DOS COM model
1103 * er C2446: no conversion from void (__near __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1104 * to void (__far __cdecl *)(unsigned char __far *,unsigned int,unsigned short,int)
1105 *8: If a command is apparently still active (as indicated by the Busy bit in Cmd register) this may indicate a
1106 * blocked cmd pipe line. To unblock the following actions are done:
1107 * - Ack everything
1108 * - Wait for Busy bit drop in Cmd register
1109 * - Wait for Cmd bit raise in Ev register
1110 * The two waits are combined in a single HCF_WAIT_WHILE to optimize memory size. If either of these waits
1111 * fail (prot_cnt becomes 0), then something is serious wrong. Rather than PANICK, the assumption is that the
1112 * next cmd_exe will fail, causing the HCF to go into DEFUNCT mode
1113 *10: Ack everything to unblock a (possibly blocked) cmd pipe line
1114 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
1115 * pending on non-initial calls
1116 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
1117 * Hermes Initialize
1118 *12: Only H-II NEEDS the Hermes Initialize command. Due to the different semantics for H-I and H-II
1119 * Initialize command, init() does not (and can not, since it is called e.g. after a download) execute the
1120 * Hermes Initialize command. Executing the Hermes Initialize command for H-I would not harm but not do
1121 * anything useful either, so it is skipped.
1122 * The return status of cmd_exe is ignored. It is assumed that if cmd_exe fails, init fails too
1123 *14: use io_base as a flag to merge hcf_connect and hcf_disconnect into 1 routine
1124 * the call to init and its subsequent call of cmd_exe will return HCF_ERR_NO_NIC if appropriate. This status
1125 * is (badly) needed by some legacy combination of NT4 and card services which do not yield an I/O address in
1126 * time.
1128 *.NOTICE
1129 * On platforms where the NULL-pointer is not a bit-pattern of all zeros, the zero-filling of the IFB results
1130 * in an incorrect initialization of pointers.
1131 * The implementation of the MailBox manipulation in put_mb_info protects against the absence of a MailBox
1132 * based on IFB_MBSize, IFB_MBWp and ifbp->IFB_MBRp. This has ramifications on the initialization of the
1133 * MailBox via hcf_put_info with the CFG_REG_MB type, but it prevents dependency on the "NULL-"ness of
1134 * IFB_MBp.
1136 *.NOTICE
1137 * There are a number of problems when asserting and logging hcf_connect, e.g.
1138 * - Asserting on re-entrancy of hcf_connect by means of
1139 * "HCFASSERT( (ifbp->IFB_AssertTrace & HCF_ASSERT_CONNECT) == 0, 0 )" is not useful because IFB contents
1140 * are undefined
1141 * - Asserting before the IFB is cleared will cause mdd_assert() to interpret the garbage in IFB_AssertRtn
1142 * as a routine address
1143 * Therefore HCFTRACE nor HCFLOGENTRY is called by hcf_connect.
1144 *.ENDDOC END DOCUMENTATION
1146 ************************************************************************************************************/
1148 hcf_connect( IFBP ifbp, hcf_io io_base )
1150 int rc = HCF_SUCCESS;
1151 hcf_io io_addr;
1152 hcf_32 prot_cnt;
1153 hcf_8 *q;
1154 LTV_STRCT x;
1155 #if HCF_ASSERT
1156 hcf_16 xa = ifbp->IFB_FWIdentity.typ;
1157 /* is assumed to cause an assert later on if hcf_connect is called without intervening hcf_disconnect.
1158 * xa == CFG_FW_IDENTITY in subsequent calls without preceding hcf_disconnect,
1159 * xa == 0 in subsequent calls with preceding hcf_disconnect,
1160 * xa == "garbage" (any value except CFG_FW_IDENTITY is acceptable) in the initial call
1162 #endif // HCF_ASSERT
1164 if ( io_base == HCF_DISCONNECT ) { //disconnect
1165 io_addr = ifbp->IFB_IOBase;
1166 OPW( HREG_INT_EN, 0 ); //;?workaround against dying F/W on subsequent hcf_connect calls
1167 } else { //connect /* 0 */
1168 io_addr = io_base;
1171 #if 0 //;? if a subsequent hcf_connect is preceeded by an hcf_disconnect the wakeup is not needed !!
1172 #if HCF_SLEEP
1173 OUT_PORT_WORD( .....+HREG_IO, HREG_IO_WAKEUP_ASYNC ); //OPW not yet useable
1174 MSF_WAIT(800); // MSF-defined function to wait n microseconds.
1175 note that MSF_WAIT uses not yet defined!!!! IFB_IOBase and IFB_TickIni (via PROT_CNT_INI)
1176 so be carefull if this code is restored
1177 #endif // HCF_SLEEP
1178 #endif // 0
1180 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 //switch clock back for SEEPROM access !!!
1181 OUT_PORT_WORD( io_addr + HREG_CMD, HCMD_INI ); //OPW not yet useable
1182 prot_cnt = INI_TICK_INI;
1183 HCF_WAIT_WHILE( (IN_PORT_WORD( io_addr + HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1184 OUT_PORT_WORD( (io_addr + HREG_IO), HREG_IO_SRESET ); //OPW not yet useable /* 2a*/
1185 #endif // HCF_TYPE_PRELOADED
1186 for ( q = (hcf_8*)(&ifbp->IFB_Magic); q > (hcf_8*)ifbp; *--q = 0 ) /*NOP*/; /* 4 */
1187 ifbp->IFB_Magic = HCF_MAGIC;
1188 ifbp->IFB_Version = IFB_VERSION;
1189 #if defined MSF_COMPONENT_ID //a new IFB demonstrates how dirty the solution is
1190 xxxx[xxxx_PRI_IDENTITY_OFFSET] = NULL; //IFB_PRIIdentity placeholder 0xFD02
1191 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = NULL; //IFB_PRISup placeholder 0xFD03
1192 #endif // MSF_COMPONENT_ID
1193 #if (HCF_TALLIES) & ( HCF_TALLIES_NIC | HCF_TALLIES_HCF )
1194 ifbp->IFB_TallyLen = 1 + 2 * (HCF_NIC_TAL_CNT + HCF_HCF_TAL_CNT); //convert # of Tallies to L value for LTV
1195 ifbp->IFB_TallyTyp = CFG_TALLIES; //IFB_TallyTyp: set T value
1196 #endif // HCF_TALLIES_NIC / HCF_TALLIES_HCF
1197 ifbp->IFB_IOBase = io_addr; //set IO_Base asap, so asserts via HREG_SW_2 don't harm
1198 ifbp->IFB_IORange = HREG_IO_RANGE;
1199 ifbp->IFB_CntlOpt = USE_16BIT;
1200 #if HCF_ASSERT
1201 assert_ifbp = ifbp;
1202 ifbp->IFB_AssertLvl = 1;
1203 #if (HCF_ASSERT) & HCF_ASSERT_LNK_MSF_RTN
1204 if ( io_base != HCF_DISCONNECT ) {
1205 ifbp->IFB_AssertRtn = (MSF_ASSERT_RTNP)msf_assert; /* 6 */
1207 #endif // HCF_ASSERT_LNK_MSF_RTN
1208 #if (HCF_ASSERT) & HCF_ASSERT_MB //build the structure to pass the assert info to hcf_put_info
1209 ifbp->IFB_AssertStrct.len = sizeof(ifbp->IFB_AssertStrct)/sizeof(hcf_16) - 1;
1210 ifbp->IFB_AssertStrct.typ = CFG_MB_INFO;
1211 ifbp->IFB_AssertStrct.base_typ = CFG_MB_ASSERT;
1212 ifbp->IFB_AssertStrct.frag_cnt = 1;
1213 ifbp->IFB_AssertStrct.frag_buf[0].frag_len =
1214 ( offsetof(IFB_STRCT, IFB_AssertLvl) - offsetof(IFB_STRCT, IFB_AssertLine) ) / sizeof(hcf_16);
1215 ifbp->IFB_AssertStrct.frag_buf[0].frag_addr = &ifbp->IFB_AssertLine;
1216 #endif // HCF_ASSERT_MB
1217 #endif // HCF_ASSERT
1218 IF_PROT_TIME( prot_cnt = ifbp->IFB_TickIni = INI_TICK_INI; )
1219 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
1220 //!! No asserts before Reset-bit in HREG_IO is cleared
1221 OPW( HREG_IO, 0x0000 ); //OPW useable /* 2b*/
1222 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1223 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) )
1224 IF_PROT_TIME( if ( prot_cnt ) prot_cnt = ifbp->IFB_TickIni; )
1225 #endif // HCF_TYPE_PRELOADED
1226 //!! No asserts before Reset-bit in HREG_IO is cleared
1227 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF0 ) ) //just to proof that the complete assert machinery is working
1228 HCFASSERT( xa != CFG_FW_IDENTITY, 0 ) // assert if hcf_connect is called without intervening hcf_disconnect.
1229 HCFASSERT( ((hcf_32)(void*)ifbp & (HCF_ALIGN-1) ) == 0, (hcf_32)(void*)ifbp )
1230 HCFASSERT( (io_addr & 0x003F) == 0, io_addr )
1231 //if Busy bit in Cmd register
1232 if (IPW( HREG_CMD ) & HCMD_BUSY ) { /* 8 */
1233 //. Ack all to unblock a (possibly) blocked cmd pipe line
1234 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1235 //. Wait for Busy bit drop in Cmd register
1236 //. Wait for Cmd bit raise in Ev register
1237 HCF_WAIT_WHILE( ( IPW( HREG_CMD ) & HCMD_BUSY ) && (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 );
1238 IF_PROT_TIME( HCFASSERT( prot_cnt, IPW( HREG_EV_STAT) ) ) /* if prot_cnt == 0, cmd_exe will fail, causing DEFUNCT */
1240 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
1241 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0 /*12*/
1242 (void)cmd_exe( ifbp, HCMD_INI, 0 );
1243 #endif // HCF_TYPE_PRELOADED
1244 if ( io_base != HCF_DISCONNECT ) {
1245 rc = init( ifbp ); /*14*/
1246 if ( rc == HCF_SUCCESS ) {
1247 x.len = 2;
1248 x.typ = CFG_NIC_BUS_TYPE;
1249 (void)hcf_get_info( ifbp, &x );
1250 ifbp->IFB_BusType = x.val[0];
1251 //CFG_NIC_BUS_TYPE not supported -> default 32 bits/DMA, MSF has to overrule via CFG_CNTL_OPT
1252 if ( x.len == 0 || x.val[0] == 0x0002 || x.val[0] == 0x0003 ) {
1253 #if (HCF_IO) & HCF_IO_32BITS
1254 ifbp->IFB_CntlOpt &= ~USE_16BIT; //reset USE_16BIT
1255 #endif // HCF_IO_32BITS
1256 #if HCF_DMA
1257 ifbp->IFB_CntlOpt |= USE_DMA; //SET DMA
1258 #else
1259 ifbp->IFB_IORange = 0x40 /*i.s.o. HREG_IO_RANGE*/;
1260 #endif // HCF_DMA
1263 } else HCFASSERT( ( ifbp->IFB_Magic ^= HCF_MAGIC ) == 0, ifbp->IFB_Magic ) /*NOP*/;
1264 /* of above HCFASSERT only the side effect is needed, NOP in case HCFASSERT is dummy */
1265 ifbp->IFB_IOBase = io_base; /* 0*/
1266 return rc;
1267 } // hcf_connect
1269 #if HCF_DMA
1270 /************************************************************************************************************
1271 * Function get_frame_lst
1272 * - resolve the "last host-owned descriptor" problems when a descriptor list is reclaimed by the MSF.
1274 * The FrameList to be reclaimed as well as the DescriptorList always start in IFB_FirstDesc[tx_rx_flag]
1275 * and this is always the "current" DELWA Descriptor.
1277 * If a FrameList is available, the last descriptor of the FrameList to turned into a new DELWA Descriptor:
1278 * - a copy is made from the information in the last descriptor of the FrameList into the current
1279 * DELWA Descriptor
1280 * - the remainder of the DescriptorList is detached from the copy by setting the next_desc_addr at NULL
1281 * - the DMA control bits of the copy are cleared to do not confuse the MSF
1282 * - the copy of the last descriptor (i.e. the "old" DELWA Descriptor) is chained to the prev Descriptor
1283 * of the FrameList, thus replacing the original last Descriptor of the FrameList.
1284 * - IFB_FirstDesc is changed to the address of that replaced (original) last descriptor of the FrameList,
1285 * i.e. the "new" DELWA Descriptor.
1287 * This function makes a copy of that last host-owned descriptor, so the MSF will get a copy of the descriptor.
1288 * On top of that, it adjusts DMA related fields in the IFB structure.
1289 // perform a copying-scheme to circumvent the 'last host owned descriptor cannot be reclaimed' limitation imposed by H2.5's DMA hardware design
1290 // a 'reclaim descriptor' should be available in the HCF:
1292 * Returns: address of the first descriptor of the FrameList
1294 8: Be careful once you start re-ordering the steps in the copy process, that it still works for cases
1295 * of FrameLists of 1, 2 and more than 2 descriptors
1297 * Input parameters:
1298 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1300 ************************************************************************************************************/
1301 HCF_STATIC DESC_STRCT*
1302 get_frame_lst( IFBP ifbp, int tx_rx_flag )
1305 DESC_STRCT *head = ifbp->IFB_FirstDesc[tx_rx_flag];
1306 DESC_STRCT *copy, *p, *prev;
1308 HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag )
1309 //if FrameList
1310 if ( head ) {
1311 //. search for last descriptor of first FrameList
1312 p = prev = head;
1313 while ( ( p->BUF_SIZE & DESC_EOP ) == 0 && p->next_desc_addr ) {
1314 if ( ( ifbp->IFB_CntlOpt & DMA_ENABLED ) == 0 ) { //clear control bits when disabled
1315 p->BUF_CNT &= DESC_CNT_MASK;
1317 prev = p;
1318 p = p->next_desc_addr;
1320 //. if DMA enabled
1321 if ( ifbp->IFB_CntlOpt & DMA_ENABLED ) {
1322 //. . if last descriptor of FrameList is DMA owned
1323 //. . or if FrameList is single (DELWA) Descriptor
1324 if ( p->BUF_CNT & DESC_DMA_OWNED || head->next_desc_addr == NULL ) {
1325 //. . . refuse to return FrameList to caller
1326 head = NULL;
1330 //if returnable FrameList found
1331 if ( head ) {
1332 //. if FrameList is single (DELWA) Descriptor (implies DMA disabled)
1333 if ( head->next_desc_addr == NULL ) {
1334 //. . clear DescriptorList
1335 /*;?ifbp->IFB_LastDesc[tx_rx_flag] =*/ ifbp->IFB_FirstDesc[tx_rx_flag] = NULL;
1336 //. else
1337 } else {
1338 //. . strip hardware-related bits from last descriptor
1339 //. . remove DELWA Descriptor from head of DescriptorList
1340 copy = head;
1341 head = head->next_desc_addr;
1342 //. . exchange first (Confined) and last (possibly imprisoned) Descriptor
1343 copy->buf_phys_addr = p->buf_phys_addr;
1344 copy->buf_addr = p->buf_addr;
1345 copy->BUF_SIZE = p->BUF_SIZE &= DESC_CNT_MASK; //get rid of DESC_EOP and possibly DESC_SOP
1346 copy->BUF_CNT = p->BUF_CNT &= DESC_CNT_MASK; //get rid of DESC_DMA_OWNED
1347 #if (HCF_EXT) & HCF_DESC_STRCT_EXT
1348 copy->DESC_MSFSup = p->DESC_MSFSup;
1349 #endif // HCF_DESC_STRCT_EXT
1350 //. . turn into a DELWA Descriptor
1351 p->buf_addr = NULL;
1352 //. . chain copy to prev /* 8*/
1353 prev->next_desc_addr = copy;
1354 //. . detach remainder of the DescriptorList from FrameList
1355 copy->next_desc_addr = NULL;
1356 copy->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1357 //. . save the new start (i.e. DELWA Descriptor) in IFB_FirstDesc
1358 ifbp->IFB_FirstDesc[tx_rx_flag] = p;
1360 //. strip DESC_SOP from first descriptor
1361 head->BUF_SIZE &= DESC_CNT_MASK;
1362 //head->BUF_CNT &= DESC_CNT_MASK; get rid of DESC_DMA_OWNED
1363 head->next_desc_phys_addr = 0xDEAD0000; //! just to be nice, not really needed
1365 //return the just detached FrameList (if any)
1366 return head;
1367 } // get_frame_lst
1370 /************************************************************************************************************
1371 * Function put_frame_lst
1373 * This function
1375 * Returns: address of the first descriptor of the FrameList
1377 * Input parameters:
1378 * tx_rx_flag : specifies 'transmit' or 'receive' descriptor.
1380 * The following list should be kept in sync with hcf_dma_tx/rx_put, in order to get them in the WCI-spec !!!!
1381 * Assert fails if
1382 * - DMA is not enabled
1383 * - descriptor list is NULL
1384 * - a descriptor in the descriptor list is not double word aligned
1385 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1386 * - the DELWA descriptor is not a "singleton" DescriptorList.
1387 * - the DELWA descriptor is not the first Descriptor supplied
1388 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1389 * - Possibly more checks could be added !!!!!!!!!!!!!
1391 *.NOTICE
1392 * The asserts marked with *sc* are really sanity checks for the HCF, they can (supposedly) not be influenced
1393 * by incorrect MSF behavior
1395 // The MSF is required to supply the HCF with a single descriptor for MSF tx reclaim purposes.
1396 // This 'reclaim descriptor' can be recognized by the fact that its buf_addr field is zero.
1397 *********************************************************************************************
1398 * Although not required from a hardware perspective:
1399 * - make each descriptor in this rx-chain DMA-owned.
1400 * - Also set the count to zero. EOP and SOP bits are also cleared.
1401 *********************************************************************************************/
1402 HCF_STATIC void
1403 put_frame_lst( IFBP ifbp, DESC_STRCT *descp, int tx_rx_flag )
1405 DESC_STRCT *p = descp;
1406 hcf_16 port;
1408 HCFASSERT( ifbp->IFB_CntlOpt & USE_DMA, ifbp->IFB_CntlOpt) //only hcf_dma_tx_put must also be DMA_ENABLED
1409 HCFASSERT( tx_rx_flag == DMA_RX || tx_rx_flag == DMA_TX, tx_rx_flag )
1410 HCFASSERT( p , 0 )
1412 while ( p ) {
1413 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
1414 HCFASSERT( (p->BUF_CNT & ~DESC_CNT_MASK) == 0, p->BUF_CNT )
1415 HCFASSERT( (p->BUF_SIZE & ~DESC_CNT_MASK) == 0, p->BUF_SIZE )
1416 p->BUF_SIZE &= DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1417 p->BUF_CNT &= tx_rx_flag == DMA_RX ? 0 : DESC_CNT_MASK; //!!this SHOULD be superfluous in case of correct MSF
1418 p->BUF_CNT |= DESC_DMA_OWNED;
1419 if ( p->next_desc_addr ) {
1420 // HCFASSERT( p->buf_addr && p->buf_phys_addr && p->BUF_SIZE && +/- p->BUF_SIZE, ... )
1421 HCFASSERT( p->next_desc_addr->desc_phys_addr, (hcf_32)p->next_desc_addr )
1422 p->next_desc_phys_addr = p->next_desc_addr->desc_phys_addr;
1423 } else { //
1424 p->next_desc_phys_addr = 0;
1425 if ( p->buf_addr == NULL ) { // DELWA Descriptor
1426 HCFASSERT( descp == p, (hcf_32)descp ) //singleton DescriptorList
1427 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_FirstDesc[tx_rx_flag])
1428 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag] == NULL, (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag])
1429 descp->BUF_CNT = 0; //&= ~DESC_DMA_OWNED;
1430 ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1431 // part of alternative ifbp->IFB_LastDesc[tx_rx_flag] = ifbp->IFB_FirstDesc[tx_rx_flag] = descp;
1432 // if "recycling" a FrameList
1433 // (e.g. called from hcf_cntl( HCF_CNTL_ENABLE )
1434 // . prepare for activation DMA controller
1435 // part of alternative descp = descp->next_desc_addr;
1436 } else { //a "real" FrameList, hand it over to the DMA engine
1437 HCFASSERT( ifbp->IFB_FirstDesc[tx_rx_flag], (hcf_32)descp )
1438 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag], (hcf_32)descp )
1439 HCFASSERT( ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr == NULL,
1440 (hcf_32)ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr)
1441 // p->buf_cntl.cntl_stat |= DESC_DMA_OWNED;
1442 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_addr = descp;
1443 ifbp->IFB_LastDesc[tx_rx_flag]->next_desc_phys_addr = descp->desc_phys_addr;
1444 port = HREG_RXDMA_PTR32;
1445 if ( tx_rx_flag ) {
1446 p->BUF_SIZE |= DESC_EOP; // p points at the last descriptor in the caller-supplied descriptor chain
1447 descp->BUF_SIZE |= DESC_SOP;
1448 port = HREG_TXDMA_PTR32;
1450 OUT_PORT_DWORD( (ifbp->IFB_IOBase + port), descp->desc_phys_addr );
1452 ifbp->IFB_LastDesc[tx_rx_flag] = p;
1454 p = p->next_desc_addr;
1456 } // put_frame_lst
1459 /************************************************************************************************************
1461 *.MODULE DESC_STRCT* hcf_dma_rx_get( IFBP ifbp )
1462 *.PURPOSE decapsulate a message and provides that message to the MSF.
1463 * reclaim all descriptors in the rx descriptor chain.
1465 *.ARGUMENTS
1466 * ifbp address of the Interface Block
1468 *.RETURNS
1469 * pointer to a FrameList
1471 *.DESCRIPTION
1472 * hcf_dma_rx_get is intended to return a received frame when such a frame is deposited in Host memory by the
1473 * DMA engine. In addition hcf_dma_rx_get can be used to reclaim all descriptors in the rx descriptor chain
1474 * when the DMA Engine is disabled, e.g. as part of a driver unloading strategy.
1475 * hcf_dma_rx_get must be called repeatedly by the MSF when hcf_service_nic signals availability of a rx frame
1476 * through the HREG_EV_RDMAD flag of IFB_DmaPackets. The calling must stop when a NULL pointer is returned, at
1477 * which time the HREG_EV_RDMAD flag is also cleared by the HCF to arm the mechanism for the next frame
1478 * reception.
1479 * Regardless whether the DMA Engine is currently enabled (as controlled via hcf_cntl), if the DMA controller
1480 * deposited an Rx-frame in the Rx-DescriptorList, this frame is detached from the Rx-DescriptorList,
1481 * transformed into a FrameList (i.e. updating the housekeeping fields in the descriptors) and returned to the
1482 * caller.
1483 * If no such Rx-frame is available in the Rx-DescriptorList, the behavior of hcf_dma_rx_get depends on the
1484 * status of the DMA Engine.
1485 * If the DMA Engine is enabled, a NULL pointer is returned.
1486 * If the DMA Engine is disabled, the following strategy is used:
1487 * - the complete Rx-DescriptorList is returned. The DELWA Descriptor is not part of the Rx-DescriptorList.
1488 * - If there is no Rx-DescriptorList, the DELWA Descriptor is returned.
1489 * - If there is no DELWA Descriptor, a NULL pointer is returned.
1491 * If the MSF performs an disable/enable sequence without exhausting the Rx-DescriptorList as described above,
1492 * the enable command will reset all house keeping information, i.e. already received but not yet by the MSF
1493 * retrieved frames are lost and the next frame will be received starting with the oldest descriptor.
1495 * The HCF can be used in 2 fashions: with and without decapsulation for data transfer.
1496 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1497 * If appropriate, decapsulation is done by moving some data inside the buffers and updating the descriptors
1498 * accordingly.
1499 *!! ;?????where did I describe why a simple manipulation with the count values does not suffice?
1501 *.DIAGRAM
1503 *.ENDDOC END DOCUMENTATION
1505 ************************************************************************************************************/
1507 DESC_STRCT*
1508 hcf_dma_rx_get (IFBP ifbp)
1510 DESC_STRCT *descp; // pointer to start of FrameList
1512 descp = get_frame_lst( ifbp, DMA_RX );
1513 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket
1515 //skip decapsulation at confined descriptor
1516 #if (HCF_ENCAP) == HCF_ENC
1517 #if (HCF_TYPE) & HCF_TYPE_CCX
1518 if ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF )
1519 #endif // HCF_TYPE_CCX
1521 int i;
1522 DESC_STRCT *p = descp->next_desc_addr; //pointer to 2nd descriptor of frame
1523 HCFASSERT(p, 0)
1524 // The 2nd descriptor contains (maybe) a SNAP header plus part or whole of the payload.
1525 //determine decapsulation sub-flag in RxFS
1526 i = *(wci_recordp)&descp->buf_addr[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
1527 if ( i == HFS_STAT_TUNNEL ||
1528 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&p->buf_addr[HCF_DASA_SIZE] ) != ENC_TUNNEL )) {
1529 // The 2nd descriptor contains a SNAP header plus part or whole of the payload.
1530 HCFASSERT( p->BUF_CNT == (p->buf_addr[5] + (p->buf_addr[4]<<8) + 2*6 + 2 - 8), p->BUF_CNT )
1531 // perform decapsulation
1532 HCFASSERT(p->BUF_SIZE >=8, p->BUF_SIZE)
1533 // move SA[2:5] in the second buffer to replace part of the SNAP header
1534 for ( i=3; i >= 0; i--) p->buf_addr[i+8] = p->buf_addr[i];
1535 // copy DA[0:5], SA[0:1] from first buffer to second buffer
1536 for ( i=0; i<8; i++) p->buf_addr[i] = descp->buf_addr[HFS_ADDR_DEST + i];
1537 // make first buffer shorter in count
1538 descp->BUF_CNT = HFS_ADDR_DEST;
1541 #endif // HCF_ENC
1542 if ( descp == NULL ) ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_RDMAD; //;?could be integrated into get_frame_lst
1543 HCFLOGEXIT( HCF_TRACE_DMA_RX_GET )
1544 return descp;
1545 } // hcf_dma_rx_get
1548 /************************************************************************************************************
1550 *.MODULE void hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1551 *.PURPOSE supply buffers for receive purposes.
1552 * supply the Rx-DELWA descriptor.
1554 *.ARGUMENTS
1555 * ifbp address of the Interface Block
1556 * descp address of a DescriptorList
1558 *.RETURNS N.A.
1560 *.DESCRIPTION
1561 * This function is called by the MSF to supply the HCF with new/more buffers for receive purposes.
1562 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1563 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1564 * As a consequence, some additional constaints apply to the number of descriptor and the buffers associated
1565 * with the first 2 descriptors. Independent of the encapsulation feature, the COUNT fields are ignored.
1566 * A special case is the supplying of the DELWA descriptor, which must be supplied as the first descriptor.
1568 * Assert fails if
1569 * - ifbp has a recognizable out-of-range value.
1570 * - NIC interrupts are not disabled while required by parameter action.
1571 * - in case decapsulation by the HCF is selected:
1572 * - The first databuffer does not have the exact size corresponding with the RxFS up to the 802.3 DestAddr
1573 * field (== 29 words).
1574 * - The FrameList does not consists of at least 2 Descriptors.
1575 * - The second databuffer does not have the minimum size of 8 bytes.
1576 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1577 *!! them in the WCI-spec !!!!
1578 * - DMA is not enabled
1579 * - descriptor list is NULL
1580 * - a descriptor in the descriptor list is not double word aligned
1581 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1582 * - the DELWA descriptor is not a "singleton" DescriptorList.
1583 * - the DELWA descriptor is not the first Descriptor supplied
1584 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1585 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1587 *.DIAGRAM
1590 *.ENDDOC END DOCUMENTATION
1592 ************************************************************************************************************/
1593 void
1594 hcf_dma_rx_put( IFBP ifbp, DESC_STRCT *descp )
1597 HCFLOGENTRY( HCF_TRACE_DMA_RX_PUT, 0xDA01 )
1598 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
1599 HCFASSERT_INT
1601 put_frame_lst( ifbp, descp, DMA_RX );
1602 #if HCF_ASSERT && (HCF_ENCAP) == HCF_ENC
1603 if ( descp->buf_addr ) {
1604 HCFASSERT( descp->BUF_SIZE == HCF_DMA_RX_BUF1_SIZE, descp->BUF_SIZE )
1605 HCFASSERT( descp->next_desc_addr, 0 ) // first descriptor should be followed by another descriptor
1606 // The second DB is for SNAP and payload purposes. It should be a minimum of 12 bytes in size.
1607 HCFASSERT( descp->next_desc_addr->BUF_SIZE >= 12, descp->next_desc_addr->BUF_SIZE )
1609 #endif // HCFASSERT / HCF_ENC
1610 HCFLOGEXIT( HCF_TRACE_DMA_RX_PUT )
1611 } // hcf_dma_rx_put
1614 /************************************************************************************************************
1616 *.MODULE DESC_STRCT* hcf_dma_tx_get( IFBP ifbp )
1617 *.PURPOSE DMA mode: reclaims and decapsulates packets in the tx descriptor chain if:
1618 * - A Tx packet has been copied from host-RAM into NIC-RAM by the DMA engine
1619 * - The Hermes/DMAengine have been disabled
1621 *.ARGUMENTS
1622 * ifbp address of the Interface Block
1624 *.RETURNS
1625 * pointer to a reclaimed Tx packet.
1627 *.DESCRIPTION
1628 * impact of the disable command:
1629 * When a non-empty pool of Tx descriptors exists (created by means of hcf_dma_put_tx), the MSF
1630 * is supposed to empty that pool by means of hcf_dma_tx_get calls after the disable in an
1631 * disable/enable sequence.
1633 *.DIAGRAM
1635 *.NOTICE
1637 *.ENDDOC END DOCUMENTATION
1639 ************************************************************************************************************/
1640 DESC_STRCT*
1641 hcf_dma_tx_get( IFBP ifbp )
1643 DESC_STRCT *descp; // pointer to start of FrameList
1645 descp = get_frame_lst( ifbp, DMA_TX );
1646 if ( descp && descp->buf_addr ) //!be aware of the missing curly bracket
1647 //skip decapsulation at confined descriptor
1648 #if (HCF_ENCAP) == HCF_ENC
1649 if ( ( descp->BUF_CNT == HFS_TYPE )
1650 #if (HCF_TYPE) & HCF_TYPE_CCX
1651 || ( descp->BUF_CNT == HFS_DAT )
1652 #endif // HCF_TYPE_CCX
1653 ) { // perform decapsulation if needed
1654 descp->next_desc_addr->buf_phys_addr -= HCF_DASA_SIZE;
1655 descp->next_desc_addr->BUF_CNT += HCF_DASA_SIZE;
1657 #endif // HCF_ENC
1658 if ( descp == NULL ) { //;?could be integrated into get_frame_lst
1659 ifbp->IFB_DmaPackets &= (hcf_16)~HREG_EV_TDMAD;
1661 HCFLOGEXIT( HCF_TRACE_DMA_TX_GET )
1662 return descp;
1663 } // hcf_dma_tx_get
1666 /************************************************************************************************************
1668 *.MODULE void hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1669 *.PURPOSE puts a packet in the Tx DMA queue in host ram and kicks off the TxDma engine.
1670 * supply the Tx-DELWA descriptor.
1672 *.ARGUMENTS
1673 * ifbp address of the Interface Block
1674 * descp address of Tx Descriptor Chain (i.e. a single Tx frame)
1675 * tx_cntl indicates MAC-port and (Hermes) options
1677 *.RETURNS N.A.
1679 *.DESCRIPTION
1680 * The HCF can be used in 2 fashions: with and without encapsulation for data transfer.
1681 * This is controlled at compile time by the HCF_ENC bit of the HCF_ENCAP system constant.
1683 * Regardless of the HCF_ENCAP system constant, the descriptor list created to describe the frame to be
1684 * transmitted, must supply space to contain the 802.11 header, preceding the actual frame to be transmitted.
1685 * Basically, this only supplies working storage to the HCF which passes this on to the DMA engine.
1686 * As a consequence the contents of this space do not matter.
1687 * Nevertheless BUF_CNT must take in account this storage.
1688 * This working space to contain the 802.11 header may not be fragmented, the first buffer must be
1689 * sufficiently large to contain at least the 802.11 header, i.e. HFS_ADDR_DEST (29 words or 0x3A bytes).
1690 * This way, the HCF can simply, regardless whether or not the HCF encapsulates the frame, write the parameter
1691 * tx_cntl at offset 0x36 (HFS_TX_CNTL) in the first buffer.
1692 * Note that it is allowed to have part or all of the actual frame represented by the first descriptor as long
1693 * as the requirement for storage for the 802.11 header is met, i.e. the 802.3 frame starts at offset
1694 * HFS_ADDR_DEST.
1695 * Except for the Assert on the 1st buffer in case of Encapsualtion, the SIZE fields are ignored.
1697 * In case the encapsulation feature is compiled in, there are the following additional requirements.
1698 * o The BUF_CNT of the first buffer changes from a minimum of 0x3A bytes to exactly 0x3A, i.e. the workspace
1699 * to store the 802.11 header
1700 * o The BUF_SIZE of the first buffer is at least the space needed to store the
1701 * - 802.11 header (29 words)
1702 * - 802.3 header, i.e. 12 bytes addressing information and 2 bytes length field
1703 * - 6 bytes SNAP-header
1704 * This results in 39 words or 0x4E bytes or HFS_TYPE.
1705 * Note that if the BUF_SIZE is larger than 0x4E, this surplus is not used.
1706 * o The actual frame begins in the 2nd descriptor (which is already implied by the BUF_CNT == 0x3A requirement) and the associated buffer contains at least the 802.3 header, i.e. the 14 bytes representing addressing information and length/type field
1708 * When the HCF does not encapsulates (i.e. length/type field <= 1500), no changes are made to descriptors
1709 * or buffers.
1711 * When the HCF actually encapsulates (i.e. length/type field > 1500), it successively writes, starting at
1712 * offset HFS_ADDR_DEST (0x3A) in the first buffer:
1713 * - the 802.3 addressing information, copied from the begin of the second buffer
1714 * - the frame length, derived from the total length of the individual fragments, corrected for the SNAP
1715 * header length and Type field and ignoring the Destination Address, Source Address and Length field
1716 * - the appropriate snap header (Tunnel or 1042, depending on the value of the type field).
1718 * The information in the first two descriptors is adjusted accordingly:
1719 * - the first descriptor count is changed from 0x3A to 0x4E (HFS_TYPE), which matches 0x3A + 12 + 2 + 6
1720 * - the second descriptor count is decreased by 12, being the moved addressing information
1721 * - the second descriptor (physical) buffer address is increased by 12.
1723 * When the descriptors are returned by hcf_dma_tx_get, the transformation of the first two descriptors is
1724 * undone.
1726 * Under any of the above scenarios, the assert BUF_CNT <= BUF_SIZE must be true for all descriptors
1727 * In case of encapsulation, BUF_SIZE of the 1st descriptor is asserted to be at least HFS_TYPE (0x4E), so it is NOT tested.
1729 * Assert fails if
1730 * - ifbp has a recognizable out-of-range value.
1731 * - tx_cntl has a recognizable out-of-range value.
1732 * - NIC interrupts are not disabled while required by parameter action.
1733 * - in case encapsulation by the HCF is selected:
1734 * - The FrameList does not consists of at least 2 Descriptors.
1735 * - The first databuffer does not contain exactly the (space for) the 802.11 header (== 28 words)
1736 * - The first databuffer does not have a size to additionally accomodate the 802.3 header and the
1737 * SNAP header of the frame after encapsulation (== 39 words).
1738 * - The second databuffer does not contain at least DA, SA and 'type/length' (==14 bytes or 7 words)
1739 *!! The 2nd part of the list of asserts should be kept in sync with put_frame_lst, in order to get
1740 *!! them in the WCI-spec !!!!
1741 * - DMA is not enabled
1742 * - descriptor list is NULL
1743 * - a descriptor in the descriptor list is not double word aligned
1744 * - a count of size field of a descriptor contains control bits, i.e. bits in the high order nibble.
1745 * - the DELWA descriptor is not a "singleton" DescriptorList.
1746 * - the DELWA descriptor is not the first Descriptor supplied
1747 * - a non_DMA descriptor is supplied before the DELWA Descriptor is supplied
1748 *!! - Possibly more checks could be added !!!!!!!!!!!!!
1749 *.DIAGRAM
1751 *.NOTICE
1753 *.ENDDOC END DOCUMENTATION
1756 *1: Write tx_cntl parameter to HFS_TX_CNTL field into the Hermes-specific header in buffer 1
1757 *4: determine whether encapsulation is needed and write the type (tunnel or 1042) already at the appropriate
1758 * offset in the 1st buffer
1759 *6: Build the encapsualtion enveloppe in the free space at the end of the 1st buffer
1760 * - Copy DA/SA fields from the 2nd buffer
1761 * - Calculate total length of the message (snap-header + type-field + the length of all buffer fragments
1762 * associated with the 802.3 frame (i.e all descriptors except the first), but not the DestinationAddress,
1763 * SourceAddress and lenght-field)
1764 * Assert the message length
1765 * Write length. Note that the message is in BE format, hence on LE platforms the length must be converted
1766 * ;? THIS IS NOT WHAT CURRENTLY IS IMPLEMENTED
1767 * - Write snap header. Note that the last byte of the snap header is NOT copied, that byte is already in
1768 * place as result of the call to hcf_encap.
1769 * Note that there are many ways to skin a cat. To express the offsets in the 1st buffer while writing
1770 * the snap header, HFS_TYPE is choosen as a reference point to make it easier to grasp that the snap header
1771 * and encapsualtion type are at least relative in the right.
1772 *8: modify 1st descriptor to reflect moved part of the 802.3 header + Snap-header
1773 * modify 2nd descriptor to skip the moved part of the 802.3 header (DA/SA
1774 *10: set each descriptor to 'DMA owned', clear all other control bits.
1775 * Set SOP bit on first descriptor. Set EOP bit on last descriptor.
1776 *12: Either append the current frame to an existing descriptor list or
1777 *14: create a list beginning with the current frame
1778 *16: remember the new end of the list
1779 *20: hand the frame over to the DMA engine
1780 ************************************************************************************************************/
1781 void
1782 hcf_dma_tx_put( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
1784 DESC_STRCT *p = descp->next_desc_addr;
1785 int i;
1787 #if HCF_ASSERT
1788 int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
1789 HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl )
1790 #endif // HCF_ASSERT
1791 HCFLOGENTRY( HCF_TRACE_DMA_TX_PUT, 0xDA03 )
1792 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
1793 HCFASSERT_INT
1794 HCFASSERT( ( ifbp->IFB_CntlOpt & (USE_DMA|DMA_ENABLED) ) == (USE_DMA|DMA_ENABLED), ifbp->IFB_CntlOpt)
1796 if ( descp->buf_addr ) {
1797 *(hcf_16*)(descp->buf_addr + HFS_TX_CNTL) = tx_cntl; /*1*/
1798 #if (HCF_ENCAP) == HCF_ENC
1799 HCFASSERT( descp->next_desc_addr, 0 ) //at least 2 descripors
1800 HCFASSERT( descp->BUF_CNT == HFS_ADDR_DEST, descp->BUF_CNT ) //exact length required for 1st buffer
1801 HCFASSERT( descp->BUF_SIZE >= HCF_DMA_TX_BUF1_SIZE, descp->BUF_SIZE ) //minimal storage for encapsulation
1802 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT ); //at least DA, SA and 'type' in 2nd buffer
1804 #if (HCF_TYPE) & HCF_TYPE_CCX
1805 /* if we are doing PPK +/- CMIC, or we are sending a DDP frame */
1806 if ( ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
1807 ( ( p->BUF_CNT >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
1808 ( p->buf_addr[12] == 0xAA ) && ( p->buf_addr[13] == 0xAA ) &&
1809 ( p->buf_addr[14] == 0x03 ) && ( p->buf_addr[15] == 0x00 ) &&
1810 ( p->buf_addr[16] == 0x40 ) && ( p->buf_addr[17] == 0x96 ) &&
1811 ( p->buf_addr[18] == 0x00 ) && ( p->buf_addr[19] == 0x00 )))
1813 /* copy the DA/SA to the first buffer */
1814 for ( i = 0; i < HCF_DASA_SIZE; i++ ) {
1815 descp->buf_addr[i + HFS_ADDR_DEST] = p->buf_addr[i];
1817 /* calculate the length of the second fragment only */
1818 i = 0;
1819 do { i += p->BUF_CNT; } while( p = p->next_desc_addr );
1820 i -= HCF_DASA_SIZE ;
1821 /* convert the length field to big endian, using the endian friendly macros */
1822 i = CNV_SHORT_TO_BIG(i); //!! this converts ONLY on LE platforms, how does that relate to the non-CCX code
1823 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = (hcf_16)i;
1824 descp->BUF_CNT = HFS_DAT;
1825 // modify 2nd descriptor to skip the 'Da/Sa' fields
1826 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
1827 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE;
1829 else
1830 #endif // HCF_TYPE_CCX
1832 descp->buf_addr[HFS_TYPE-1] = hcf_encap(&descp->next_desc_addr->buf_addr[HCF_DASA_SIZE]); /*4*/
1833 if ( descp->buf_addr[HFS_TYPE-1] != ENC_NONE ) {
1834 for ( i=0; i < HCF_DASA_SIZE; i++ ) { /*6*/
1835 descp->buf_addr[i + HFS_ADDR_DEST] = descp->next_desc_addr->buf_addr[i];
1837 i = sizeof(snap_header) + 2 - ( 2*6 + 2 );
1838 do { i += p->BUF_CNT; } while ( ( p = p->next_desc_addr ) != NULL );
1839 *(hcf_16*)(&descp->buf_addr[HFS_LEN]) = CNV_END_SHORT(i); //!! this converts on ALL platforms, how does that relate to the CCX code
1840 for ( i=0; i < sizeof(snap_header) - 1; i++) {
1841 descp->buf_addr[HFS_TYPE - sizeof(snap_header) + i] = snap_header[i];
1843 descp->BUF_CNT = HFS_TYPE; /*8*/
1844 descp->next_desc_addr->buf_phys_addr += HCF_DASA_SIZE;
1845 descp->next_desc_addr->BUF_CNT -= HCF_DASA_SIZE;
1848 #endif // HCF_ENC
1850 put_frame_lst( ifbp, descp, DMA_TX );
1851 HCFLOGEXIT( HCF_TRACE_DMA_TX_PUT )
1852 } // hcf_dma_tx_put
1854 #endif // HCF_DMA
1856 #if (HCF_DL_ONLY) == 0
1857 /************************************************************************************************************
1859 *.MODULE hcf_8 hcf_encap( wci_bufp type )
1860 *.PURPOSE test whether RFC1042 or Bridge-Tunnel encapsulation is needed.
1862 *.ARGUMENTS
1863 * type (Far) pointer to the (Big Endian) Type/Length field in the message
1865 *.RETURNS
1866 * ENC_NONE len/type is "len" ( (BIG_ENDIAN)type <= 1500 )
1867 * ENC_TUNNEL len/type is "type" and 0x80F3 or 0x8137
1868 * ENC_1042 len/type is "type" but not 0x80F3 or 0x8137
1870 *.CONDITIONS
1871 * NIC Interrupts d.c
1873 *.DESCRIPTION
1874 * Type must point to the Len/Type field of the message, this is the 2-byte field immediately after the 6 byte
1875 * Destination Address and 6 byte Source Address. The 2 successive bytes addressed by type are interpreted as
1876 * a Big Endian value. If that value is less than or equal to 1500, the message is assumed to be in 802.3
1877 * format. Otherwise the message is assumed to be in Ethernet-II format. Depending on the value of Len/Typ,
1878 * Bridge Tunnel or RFC1042 encapsulation is needed.
1880 *.DIAGRAM
1882 * 1: presume 802.3, hence preset return value at ENC_NONE
1883 * 2: convert type from "network" Endian format to native Endian
1884 * 4: the litmus test to distinguish type and len.
1885 * The hard code "magic" value of 1500 is intentional and should NOT be replaced by a mnemonic because it is
1886 * not related at all to the maximum frame size supported by the Hermes.
1887 * 6: check type against:
1888 * 0x80F3 //AppleTalk Address Resolution Protocol (AARP)
1889 * 0x8137 //IPX
1890 * to determine the type of encapsulation
1892 *.ENDDOC END DOCUMENTATION
1894 ************************************************************************************************************/
1895 #if HCF_ENCAP //i.e HCF_ENC or HCF_ENC_SUP
1896 #if ! ( (HCF_ENCAP) & HCF_ENC_SUP )
1897 HCF_STATIC
1898 #endif // HCF_ENCAP
1899 hcf_8
1900 hcf_encap( wci_bufp type )
1903 hcf_8 rc = ENC_NONE; /* 1 */
1904 hcf_16 t = (hcf_16)(*type<<8) + *(type+1); /* 2 */
1906 if ( t > 1500 ) { /* 4 */
1907 if ( t == 0x8137 || t == 0x80F3 ) {
1908 rc = ENC_TUNNEL; /* 6 */
1909 } else {
1910 rc = ENC_1042;
1913 return rc;
1914 } // hcf_encap
1915 #endif // HCF_ENCAP
1916 #endif // HCF_DL_ONLY
1919 /************************************************************************************************************
1921 *.MODULE int hcf_get_info( IFBP ifbp, LTVP ltvp )
1922 *.PURPOSE Obtains transient and persistent configuration information from the Card and from the HCF.
1924 *.ARGUMENTS
1925 * ifbp address of the Interface Block
1926 * ltvp address of LengthTypeValue structure specifying the "what" and the "how much" of the
1927 * information to be collected from the HCF or from the Hermes
1929 *.RETURNS
1930 * HCF_ERR_LEN The provided buffer was too small
1931 * HCF_SUCCESS Success
1932 *!! via cmd_exe ( type >= CFG_RID_FW_MIN )
1933 * HCF_ERR_NO_NIC NIC removed during retrieval
1934 * HCF_ERR_TIME_OUT Expected Hermes event did not occure in expected time
1935 *!! via cmd_exe and setup_bap (type >= CFG_RID_FW_MIN )
1936 * HCF_ERR_DEFUNCT_... HCF is in defunct mode (bits 0x7F reflect cause)
1938 *.DESCRIPTION
1939 * The T-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the RID wanted. The RID
1940 * information identified by the T-field is copied into the V-field.
1941 * On entry, the L-field specifies the size of the buffer, also called the "Initial DataLength". The L-value
1942 * includes the size of the T-field, but not the size of the L-field itself.
1943 * On return, the L-field indicates the number of words actually contained by the Type and Value fields.
1944 * As the size of the Type field in the LTV-record is included in the "Initial DataLength" of the record, the
1945 * V-field can contain at most "Initial DataLength" - 1 words of data.
1946 * Copying stops if either the complete Information is copied or if the number of words indicated by the
1947 * "Initial DataLength" were copied. The "Initial DataLength" acts as a safe guard against Configuration
1948 * Information blocks that have different sizes for different F/W versions, e.g. when later versions support
1949 * more tallies than earlier versions.
1950 * If the size of Value field of the RID exceeds the size of the "Initial DataLength" -1, as much data
1951 * as fits is copied, and an error status of HCF_ERR_LEN is returned.
1953 * It is the responsibility of the MSF to detect card removal and re-insertion and not call the HCF when the
1954 * NIC is absent. The MSF cannot, however, timely detect a Card removal if the Card is removed while
1955 * hcf_get_info is in progress. Therefore, the HCF performs its own check on Card presence after the read
1956 * operation of the NIC data. If the Card is not present or removed during the execution of hcf_get_info,
1957 * HCF_ERR_NO_NIC is returned and the content of the Data Buffer is unpredictable. This check is not performed
1958 * in case of the "HCF embedded" pseudo RIDs like CFG_TALLIES.
1960 * Assert fails if
1961 * - ifbp has a recognizable out-of-range value.
1962 * - reentrancy, may be caused by calling hcf_functions without adequate protection
1963 * against NIC interrupts or multi-threading.
1964 * - ltvp is a NULL pointer.
1965 * - length field of the LTV-record at entry is 0 or 1 or has an excessive value (i.e. exceeds HCF_MAX_LTV).
1966 * - type field of the LTV-record is invalid.
1968 *.DIAGRAM
1969 * Hcf_get_mb_info copies the contents of the oldest MailBox Info block in the MailBox to PC RAM. If len is
1970 * less than the size of the MailBox Info block, only as much as fits in the PC RAM buffer is copied. After
1971 * the copying the MailBox Read pointer is updated to point to the next MailBox Info block, hence the
1972 * remainder of an "oversized" MailBox Info block is lost. The truncation of the MailBox Info block is NOT
1973 * reflected in the return status. Note that hcf_get_info guarantees the length of the PC RAM buffer meets
1974 * the minimum requirements of at least 2, so no PC RAM buffer overrun.
1976 * Calling hcf_get_mb_info when their is no MailBox Info block available or when there is no MailBox at all,
1977 * results in a "NULL" MailBox Info block.
1979 *12: see NOTICE
1980 *17: The return status of cmd_wait and the first hcfio_in_string can be ignored, because when one fails, the
1981 * other fails via the IFB_DefunctStat mechanism
1982 *20: "HCFASSERT( rc == HCF_SUCCESS, rc )" is not suitable because this will always trigger as side effect of
1983 * the HCFASSERT in hcf_put_info which calls hcf_get_info to figure out whether the RID exists at all.
1985 *.NOTICE
1987 * "HCF embedded" pseudo RIDs:
1988 * CFG_MB_INFO, CFG_TALLIES, CFG_DRV_IDENTITY, CFG_DRV_SUP_RANGE, CFG_DRV_ACT_RANGES_PRI,
1989 * CFG_DRV_ACT_RANGES_STA, CFG_DRV_ACT_RANGES_HSI
1990 * Note the HCF_ERR_LEN is NOT adequately set, when L >= 2 but less than needed
1992 * Remarks: Transfers operation information and transient and persistent configuration information from the
1993 * Card and from the HCF to the MSF.
1994 * The exact layout of the provided data structure depends on the action code. Copying stops if either the
1995 * complete Configuration Information is copied or if the number of bytes indicated by len is copied. Len
1996 * acts as a safe guard against Configuration Information blocks which have different sizes for different
1997 * Hermes versions, e.g. when later versions support more tallies than earlier versions. It is a conscious
1998 * decision that unused parts of the PC RAM buffer are not cleared.
2000 * Remarks: The only error against which is protected is the "Read error" as result of Card removal. Only the
2001 * last hcf_io_string need to be protected because if the first fails the second will fail as well. Checking
2002 * for cmd_exe errors is supposed superfluous because problems in cmd_exe are already caught or will be
2003 * caught by hcf_enable.
2005 * CFG_MB_INFO: copy the oldest MailBox Info Block or the "null" block if none available.
2007 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
2008 * - during the pseudo-asynchronous Hermes commands (diagnose, download) only CFG_MB_INFO is acceptable
2009 * - some codes (e.g. CFG_TALLIES) are explicitly handled by the HCF which implies that these codes
2010 * are valid
2011 * - all other codes in the range 0xFC00 through 0xFFFF are passed to the Hermes. The Hermes returns an
2012 * LTV record with a zero value in the L-field for all Typ-codes it does not recognize. This is
2013 * defined and intended behavior, so HCF_ASSERT does not catch on this phenomena.
2014 * - all remaining codes are invalid and cause an ASSERT.
2016 *.CONDITIONS
2017 * In case of USB, HCF_MAX_MSG ;?USED;? to limit the amount of data that can be retrieved via hcf_get_info.
2020 *.ENDDOC END DOCUMENTATION
2022 ************************************************************************************************************/
2024 hcf_get_info( IFBP ifbp, LTVP ltvp )
2027 int rc = HCF_SUCCESS;
2028 hcf_16 len = ltvp->len;
2029 hcf_16 type = ltvp->typ;
2030 wci_recordp p = &ltvp->len; //destination word pointer (in LTV record)
2031 hcf_16 *q = NULL; /* source word pointer Note!! DOS COM can't cope with FAR
2032 * as a consequence MailBox must be near which is usually true anyway
2034 int i;
2036 HCFLOGENTRY( HCF_TRACE_GET_INFO, ltvp->typ )
2037 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2038 HCFASSERT_INT
2039 HCFASSERT( ltvp, 0 )
2040 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, MERGE_2( ltvp->typ, ltvp->len ) )
2042 ltvp->len = 0; //default to: No Info Available
2043 #if defined MSF_COMPONENT_ID || (HCF_EXT) & HCF_EXT_MB //filter out all specials
2044 for ( i = 0; ( q = xxxx[i] ) != NULL && q[1] != type; i++ ) /*NOP*/;
2045 #endif // MSF_COMPONENT_ID / HCF_EXT_MB
2046 #if HCF_TALLIES
2047 if ( type == CFG_TALLIES ) { /*3*/
2048 (void)hcf_action( ifbp, HCF_ACT_TALLIES );
2049 q = (hcf_16*)&ifbp->IFB_TallyLen;
2051 #endif // HCF_TALLIES
2052 #if (HCF_EXT) & HCF_EXT_MB
2053 if ( type == CFG_MB_INFO ) {
2054 if ( ifbp->IFB_MBInfoLen ) {
2055 if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
2056 ifbp->IFB_MBRp = 0; //;?Probably superfluous
2058 q = &ifbp->IFB_MBp[ifbp->IFB_MBRp];
2059 ifbp->IFB_MBRp += *q + 1; //update read pointer
2060 if ( ifbp->IFB_MBp[ifbp->IFB_MBRp] == 0xFFFF ) {
2061 ifbp->IFB_MBRp = 0;
2063 ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp];
2066 #endif // HCF_EXT_MB
2067 if ( q != NULL ) { //a special or CFG_TALLIES or CFG_MB_INFO
2068 i = min( len, *q ) + 1; //total size of destination (including T-field)
2069 while ( i-- ) {
2070 *p++ = *q;
2071 #if (HCF_TALLIES) & HCF_TALLIES_RESET
2072 if ( q > &ifbp->IFB_TallyTyp && type == CFG_TALLIES ) {
2073 *q = 0;
2075 #endif // HCF_TALLIES_RESET
2076 q++;
2078 } else { // not a special nor CFG_TALLIES nor CFG_MB_INFO
2079 if ( type == CFG_CNTL_OPT ) { //read back effective options
2080 ltvp->len = 2;
2081 ltvp->val[0] = ifbp->IFB_CntlOpt;
2082 #if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2083 } else if ( type == CFG_PROD_DATA ) { //only needed for some test tool on top of H-II NDIS driver
2084 hcf_io io_port;
2085 wci_bufp pt; //pointer with the "right" type, just to help ease writing macros with embedded assembly
2086 OPW( HREG_AUX_PAGE, (hcf_16)(PLUG_DATA_OFFSET >> 7) );
2087 OPW( HREG_AUX_OFFSET, (hcf_16)(PLUG_DATA_OFFSET & 0x7E) );
2088 io_port = ifbp->IFB_IOBase + HREG_AUX_DATA; //to prevent side effects of the MSF-defined macro
2089 p = ltvp->val; //destination char pointer (in LTV record)
2090 if ( ( i = len - 1 ) > 0 ) {
2091 pt = (wci_bufp)p; //just to help ease writing macros with embedded assembly
2092 IN_PORT_STRING_8_16( io_port, pt, i ); //space used by T: -1
2094 } else if ( type == CFG_CMD_HCF ) {
2095 #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2096 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ) //only Hermes register access supported
2097 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2098 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ) //Check Register space
2099 ltvp->len = min( len, 4 ); //RESTORE ltv length
2100 P->add_info = IPW( P->mode );
2102 #undef P
2103 #endif // HCF_EXT_NIC_ACCESS
2104 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2105 } else if (type == CFG_FW_PRINTF) {
2106 rc = fw_printf(ifbp, (CFG_FW_PRINTF_STRCT*)ltvp);
2107 #endif // HCF_ASSERT_PRINTF
2108 } else if ( type >= CFG_RID_FW_MIN ) {
2109 //;? by using HCMD_BUSY option when calling cmd_exe, using a get_frag with length 0 just to set up the
2110 //;? BAP and calling cmd_cmpl, you could merge the 2 Busy waits. Whether this really helps (and what
2111 //;? would be the optimal sequence in cmd_exe and get_frag) would have to be MEASURED
2112 /*17*/ if ( ( rc = cmd_exe( ifbp, HCMD_ACCESS, type ) ) == HCF_SUCCESS &&
2113 ( rc = setup_bap( ifbp, type, 0, IO_IN ) ) == HCF_SUCCESS ) {
2114 get_frag( ifbp, (wci_bufp)&ltvp->len, 2*len+2 BE_PAR(2) );
2115 if ( IPW( HREG_STAT ) == 0xFFFF ) { //NIC removal test
2116 ltvp->len = 0;
2117 HCFASSERT( DO_ASSERT, type )
2120 /*12*/ } else HCFASSERT( DO_ASSERT, type ) /*NOP*/; //NOP in case HCFASSERT is dummy
2122 if ( len < ltvp->len ) {
2123 ltvp->len = len;
2124 if ( rc == HCF_SUCCESS ) {
2125 rc = HCF_ERR_LEN;
2128 HCFASSERT( rc == HCF_SUCCESS || ( rc == HCF_ERR_LEN && ifbp->IFB_AssertTrace & 1<<HCF_TRACE_PUT_INFO ),
2129 MERGE_2( type, rc ) ) /*20*/
2130 HCFLOGEXIT( HCF_TRACE_GET_INFO )
2131 return rc;
2132 } // hcf_get_info
2135 /************************************************************************************************************
2137 *.MODULE int hcf_put_info( IFBP ifbp, LTVP ltvp )
2138 *.PURPOSE Transfers operation and configuration information to the Card and to the HCF.
2140 *.ARGUMENTS
2141 * ifbp address of the Interface Block
2142 * ltvp specifies the RID (as defined by Hermes I/F) or pseudo-RID (as defined by WCI)
2144 *.RETURNS
2145 * HCF_SUCCESS
2146 *!! via cmd_exe
2147 * HCF_ERR_NO_NIC NIC removed during data retrieval
2148 * HCF_ERR_TIME_OUT Expected F/W event did not occur in time
2149 * HCF_ERR_DEFUNCT_...
2150 *!! via download CFG_DLNV_START <= type <= CFG_DL_STOP
2151 *!! via put_info CFG_RID_CFG_MIN <= type <= CFG_RID_CFG_MAX
2152 *!! via put_frag
2154 *.DESCRIPTION
2155 * The L-field of the LTV-record (provided by the MSF in parameter ltvp) specifies the size of the buffer.
2156 * The L-value includes the size of the T-field, but not the size of the L-field.
2157 * The T- field specifies the RID placed in the V-field by the MSF.
2159 * Not all CFG-codes can be used for hcf_put_info. The following CFG-codes are valid for hcf_put_info:
2160 * o One of the CFG-codes in the group "Network Parameters, Static Configuration Entities"
2161 * Changes made by hcf_put_info to CFG_codes in this group will not affect the F/W
2162 * and HCF behavior until hcf_cntl_port( HCF_PORT_ENABLE) is called.
2163 * o One of the CFG-codes in the group "Network Parameters, Dynamic Configuration Entities"
2164 * Changes made by hcf_put_info to CFG_codes will affect the F/W and HCF behavior immediately.
2165 * o CFG_PROG.
2166 * This code is used to initiate and terminate the process to download data either to
2167 * volatile or to non-volatile RAM on the NIC as well as for the actual download.
2168 * o CFG-codes related to the HCF behavior.
2169 * The related CFG-codes are:
2170 * - CFG_REG_MB
2171 * - CFG_REG_ASSERT_RTNP
2172 * - CFG_REG_INFO_LOG
2173 * - CFG_CMD_NIC
2174 * - CFG_CMD_DONGLE
2175 * - CFG_CMD_HCF
2176 * - CFG_NOTIFY
2178 * All LTV-records "unknown" to the HCF are forwarded to the F/W.
2180 * Assert fails if
2181 * - ifbp has a recognizable out-of-range value.
2182 * - ltvp is a NULL pointer.
2183 * - hcf_put_info was called without prior call to hcf_connect
2184 * - type field of the LTV-record is invalid, i.e. neither HCF nor F/W can handle the value.
2185 * - length field of the LTV-record at entry is less than 1 or exceeds MAX_LTV_SIZE.
2186 * - registering a MailBox with size less than 60 or a non-aligned buffer address is used.
2187 * - reentrancy, may be caused by calling hcf_functions without adequate protection against
2188 * NIC interrupts or multi-threading.
2190 *.DIAGRAM
2192 *.NOTICE
2193 * Remarks: In case of Hermes Configuration LTVs, the codes for the type are "cleverly" chosen to be
2194 * identical to the RID. Hermes Configuration information is copied from the provided data structure into the
2195 * Card.
2196 * In case of HCF Configuration LTVs, the type values are chosen in a range which does not overlap the
2197 * RID-range.
2199 *20:
2201 *.ENDDOC END DOCUMENTATION
2203 ************************************************************************************************************/
2206 hcf_put_info( IFBP ifbp, LTVP ltvp )
2208 int rc = HCF_SUCCESS;
2210 HCFLOGENTRY( HCF_TRACE_PUT_INFO, ltvp->typ )
2211 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2212 HCFASSERT_INT
2213 HCFASSERT( ltvp, 0 )
2214 HCFASSERT( 1 < ltvp->len && ltvp->len <= HCF_MAX_LTV + 1, ltvp->len )
2216 //all codes between 0xFA00 and 0xFCFF are passed to Hermes
2217 #if (HCF_TYPE) & HCF_TYPE_WPA
2218 { hcf_16 i;
2219 hcf_32 FAR * key_p;
2221 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY || ltvp->typ == CFG_ADD_TKIP_MAPPED_KEY ) {
2222 key_p = (hcf_32*)((CFG_ADD_TKIP_MAPPED_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2223 i = TX_KEY; //i.e. TxKeyIndicator == 1, KeyID == 0
2224 if ( ltvp->typ == CFG_ADD_TKIP_DEFAULT_KEY ) {
2225 key_p = (hcf_32*)((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tx_mic_key;
2226 i = CNV_LITTLE_TO_SHORT(((CFG_ADD_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)->tkip_key_id_info);
2228 if ( i & TX_KEY ) { /* TxKeyIndicator == 1
2229 (either really set by MSF in case of DEFAULT or faked by HCF in case of MAPPED ) */
2230 ifbp->IFB_MICTxCntl = (hcf_16)( HFS_TX_CNTL_MIC | (i & KEY_ID )<<8 );
2231 ifbp->IFB_MICTxKey[0] = CNV_LONGP_TO_LITTLE( key_p );
2232 ifbp->IFB_MICTxKey[1] = CNV_LONGP_TO_LITTLE( (key_p+1) );
2234 i = ( i & KEY_ID ) * 2;
2235 ifbp->IFB_MICRxKey[i] = CNV_LONGP_TO_LITTLE( (key_p+2) );
2236 ifbp->IFB_MICRxKey[i+1] = CNV_LONGP_TO_LITTLE( (key_p+3) );
2238 #define P ((CFG_REMOVE_TKIP_DEFAULT_KEY_STRCT FAR *)ltvp)
2239 if ( ( ltvp->typ == CFG_REMOVE_TKIP_MAPPED_KEY ) ||
2240 ( ltvp->typ == CFG_REMOVE_TKIP_DEFAULT_KEY &&
2241 ( (ifbp->IFB_MICTxCntl >> 8) & KEY_ID ) == CNV_SHORT_TO_LITTLE(P->tkip_key_id )
2243 ) { ifbp->IFB_MICTxCntl = 0; } //disable MIC-engine
2244 #undef P
2246 #endif // HCF_TYPE_WPA
2248 if ( ltvp->typ == CFG_PROG ) {
2249 rc = download( ifbp, (CFG_PROG_STRCT FAR *)ltvp );
2250 } else switch (ltvp->typ) {
2251 #if (HCF_ASSERT) & HCF_ASSERT_RT_MSF_RTN
2252 case CFG_REG_ASSERT_RTNP: //Register MSF Routines
2253 #define P ((CFG_REG_ASSERT_RTNP_STRCT FAR *)ltvp)
2254 ifbp->IFB_AssertRtn = P->rtnp;
2255 // ifbp->IFB_AssertLvl = P->lvl; //TODO not yet supported so default is set in hcf_connect
2256 HCFASSERT( DO_ASSERT, MERGE_2( HCF_ASSERT, 0xCAF1 ) ) //just to proof that the complete assert machinery is working
2257 #undef P
2258 break;
2259 #endif // HCF_ASSERT_RT_MSF_RTN
2260 #if (HCF_EXT) & HCF_EXT_INFO_LOG
2261 case CFG_REG_INFO_LOG: //Register Log filter
2262 ifbp->IFB_RIDLogp = ((CFG_RID_LOG_STRCT FAR*)ltvp)->recordp;
2263 break;
2264 #endif // HCF_EXT_INFO_LOG
2265 case CFG_CNTL_OPT: //overrule option
2266 HCFASSERT( ( ltvp->val[0] & ~(USE_DMA | USE_16BIT) ) == 0, ltvp->val[0] )
2267 if ( ( ltvp->val[0] & USE_DMA ) == 0 ) ifbp->IFB_CntlOpt &= ~USE_DMA;
2268 ifbp->IFB_CntlOpt |= ltvp->val[0] & USE_16BIT;
2269 break;
2270 #if (HCF_EXT) & HCF_EXT_MB
2271 case CFG_REG_MB: //Register MailBox
2272 #define P ((CFG_REG_MB_STRCT FAR *)ltvp)
2273 HCFASSERT( ( (hcf_32)P->mb_addr & 0x0001 ) == 0, (hcf_32)P->mb_addr )
2274 HCFASSERT( (P)->mb_size >= 60, (P)->mb_size )
2275 ifbp->IFB_MBp = P->mb_addr;
2276 /* if no MB present, size must be 0 for ;?the old;? put_info_mb to work correctly */
2277 ifbp->IFB_MBSize = ifbp->IFB_MBp == NULL ? 0 : P->mb_size;
2278 ifbp->IFB_MBWp = ifbp->IFB_MBRp = 0;
2279 ifbp->IFB_MBp[0] = 0; //flag the MailBox as empty
2280 ifbp->IFB_MBInfoLen = 0;
2281 HCFASSERT( ifbp->IFB_MBSize >= 60 || ifbp->IFB_MBp == NULL, ifbp->IFB_MBSize )
2282 #undef P
2283 break;
2284 case CFG_MB_INFO: //store MailBoxInfoBlock
2285 rc = put_info_mb( ifbp, (CFG_MB_INFO_STRCT FAR *)ltvp );
2286 break;
2287 #endif // HCF_EXT_MB
2289 #if (HCF_EXT) & HCF_EXT_NIC_ACCESS
2290 case CFG_CMD_NIC:
2291 #define P ((CFG_CMD_NIC_STRCT FAR *)ltvp)
2292 OPW( HREG_PARAM_2, P->parm2 );
2293 OPW( HREG_PARAM_1, P->parm1 );
2294 rc = cmd_exe( ifbp, P->cmd, P->parm0 );
2295 P->hcf_stat = (hcf_16)rc;
2296 P->stat = IPW( HREG_STAT );
2297 P->resp0 = IPW( HREG_RESP_0 );
2298 P->resp1 = IPW( HREG_RESP_1 );
2299 P->resp2 = IPW( HREG_RESP_2 );
2300 P->ifb_err_cmd = ifbp->IFB_ErrCmd;
2301 P->ifb_err_qualifier = ifbp->IFB_ErrQualifier;
2302 #undef P
2303 break;
2304 case CFG_CMD_HCF:
2305 #define P ((CFG_CMD_HCF_STRCT FAR *)ltvp)
2306 HCFASSERT( P->cmd == CFG_CMD_HCF_REG_ACCESS, P->cmd ) //only Hermes register access supported
2307 if ( P->cmd == CFG_CMD_HCF_REG_ACCESS ) {
2308 HCFASSERT( P->mode < ifbp->IFB_IOBase, P->mode ) //Check Register space
2309 OPW( P->mode, P->add_info);
2311 #undef P
2312 break;
2313 #endif // HCF_EXT_NIC_ACCESS
2315 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
2316 case CFG_FW_PRINTF_BUFFER_LOCATION:
2317 ifbp->IFB_FwPfBuff = *(CFG_FW_PRINTF_BUFFER_LOCATION_STRCT*)ltvp;
2318 break;
2319 #endif // HCF_ASSERT_PRINTF
2321 default: //pass everything unknown above the "FID" range to the Hermes or Dongle
2322 rc = put_info( ifbp, ltvp );
2324 //DO NOT !!! HCFASSERT( rc == HCF_SUCCESS, rc ) /* 20 */
2325 HCFLOGEXIT( HCF_TRACE_PUT_INFO )
2326 return rc;
2327 } // hcf_put_info
2330 #if (HCF_DL_ONLY) == 0
2331 /************************************************************************************************************
2333 *.MODULE int hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2334 *.PURPOSE All: decapsulate a message.
2335 * pre-HermesII.5: verify MIC.
2336 * non-USB, non-DMA mode: Transfer a message from the NIC to the Host and acknowledge reception.
2337 * USB: Transform a message from proprietary USB format to 802.3 format
2339 *.ARGUMENTS
2340 * ifbp address of the Interface Block
2341 * descp Pointer to the Descriptor List location.
2342 * offset USB: not used
2343 * non-USB: specifies the beginning of the data to be obtained (0 corresponds with DestAddr field
2344 * of frame).
2346 *.RETURNS
2347 * HCF_SUCCESS No SSN error ( or HCF_ERR_MIC already reported by hcf_service_nic)
2348 * HCF_ERR_MIC message contains an erroneous MIC ( HCF_SUCCESS is reported if HCF_ERR_MIC is already
2349 * reported by hcf_service_nic)
2350 * HCF_ERR_NO_NIC NIC removed during data retrieval
2351 * HCF_ERR_DEFUNCT...
2353 *.DESCRIPTION
2354 * The Receive Message Function can be executed by the MSF to obtain the Data Info fields of the message that
2355 * is reported to be available by the Service NIC Function.
2357 * The Receive Message Function copies the message data available in the Card memory into a buffer structure
2358 * provided by the MSF.
2359 * Only data of the message indicated by the Service NIC Function can be obtained.
2360 * Execution of the Service NIC function may result in the availability of a new message, but it definitely
2361 * makes the message reported by the preceding Service NIC function, unavailable.
2363 * in non-USB/non-DMA mode, hcf_rcv_msg starts the copy process at the (non-negative) offset requested by the
2364 * parameter offset, relative to HFS_ADDR_DEST, e.g offset 0 starts copying from the Destination Address, the
2365 * very begin of the 802.3 frame message. Offset must either lay within the part of the 802.3 frame as stored
2366 * by hcf_service_nic in the lookahead buffer or be just behind it, i.e. the first byte not yet read.
2367 * When offset is within lookahead, data is copied from lookahead.
2368 * When offset is beyond lookahead, data is read directly from RxFS in NIC with disregard of the actual value
2369 * of offset
2371 *.NOTICE:
2372 * o at entry: look ahead buffer as passed with hcf_service_nic is still accessible and unchanged
2373 * o at exit: Receive Frame in NIC memory is released
2375 * Description:
2376 * Starting at the byte indicated by the Offset value, the bytes are copied from the Data Info
2377 * Part of the current Receive Frame Structure to the Host memory data buffer structure
2378 * identified by descp.
2379 * The maximum value for Offset is the number of characters of the 802.3 frame read into the
2380 * look ahead buffer by hcf_service_nic (i.e. the look ahead buffer size minus
2381 * Control and 802.11 fields)
2382 * If Offset is less than the maximum value, copying starts from the look ahead buffer till the
2383 * end of that buffer is reached
2384 * Then (or if the maximum value is specified for Offset), the
2385 * message is directly copied from NIC memory to Host memory.
2386 * If an invalid (i.e. too large) offset is specified, an assert catches but the buffer contents are
2387 * undefined.
2388 * Copying stops if either:
2389 * o the end of the 802.3 frame is reached
2390 * o the Descriptor with a NULL pointer in the next_desc_addr field is reached
2392 * When the copying stops, the receiver is ack'ed, thus freeing the NIC memory where the frame is stored
2393 * As a consequence, hcf_rcv_msg can only be called once for any particular Rx frame.
2395 * For the time being (PCI Bus mastering not yet supported), only the following fields of each
2396 * of the descriptors in the descriptor list must be set by the MSF:
2397 * o buf_cntl.buf_dim[1]
2398 * o *next_desc_addr
2399 * o *buf_addr
2400 * At return from hcf_rcv_msg, the field buf_cntl.buf_dim[0] of the used Descriptors reflects
2401 * the number of bytes in the buffer corresponding with the Descriptor.
2402 * On the last used Descriptor, buf_cntl.buf_dim[0] is less or equal to buf_cntl.buf_dim[1].
2403 * On all preceding Descriptors buf_cntl.buf_dim[0] is equal to buf_cntl.buf_dim[1].
2404 * On all succeeding (unused) Descriptors, buf_cntl.buf_dim[0] is zero.
2405 * Note: this I/F is based on the assumptions how the I/F needed for PCI Bus mastering will
2406 * be, so it may change.
2408 * The most likely handling of HCF_ERR_NO_NIC by the MSF is to drop the already copied
2409 * data as elegantly as possible under the constraints and requirements posed by the (N)OS.
2410 * If no received Frame Structure is pending, "Success" rather than "Read error" is returned.
2411 * This error constitutes a logic flaw in the MSF
2412 * The HCF can only catch a minority of this
2413 * type of errors
2414 * Based on consistency ideas, the HCF catches none of these errors.
2416 * Assert fails if
2417 * - ifbp has a recognizable out-of-range value
2418 * - there is no unacknowledged Rx-message available
2419 * - offset is out of range (outside look ahead buffer)
2420 * - descp is a NULL pointer
2421 * - any of the descriptors is not double word aligned
2422 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2423 * against NIC interrupts or multi-threading.
2424 * - Interrupts are enabled.
2426 *.DIAGRAM
2428 *.NOTICE
2429 * - by using unsigned int as type for offset, no need to worry about negative offsets
2430 * - Asserting on being enabled/present is superfluous, since a non-zero IFB_lal implies that hcf_service_nic
2431 * was called and detected a Rx-message. A zero IFB_lal will set the BUF_CNT field of at least the first
2432 * descriptor to zero.
2434 *.ENDDOC END DOCUMENTATION
2436 ************************************************************************************************************/
2438 hcf_rcv_msg( IFBP ifbp, DESC_STRCT *descp, unsigned int offset )
2440 int rc = HCF_SUCCESS;
2441 wci_bufp cp; //char oriented working pointer
2442 hcf_16 i;
2443 int tot_len = ifbp->IFB_RxLen - offset; //total length
2444 wci_bufp lap = ifbp->IFB_lap + offset; //start address in LookAhead Buffer
2445 hcf_16 lal = ifbp->IFB_lal - offset; //available data within LookAhead Buffer
2446 hcf_16 j;
2448 HCFLOGENTRY( HCF_TRACE_RCV_MSG, offset )
2449 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2450 HCFASSERT_INT
2451 HCFASSERT( descp, HCF_TRACE_RCV_MSG )
2452 HCFASSERT( ifbp->IFB_RxLen, HCF_TRACE_RCV_MSG )
2453 HCFASSERT( ifbp->IFB_RxLen >= offset, MERGE_2( offset, ifbp->IFB_RxLen ) )
2454 HCFASSERT( ifbp->IFB_lal >= offset, offset )
2455 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADA )
2457 if ( tot_len < 0 ) {
2458 lal = 0; tot_len = 0; //suppress all copying activity in the do--while loop
2460 do { //loop over all available fragments
2461 // obnoxious hcf.c(1480) : warning C4769: conversion of near pointer to long integer
2462 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp )
2463 cp = descp->buf_addr;
2464 j = min( (hcf_16)tot_len, descp->BUF_SIZE ); //minimum of "what's` available" and fragment size
2465 descp->BUF_CNT = j;
2466 tot_len -= j; //adjust length still to go
2467 if ( lal ) { //if lookahead Buffer not yet completely copied
2468 i = min( lal, j ); //minimum of "what's available" in LookAhead and fragment size
2469 lal -= i; //adjust length still available in LookAhead
2470 j -= i; //adjust length still available in current fragment
2471 /*;? while loop could be improved by moving words but that is complicated on platforms with
2472 * alignment requirements*/
2473 while ( i-- ) *cp++ = *lap++;
2475 if ( j ) { //if LookAhead Buffer exhausted but still space in fragment, copy directly from NIC RAM
2476 get_frag( ifbp, cp, j BE_PAR(0) );
2477 CALC_RX_MIC( cp, j );
2479 } while ( ( descp = descp->next_desc_addr ) != NULL );
2480 #if (HCF_TYPE) & HCF_TYPE_WPA
2481 if ( ifbp->IFB_RxFID ) {
2482 rc = check_mic( ifbp ); //prevents MIC error report if hcf_service_nic already consumed all
2484 #endif // HCF_TYPE_WPA
2485 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); //only 1 shot to get the data, so free the resources in the NIC
2486 HCFASSERT( rc == HCF_SUCCESS, rc )
2487 HCFLOGEXIT( HCF_TRACE_RCV_MSG )
2488 return rc;
2489 } // hcf_rcv_msg
2490 #endif // HCF_DL_ONLY
2493 #if (HCF_DL_ONLY) == 0
2494 /************************************************************************************************************
2496 *.MODULE int hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2497 *.PURPOSE Encapsulate a message and append padding and MIC.
2498 * non-USB: Transfers the resulting message from Host to NIC and initiates transmission.
2499 * USB: Transfer resulting message into a flat buffer.
2501 *.ARGUMENTS
2502 * ifbp address of the Interface Block
2503 * descp pointer to the DescriptorList or NULL
2504 * tx_cntl indicates MAC-port and (Hermes) options
2505 * HFS_TX_CNTL_SPECTRALINK
2506 * HFS_TX_CNTL_PRIO
2507 * HFS_TX_CNTL_TX_OK
2508 * HFS_TX_CNTL_TX_EX
2509 * HFS_TX_CNTL_TX_DELAY
2510 * HFS_TX_CNTL_TX_CONT
2511 * HCF_PORT_0 MAC Port 0 (default)
2512 * HCF_PORT_1 (AP only) MAC Port 1
2513 * HCF_PORT_2 (AP only) MAC Port 2
2514 * HCF_PORT_3 (AP only) MAC Port 3
2515 * HCF_PORT_4 (AP only) MAC Port 4
2516 * HCF_PORT_5 (AP only) MAC Port 5
2517 * HCF_PORT_6 (AP only) MAC Port 6
2519 *.RETURNS
2520 * HCF_SUCCESS
2521 * HCF_ERR_DEFUNCT_..
2522 * HCF_ERR_TIME_OUT
2524 *.DESCRIPTION:
2525 * The Send Message Function embodies 2 functions:
2526 * o transfers a message (including MAC header) from the provided buffer structure in Host memory to the Transmit
2527 * Frame Structure (TxFS) in NIC memory.
2528 * o Issue a send command to the F/W to actually transmit the contents of the TxFS.
2530 * Control is based on the Resource Indicator IFB_RscInd.
2531 * The Resource Indicator is maintained by the HCF and should only be interpreted but not changed by the MSF.
2532 * The MSF must check IFB_RscInd to be non-zero before executing the call to the Send Message Function.
2533 * When no resources are available, the MSF must handle the queuing of the Transmit frame and check the
2534 * Resource Indicator periodically after calling hcf_service_nic.
2536 * The Send Message Functions transfers a message to NIC memory when it is called with a non-NULL descp.
2537 * Before the Send Message Function is invoked this way, the Resource Indicator (IFB_RscInd) must be checked.
2538 * If the Resource is not available, Send Message Function execution must be postponed until after processing of
2539 * a next hcf_service_nic it appears that the Resource has become available.
2540 * The message is copied from the buffer structure identified by descp to the NIC.
2541 * Copying stops if a NULL pointer in the next_desc_addr field is reached.
2542 * Hcf_send_msg does not check for transmit buffer overflow, because the F/W does this protection.
2543 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2545 * The Send Message Function activates the F/W to actually send the message to the medium when the
2546 * HFS_TX_CNTL_TX_DELAY bit of the tx_cntl parameter is not set.
2547 * If the descp parameter of the current call is non-NULL, the message as represented by descp is send.
2548 * If the descp parameter of the current call is NULL, and if the preceding call of the Send Message Function had
2549 * a non-NULL descp and the preceding call had the HFS_TX_CNTL_TX_DELAY bit of tx_cntl set, then the message as
2550 * represented by the descp of the preceding call is send.
2552 * Hcf_send_msg supports encapsulation (see HCF_ENCAP) of Ethernet-II frames.
2553 * An Ethernet-II frame is transferred to the Transmit Frame structure as an 802.3 frame.
2554 * Hcf_send_msg distinguishes between an 802.3 and an Ethernet-II frame by looking at the data length/type field
2555 * of the frame. If this field contains a value larger than 1514, the frame is considered to be an Ethernet-II
2556 * frame, otherwise it is treated as an 802.3 frame.
2557 * To ease implementation of the HCF, this type/type field must be located in the first descriptor structure,
2558 * i.e. the 1st fragment must have a size of at least 14 (to contain DestAddr, SrcAddr and Len/Type field).
2559 * An Ethernet-II frame is encapsulated by inserting a SNAP header between the addressing information and the
2560 * type field. This insertion is transparent for the MSF.
2561 * The HCF contains a fixed table that stores a number of types. If the value specified by the type/type field
2562 * occurs in this table, Bridge Tunnel Encapsulation is used, otherwise RFC1042 encapsulation is used.
2563 * Bridge Tunnel uses AA AA 03 00 00 F8 as SNAP header,
2564 * RFC1042 uses AA AA 03 00 00 00 as SNAP header.
2565 * The table currently contains:
2566 * 0 0x80F3 AppleTalk Address Resolution Protocol (AARP)
2567 * 0 0x8137 IPX
2569 * The algorithm to distinguish between 802.3 and Ethernet-II frames limits the maximum length for frames of
2570 * 802.3 frames to 1514 bytes.
2571 * Encapsulation can be suppressed by means of the system constant HCF_ENCAP, e.g. to support proprietary
2572 * protocols with 802.3 like frames with a size larger than 1514 bytes.
2574 * In case the HCF encapsulates the frame, the number of bytes that is actually transmitted is determined by the
2575 * cumulative value of the buf_cntl.buf_dim[0] fields.
2576 * In case the HCF does not encapsulate the frame, the number of bytes that is actually transmitted is not
2577 * determined by the cumulative value of the buf_cntl.buf_dim[DESC_CNTL_CNT] fields of the desc_strct's but by
2578 * the Length field of the 802.3 frame.
2579 * If there is a conflict between the cumulative value of the buf_cntl.buf_dim[0] fields and the
2580 * 802.3 Length field the 802.3 Length field determines the number of bytes actually transmitted by the NIC while
2581 * the cumulative value of the buf_cntl.buf_dim[0] fields determines the position of the MIC, hence a mismatch
2582 * will result in MIC errors on the Receiving side.
2583 * Currently this problem is flagged on the Transmit side by an Assert.
2584 * The following fields of each of the descriptors in the descriptor list must be set by the MSF:
2585 * o buf_cntl.buf_dim[0]
2586 * o *next_desc_addr
2587 * o *buf_addr
2589 * All bits of the tx_cntl parameter except HFS_TX_CNTL_TX_DELAY and the HCF_PORT# bits are passed to the F/W via
2590 * the HFS_TX_CNTL field of the TxFS.
2592 * Note that hcf_send_msg does not detect NIC absence. The MSF is supposed to have its own -platform dependent-
2593 * way to recognize card removal/insertion.
2594 * The total system must be robust against card removal and there is no principal difference between card removal
2595 * just after hcf_send_msg returns but before the actual transmission took place or sometime earlier.
2597 * Assert fails if
2598 * - ifbp has a recognizable out-of-range value
2599 * - descp is a NULL pointer
2600 * - no resources for PIF available.
2601 * - Interrupts are enabled.
2602 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2603 * against NIC interrupts or multi-threading.
2605 *.DIAGRAM
2606 *4: for the normal case (i.e. no HFS_TX_CNTL_TX_DELAY option active), a fid is acquired via the
2607 * routine get_fid. If no FID is acquired, the remainder is skipped without an error notification. After
2608 * all, the MSF is not supposed to call hcf_send_msg when no Resource is available.
2609 *7: The ControlField of the TxFS is written. Since put_frag can only return the fatal Defunct or "No NIC", the
2610 * return status can be ignored because when it fails, cmd_wait will fail as well. (see also the note on the
2611 * need for a return code below).
2612 * Note that HFS_TX_CNTL has different values for H-I, H-I/SSN and H-II and HFS_ADDR_DEST has different
2613 * values for H-I (regardless of SSN) and H-II.
2614 * By writing 17, 1 or 2 ( implying 16, 0 or 1 garbage word after HFS_TX_CNTL) the BAP just gets to
2615 * HFS_ADDR_DEST for H-I, H-I/SSN and H-II respectively.
2616 *10: if neither encapsulation nor MIC calculation is needed, splitting the first fragment in two does not
2617 * really help but it makes the flow easier to follow to do not optimize on this difference
2619 * hcf_send_msg checks whether the frame is an Ethernet-II rather than an "official" 802.3 frame.
2620 * The E-II check is based on the length/type field in the MAC header. If this field has a value larger than
2621 * 1500, E-II is assumed. The implementation of this test fails if the length/type field is not in the first
2622 * descriptor. If E-II is recognized, a SNAP header is inserted. This SNAP header represents either RFC1042
2623 * or Bridge-Tunnel encapsulation, depending on the return status of the support routine hcf_encap.
2625 *.NOTICE
2626 * hcf_send_msg leaves the responsibility to only send messages on enabled ports at the MSF level.
2627 * This is considered the strategy which is sufficiently adequate for all "robust" MSFs, have the least
2628 * processor utilization and being still acceptable robust at the WCI !!!!!
2630 * hcf_send_msg does not NEED a return value to report NIC absence or removal during the execution of
2631 * hcf_send_msg(), because the MSF and higher layers must be able to cope anyway with the NIC being removed
2632 * after a successful completion of hcf_send_msg() but before the actual transmission took place.
2633 * To accommodate user expectations the current implementation does report NIC absence.
2634 * Defunct blocks all NIC access and will (also) be reported on a number of other calls.
2636 * hcf_send_msg does not check for transmit buffer overflow because the Hermes does this protection.
2637 * In case of a transmit buffer overflow, the surplus which does not fit in the buffer is simply dropped.
2638 * Note that this possibly results in the transmission of incomplete frames.
2640 * After some deliberation with F/W team, it is decided that - being in the twilight zone of not knowing
2641 * whether the problem at hand is an MSF bug, HCF buf, F/W bug, H/W malfunction or even something else - there
2642 * is no "best thing to do" in case of a failing send, hence the HCF considers the TxFID ownership to be taken
2643 * over by the F/W and hopes for an Allocate event in due time
2645 *.ENDDOC END DOCUMENTATION
2647 ************************************************************************************************************/
2649 hcf_send_msg( IFBP ifbp, DESC_STRCT *descp, hcf_16 tx_cntl )
2651 int rc = HCF_SUCCESS;
2652 DESC_STRCT *p /* = descp*/; //working pointer
2653 hcf_16 len; // total byte count
2654 hcf_16 i;
2656 hcf_16 fid = 0;
2658 HCFASSERT( ifbp->IFB_RscInd || descp == NULL, ifbp->IFB_RscInd )
2659 HCFASSERT( (ifbp->IFB_CntlOpt & USE_DMA) == 0, 0xDADB )
2661 HCFLOGENTRY( HCF_TRACE_SEND_MSG, tx_cntl )
2662 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
2663 HCFASSERT_INT
2664 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2665 * so skip */
2666 HCFASSERT( ((hcf_32)descp & 3 ) == 0, (hcf_32)descp )
2667 #if HCF_ASSERT
2668 { int x = ifbp->IFB_FWIdentity.comp_id == COMP_ID_FW_AP ? tx_cntl & ~HFS_TX_CNTL_PORT : tx_cntl;
2669 HCFASSERT( (x & ~HCF_TX_CNTL_MASK ) == 0, tx_cntl )
2671 #endif // HCF_ASSERT
2673 if ( descp ) ifbp->IFB_TxFID = 0; //cancel a pre-put message
2675 #if (HCF_EXT) & HCF_EXT_TX_CONT // Continuous transmit test
2676 if ( tx_cntl == HFS_TX_CNTL_TX_CONT ) {
2677 if ( ( fid = get_fid( ifbp ) ) != 0 ) {
2678 //setup BAP to begin of TxFS
2679 (void)setup_bap( ifbp, fid, 0, IO_OUT );
2680 //copy all the fragments in a transparent fashion
2681 for ( p = descp; p; p = p->next_desc_addr ) {
2682 /* obnoxious warning C4769: conversion of near pointer to long integer */
2683 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
2684 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2686 rc = cmd_exe( ifbp, HCMD_THESEUS | HCMD_BUSY | HCMD_STARTPREAMBLE, fid );
2687 if ( ifbp->IFB_RscInd == 0 ) {
2688 ifbp->IFB_RscInd = get_fid( ifbp );
2691 // een slecht voorbeeld doet goed volgen ;?
2692 HCFLOGEXIT( HCF_TRACE_SEND_MSG )
2693 return rc;
2695 #endif // HCF_EXT_TX_CONT
2696 /* the following initialization code is redundant for a pre-put message
2697 * but moving it inside the "if fid" logic makes the merging with the
2698 * USB flow awkward
2700 #if (HCF_TYPE) & HCF_TYPE_WPA
2701 tx_cntl |= ifbp->IFB_MICTxCntl;
2702 #endif // HCF_TYPE_WPA
2703 if ( (fid = ifbp->IFB_TxFID) == 0 && ( fid = get_fid( ifbp ) ) != 0 ) /* 4 */
2704 /* skip the next compound statement if:
2705 - pre-put message or
2706 - no fid available (which should never occur if the MSF adheres to the WCI)
2708 { // to match the closing curly bracket of above "if" in case of HCF_TYPE_USB
2709 //calculate total length ;? superfluous unless CCX or Encapsulation
2710 len = 0;
2711 p = descp;
2712 do len += p->BUF_CNT; while ( ( p = p->next_desc_addr ) != NULL );
2713 p = descp;
2714 //;? HCFASSERT( len <= HCF_MAX_MSG, len )
2715 /*7*/ (void)setup_bap( ifbp, fid, HFS_TX_CNTL, IO_OUT );
2716 #if (HCF_TYPE) & HCF_TYPE_TX_DELAY
2717 HCFASSERT( ( descp != NULL ) ^ ( tx_cntl & HFS_TX_CNTL_TX_DELAY ), tx_cntl )
2718 if ( tx_cntl & HFS_TX_CNTL_TX_DELAY ) {
2719 tx_cntl &= ~HFS_TX_CNTL_TX_DELAY; //!!HFS_TX_CNTL_TX_DELAY no longer available
2720 ifbp->IFB_TxFID = fid;
2721 fid = 0; //!!fid no longer available, be careful when modifying code
2723 #endif // HCF_TYPE_TX_DELAY
2724 OPW( HREG_DATA_1, tx_cntl ) ;
2725 OPW( HREG_DATA_1, 0 );
2726 #if ! ( (HCF_TYPE) & HCF_TYPE_CCX )
2727 HCFASSERT( p->BUF_CNT >= 14, p->BUF_CNT )
2728 /* assume DestAddr/SrcAddr/Len/Type ALWAYS contained in 1st fragment
2729 * otherwise life gets too cumbersome for MIC and Encapsulation !!!!!!!!
2730 if ( p->BUF_CNT >= 14 ) { alternatively: add a safety escape !!!!!!!!!!!! } */
2731 #endif // HCF_TYPE_CCX
2732 CALC_TX_MIC( NULL, -1 ); //initialize MIC
2733 /*10*/ put_frag( ifbp, p->buf_addr, HCF_DASA_SIZE BE_PAR(0) ); //write DA, SA with MIC calculation
2734 CALC_TX_MIC( p->buf_addr, HCF_DASA_SIZE ); //MIC over DA, SA
2735 CALC_TX_MIC( null_addr, 4 ); //MIC over (virtual) priority field
2736 #if (HCF_TYPE) & HCF_TYPE_CCX
2737 //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
2738 if(( ifbp->IFB_CKIPStat == HCF_ACT_CCX_ON ) ||
2739 ((GET_BUF_CNT(p) >= 20 ) && ( ifbp->IFB_CKIPStat == HCF_ACT_CCX_OFF ) &&
2740 (p->buf_addr[12] == 0xAA) && (p->buf_addr[13] == 0xAA) &&
2741 (p->buf_addr[14] == 0x03) && (p->buf_addr[15] == 0x00) &&
2742 (p->buf_addr[16] == 0x40) && (p->buf_addr[17] == 0x96) &&
2743 (p->buf_addr[18] == 0x00) && (p->buf_addr[19] == 0x00)))
2745 i = HCF_DASA_SIZE;
2747 OPW( HREG_DATA_1, CNV_SHORT_TO_BIG( len - i ));
2749 /* need to send out the remainder of the fragment */
2750 put_frag( ifbp, &p->buf_addr[i], GET_BUF_CNT(p) - i BE_PAR(0) );
2752 else
2753 #endif // HCF_TYPE_CCX
2755 //if encapsulation needed
2756 #if (HCF_ENCAP) == HCF_ENC
2757 //write length (with SNAP-header,Type, without //DA,SA,Length ) no MIC calc.
2758 if ( ( snap_header[sizeof(snap_header)-1] = hcf_encap( &p->buf_addr[HCF_DASA_SIZE] ) ) != ENC_NONE ) {
2759 OPW( HREG_DATA_1, CNV_END_SHORT( len + (sizeof(snap_header) + 2) - ( 2*6 + 2 ) ) );
2760 //write splice with MIC calculation
2761 put_frag( ifbp, snap_header, sizeof(snap_header) BE_PAR(0) );
2762 CALC_TX_MIC( snap_header, sizeof(snap_header) ); //MIC over 6 byte SNAP
2763 i = HCF_DASA_SIZE;
2764 } else
2765 #endif // HCF_ENC
2767 OPW( HREG_DATA_1, *(wci_recordp)&p->buf_addr[HCF_DASA_SIZE] );
2768 i = 14;
2770 //complete 1st fragment starting with Type with MIC calculation
2771 put_frag( ifbp, &p->buf_addr[i], p->BUF_CNT - i BE_PAR(0) );
2772 CALC_TX_MIC( &p->buf_addr[i], p->BUF_CNT - i );
2774 //do the remaining fragments with MIC calculation
2775 while ( ( p = p->next_desc_addr ) != NULL ) {
2776 /* obnoxious c:/hcf/hcf.c(1480) : warning C4769: conversion of near pointer to long integer,
2777 * so skip */
2778 HCFASSERT( ((hcf_32)p & 3 ) == 0, (hcf_32)p )
2779 put_frag( ifbp, p->buf_addr, p->BUF_CNT BE_PAR(0) );
2780 CALC_TX_MIC( p->buf_addr, p->BUF_CNT );
2782 //pad message, finalize MIC calculation and write MIC to NIC
2783 put_frag_finalize( ifbp );
2785 if ( fid ) {
2786 /*16*/ rc = cmd_exe( ifbp, HCMD_BUSY | HCMD_TX | HCMD_RECL, fid );
2787 ifbp->IFB_TxFID = 0;
2788 /* probably this (i.e. no RscInd AND "HREG_EV_ALLOC") at this point in time occurs so infrequent,
2789 * that it might just as well be acceptable to skip this
2790 * "optimization" code and handle that additional interrupt once in a while
2792 // 180 degree error in logic ;? #if ALLOC_15
2793 /*20*/ if ( ifbp->IFB_RscInd == 0 ) {
2794 ifbp->IFB_RscInd = get_fid( ifbp );
2796 // #endif // ALLOC_15
2798 // HCFASSERT( level::ifbp->IFB_RscInd, ifbp->IFB_RscInd )
2799 HCFLOGEXIT( HCF_TRACE_SEND_MSG )
2800 return rc;
2801 } // hcf_send_msg
2802 #endif // HCF_DL_ONLY
2805 #if (HCF_DL_ONLY) == 0
2806 /************************************************************************************************************
2808 *.MODULE int hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
2809 *.PURPOSE Services (most) NIC events.
2810 * Provides received message
2811 * Provides status information.
2813 *.ARGUMENTS
2814 * ifbp address of the Interface Block
2815 * In non-DMA mode:
2816 * bufp address of char buffer, sufficiently large to hold the first part of the RxFS up through HFS_TYPE
2817 * len length in bytes of buffer specified by bufp
2818 * value between HFS_TYPE + 2 and HFS_ADDR_DEST + HCF_MAX_MSG
2820 *.RETURNS
2821 * HCF_SUCCESS
2822 * HCF_ERR_MIC message contains an erroneous MIC (only if frame fits completely in bufp)
2824 *.DESCRIPTION
2826 * MSF-accessible fields of Result Block
2827 * - IFB_RxLen 0 or Frame size.
2828 * - IFB_MBInfoLen 0 or the L-field of the oldest MBIB.
2829 * - IFB_RscInd
2830 * - IFB_HCF_Tallies updated if a corresponding event occurred.
2831 * - IFB_NIC_Tallies updated if a Tally Info frame received from the NIC.
2832 * - IFB_DmaPackets
2833 * - IFB_TxFsStat
2834 * - IFB_TxFsSwSup
2835 * - IFB_LinkStat reflects new link status or 0x0000 if no change relative to previous hcf_service_nic call.
2837 * - IFB_LinkStat link status, 0x8000 reflects change relative to previous hcf_service_nic call.
2839 * When IFB_MBInfoLen is non-zero, at least one MBIB is available.
2841 * IFB_RxLen reflects the number of received bytes in 802.3 view (Including DestAddr, SrcAddr and Length,
2842 * excluding MIC-padding, MIC and sum check) of active Rx Frame Structure. If no Rx Data s available, IFB_RxLen
2843 * equals 0x0000.
2844 * Repeated execution causes the Service NIC Function to provide information about subsequently received
2845 * messages, irrespective whether a hcf_rcv_msg or hcf_action(HCF_ACT_RX) is performed in between.
2847 * When IFB_RxLen is non-zero, a Received Frame Structure is available to be routed to the protocol stack.
2848 * When Monitor Mode is not active, this is guaranteed to be an error-free non-WMP frame.
2849 * In case of Monitor Mode, it may also be a frame with an error or a WMP frame.
2850 * Erroneous frames have a non-zero error-sub field in the HFS_STAT field in the look ahead buffer.
2852 * If a Receive message is available in NIC RAM, the Receive Frame Structure is (partly) copied from the NIC to
2853 * the buffer identified by bufp.
2854 * Copying stops either after len bytes or when the complete 802.3 frame is copied.
2855 * During the copying the message is decapsulated (if appropriate).
2856 * If the frame is read completely by hcf_service_nic (i.e. the frame fits completely in the lookahead buffer),
2857 * the frame is automatically ACK'ed to the F/W and still available via the look ahead buffer and hcf_rcv_msg.
2858 * Only if the frame is read completely by hcf_service_nic, hcf_service_nic checks the MIC and sets the return
2859 * status accordingly. In this case, hcf_rcv_msg does not check the MIC.
2861 * The MIC calculation algorithm works more efficient if the length of the look ahead buffer is
2862 * such that it fits exactly 4 n bytes of the 802.3 frame, i.e. len == HFS_ADDR_DEST + 4*n.
2864 * The Service NIC Function supports the NIC event service handling process.
2865 * It performs the appropriate actions to service the NIC, such that the event cause is eliminated and related
2866 * information is saved.
2867 * The Service NIC Function is executed by the MSF ISR or polling routine as first step to determine the event
2868 * cause(s). It is the responsibility of the MSF to perform all not directly NIC related interrupt service
2869 * actions, e.g. in a PC environment this includes servicing the PIC, and managing the Processor Interrupt
2870 * Enabling/Disabling.
2871 * In case of a polled based system, the Service NIC Function must be executed "frequently".
2872 * The Service NIC Function may have side effects related to the Mailbox and Resource Indicator (IFB_RscInd).
2874 * hcf_service_nic returns:
2875 * - The length of the data in the available MBIB (IFB_MBInfoLen)
2876 * - Changes in the link status (IFB_LinkStat)
2877 * - The length of the data in the available Receive Frame Structure (IFB_RxLen)
2878 * - updated IFB_RscInd
2879 * - Updated Tallies
2881 * hcf_service_nic is presumed to neither interrupt other HCF-tasks nor to be interrupted by other HCF-tasks.
2882 * A way to achieve this is to precede hcf_service_nic as well as all other HCF-tasks with a call to
2883 * hcf_action to disable the card interrupts and, after all work is completed, with a call to hcf_action to
2884 * restore (which is not necessarily the same as enabling) the card interrupts.
2885 * In case of a polled environment, it is assumed that the MSF programmer is sufficiently familiar with the
2886 * specific requirements of that environment to translate the interrupt strategy to a polled strategy.
2888 * hcf_service_nic services the following Hermes events:
2889 * - HREG_EV_INFO Asynchronous Information Frame
2890 * - HREG_EV_INFO_DROP WMAC did not have sufficient RAM to build Unsolicited Information Frame
2891 * - HREG_EV_TX_EXC (if applicable, i.e. selected via HCF_EXT_INT_TX_EX bit of HCF_EXT)
2892 * - HREG_EV_SLEEP_REQ (if applicable, i.e. selected via HCF_DDS/HCF_CDS bit of HCF_SLEEP)
2893 * ** in non_DMA mode
2894 * - HREG_EV_ALLOC Asynchronous part of Allocation/Reclaim completed while out of resources at
2895 * completion of hcf_send_msg/notify
2896 * - HREG_EV_RX the detection of the availability of received messages
2897 * including WaveLAN Management Protocol (WMP) message processing
2898 * ** in DMA mode
2899 * - HREG_EV_RDMAD
2900 * - HREG_EV_TDMAD
2901 *!! hcf_service_nic does not service the following Hermes events:
2902 *!! HREG_EV_TX (the "OK" Tx Event) is no longer supported by the WCI, if it occurs it is unclear
2903 *!! what the cause is, so no meaningful strategy is available. Not acking the bit is
2904 *!! probably the best help that can be given to the debugger.
2905 *!! HREG_EV_CMD handled in cmd_wait.
2906 *!! HREG_EV_FW_DMA (i.e. HREG_EV_RXDMA, HREG_EV_TXDMA and_EV_LPESC) are either not used or used
2907 *!! between the F/W and the DMA engine.
2908 *!! HREG_EV_ACK_REG_READY is only applicable for H-II (i.e. not HII.5 and up, see DAWA)
2910 * If, in non-DMA mode, a Rx message is available, its length is reflected by the IFB_RxLen field of the IFB.
2911 * This length reflects the data itself and the Destination Address, Source Address and DataLength/Type field
2912 * but not the SNAP-header in case of decapsulation by the HCF. If no message is available, IFB_RxLen is
2913 * zero. Former versions of the HCF handled WMP messages and supported a "monitor" mode in hcf_service_nic,
2914 * which deposited certain or all Rx messages in the MailBox. The responsibility to handle these frames is
2915 * moved to the MSF. The HCF offers as supports hcf_put_info with CFG_MB_INFO as parameter to emulate the old
2916 * implementation under control of the MSF.
2918 * **Rx Buffer free strategy
2919 * When hcf_service_nic reports the availability of a non-DMA message, the MSF can access that message by
2920 * means of hcf_rcv_msg. It must be prevented that the LAN Controller writes new data in the NIC buffer
2921 * before the MSF is finished with the current message. The NIC buffer is returned to the LAN Controller
2922 * when:
2923 * - the complete frame fits in the lookahead buffer or
2924 * - hcf_rcv_msg is called or
2925 * - hcf_action with HCF_ACT_RX is called or
2926 * - hcf_service_nic is called again
2927 * It can be reasoned that hcf_action( INT_ON ) should not be given before the MSF has completely processed
2928 * a reported Rx-frame. The reason is that the INT_ON action is guaranteed to cause a (Rx-)interrupt (the
2929 * MSF is processing a Rx-frame, hence the Rx-event bit in the Hermes register must be active). This
2930 * interrupt will cause hcf_service_nic to be called, which will cause the ack-ing of the "last" Rx-event
2931 * to the Hermes, causing the Hermes to discard the associated NIC RAM buffer.
2932 * Assert fails if
2933 * - ifbp is zero or other recognizable out-of-range value.
2934 * - hcf_service_nic is called without a prior call to hcf_connect.
2935 * - interrupts are enabled.
2936 * - reentrancy, may be caused by calling hcf_functions without adequate protection
2937 * against NIC interrupts or multi-threading.
2940 *.DIAGRAM
2941 *1: IFB_LinkStat is cleared, if a LinkStatus frame is received, IFB_LinkStat will be updated accordingly
2942 * by isr_info.
2944 *1: IFB_LinkStat change indication is cleared. If a LinkStatus frame is received, IFB_LinkStat will be updated
2945 * accordingly by isr_info.
2946 *2: IFB_RxLen must be cleared before the NIC presence check otherwise:
2947 * - this value may stay non-zero if the NIC is pulled out at an inconvenient moment.
2948 * - the RxAck on a zero-FID needs a zero-value for IFB_RxLen to work
2949 * Note that as side-effect of the hcf_action call, the remainder of Rx related info is re-initialized as
2950 * well.
2951 *4: In case of Defunct mode, the information supplied by Hermes is unreliable, so the body of
2952 * hcf_service_nic is skipped. Since hcf_cntl turns into a NOP if Primary or Station F/W is incompatible,
2953 * hcf_service_nic is also skipped in those cases.
2954 * To prevent that hcf_service_nic reports bogus information to the MSF with all - possibly difficult to
2955 * debug - undesirable side effects, it is paramount to check the NIC presence. In former days the presence
2956 * test was based on the Hermes register HREG_SW_0. Since in HCF_ACT_INT_OFF is choosen for strategy based on
2957 * HREG_EV_STAT, this is now also used in hcf_service_nic. The motivation to change strategy is partly
2958 * due to inconsistent F/W implementations with respect to HREG_SW_0 manipulation around reset and download.
2959 * Note that in polled environments Card Removal is not detected by INT_OFF which makes the check in
2960 * hcf_service_nic even more important.
2961 *8: The event status register of the Hermes is sampled
2962 * The assert checks for unexpected events ;?????????????????????????????????????.
2963 * - HREG_EV_INFO_DROP is explicitly excluded from the acceptable HREG_EV_STAT bits because it indicates
2964 * a too heavily loaded system.
2965 * - HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
2968 * HREG_EV_TX_EXC is accepted (via HREG_EV_TX_EXT) if and only if HCF_EXT_INT_TX_EX set in the HCF_EXT
2969 * definition at compile time.
2970 * The following activities are handled:
2971 * - Alloc events are handled by hcf_send_msg (and notify). Only if there is no "spare" resource, the
2972 * alloc event is superficially serviced by hcf_service_nic to create a pseudo-resource with value
2973 * 0x001. This value is recognized by get_fid (called by hcf_send_msg and notify) where the real
2974 * TxFid is retrieved and the Hermes is acked and - hopefully - the "normal" case with a spare TxFid
2975 * in IFB_RscInd is restored.
2976 * - Info drop events are handled by incrementing a tally
2977 * - LinkEvent (including solicited and unsolicited tallies) are handled by procedure isr_info.
2978 * - TxEx (if selected at compile time) is handled by copying the significant part of the TxFS
2979 * into the IFB for further processing by the MSF.
2980 * Note the complication of the zero-FID protection sub-scheme in DAWA.
2981 * Note, the Ack of all of above events is handled at the end of hcf_service_nic
2982 *16: In case of non-DMA ( either not compiled in or due to a run-time choice):
2983 * If an Rx-frame is available, first the FID of that frame is read, including the complication of the
2984 * zero-FID protection sub-scheme in DAWA. Note that such a zero-FID is acknowledged at the end of
2985 * hcf_service_nic and that this depends on the IFB_RxLen initialization in the begin of hcf_service_nic.
2986 * The Assert validates the HCF assumption about Hermes implementation upon which the range of
2987 * Pseudo-RIDs is based.
2988 * Then the control fields up to the start of the 802.3 frame are read from the NIC into the lookahead buffer.
2989 * The status field is converted to native Endianess.
2990 * The length is, after implicit Endianess conversion if needed, and adjustment for the 14 bytes of the
2991 * 802.3 MAC header, stored in IFB_RxLen.
2992 * In MAC Monitor mode, 802.11 control frames with a TOTAL length of 14 are received, so without this
2993 * length adjustment, IFB_RxLen could not be used to distinguish these frames from "no frame".
2994 * No MIC calculation processes are associated with the reading of these Control fields.
2995 *26: This length test feels like superfluous robustness against malformed frames, but it turned out to be
2996 * needed in the real (hostile) world.
2997 * The decapsulation check needs sufficient data to represent DA, SA, L, SNAP and Type which amounts to
2998 * 22 bytes. In MAC Monitor mode, 802.11 control frames with a smaller length are received. To prevent
2999 * that the implementation goes haywire, a check on the length is needed.
3000 * The actual decapsulation takes place on the fly in the copying process by overwriting the SNAP header.
3001 * Note that in case of decapsulation the SNAP header is not passed to the MSF, hence IFB_RxLen must be
3002 * compensated for the SNAP header length.
3003 * The 22 bytes needed for decapsulation are (more than) sufficient for the exceptional handling of the
3004 * MIC algorithm of the L-field (replacing the 2 byte L-field with 4 0x00 bytes).
3005 *30: The 12 in the no-SSN branch corresponds with the get_frag, the 2 with the IPW of the SSN branch
3006 *32: If Hermes reported MIC-presence, than the MIC engine is initialized with the non-dummy MIC calculation
3007 * routine address and appropriate key.
3008 *34: The 8 bytes after the DA, SA, L are read and it is checked whether decapsulation is needed i.e.:
3009 * - the Hermes reported Tunnel encapsulation or
3010 * - the Hermes reported 1042 Encapsulation and hcf_encap reports that the HCF would not have used
3011 * 1042 as the encapsulation mechanism
3012 * Note that the first field of the RxFS in bufp has Native Endianess due to the conversion done by the
3013 * BE_PAR in get_frag.
3014 *36: The Type field is the only word kept (after moving) of the just read 8 bytes, it is moved to the
3015 * L-field. The original L-field and 6 byte SNAP header are discarded, so IFB_RxLen and buf_addr must
3016 * be adjusted by 8.
3017 *40: Determine how much of the frame (starting with DA) fits in the Lookahead buffer, then read the not-yet
3018 * read data into the lookahead buffer.
3019 * If the lookahead buffer contains the complete message, check the MIC. The majority considered this
3020 * I/F more appropriate then have the MSF call hcf_get_data only to check the MIC.
3021 *44: Since the complete message is copied from NIC RAM to PC RAM, the Rx can be acknowledged to the Hermes
3022 * to optimize the flow ( a better chance to get new Rx data in the next pass through hcf_service_nic ).
3023 * This acknowledgement can not be done via hcf_action( HCF_ACT_RX_ACK ) because this also clears
3024 * IFB_RxLEN thus corrupting the I/F to the MSF.
3025 *;?: In case of DMA (compiled in and activated):
3028 *54: Limiting the number of places where the F/W is acked (e.g. the merging of the Rx-ACK with the other
3029 * ACKs), is supposed to diminish the potential of race conditions in the F/W.
3030 * Note 1: The CMD event is acknowledged in cmd_cmpl
3031 * Note 2: HREG_EV_ACK_REG_READY is 0x0000 for H-I (and hopefully H-II.5)
3032 * Note 3: The ALLOC event is acknowledged in get_fid (except for the initialization flow)
3034 *.NOTICE
3035 * The Non-DMA HREG_EV_RX is handled different compared with the other F/W events.
3036 * The HREG_EV_RX event is acknowledged by the first hcf_service_nic call after the
3037 * hcf_service_nic call that reported the occurrence of this event.
3038 * This acknowledgment
3039 * makes the next Receive Frame Structure (if any) available.
3040 * An updated IFB_RxLen
3041 * field reflects this availability.
3043 *.NOTICE
3044 * The minimum size for Len must supply space for:
3045 * - an F/W dependent number of bytes of Control Info field including the 802.11 Header field
3046 * - Destination Address
3047 * - Source Address
3048 * - Length field
3049 * - [ SNAP Header]
3050 * - [ Ethernet-II Type]
3051 * This results in 68 for Hermes-I and 80 for Hermes-II
3052 * This way the minimum amount of information is available needed by the HCF to determine whether the frame
3053 * must be decapsulated.
3054 *.ENDDOC END DOCUMENTATION
3056 ************************************************************************************************************/
3058 hcf_service_nic( IFBP ifbp, wci_bufp bufp, unsigned int len )
3061 int rc = HCF_SUCCESS;
3062 hcf_16 stat;
3063 wci_bufp buf_addr;
3064 hcf_16 i;
3066 HCFLOGENTRY( HCF_TRACE_SERVICE_NIC, ifbp->IFB_IntOffCnt )
3067 HCFASSERT( ifbp->IFB_Magic == HCF_MAGIC, ifbp->IFB_Magic )
3068 HCFASSERT_INT
3070 ifbp->IFB_LinkStat = 0; // ;? to be obsoleted ASAP /* 1*/
3071 ifbp->IFB_DSLinkStat &= ~CFG_LINK_STAT_CHANGE; /* 1*/
3072 (void)hcf_action( ifbp, HCF_ACT_RX_ACK ); /* 2*/
3073 if ( ifbp->IFB_CardStat == 0 && ( stat = IPW( HREG_EV_STAT ) ) != 0xFFFF ) { /* 4*/
3074 /* IF_NOT_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
3075 * IF_NOT_USE_DMA( HCFASSERT( !( stat & ~HREG_EV_BASIC_MASK, stat ) )
3076 * IF_USE_DMA( HCFASSERT( !( stat & ~( HREG_EV_BASIC_MASK ^ ( HREG_EV_...DMA.... ), stat ) )
3078 /* 8*/
3079 if ( ifbp->IFB_RscInd == 0 && stat & HREG_EV_ALLOC ) { //Note: IFB_RscInd is ALWAYS 1 for DMA
3080 ifbp->IFB_RscInd = 1;
3082 IF_TALLY( if ( stat & HREG_EV_INFO_DROP ) ifbp->IFB_HCF_Tallies.NoBufInfo++; )
3083 #if (HCF_EXT) & HCF_EXT_INT_TICK
3084 if ( stat & HREG_EV_TICK ) {
3085 ifbp->IFB_TickCnt++;
3087 #if 0 // (HCF_SLEEP) & HCF_DDS
3088 if ( ifbp->IFB_TickCnt == 3 && ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) {
3089 CFG_DDS_TICK_TIME_STRCT ltv;
3090 // 2 second period (with 1 tick uncertanty) in not-connected mode -->go into DS_OOR
3091 hcf_action( ifbp, HCF_ACT_SLEEP );
3092 ifbp->IFB_DSLinkStat |= CFG_LINK_STAT_DS_OOR; //set OutOfRange
3093 ltv.len = 2;
3094 ltv.typ = CFG_DDS_TICK_TIME;
3095 ltv.tick_time = ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_TIMER ) + 0x10 ) *64; //78 is more right
3096 hcf_put_info( ifbp, (LTVP)&ltv );
3097 printk( "<5>Preparing for sleep, link_status: %04X, timer : %d\n",
3098 ifbp->IFB_DSLinkStat, ltv.tick_time );//;?remove me 1 day
3099 ifbp->IFB_TickCnt++; //;?just to make sure we do not keep on printing above message
3100 if ( ltv.tick_time < 300 * 125 ) ifbp->IFB_DSLinkStat += 0x0010;
3103 #endif // HCF_DDS
3104 #endif // HCF_EXT_INT_TICK
3105 if ( stat & HREG_EV_INFO ) {
3106 isr_info( ifbp );
3108 #if (HCF_EXT) & HCF_EXT_INT_TX_EX
3109 if ( stat & HREG_EV_TX_EXT && ( i = IPW( HREG_TX_COMPL_FID ) ) != 0 /*DAWA*/ ) {
3110 DAWA_ZERO_FID( HREG_TX_COMPL_FID )
3111 (void)setup_bap( ifbp, i, 0, IO_IN );
3112 get_frag( ifbp, &ifbp->IFB_TxFsStat, HFS_SWSUP BE_PAR(1) );
3114 #endif // HCF_EXT_INT_TX_EX
3115 //!rlav DMA engine will handle the rx event, not the driver
3116 #if HCF_DMA
3117 if ( !( ifbp->IFB_CntlOpt & USE_DMA ) ) //!! be aware of the logical indentations
3118 #endif // HCF_DMA
3119 /*16*/ if ( stat & HREG_EV_RX && ( ifbp->IFB_RxFID = IPW( HREG_RX_FID ) ) != 0 ) { //if 0 then DAWA_ACK
3120 HCFASSERT( bufp, len )
3121 HCFASSERT( len >= HFS_DAT + 2, len )
3122 DAWA_ZERO_FID( HREG_RX_FID )
3123 HCFASSERT( ifbp->IFB_RxFID < CFG_PROD_DATA, ifbp->IFB_RxFID)
3124 (void)setup_bap( ifbp, ifbp->IFB_RxFID, 0, IO_IN );
3125 get_frag( ifbp, bufp, HFS_ADDR_DEST BE_PAR(1) );
3126 ifbp->IFB_lap = buf_addr = bufp + HFS_ADDR_DEST;
3127 ifbp->IFB_RxLen = (hcf_16)(bufp[HFS_DAT_LEN] + (bufp[HFS_DAT_LEN+1]<<8) + 2*6 + 2);
3128 /*26*/ if ( ifbp->IFB_RxLen >= 22 ) { // convenient for MIC calculation (5 DWs + 1 "skipped" W)
3129 //. get DA,SA,Len/Type and (SNAP,Type or 8 data bytes)
3130 /*30*/ get_frag( ifbp, buf_addr, 22 BE_PAR(0) );
3131 /*32*/ CALC_RX_MIC( bufp, -1 ); //. initialize MIC
3132 CALC_RX_MIC( buf_addr, HCF_DASA_SIZE ); //. MIC over DA, SA
3133 CALC_RX_MIC( null_addr, 4 ); //. MIC over (virtual) priority field
3134 CALC_RX_MIC( buf_addr+14, 8 ); //. skip Len, MIC over SNAP,Type or 8 data bytes)
3135 buf_addr += 22;
3136 #if (HCF_TYPE) & HCF_TYPE_CCX
3137 //!!be careful do not use positive test on HCF_ACT_CCX_OFF, because IFB_CKIPStat is initially 0
3138 if( ifbp->IFB_CKIPStat != HCF_ACT_CCX_ON )
3139 #endif // HCF_TYPE_CCX
3141 #if (HCF_ENCAP) == HCF_ENC
3142 HCFASSERT( len >= HFS_DAT + 2 + sizeof(snap_header), len )
3143 /*34*/ i = *(wci_recordp)&bufp[HFS_STAT] & ( HFS_STAT_MSG_TYPE | HFS_STAT_ERR );
3144 if ( i == HFS_STAT_TUNNEL ||
3145 ( i == HFS_STAT_1042 && hcf_encap( (wci_bufp)&bufp[HFS_TYPE] ) != ENC_TUNNEL ) ) {
3146 //. copy E-II Type to 802.3 LEN field
3147 /*36*/ bufp[HFS_LEN ] = bufp[HFS_TYPE ];
3148 bufp[HFS_LEN+1] = bufp[HFS_TYPE+1];
3149 //. discard Snap by overwriting with data
3150 ifbp->IFB_RxLen -= (HFS_TYPE - HFS_LEN);
3151 buf_addr -= ( HFS_TYPE - HFS_LEN ); // this happens to bring us at a DW boundary of 36
3153 #endif // HCF_ENC
3156 /*40*/ ifbp->IFB_lal = min( (hcf_16)(len - HFS_ADDR_DEST), ifbp->IFB_RxLen );
3157 i = ifbp->IFB_lal - ( buf_addr - ( bufp + HFS_ADDR_DEST ) );
3158 get_frag( ifbp, buf_addr, i BE_PAR(0) );
3159 CALC_RX_MIC( buf_addr, i );
3160 #if (HCF_TYPE) & HCF_TYPE_WPA
3161 if ( ifbp->IFB_lal == ifbp->IFB_RxLen ) {
3162 rc = check_mic( ifbp );
3164 #endif // HCF_TYPE_WPA
3165 /*44*/ if ( len - HFS_ADDR_DEST >= ifbp->IFB_RxLen ) {
3166 ifbp->IFB_RxFID = 0;
3167 } else { /* IFB_RxFID is cleared, so you do not get another Rx_Ack at next entry of hcf_service_nic */
3168 stat &= (hcf_16)~HREG_EV_RX; //don't ack Rx if processing not yet completed
3171 // in case of DMA: signal availability of rx and/or tx packets to MSF
3172 IF_USE_DMA( ifbp->IFB_DmaPackets |= stat & ( HREG_EV_RDMAD | HREG_EV_TDMAD ); )
3173 // rlav : pending HREG_EV_RDMAD or HREG_EV_TDMAD events get acknowledged here.
3174 /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3175 //a positive mask would be easier to understand /*54*/ stat &= (hcf_16)~( HREG_EV_SLEEP_REQ | HREG_EV_CMD | HREG_EV_ACK_REG_READY | HREG_EV_ALLOC | HREG_EV_FW_DMA );
3176 IF_USE_DMA( stat &= (hcf_16)~HREG_EV_RX; )
3177 if ( stat ) {
3178 DAWA_ACK( stat ); /*DAWA*/
3181 HCFLOGEXIT( HCF_TRACE_SERVICE_NIC )
3182 return rc;
3183 } // hcf_service_nic
3184 #endif // HCF_DL_ONLY
3187 /************************************************************************************************************
3188 ************************** H C F S U P P O R T R O U T I N E S ******************************************
3189 ************************************************************************************************************/
3192 /************************************************************************************************************
3194 *.SUBMODULE void calc_mic( hcf_32* p, hcf_32 m )
3195 *.PURPOSE calculate MIC on a quad byte.
3197 *.ARGUMENTS
3198 * p address of the MIC
3199 * m 32 bit value to be processed by the MIC calculation engine
3201 *.RETURNS N.A.
3203 *.DESCRIPTION
3204 * calc_mic is the implementation of the MIC algorithm. It is a monkey-see monkey-do copy of
3205 * Michael::appendByte()
3206 * of Appendix C of ..........
3209 *.DIAGRAM
3211 *.NOTICE
3212 *.ENDDOC END DOCUMENTATION
3214 ************************************************************************************************************/
3216 #if (HCF_TYPE) & HCF_TYPE_WPA
3218 #define ROL32( A, n ) ( ((A) << (n)) | ( ((A)>>(32-(n))) & ( (1UL << (n)) - 1 ) ) )
3219 #define ROR32( A, n ) ROL32( (A), 32-(n) )
3221 #define L *p
3222 #define R *(p+1)
3224 void
3225 calc_mic( hcf_32* p, hcf_32 m )
3227 #if HCF_BIG_ENDIAN
3228 m = (m >> 16) | (m << 16);
3229 #endif // HCF_BIG_ENDIAN
3230 L ^= m;
3231 R ^= ROL32( L, 17 );
3232 L += R;
3233 R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8);
3234 L += R;
3235 R ^= ROL32( L, 3 );
3236 L += R;
3237 R ^= ROR32( L, 2 );
3238 L += R;
3239 } // calc_mic
3240 #undef R
3241 #undef L
3242 #endif // HCF_TYPE_WPA
3246 #if (HCF_TYPE) & HCF_TYPE_WPA
3247 /************************************************************************************************************
3249 *.SUBMODULE void calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3250 *.PURPOSE calculate MIC on a single fragment.
3252 *.ARGUMENTS
3253 * ifbp address of the Interface Block
3254 * bufp (byte) address of buffer
3255 * len length in bytes of buffer specified by bufp
3257 *.RETURNS N.A.
3259 *.DESCRIPTION
3260 * calc_mic_rx_frag ........
3262 * The MIC is located in the IFB.
3263 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3264 * hcf_rcv_msg.
3267 *.DIAGRAM
3269 *.NOTICE
3270 *.ENDDOC END DOCUMENTATION
3272 ************************************************************************************************************/
3273 void
3274 calc_mic_rx_frag( IFBP ifbp, wci_bufp p, int len )
3276 static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3277 int i;
3279 if ( len == -1 ) { //initialize MIC housekeeping
3280 i = *(wci_recordp)&p[HFS_STAT];
3281 /* i = CNV_SHORTP_TO_LITTLE(&p[HFS_STAT]); should not be neede to prevent alignment poroblems
3282 * since len == -1 if and only if p is lookahaead buffer which MUST be word aligned
3283 * to be re-investigated by NvR
3286 if ( ( i & HFS_STAT_MIC ) == 0 ) {
3287 ifbp->IFB_MICRxCarry = 0xFFFF; //suppress MIC calculation
3288 } else {
3289 ifbp->IFB_MICRxCarry = 0;
3290 //* Note that "coincidentally" the bit positions used in HFS_STAT
3291 //* correspond with the offset of the key in IFB_MICKey
3292 i = ( i & HFS_STAT_MIC_KEY_ID ) >> 10; /* coincidentally no shift needed for i itself */
3293 ifbp->IFB_MICRx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i ]);
3294 ifbp->IFB_MICRx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICRxKey[i+1]);
3296 } else {
3297 if ( ifbp->IFB_MICRxCarry == 0 ) {
3298 x.x32 = CNV_LONGP_TO_LITTLE(p);
3299 p += 4;
3300 if ( len < 4 ) {
3301 ifbp->IFB_MICRxCarry = (hcf_16)len;
3302 } else {
3303 ifbp->IFB_MICRxCarry = 4;
3304 len -= 4;
3306 } else while ( ifbp->IFB_MICRxCarry < 4 && len ) { //note for hcf_16 applies: 0xFFFF > 4
3307 x.x8[ifbp->IFB_MICRxCarry++] = *p++;
3308 len--;
3310 while ( ifbp->IFB_MICRxCarry == 4 ) { //contrived so we have only 1 call to calc_mic so we could bring it in-line
3311 calc_mic( ifbp->IFB_MICRx, x.x32 );
3312 x.x32 = CNV_LONGP_TO_LITTLE(p);
3313 p += 4;
3314 if ( len < 4 ) {
3315 ifbp->IFB_MICRxCarry = (hcf_16)len;
3317 len -= 4;
3320 } // calc_mic_rx_frag
3321 #endif // HCF_TYPE_WPA
3324 #if (HCF_TYPE) & HCF_TYPE_WPA
3325 /************************************************************************************************************
3327 *.SUBMODULE void calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3328 *.PURPOSE calculate MIC on a single fragment.
3330 *.ARGUMENTS
3331 * ifbp address of the Interface Block
3332 * bufp (byte) address of buffer
3333 * len length in bytes of buffer specified by bufp
3335 *.RETURNS N.A.
3337 *.DESCRIPTION
3338 * calc_mic_tx_frag ........
3340 * The MIC is located in the IFB.
3341 * The MIC is separate for Tx and Rx, thus allowing hcf_send_msg to occur between hcf_service_nic and
3342 * hcf_rcv_msg.
3345 *.DIAGRAM
3347 *.NOTICE
3348 *.ENDDOC END DOCUMENTATION
3350 ************************************************************************************************************/
3351 void
3352 calc_mic_tx_frag( IFBP ifbp, wci_bufp p, int len )
3354 static union { hcf_32 x32; hcf_16 x16[2]; hcf_8 x8[4]; } x; //* area to accumulate 4 bytes input for MIC engine
3356 //if initialization request
3357 if ( len == -1 ) {
3358 //. presume MIC calculation disabled
3359 ifbp->IFB_MICTxCarry = 0xFFFF;
3360 //. if MIC calculation enabled
3361 if ( ifbp->IFB_MICTxCntl ) {
3362 //. . clear MIC carry
3363 ifbp->IFB_MICTxCarry = 0;
3364 //. . initialize MIC-engine
3365 ifbp->IFB_MICTx[0] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[0]); /*Tx always uses Key 0 */
3366 ifbp->IFB_MICTx[1] = CNV_LONG_TO_LITTLE(ifbp->IFB_MICTxKey[1]);
3368 //else
3369 } else {
3370 //. if MIC enabled (Tx) / if MIC present (Rx)
3371 //. and no carry from previous calc_mic_frag
3372 if ( ifbp->IFB_MICTxCarry == 0 ) {
3373 //. . preset accu with 4 bytes from buffer
3374 x.x32 = CNV_LONGP_TO_LITTLE(p);
3375 //. . adjust pointer accordingly
3376 p += 4;
3377 //. . if buffer contained less then 4 bytes
3378 if ( len < 4 ) {
3379 //. . . promote valid bytes in accu to carry
3380 //. . . flag accu to contain incomplete double word
3381 ifbp->IFB_MICTxCarry = (hcf_16)len;
3382 //. . else
3383 } else {
3384 //. . . flag accu to contain complete double word
3385 ifbp->IFB_MICTxCarry = 4;
3386 //. . adjust remaining buffer length
3387 len -= 4;
3389 //. else if MIC enabled
3390 //. and if carry bytes from previous calc_mic_tx_frag
3391 //. . move (1-3) bytes from carry into accu
3392 } else while ( ifbp->IFB_MICTxCarry < 4 && len ) { /* note for hcf_16 applies: 0xFFFF > 4 */
3393 x.x8[ifbp->IFB_MICTxCarry++] = *p++;
3394 len--;
3396 //. while accu contains complete double word
3397 //. and MIC enabled
3398 while ( ifbp->IFB_MICTxCarry == 4 ) {
3399 //. . pass accu to MIC engine
3400 calc_mic( ifbp->IFB_MICTx, x.x32 );
3401 //. . copy next 4 bytes from buffer to accu
3402 x.x32 = CNV_LONGP_TO_LITTLE(p);
3403 //. . adjust buffer pointer
3404 p += 4;
3405 //. . if buffer contained less then 4 bytes
3406 //. . . promote valid bytes in accu to carry
3407 //. . . flag accu to contain incomplete double word
3408 if ( len < 4 ) {
3409 ifbp->IFB_MICTxCarry = (hcf_16)len;
3411 //. . adjust remaining buffer length
3412 len -= 4;
3415 } // calc_mic_tx_frag
3416 #endif // HCF_TYPE_WPA
3419 #if HCF_PROT_TIME
3420 /************************************************************************************************************
3422 *.SUBMODULE void calibrate( IFBP ifbp )
3423 *.PURPOSE calibrates the S/W protection counter against the Hermes Timer tick.
3425 *.ARGUMENTS
3426 * ifbp address of the Interface Block
3428 *.RETURNS N.A.
3430 *.DESCRIPTION
3431 * calibrates the S/W protection counter against the Hermes Timer tick
3432 * IFB_TickIni is the value used to initialize the S/W protection counter such that the expiration period
3433 * more or less independent of the processor speed. If IFB_TickIni is not yet calibrated, it is done now.
3434 * This calibration is "reasonably" accurate because the Hermes is in a quiet state as a result of the
3435 * Initialize command.
3438 *.DIAGRAM
3440 *1: IFB_TickIni is initialized at INI_TICK_INI by hcf_connect. If calibrate succeeds, IFB_TickIni is
3441 * guaranteed to be changed. As a consequence there will be only 1 shot at calibration (regardless of the
3442 * number of init calls) under normal circumstances.
3443 *2: Calibration is done HCF_PROT_TIME_CNT times. This diminish the effects of jitter and interference,
3444 * especially in a pre-emptive environment. HCF_PROT_TIME_CNT is in the range of 16 through 32 and derived
3445 * from the HCF_PROT_TIME specified by the MSF programmer. The divisor needed to scale HCF_PROT_TIME into the
3446 * 16-32 range, is used as a multiplicator after the calibration, to scale the found value back to the
3447 * requested range. This way a compromise is achieved between accuracy and duration of the calibration
3448 * process.
3449 *3: Acknowledge the Timer Tick Event.
3450 * Each cycle is limited to at most INI_TICK_INI samples of the TimerTick status of the Hermes.
3451 * Since the start of calibrate is unrelated to the Hermes Internal Timer, the first interval may last from 0
3452 * to the normal interval, all subsequent intervals should be the full length of the Hermes Tick interval.
3453 * The Hermes Timer Tick is not reprogrammed by the HCF, hence it is running at the default of 10 k
3454 * microseconds.
3455 *4: If the Timer Tick Event is continuously up (prot_cnt still has the value INI_TICK_INI) or no Timer Tick
3456 * Event occurred before the protection counter expired, reset IFB_TickIni to INI_TICK_INI,
3457 * set the defunct bit of IFB_CardStat (thus rendering the Hermes inoperable) and exit the calibrate routine.
3458 *8: ifbp->IFB_TickIni is multiplied to scale the found value back to the requested range as explained under 2.
3460 *.NOTICE
3461 * o Although there are a number of viewpoints possible, calibrate() uses as error strategy that a single
3462 * failure of the Hermes TimerTick is considered fatal.
3463 * o There is no hard and concrete time-out value defined for Hermes activities. The default 1 seconds is
3464 * believed to be sufficiently "relaxed" for real life and to be sufficiently short to be still useful in an
3465 * environment with humans.
3466 * o Note that via IFB_DefunctStat time outs in cmd_wait and in hcfio_string block all Hermes access till the
3467 * next init so functions which call a mix of cmd_wait and hcfio_string only need to check the return status
3468 * of the last call
3469 * o The return code is preset at Time out.
3470 * The additional complication that no calibrated value for the protection count can be assumed since
3471 * calibrate() does not yet have determined a calibrated value (a catch 22), is handled by setting the
3472 * initial value at INI_TICK_INI (by hcf_connect). This approach is considered safe, because:
3473 * - the HCF does not use the pipeline mechanism of Hermes commands.
3474 * - the likelihood of failure (the only time when protection count is relevant) is small.
3475 * - the time will be sufficiently large on a fast machine (busy bit drops on good NIC before counter
3476 * expires)
3477 * - the time will be sufficiently small on a slow machine (counter expires on bad NIC before the end user
3478 * switches the power off in despair
3479 * The time needed to wrap a 32 bit counter around is longer than many humans want to wait, hence the more or
3480 * less arbitrary value of 0x40000L is chosen, assuming it does not take too long on an XT and is not too
3481 * short on a scream-machine.
3483 *.ENDDOC END DOCUMENTATION
3485 ************************************************************************************************************/
3486 HCF_STATIC void
3487 calibrate( IFBP ifbp )
3489 int cnt = HCF_PROT_TIME_CNT;
3490 hcf_32 prot_cnt;
3492 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE );
3493 if ( ifbp->IFB_TickIni == INI_TICK_INI ) { /*1*/
3494 ifbp->IFB_TickIni = 0; /*2*/
3495 while ( cnt-- ) {
3496 prot_cnt = INI_TICK_INI;
3497 OPW( HREG_EV_ACK, HREG_EV_TICK ); /*3*/
3498 while ( (IPW( HREG_EV_STAT ) & HREG_EV_TICK) == 0 && --prot_cnt ) {
3499 ifbp->IFB_TickIni++;
3501 if ( prot_cnt == 0 || prot_cnt == INI_TICK_INI ) { /*4*/
3502 ifbp->IFB_TickIni = INI_TICK_INI;
3503 ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIMER;
3504 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3505 HCFASSERT( DO_ASSERT, prot_cnt )
3508 ifbp->IFB_TickIni <<= HCF_PROT_TIME_SHFT; /*8*/
3510 HCFTRACE( ifbp, HCF_TRACE_CALIBRATE | HCF_TRACE_EXIT );
3511 } // calibrate
3512 #endif // HCF_PROT_TIME
3515 #if (HCF_DL_ONLY) == 0
3516 #if (HCF_TYPE) & HCF_TYPE_WPA
3517 /************************************************************************************************************
3519 *.SUBMODULE int check_mic( IFBP ifbp )
3520 *.PURPOSE verifies the MIC of a received non-USB frame.
3522 *.ARGUMENTS
3523 * ifbp address of the Interface Block
3525 *.RETURNS
3526 * HCF_SUCCESS
3527 * HCF_ERR_MIC
3529 *.DESCRIPTION
3532 *.DIAGRAM
3534 *4: test whether or not a MIC is reported by the Hermes
3535 *14: the calculated MIC and the received MIC are compared, the return status is set when there is a mismatch
3537 *.NOTICE
3538 *.ENDDOC END DOCUMENTATION
3540 ************************************************************************************************************/
3542 check_mic( IFBP ifbp )
3544 int rc = HCF_SUCCESS;
3545 hcf_32 x32[2]; //* area to save rcvd 8 bytes MIC
3547 //if MIC present in RxFS
3548 if ( *(wci_recordp)&ifbp->IFB_lap[-HFS_ADDR_DEST] & HFS_STAT_MIC ) {
3549 //or if ( ifbp->IFB_MICRxCarry != 0xFFFF )
3550 CALC_RX_MIC( mic_pad, 8 ); //. process up to 3 remaining bytes of data and append 5 to 8 bytes of padding to MIC calculation
3551 get_frag( ifbp, (wci_bufp)x32, 8 BE_PAR(0));//. get 8 byte MIC from NIC
3552 //. if calculated and received MIC do not match
3553 //. . set status at HCF_ERR_MIC
3554 /*14*/ if ( x32[0] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[0]) ||
3555 x32[1] != CNV_LITTLE_TO_LONG(ifbp->IFB_MICRx[1]) ) {
3556 rc = HCF_ERR_MIC;
3559 //return status
3560 return rc;
3561 } // check_mic
3562 #endif // HCF_TYPE_WPA
3563 #endif // HCF_DL_ONLY
3566 /************************************************************************************************************
3568 *.SUBMODULE int cmd_cmpl( IFBP ifbp )
3569 *.PURPOSE waits for Hermes Command Completion.
3571 *.ARGUMENTS
3572 * ifbp address of the Interface Block
3574 *.RETURNS
3575 * IFB_DefunctStat
3576 * HCF_ERR_TIME_OUT
3577 * HCF_ERR_DEFUNCT_CMD_SEQ
3578 * HCF_SUCCESS
3580 *.DESCRIPTION
3583 *.DIAGRAM
3585 *2: Once cmd_cmpl is called, the Busy option bit in IFB_Cmd must be cleared
3586 *4: If Status register and command code don't match either:
3587 * - the Hermes and Host are out of sync ( a fatal error)
3588 * - error bits are reported via the Status Register.
3589 * Out of sync is considered fatal and brings the HCF in Defunct mode
3590 * Errors reported via the Status Register should be caused by sequence violations in Hermes command
3591 * sequences and hence these bugs should have been found during engineering testing. Since there is no
3592 * strategy to cope with this problem, it might as well be ignored at run time. Note that for any particular
3593 * situation where a strategy is formulated to handle the consequences of a particular bug causing a
3594 * particular Error situation reported via the Status Register, the bug should be removed rather than adding
3595 * logic to cope with the consequences of the bug.
3596 * There have been HCF versions where an error report via the Status Register even brought the HCF in defunct
3597 * mode (although it was not yet named like that at that time). This is particular undesirable behavior for a
3598 * general library.
3599 * Simply reporting the error (as "interesting") is debatable. There also have been HCF versions with this
3600 * strategy using the "vague" HCF_FAILURE code.
3601 * The error is reported via:
3602 * - MiscErr tally of the HCF Tally set
3603 * - the (informative) fields IFB_ErrCmd and IFB_ErrQualifier
3604 * - the assert mechanism
3605 *8: Here the Defunct case and the Status error are separately treated
3608 *.ENDDOC END DOCUMENTATION
3610 ************************************************************************************************************/
3611 HCF_STATIC int
3612 cmd_cmpl( IFBP ifbp )
3615 PROT_CNT_INI
3616 int rc = HCF_SUCCESS;
3617 hcf_16 stat;
3619 HCFLOGENTRY( HCF_TRACE_CMD_CPL, ifbp->IFB_Cmd )
3620 ifbp->IFB_Cmd &= ~HCMD_BUSY; /* 2 */
3621 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT) & HREG_EV_CMD) == 0 ); /* 4 */
3622 stat = IPW( HREG_STAT );
3623 #if HCF_PROT_TIME
3624 if ( prot_cnt == 0 ) {
3625 IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++; )
3626 rc = HCF_ERR_TIME_OUT;
3627 HCFASSERT( DO_ASSERT, ifbp->IFB_Cmd )
3628 } else
3629 #endif // HCF_PROT_TIME
3631 DAWA_ACK( HREG_EV_CMD );
3632 /*4*/ if ( stat != (ifbp->IFB_Cmd & HCMD_CMD_CODE) ) {
3633 /*8*/ if ( ( (stat ^ ifbp->IFB_Cmd ) & HCMD_CMD_CODE) != 0 ) {
3634 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_CMD_SEQ;
3635 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
3637 IF_TALLY( ifbp->IFB_HCF_Tallies.MiscErr++; )
3638 ifbp->IFB_ErrCmd = stat;
3639 ifbp->IFB_ErrQualifier = IPW( HREG_RESP_0 );
3640 HCFASSERT( DO_ASSERT, MERGE_2( IPW( HREG_PARAM_0 ), ifbp->IFB_Cmd ) )
3641 HCFASSERT( DO_ASSERT, MERGE_2( ifbp->IFB_ErrQualifier, ifbp->IFB_ErrCmd ) )
3644 HCFASSERT( rc == HCF_SUCCESS, rc)
3645 HCFLOGEXIT( HCF_TRACE_CMD_CPL )
3646 return rc;
3647 } // cmd_cmpl
3650 /************************************************************************************************************
3652 *.SUBMODULE int cmd_exe( IFBP ifbp, int cmd_code, int par_0 )
3653 *.PURPOSE Executes synchronous part of Hermes Command and - optionally - waits for Command Completion.
3655 *.ARGUMENTS
3656 * ifbp address of the Interface Block
3657 * cmd_code
3658 * par_0
3660 *.RETURNS
3661 * IFB_DefunctStat
3662 * HCF_ERR_DEFUNCT_CMD_SEQ
3663 * HCF_SUCCESS
3664 * HCF_ERR_TO_BE_ADDED <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
3666 *.DESCRIPTION
3667 * Executes synchronous Hermes Command and waits for Command Completion
3669 * The general HCF strategy is to wait for command completion. As a consequence:
3670 * - the read of the busy bit before writing the command register is superfluous
3671 * - the Hermes requirement that no Inquiry command may be executed if there is still an unacknowledged
3672 * Inquiry command outstanding, is automatically met.
3673 * The Tx command uses the "Busy" bit in the cmd_code parameter to deviate from this general HCF strategy.
3674 * The idea is that by not busy-waiting on completion of this frequently used command the processor
3675 * utilization is diminished while using the busy-wait on all other seldom used commands the flow is kept
3676 * simple.
3680 *.DIAGRAM
3682 *1: skip the body of cmd_exe when in defunct mode or when - based on the S/W Support register write and
3683 * read back test - there is apparently no NIC.
3684 * Note: we gave up on the "old" strategy to write the S/W Support register at magic only when needed. Due to
3685 * the intricateness of Hermes F/W varieties ( which behave differently as far as corruption of the S/W
3686 * Support register is involved), the increasing number of Hermes commands which do an implicit initialize
3687 * (thus modifying the S/W Support register) and the workarounds of some OS/Support S/W induced aspects (e.g.
3688 * the System Soft library at WinNT which postpones the actual mapping of I/O space up to 30 seconds after
3689 * giving the go-ahead), the "magic" strategy is now reduced to a simple write and read back. This means that
3690 * problems like a bug tramping over the memory mapped Hermes registers will no longer be noticed as side
3691 * effect of the S/W Support register check.
3692 *2: check whether the preceding command skipped the busy wait and if so, check for command completion
3694 *.NOTICE
3695 *.ENDDOC END DOCUMENTATION
3697 ************************************************************************************************************/
3699 HCF_STATIC int
3700 cmd_exe( IFBP ifbp, hcf_16 cmd_code, hcf_16 par_0 ) //if HCMD_BUSY of cmd_code set, then do NOT wait for completion
3702 int rc;
3704 HCFLOGENTRY( HCF_TRACE_CMD_EXE, cmd_code )
3705 HCFASSERT( (cmd_code & HCMD_CMD_CODE) != HCMD_TX || cmd_code & HCMD_BUSY, cmd_code ) //Tx must have Busy bit set
3706 OPW( HREG_SW_0, HCF_MAGIC );
3707 if ( IPW( HREG_SW_0 ) == HCF_MAGIC ) { /* 1 */
3708 rc = ifbp->IFB_DefunctStat;
3710 else rc = HCF_ERR_NO_NIC;
3711 if ( rc == HCF_SUCCESS ) {
3712 //;?is this a hot idea, better MEASURE performance impact
3713 /*2*/ if ( ifbp->IFB_Cmd & HCMD_BUSY ) {
3714 rc = cmd_cmpl( ifbp );
3716 OPW( HREG_PARAM_0, par_0 );
3717 OPW( HREG_CMD, cmd_code &~HCMD_BUSY );
3718 ifbp->IFB_Cmd = cmd_code;
3719 if ( (cmd_code & HCMD_BUSY) == 0 ) { //;?is this a hot idea, better MEASURE performance impact
3720 rc = cmd_cmpl( ifbp );
3723 HCFASSERT( rc == HCF_SUCCESS, MERGE_2( rc, cmd_code ) )
3724 HCFLOGEXIT( HCF_TRACE_CMD_EXE )
3725 return rc;
3726 } // cmd_exe
3729 /************************************************************************************************************
3731 *.SUBMODULE int download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp )
3732 *.PURPOSE downloads F/W image into NIC and initiates execution of the downloaded F/W.
3734 *.ARGUMENTS
3735 * ifbp address of the Interface Block
3736 * ltvp specifies the pseudo-RID (as defined by WCI)
3738 *.RETURNS
3740 *.DESCRIPTION
3743 *.DIAGRAM
3744 *1: First, Ack everything to unblock a (possibly) blocked cmd pipe line
3745 * Note 1: it is very likely that an Alloc event is pending and very well possible that a (Send) Cmd event is
3746 * pending
3747 * Note 2: it is assumed that this strategy takes away the need to ack every conceivable event after an
3748 * Hermes Initialize
3751 *.ENDDOC END DOCUMENTATION
3753 ************************************************************************************************************/
3754 HCF_STATIC int
3755 download( IFBP ifbp, CFG_PROG_STRCT FAR *ltvp ) //Hermes-II download (volatile only)
3757 hcf_16 i;
3758 int rc = HCF_SUCCESS;
3759 wci_bufp cp;
3760 hcf_io io_port = ifbp->IFB_IOBase + HREG_AUX_DATA;
3762 HCFLOGENTRY( HCF_TRACE_DL, ltvp->typ )
3763 #if (HCF_TYPE) & HCF_TYPE_PRELOADED
3764 HCFASSERT( DO_ASSERT, ltvp->mode )
3765 #else
3766 //if initial "program" LTV
3767 if ( ifbp->IFB_DLMode == CFG_PROG_STOP && ltvp->mode == CFG_PROG_VOLATILE) {
3768 //. switch Hermes to initial mode
3769 /*1*/ OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ );
3770 rc = cmd_exe( ifbp, HCMD_INI, 0 ); /* HCMD_INI can not be part of init() because that is called on
3771 * other occasions as well */
3772 rc = init( ifbp );
3774 //if final "program" LTV
3775 if ( ltvp->mode == CFG_PROG_STOP && ifbp->IFB_DLMode == CFG_PROG_VOLATILE) {
3776 //. start tertiary (or secondary)
3777 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3778 rc = cmd_exe( ifbp, HCMD_EXECUTE, (hcf_16) ltvp->nic_addr );
3779 if (rc == HCF_SUCCESS) {
3780 rc = init( ifbp ); /*;? do we really want to skip init if cmd_exe failed, i.e.
3781 * IFB_FW_Comp_Id is than possibly incorrect */
3783 //else (non-final)
3784 } else {
3785 //. if mode == Readback SEEPROM
3786 #if 0 //;? as long as the next if contains a hard coded 0, might as well leave it out even more obvious
3787 if ( 0 /*len is definitely not want we want;?*/ && ltvp->mode == CFG_PROG_SEEPROM_READBACK ) {
3788 OPW( HREG_PARAM_1, (hcf_16)(ltvp->nic_addr >> 16) );
3789 OPW( HREG_PARAM_2, MUL_BY_2(ltvp->len - 4));
3790 //. . perform Hermes prog cmd with appropriate mode bits
3791 rc = cmd_exe( ifbp, HCMD_PROGRAM | ltvp->mode, (hcf_16)ltvp->nic_addr );
3792 //. . set up NIC RAM addressability according Resp0-1
3793 OPW( HREG_AUX_PAGE, IPW( HREG_RESP_1) );
3794 OPW( HREG_AUX_OFFSET, IPW( HREG_RESP_0) );
3795 //. . set up L-field of LTV according Resp2
3796 i = ( IPW( HREG_RESP_2 ) + 1 ) / 2; // i contains max buffer size in words, a probably not very useful piece of information ;?
3797 /*Nico's code based on i is the "real amount of data available"
3798 if ( ltvp->len - 4 < i ) rc = HCF_ERR_LEN;
3799 else ltvp->len = i + 4;
3801 /* Rolands code based on the idea that a MSF should not ask for more than is available
3802 // check if number of bytes requested exceeds max buffer size
3803 if ( ltvp->len - 4 > i ) {
3804 rc = HCF_ERR_LEN;
3805 ltvp->len = i + 4;
3808 //. . copy data from NIC via AUX port to LTV
3809 cp = (wci_bufp)ltvp->host_addr; /*IN_PORT_STRING_8_16 macro may modify its parameters*/
3810 i = ltvp->len - 4;
3811 IN_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer // $$ char
3812 //. else (non-final programming)
3813 } else
3814 #endif //;? as long as the above if contains a hard coded 0, might as well leave it out even more obvious
3815 { //. . get number of words to program
3816 HCFASSERT( ltvp->segment_size, *ltvp->host_addr )
3817 i = ltvp->segment_size/2;
3818 //. . copy data (words) from LTV via AUX port to NIC
3819 cp = (wci_bufp)ltvp->host_addr; //OUT_PORT_STRING_8_16 macro may modify its parameters
3820 //. . if mode == volatile programming
3821 if ( ltvp->mode == CFG_PROG_VOLATILE ) {
3822 //. . . set up NIC RAM addressability via AUX port
3823 OPW( HREG_AUX_PAGE, (hcf_16)(ltvp->nic_addr >> 16 << 9 | (ltvp->nic_addr & 0xFFFF) >> 7 ) );
3824 OPW( HREG_AUX_OFFSET, (hcf_16)(ltvp->nic_addr & 0x007E) );
3825 OUT_PORT_STRING_8_16( io_port, cp, i ); //!!!WORD length, cp MUST be a char pointer
3829 ifbp->IFB_DLMode = ltvp->mode; //save state in IFB_DLMode
3830 #endif // HCF_TYPE_PRELOADED
3831 HCFASSERT( rc == HCF_SUCCESS, rc )
3832 HCFLOGEXIT( HCF_TRACE_DL )
3833 return rc;
3834 } // download
3837 #if (HCF_ASSERT) & HCF_ASSERT_PRINTF
3838 /**************************************************
3839 * Certain Hermes-II firmware versions can generate
3840 * debug information. This debug information is
3841 * contained in a buffer in nic-RAM, and can be read
3842 * via the aux port.
3843 **************************************************/
3844 HCF_STATIC int
3845 fw_printf(IFBP ifbp, CFG_FW_PRINTF_STRCT FAR *ltvp)
3847 int rc = HCF_SUCCESS;
3848 hcf_16 fw_cnt;
3849 // hcf_32 DbMsgBuffer = 0x29D2, DbMsgCount= 0x000029D0;
3850 // hcf_16 DbMsgSize=0x00000080;
3851 hcf_32 DbMsgBuffer;
3852 CFG_FW_PRINTF_BUFFER_LOCATION_STRCT *p = &ifbp->IFB_FwPfBuff;
3853 ltvp->len = 1;
3854 if ( p->DbMsgSize != 0 ) {
3855 // first, check the counter in nic-RAM and compare it to the latest counter value of the HCF
3856 OPW( HREG_AUX_PAGE, (hcf_16)(p->DbMsgCount >> 7) );
3857 OPW( HREG_AUX_OFFSET, (hcf_16)(p->DbMsgCount & 0x7E) );
3858 fw_cnt = ((IPW( HREG_AUX_DATA) >>1 ) & ((hcf_16)p->DbMsgSize - 1));
3859 if ( fw_cnt != ifbp->IFB_DbgPrintF_Cnt ) {
3860 // DbgPrint("fw_cnt=%d IFB_DbgPrintF_Cnt=%d\n", fw_cnt, ifbp->IFB_DbgPrintF_Cnt);
3861 DbMsgBuffer = p->DbMsgBuffer + ifbp->IFB_DbgPrintF_Cnt * 6; // each entry is 3 words
3862 OPW( HREG_AUX_PAGE, (hcf_16)(DbMsgBuffer >> 7) );
3863 OPW( HREG_AUX_OFFSET, (hcf_16)(DbMsgBuffer & 0x7E) );
3864 ltvp->msg_id = IPW(HREG_AUX_DATA);
3865 ltvp->msg_par = IPW(HREG_AUX_DATA);
3866 ltvp->msg_tstamp = IPW(HREG_AUX_DATA);
3867 ltvp->len = 4;
3868 ifbp->IFB_DbgPrintF_Cnt++;
3869 ifbp->IFB_DbgPrintF_Cnt &= (p->DbMsgSize - 1);
3872 return rc;
3874 #endif // HCF_ASSERT_PRINTF
3877 #if (HCF_DL_ONLY) == 0
3878 /************************************************************************************************************
3880 *.SUBMODULE hcf_16 get_fid( IFBP ifbp )
3881 *.PURPOSE get allocated FID for either transmit or notify.
3883 *.ARGUMENTS
3884 * ifbp address of the Interface Block
3886 *.RETURNS
3887 * 0 no FID available
3888 * <>0 FID number
3890 *.DESCRIPTION
3893 *.DIAGRAM
3894 * The preference is to use a "pending" alloc. If no alloc is pending, then - if available - the "spare" FID
3895 * is used.
3896 * If the spare FID is used, IFB_RscInd (representing the spare FID) must be cleared
3897 * If the pending alloc is used, the alloc event must be acknowledged to the Hermes.
3898 * In case the spare FID was depleted and the IFB_RscInd has been "faked" as pseudo resource with a 0x0001
3899 * value by hcf_service_nic, IFB_RscInd has to be "corrected" again to its 0x0000 value.
3901 * Note that due to the Hermes-II H/W problems which are intended to be worked around by DAWA, the Alloc bit
3902 * in the Event register is no longer a reliable indication of the presence/absence of a FID. The "Clear FID"
3903 * part of the DAWA logic, together with the choice of the definition of the return information from get_fid,
3904 * handle this automatically, i.e. without additional code in get_fid.
3905 *.ENDDOC END DOCUMENTATION
3907 ************************************************************************************************************/
3908 HCF_STATIC hcf_16
3909 get_fid( IFBP ifbp )
3912 hcf_16 fid = 0;
3913 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3914 PROT_CNT_INI
3915 #endif // HCF_TYPE_HII5
3917 IF_DMA( HCFASSERT(!(ifbp->IFB_CntlOpt & USE_DMA), ifbp->IFB_CntlOpt) )
3919 if ( IPW( HREG_EV_STAT) & HREG_EV_ALLOC) {
3920 fid = IPW( HREG_ALLOC_FID );
3921 HCFASSERT( fid, ifbp->IFB_RscInd )
3922 DAWA_ZERO_FID( HREG_ALLOC_FID )
3923 #if ( (HCF_TYPE) & HCF_TYPE_HII5 ) == 0
3924 HCF_WAIT_WHILE( ( IPW( HREG_EV_STAT ) & HREG_EV_ACK_REG_READY ) == 0 );
3925 HCFASSERT( prot_cnt, IPW( HREG_EV_STAT ) )
3926 #endif // HCF_TYPE_HII5
3927 DAWA_ACK( HREG_EV_ALLOC ); //!!note that HREG_EV_ALLOC is written only once
3928 // 180 degree error in logic ;? #if ALLOC_15
3929 if ( ifbp->IFB_RscInd == 1 ) {
3930 ifbp->IFB_RscInd = 0;
3932 //#endif // ALLOC_15
3933 } else {
3934 // 180 degree error in logic ;? #if ALLOC_15
3935 fid = ifbp->IFB_RscInd;
3936 //#endif // ALLOC_15
3937 ifbp->IFB_RscInd = 0;
3939 return fid;
3940 } // get_fid
3941 #endif // HCF_DL_ONLY
3944 /************************************************************************************************************
3946 *.SUBMODULE void get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3947 *.PURPOSE reads with 16/32 bit I/O via BAP1 port from NIC RAM to Host memory.
3949 *.ARGUMENTS
3950 * ifbp address of the Interface Block
3951 * bufp (byte) address of buffer
3952 * len length in bytes of buffer specified by bufp
3953 * word_len Big Endian only: number of leading bytes to swap in pairs
3955 *.RETURNS N.A.
3957 *.DESCRIPTION
3958 * process the single byte (if applicable) read by the previous get_frag and copy len (or len-1) bytes from
3959 * NIC to bufp.
3960 * On a Big Endian platform, the parameter word_len controls the number of leading bytes whose endianess is
3961 * converted (i.e. byte swapped)
3964 *.DIAGRAM
3965 *10: The PCMCIA card can be removed in the middle of the transfer. By depositing a "magic number" in the
3966 * HREG_SW_0 register of the Hermes at initialization time and by verifying this register, it can be
3967 * determined whether the card is still present. The return status is set accordingly.
3968 * Clearing the buffer is a (relative) cheap way to prevent that failing I/O results in run-away behavior
3969 * because the garbage in the buffer is interpreted by the caller irrespective of the return status (e.g.
3970 * hcf_service_nic has this behavior).
3972 *.NOTICE
3973 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
3974 * Assert on len is possible
3976 *.ENDDOC END DOCUMENTATION
3978 ************************************************************************************************************/
3979 HCF_STATIC void
3980 get_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
3982 hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register
3983 wci_bufp p = bufp; //working pointer
3984 int i; //prevent side effects from macro
3985 int j;
3987 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp )
3989 /*1: here recovery logic for intervening BAP access between hcf_service_nic and hcf_rcv_msg COULD be added
3990 * if current access is RxInitial
3991 * . persistent_offset += len
3994 i = len;
3995 //if buffer length > 0 and carry from previous get_frag
3996 if ( i && ifbp->IFB_CarryIn ) {
3997 //. move carry to buffer
3998 //. adjust buffer length and pointer accordingly
3999 *p++ = (hcf_8)(ifbp->IFB_CarryIn>>8);
4000 i--;
4001 //. clear carry flag
4002 ifbp->IFB_CarryIn = 0;
4004 #if (HCF_IO) & HCF_IO_32BITS
4005 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4006 //if buffer length >= 6 and 32 bits I/O support
4007 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
4008 hcf_32 FAR *p4; //prevent side effects from macro
4009 if ( ( (hcf_32)p & 0x1 ) == 0 ) { //. if buffer at least word aligned
4010 if ( (hcf_32)p & 0x2 ) { //. . if buffer not double word aligned
4011 //. . . read single word to get double word aligned
4012 *(wci_recordp)p = IN_PORT_WORD( io_port );
4013 //. . . adjust buffer length and pointer accordingly
4014 p += 2;
4015 i -= 2;
4017 //. . read as many double word as possible
4018 p4 = (hcf_32 FAR *)p;
4019 j = i/4;
4020 IN_PORT_STRING_32( io_port, p4, j );
4021 //. . adjust buffer length and pointer accordingly
4022 p += i & ~0x0003;
4023 i &= 0x0003;
4026 #endif // HCF_IO_32BITS
4027 //if no 32-bit support OR byte aligned OR 1-3 bytes left
4028 if ( i ) {
4029 //. read as many word as possible in "alignment safe" way
4030 j = i/2;
4031 IN_PORT_STRING_8_16( io_port, p, j );
4032 //. if 1 byte left
4033 if ( i & 0x0001 ) {
4034 //. . read 1 word
4035 ifbp->IFB_CarryIn = IN_PORT_WORD( io_port );
4036 //. . store LSB in last char of buffer
4037 bufp[len-1] = (hcf_8)ifbp->IFB_CarryIn;
4038 //. . save MSB in carry, set carry flag
4039 ifbp->IFB_CarryIn |= 0x1;
4042 #if HCF_BIG_ENDIAN
4043 HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len )
4044 HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp )
4045 HCFASSERT( word_len <= len, MERGE2( word_len, len ) )
4046 //see put_frag for an alternative implementation, but be carefull about what are int's and what are
4047 //hcf_16's
4048 if ( word_len ) { //. if there is anything to convert
4049 hcf_8 c;
4050 c = bufp[1]; //. . convert the 1st hcf_16
4051 bufp[1] = bufp[0];
4052 bufp[0] = c;
4053 if ( word_len > 1 ) { //. . if there is to convert more than 1 word ( i.e 2 )
4054 c = bufp[3]; //. . . convert the 2nd hcf_16
4055 bufp[3] = bufp[2];
4056 bufp[2] = c;
4059 #endif // HCF_BIG_ENDIAN
4060 } // get_frag
4062 /************************************************************************************************************
4064 *.SUBMODULE int init( IFBP ifbp )
4065 *.PURPOSE Handles common initialization aspects (H-I init, calibration, config.mngmt, allocation).
4067 *.ARGUMENTS
4068 * ifbp address of the Interface Block
4070 *.RETURNS
4071 * HCF_ERR_INCOMP_PRI
4072 * HCF_ERR_INCOMP_FW
4073 * HCF_ERR_TIME_OUT
4074 * >>hcf_get_info
4075 * HCF_ERR_NO_NIC
4076 * HCF_ERR_LEN
4078 *.DESCRIPTION
4079 * init will successively:
4080 * - in case of a (non-preloaded) H-I, initialize the NIC
4081 * - calibrate the S/W protection timer against the Hermes Timer
4082 * - collect HSI, "active" F/W Configuration Management Information
4083 * - in case active F/W is Primary F/W: collect Primary F/W Configuration Management Information
4084 * - check HSI and Primary F/W compatibility with the HCF
4085 * - in case active F/W is Station or AP F/W: check Station or AP F/W compatibility with the HCF
4086 * - in case active F/W is not Primary F/W: allocate FIDs to be used in transmit/notify process
4089 *.DIAGRAM
4090 *2: drop all error status bits in IFB_CardStat since they are expected to be re-evaluated.
4091 *4: Ack everything except HREG_EV_SLEEP_REQ. It is very likely that an Alloc event is pending and
4092 * very well possible that a Send Cmd event is pending. Acking HREG_EV_SLEEP_REQ is handled by hcf_action(
4093 * HCF_ACT_INT_ON ) !!!
4094 *10: Calibrate the S/W time-out protection mechanism by calling calibrate(). Note that possible errors
4095 * in the calibration process are nor reported by init but will show up via the defunct mechanism in
4096 * subsequent hcf-calls.
4097 *14: usb_check_comp() is called to have the minimal visual clutter for the legacy H-I USB dongle
4098 * compatibility check.
4099 *16: The following configuration management related information is retrieved from the NIC:
4100 * - HSI supplier
4101 * - F/W Identity
4102 * - F/W supplier
4103 * if appropriate:
4104 * - PRI Identity
4105 * - PRI supplier
4106 * appropriate means on H-I: always
4107 * and on H-II if F/W supplier reflects a primary (i.e. only after an Hermes Reset or Init
4108 * command).
4109 * QUESTION ;? !!!!!! should, For each of the above RIDs the Endianess is converted to native Endianess.
4110 * Only the return code of the first hcf_get_info is used. All hcf_get_info calls are made, regardless of
4111 * the success or failure of the 1st hcf_get_info. The assumptions are:
4112 * - if any call fails, they all fail, so remembering the result of the 1st call is adequate
4113 * - a failing call will overwrite the L-field with a 0x0000 value, which services both as an
4114 * error indication for the values cached in the IFB as making mmd_check_comp fail.
4115 * In case of H-I, when getting the F/W identity fails, the F/W is assumed to be H-I AP F/W pre-dating
4116 * version 9.0 and the F/W Identity and Supplier are faked accordingly.
4117 * In case of H-II, the Primary, Station and AP Identity are merged into a single F/W Identity.
4118 * The same applies to the Supplier information. As a consequence the PRI information can no longer be
4119 * retrieved when a Tertiary runs. To accommodate MSFs and Utilities who depend on PRI information being
4120 * available at any time, this information is cached in the IFB. In this cache the generic "F/W" value of
4121 * the typ-fields is overwritten with the specific (legacy) "PRI" values. To actually re-route the (legacy)
4122 * PRI request via hcf_get_info, the xxxx-table must be set. In case of H-I, this caching, modifying and
4123 * re-routing is not needed because PRI information is always available directly from the NIC. For
4124 * consistency the caching fields in the IFB are filled with the PRI information anyway.
4125 *18: mdd_check_comp() is called to check the Supplier Variant and Range of the Host-S/W I/F (HSI) and the
4126 * Primary Firmware Variant and Range against the Top and Bottom level supported by this HCF. If either of
4127 * these tests fails, the CARD_STAT_INCOMP_PRI bit of IFB_CardStat is set
4128 * Note: There should always be a primary except during production, so this makes the HCF in its current form
4129 * unsuitable for manufacturing test systems like the FTS. This can be remedied by an adding a test like
4130 * ifbp->IFB_PRISup.id == COMP_ID_PRI
4131 *20: In case there is Tertiary F/W and this F/W is Station F/W, the Supplier Variant and Range of the Station
4132 * Firmware function as retrieved from the Hermes is checked against the Top and Bottom level supported by
4133 * this HCF.
4134 * Note: ;? the tertiary F/W compatibility checks could be moved to the DHF, which already has checked the
4135 * CFI and MFI compatibility of the image with the NIC before the image was downloaded.
4136 *28: In case of non-Primary F/W: allocates and acknowledge a (TX or Notify) FID and allocates without
4137 * acknowledge another (TX or Notify) FID (the so-called 1.5 alloc scheme) with the following steps:
4138 * - execute the allocate command by calling cmd_exe
4139 * - wait till either the alloc event or a time-out occurs
4140 * - regardless whether the alloc event occurs, call get_fid to
4141 * - read the FID and save it in IFB_RscInd to be used as "spare FID"
4142 * - acknowledge the alloc event
4143 * - do another "half" allocate to complete the "1.5 Alloc scheme"
4144 * Note that above 3 steps do not harm and thus give the "cheapest" acceptable strategy.
4145 * If a time-out occurred, then report time out status (after all)
4147 *.ENDDOC END DOCUMENTATION
4149 ************************************************************************************************************/
4150 HCF_STATIC int
4151 init( IFBP ifbp )
4154 int rc = HCF_SUCCESS;
4156 HCFLOGENTRY( HCF_TRACE_INIT, 0 )
4158 ifbp->IFB_CardStat = 0; /* 2*/
4159 OPW( HREG_EV_ACK, ~HREG_EV_SLEEP_REQ ); /* 4*/
4160 IF_PROT_TIME( calibrate( ifbp ); ) /*10*/
4161 #if 0 // OOR
4162 ifbp->IFB_FWIdentity.len = 2; //misuse the IFB space for a put
4163 ifbp->IFB_FWIdentity.typ = CFG_TICK_TIME;
4164 ifbp->IFB_FWIdentity.comp_id = (1000*1000)/1024 + 1; //roughly 1 second
4165 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
4166 #endif // OOR
4167 ifbp->IFB_FWIdentity.len = sizeof(CFG_FW_IDENTITY_STRCT)/sizeof(hcf_16) - 1;
4168 ifbp->IFB_FWIdentity.typ = CFG_FW_IDENTITY;
4169 rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWIdentity.len );
4170 /* ;? conversion should not be needed for mmd_check_comp */
4171 #if HCF_BIG_ENDIAN
4172 ifbp->IFB_FWIdentity.comp_id = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.comp_id );
4173 ifbp->IFB_FWIdentity.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.variant );
4174 ifbp->IFB_FWIdentity.version_major = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_major );
4175 ifbp->IFB_FWIdentity.version_minor = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWIdentity.version_minor );
4176 #endif // HCF_BIG_ENDIAN
4177 #if defined MSF_COMPONENT_ID /*14*/
4178 if ( rc == HCF_SUCCESS ) { /*16*/
4179 ifbp->IFB_HSISup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4180 ifbp->IFB_HSISup.typ = CFG_NIC_HSI_SUP_RANGE;
4181 rc = hcf_get_info( ifbp, (LTVP)&ifbp->IFB_HSISup.len );
4182 /* ;? conversion should not be needed for mmd_check_comp , BUT according to a report of a BE-user it is
4183 * should be resolved in the WARP release
4184 * since some compilers make ugly but unnecessary code of these instructions even for LE,
4185 * it is conditionally compiled */
4186 #if HCF_BIG_ENDIAN
4187 ifbp->IFB_HSISup.role = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.role );
4188 ifbp->IFB_HSISup.id = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.id );
4189 ifbp->IFB_HSISup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.variant );
4190 ifbp->IFB_HSISup.bottom = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.bottom );
4191 ifbp->IFB_HSISup.top = CNV_LITTLE_TO_SHORT( ifbp->IFB_HSISup.top );
4192 #endif // HCF_BIG_ENDIAN
4193 ifbp->IFB_FWSup.len = sizeof(CFG_SUP_RANGE_STRCT)/sizeof(hcf_16) - 1;
4194 ifbp->IFB_FWSup.typ = CFG_FW_SUP_RANGE;
4195 (void)hcf_get_info( ifbp, (LTVP)&ifbp->IFB_FWSup.len );
4196 /* ;? conversion should not be needed for mmd_check_comp */
4197 #if HCF_BIG_ENDIAN
4198 ifbp->IFB_FWSup.role = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.role );
4199 ifbp->IFB_FWSup.id = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.id );
4200 ifbp->IFB_FWSup.variant = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.variant );
4201 ifbp->IFB_FWSup.bottom = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.bottom );
4202 ifbp->IFB_FWSup.top = CNV_LITTLE_TO_SHORT( ifbp->IFB_FWSup.top );
4203 #endif // HCF_BIG_ENDIAN
4205 if ( ifbp->IFB_FWSup.id == COMP_ID_PRI ) { /* 20*/
4206 int i = sizeof( CFG_FW_IDENTITY_STRCT) + sizeof(CFG_SUP_RANGE_STRCT );
4207 while ( i-- ) ((hcf_8*)(&ifbp->IFB_PRIIdentity))[i] = ((hcf_8*)(&ifbp->IFB_FWIdentity))[i];
4208 ifbp->IFB_PRIIdentity.typ = CFG_PRI_IDENTITY;
4209 ifbp->IFB_PRISup.typ = CFG_PRI_SUP_RANGE;
4210 xxxx[xxxx_PRI_IDENTITY_OFFSET] = &ifbp->IFB_PRIIdentity.len;
4211 xxxx[xxxx_PRI_IDENTITY_OFFSET+1] = &ifbp->IFB_PRISup.len;
4213 if ( !mmd_check_comp( (void*)&cfg_drv_act_ranges_hsi, &ifbp->IFB_HSISup) /* 22*/
4214 #if ( (HCF_TYPE) & HCF_TYPE_PRELOADED ) == 0
4215 //;? the PRI compatibility check is only relevant for DHF
4216 || !mmd_check_comp( (void*)&cfg_drv_act_ranges_pri, &ifbp->IFB_PRISup)
4217 #endif // HCF_TYPE_PRELOADED
4219 ifbp->IFB_CardStat = CARD_STAT_INCOMP_PRI;
4220 rc = HCF_ERR_INCOMP_PRI;
4222 if ( ( ifbp->IFB_FWSup.id == COMP_ID_STA && !mmd_check_comp( (void*)&cfg_drv_act_ranges_sta, &ifbp->IFB_FWSup) ) ||
4223 ( ifbp->IFB_FWSup.id == COMP_ID_APF && !mmd_check_comp( (void*)&cfg_drv_act_ranges_apf, &ifbp->IFB_FWSup) )
4224 ) { /* 24 */
4225 ifbp->IFB_CardStat |= CARD_STAT_INCOMP_FW;
4226 rc = HCF_ERR_INCOMP_FW;
4229 #endif // MSF_COMPONENT_ID
4230 #if (HCF_DL_ONLY) == 0 /* 28 */
4231 if ( rc == HCF_SUCCESS && ifbp->IFB_FWIdentity.comp_id >= COMP_ID_FW_STA ) {
4232 PROT_CNT_INI
4233 /**************************************************************************************
4234 * rlav: the DMA engine needs the host to cause a 'hanging alloc event' for it to consume.
4235 * not sure if this is the right spot in the HCF, thinking about hcf_enable...
4236 **************************************************************************************/
4237 rc = cmd_exe( ifbp, HCMD_ALLOC, 0 );
4238 // 180 degree error in logic ;? #if ALLOC_15
4239 // ifbp->IFB_RscInd = 1; //let's hope that by the time hcf_send_msg isa called, there will be a FID
4240 //#else
4241 if ( rc == HCF_SUCCESS ) {
4242 HCF_WAIT_WHILE( (IPW( HREG_EV_STAT ) & HREG_EV_ALLOC) == 0 );
4243 IF_PROT_TIME( HCFASSERT(prot_cnt, IPW( HREG_EV_STAT ) ) /*NOP*/;)
4244 #if HCF_DMA
4245 if ( ! ( ifbp->IFB_CntlOpt & USE_DMA ) )
4246 #endif // HCF_DMA
4248 ifbp->IFB_RscInd = get_fid( ifbp );
4249 HCFASSERT( ifbp->IFB_RscInd, 0 )
4250 cmd_exe( ifbp, HCMD_ALLOC, 0 );
4251 IF_PROT_TIME( if ( prot_cnt == 0 ) rc = HCF_ERR_TIME_OUT; )
4254 //#endif // ALLOC_15
4256 #endif // HCF_DL_ONLY
4257 HCFASSERT( rc == HCF_SUCCESS, rc )
4258 HCFLOGEXIT( HCF_TRACE_INIT )
4259 return rc;
4260 } // init
4262 #if (HCF_DL_ONLY) == 0
4263 /************************************************************************************************************
4265 *.SUBMODULE void isr_info( IFBP ifbp )
4266 *.PURPOSE handles link events.
4268 *.ARGUMENTS
4269 * ifbp address of the Interface Block
4271 *.RETURNS N.A.
4273 *.DESCRIPTION
4276 *.DIAGRAM
4277 *1: First the FID number corresponding with the InfoEvent is determined.
4278 * Note the complication of the zero-FID protection sub-scheme in DAWA.
4279 * Next the L-field and the T-field are fetched into scratch buffer info.
4280 *2: In case of tallies, the 16 bits Hermes values are accumulated in the IFB into 32 bits values. Info[0]
4281 * is (expected to be) HCF_NIC_TAL_CNT + 1. The contraption "while ( info[0]-- >1 )" rather than
4282 * "while ( --info[0] )" is used because it is dangerous to determine the length of the Value field by
4283 * decrementing info[0]. As a result of a bug in some version of the F/W, info[0] may be 0, resulting
4284 * in a very long loop in the pre-decrement logic.
4285 *4: In case of a link status frame, the information is copied to the IFB field IFB_linkStat
4286 *6: All other than Tallies (including "unknown" ones) are checked against the selection set by the MSF
4287 * via CFG_RID_LOG. If a match is found or the selection set has the wild-card type (i.e non-NULL buffer
4288 * pointer at the terminating zero-type), the frame is copied to the (type-specific) log buffer.
4289 * Note that to accumulate tallies into IFB AND to log them or to log a frame when a specific match occures
4290 * AND based on the wild-card selection, you have to call setup_bap again after the 1st copy.
4292 *.ENDDOC END DOCUMENTATION
4294 ************************************************************************************************************/
4295 HCF_STATIC void
4296 isr_info( IFBP ifbp )
4298 hcf_16 info[2], fid;
4299 #if (HCF_EXT) & HCF_EXT_INFO_LOG
4300 RID_LOGP ridp = ifbp->IFB_RIDLogp; //NULL or pointer to array of RID_LOG structures (terminated by zero typ)
4301 #endif // HCF_EXT_INFO_LOG
4303 HCFTRACE( ifbp, HCF_TRACE_ISR_INFO ); /* 1 */
4304 fid = IPW( HREG_INFO_FID );
4305 DAWA_ZERO_FID( HREG_INFO_FID )
4306 if ( fid ) {
4307 (void)setup_bap( ifbp, fid, 0, IO_IN );
4308 get_frag( ifbp, (wci_bufp)info, 4 BE_PAR(2) );
4309 HCFASSERT( info[0] <= HCF_MAX_LTV + 1, MERGE_2( info[1], info[0] ) ) //;? a smaller value makes more sense
4310 #if (HCF_TALLIES) & HCF_TALLIES_NIC //Hermes tally support
4311 if ( info[1] == CFG_TALLIES ) {
4312 hcf_32 *p;
4313 /*2*/ if ( info[0] > HCF_NIC_TAL_CNT ) {
4314 info[0] = HCF_NIC_TAL_CNT + 1;
4316 p = (hcf_32*)&ifbp->IFB_NIC_Tallies;
4317 while ( info[0]-- >1 ) *p++ += IPW( HREG_DATA_1 ); //request may return zero length
4319 else
4320 #endif // HCF_TALLIES_NIC
4322 /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4323 ifbp->IFB_LinkStat = IPW( HREG_DATA_1 );
4325 #if (HCF_EXT) & HCF_EXT_INFO_LOG
4326 /*6*/ while ( 1 ) {
4327 if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4328 if ( ridp->bufp ) {
4329 HCFASSERT( ridp->len >= 2, ridp->typ )
4330 ridp->bufp[0] = min((hcf_16)(ridp->len - 1), info[0] ); //save L
4331 ridp->bufp[1] = info[1]; //save T
4332 get_frag( ifbp, (wci_bufp)&ridp->bufp[2], (ridp->bufp[0] - 1)*2 BE_PAR(0) );
4334 break;
4336 ridp++;
4338 #endif // HCF_EXT_INFO_LOG
4340 HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4342 return;
4343 } // isr_info
4344 #endif // HCF_DL_ONLY
4348 // #endif // HCF_TALLIES_NIC
4349 // /*4*/ if ( info[1] == CFG_LINK_STAT ) {
4350 // ifbp->IFB_DSLinkStat = IPW( HREG_DATA_1 ) | CFG_LINK_STAT_CHANGE; //corrupts BAP !! ;?
4351 // ifbp->IFB_LinkStat = ifbp->IFB_DSLinkStat & CFG_LINK_STAT_FW; //;? to be obsoleted
4352 // printk( "<4>linkstatus: %04x\n", ifbp->IFB_DSLinkStat ); //;?remove me 1 day
4353 // #if (HCF_SLEEP) & HCF_DDS
4354 // if ( ( ifbp->IFB_DSLinkStat & CFG_LINK_STAT_CONNECTED ) == 0 ) { //even values are disconnected etc.
4355 // ifbp->IFB_TickCnt = 0; //start 2 second period (with 1 tick uncertanty)
4356 // printk( "<5>isr_info: AwaitConnection phase started, IFB_TickCnt = 0\n" ); //;?remove me 1 day
4357 // }
4358 // #endif // HCF_DDS
4359 // }
4360 // #if (HCF_EXT) & HCF_EXT_INFO_LOG
4361 // /*6*/ while ( 1 ) {
4362 // if ( ridp->typ == 0 || ridp->typ == info[1] ) {
4363 // if ( ridp->bufp ) {
4364 // HCFASSERT( ridp->len >= 2, ridp->typ )
4365 // (void)setup_bap( ifbp, fid, 2, IO_IN ); //restore BAP for tallies, linkstat and specific type followed by wild card
4366 // ridp->bufp[0] = min( ridp->len - 1, info[0] ); //save L
4367 // get_frag( ifbp, (wci_bufp)&ridp->bufp[1], ridp->bufp[0]*2 BE_PAR(0) );
4368 // }
4369 // break; //;?this break is no longer needed due to setup_bap but lets concentrate on DDS first
4370 // }
4371 // ridp++;
4372 // }
4373 // #endif // HCF_EXT_INFO_LOG
4374 // }
4375 // HCFTRACE( ifbp, HCF_TRACE_ISR_INFO | HCF_TRACE_EXIT );
4380 // return;
4381 //} // isr_info
4382 //#endif // HCF_DL_ONLY
4385 /************************************************************************************************************
4387 *.SUBMODULE void mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4388 *.PURPOSE filters assert on level and interfaces to the MSF supplied msf_assert routine.
4390 *.ARGUMENTS
4391 * ifbp address of the Interface Block
4392 * line_number line number of the line which caused the assert
4393 * q qualifier, additional information which may give a clue about the problem
4395 *.RETURNS N.A.
4397 *.DESCRIPTION
4400 *.DIAGRAM
4402 *.NOTICE
4403 * mdd_assert has been through a turmoil, renaming hcf_assert to assert and hcf_assert again and supporting off
4404 * and on being called from the MSF level and other ( immature ) ModularDriverDevelopment modules like DHF and
4405 * MMD.
4406 * !!!! The assert routine is not an hcf_..... routine in the sense that it may be called by the MSF,
4407 * however it is called from mmd.c and dhf.c, so it must be external.
4408 * To prevent namespace pollution it needs a prefix, to prevent that MSF programmers think that
4409 * they are allowed to call the assert logic, the prefix HCF can't be used, so MDD is selected!!!!
4411 * When called from the DHF module the line number is incremented by DHF_FILE_NAME_OFFSET and when called from
4412 * the MMD module by MMD_FILE_NAME_OFFSET.
4414 *.ENDDOC END DOCUMENTATION
4416 ************************************************************************************************************/
4417 #if HCF_ASSERT
4418 void
4419 mdd_assert( IFBP ifbp, unsigned int line_number, hcf_32 q )
4421 hcf_16 run_time_flag = ifbp->IFB_AssertLvl;
4423 if ( run_time_flag /* > ;?????? */ ) { //prevent recursive behavior, later to be extended to level filtering
4424 ifbp->IFB_AssertQualifier = q;
4425 ifbp->IFB_AssertLine = (hcf_16)line_number;
4426 #if (HCF_ASSERT) & ( HCF_ASSERT_LNK_MSF_RTN | HCF_ASSERT_RT_MSF_RTN )
4427 if ( ifbp->IFB_AssertRtn ) {
4428 ifbp->IFB_AssertRtn( line_number, ifbp->IFB_AssertTrace, q );
4430 #endif // HCF_ASSERT_LNK_MSF_RTN / HCF_ASSERT_RT_MSF_RTN
4431 #if (HCF_ASSERT) & HCF_ASSERT_SW_SUP
4432 OPW( HREG_SW_2, line_number );
4433 OPW( HREG_SW_2, ifbp->IFB_AssertTrace );
4434 OPW( HREG_SW_2, (hcf_16)q );
4435 OPW( HREG_SW_2, (hcf_16)(q >> 16 ) );
4436 #endif // HCF_ASSERT_SW_SUP
4438 #if (HCF_EXT) & HCF_EXT_MB && (HCF_ASSERT) & HCF_ASSERT_MB
4439 ifbp->IFB_AssertLvl = 0; // prevent recursive behavior
4440 hcf_put_info( ifbp, (LTVP)&ifbp->IFB_AssertStrct );
4441 ifbp->IFB_AssertLvl = run_time_flag; // restore appropriate filter level
4442 #endif // HCF_EXT_MB / HCF_ASSERT_MB
4444 } // mdd_assert
4445 #endif // HCF_ASSERT
4448 /************************************************************************************************************
4450 *.SUBMODULE void put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4451 *.PURPOSE writes with 16/32 bit I/O via BAP1 port from Host memory to NIC RAM.
4453 *.ARGUMENTS
4454 * ifbp address of the Interface Block
4455 * bufp (byte) address of buffer
4456 * len length in bytes of buffer specified by bufp
4457 * word_len Big Endian only: number of leading bytes to swap in pairs
4459 *.RETURNS N.A.
4461 *.DESCRIPTION
4462 * process the single byte (if applicable) not yet written by the previous put_frag and copy len
4463 * (or len-1) bytes from bufp to NIC.
4466 *.DIAGRAM
4468 *.NOTICE
4469 * It turns out DOS ODI uses zero length fragments. The HCF code can cope with it, but as a consequence, no
4470 * Assert on len is possible
4472 *.ENDDOC END DOCUMENTATION
4474 ************************************************************************************************************/
4475 HCF_STATIC void
4476 put_frag( IFBP ifbp, wci_bufp bufp, int len BE_PAR( int word_len ) )
4478 hcf_io io_port = ifbp->IFB_IOBase + HREG_DATA_1; //BAP data register
4479 int i; //prevent side effects from macro
4480 hcf_16 j;
4481 HCFASSERT( ((hcf_32)bufp & (HCF_ALIGN-1) ) == 0, (hcf_32)bufp )
4482 #if HCF_BIG_ENDIAN
4483 HCFASSERT( word_len == 0 || word_len == 2 || word_len == 4, word_len )
4484 HCFASSERT( word_len == 0 || ((hcf_32)bufp & 1 ) == 0, (hcf_32)bufp )
4485 HCFASSERT( word_len <= len, MERGE_2( word_len, len ) )
4487 if ( word_len ) { //if there is anything to convert
4488 //. convert and write the 1st hcf_16
4489 j = bufp[1] | bufp[0]<<8;
4490 OUT_PORT_WORD( io_port, j );
4491 //. update pointer and counter accordingly
4492 len -= 2;
4493 bufp += 2;
4494 if ( word_len > 1 ) { //. if there is to convert more than 1 word ( i.e 2 )
4495 //. . convert and write the 2nd hcf_16
4496 j = bufp[1] | bufp[0]<<8; /*bufp is already incremented by 2*/
4497 OUT_PORT_WORD( io_port, j );
4498 //. . update pointer and counter accordingly
4499 len -= 2;
4500 bufp += 2;
4503 #endif // HCF_BIG_ENDIAN
4504 i = len;
4505 if ( i && ifbp->IFB_CarryOut ) { //skip zero-length
4506 j = ((*bufp)<<8) + ( ifbp->IFB_CarryOut & 0xFF );
4507 OUT_PORT_WORD( io_port, j );
4508 bufp++; i--;
4509 ifbp->IFB_CarryOut = 0;
4511 #if (HCF_IO) & HCF_IO_32BITS
4512 //skip zero-length I/O, single byte I/O and I/O not worthwhile (i.e. less than 6 bytes)for DW logic
4513 //if buffer length >= 6 and 32 bits I/O support
4514 if ( !(ifbp->IFB_CntlOpt & USE_16BIT) && i >= 6 ) {
4515 hcf_32 FAR *p4; //prevent side effects from macro
4516 if ( ( (hcf_32)bufp & 0x1 ) == 0 ) { //. if buffer at least word aligned
4517 if ( (hcf_32)bufp & 0x2 ) { //. . if buffer not double word aligned
4518 //. . . write a single word to get double word aligned
4519 j = *(wci_recordp)bufp; //just to help ease writing macros with embedded assembly
4520 OUT_PORT_WORD( io_port, j );
4521 //. . . adjust buffer length and pointer accordingly
4522 bufp += 2; i -= 2;
4524 //. . write as many double word as possible
4525 p4 = (hcf_32 FAR *)bufp;
4526 j = (hcf_16)i/4;
4527 OUT_PORT_STRING_32( io_port, p4, j );
4528 //. . adjust buffer length and pointer accordingly
4529 bufp += i & ~0x0003;
4530 i &= 0x0003;
4533 #endif // HCF_IO_32BITS
4534 //if no 32-bit support OR byte aligned OR 1 word left
4535 if ( i ) {
4536 //. if odd number of bytes left
4537 if ( i & 0x0001 ) {
4538 //. . save left over byte (before bufp is corrupted) in carry, set carry flag
4539 ifbp->IFB_CarryOut = (hcf_16)bufp[i-1] | 0x0100; //note that i and bufp are always simultaneously modified, &bufp[i-1] is invariant
4541 //. write as many word as possible in "alignment safe" way
4542 j = (hcf_16)i/2;
4543 OUT_PORT_STRING_8_16( io_port, bufp, j );
4545 } // put_frag
4548 /************************************************************************************************************
4550 *.SUBMODULE void put_frag_finalize( IFBP ifbp )
4551 *.PURPOSE cleanup after put_frag for trailing odd byte and MIC transfer to NIC.
4553 *.ARGUMENTS
4554 * ifbp address of the Interface Block
4556 *.RETURNS N.A.
4558 *.DESCRIPTION
4559 * finalize the MIC calculation with the padding pattern, output the last byte (if applicable)
4560 * of the message and the MIC to the TxFS
4563 *.DIAGRAM
4564 *2: 1 byte of the last put_frag may be still in IFB_CarryOut ( the put_frag carry holder ), so ........
4565 * 1 - 3 bytes of the last put_frag may be still in IFB_tx_32 ( the MIC engine carry holder ), so ........
4566 * The call to the MIC calculation routine feeds these remaining bytes (if any) of put_frag and the
4567 * just as many bytes of the padding as needed to the MIC calculation engine. Note that the "unneeded" pad
4568 * bytes simply end up in the MIC engine carry holder and are never used.
4569 *8: write the remainder of the MIC and possible some garbage to NIC RAM
4570 * Note: i is always 4 (a loop-invariant of the while in point 2)
4572 *.NOTICE
4574 *.ENDDOC END DOCUMENTATION
4576 ************************************************************************************************************/
4577 HCF_STATIC void
4578 put_frag_finalize( IFBP ifbp )
4580 #if (HCF_TYPE) & HCF_TYPE_WPA
4581 if ( ifbp->IFB_MICTxCarry != 0xFFFF) { //if MIC calculation active
4582 CALC_TX_MIC( mic_pad, 8); //. feed (up to 8 bytes of) virtual padding to MIC engine
4583 //. write (possibly) trailing byte + (most of) MIC
4584 put_frag( ifbp, (wci_bufp)ifbp->IFB_MICTx, 8 BE_PAR(0) );
4586 #endif // HCF_TYPE_WPA
4587 put_frag( ifbp, null_addr, 1 BE_PAR(0) ); //write (possibly) trailing data or MIC byte
4588 } // put_frag_finalize
4591 /************************************************************************************************************
4593 *.SUBMODULE int put_info( IFBP ifbp, LTVP ltvp )
4594 *.PURPOSE support routine to handle the "basic" task of hcf_put_info to pass RIDs to the NIC.
4596 *.ARGUMENTS
4597 * ifbp address of the Interface Block
4598 * ltvp address in NIC RAM where LVT-records are located
4600 *.RETURNS
4601 * HCF_SUCCESS
4602 * >>put_frag
4603 * >>cmd_wait
4605 *.DESCRIPTION
4608 *.DIAGRAM
4609 *20: do not write RIDs to NICs which have incompatible Firmware
4610 *24: If the RID does not exist, the L-field is set to zero.
4611 * Note that some RIDs can not be read, e.g. the pseudo RIDs for direct Hermes commands and CFG_DEFAULT_KEYS
4612 *28: If the RID is written successful, pass it to the NIC by means of an Access Write command
4614 *.NOTICE
4615 * The mechanism to HCF_ASSERT on invalid typ-codes in the LTV record is based on the following strategy:
4616 * - some codes (e.g. CFG_REG_MB) are explicitly handled by the HCF which implies that these codes
4617 * are valid. These codes are already consumed by hcf_put_info.
4618 * - all other codes are passed to the Hermes. Before the put action is executed, hcf_get_info is called
4619 * with an LTV record with a value of 1 in the L-field and the intended put action type in the Typ-code
4620 * field. If the put action type is valid, it is also valid as a get action type code - except
4621 * for CFG_DEFAULT_KEYS and CFG_ADD_TKIP_DEFAULT_KEY - so the HCF_ASSERT logic of hcf_get_info should
4622 * not catch.
4624 *.ENDDOC END DOCUMENTATION
4626 ************************************************************************************************************/
4627 HCF_STATIC int
4628 put_info( IFBP ifbp, LTVP ltvp )
4631 int rc = HCF_SUCCESS;
4633 HCFASSERT( ifbp->IFB_CardStat == 0, MERGE_2( ltvp->typ, ifbp->IFB_CardStat ) )
4634 HCFASSERT( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX, ltvp->typ )
4636 if ( ifbp->IFB_CardStat == 0 && /* 20*/
4637 ( ( CFG_RID_CFG_MIN <= ltvp->typ && ltvp->typ <= CFG_RID_CFG_MAX ) ||
4638 ( CFG_RID_ENG_MIN <= ltvp->typ /* && ltvp->typ <= 0xFFFF */ ) ) ) {
4639 #if HCF_ASSERT //FCC8, FCB0, FCB4, FCB6, FCB7, FCB8, FCC0, FCC4, FCBC, FCBD, FCBE, FCBF
4641 hcf_16 t = ltvp->typ;
4642 LTV_STRCT x = { 2, t, {0} }; /*24*/
4643 hcf_get_info( ifbp, (LTVP)&x );
4644 if ( x.len == 0 &&
4645 ( t != CFG_DEFAULT_KEYS && t != CFG_ADD_TKIP_DEFAULT_KEY && t != CFG_REMOVE_TKIP_DEFAULT_KEY &&
4646 t != CFG_ADD_TKIP_MAPPED_KEY && t != CFG_REMOVE_TKIP_MAPPED_KEY &&
4647 t != CFG_HANDOVER_ADDR && t != CFG_DISASSOCIATE_ADDR &&
4648 t != CFG_FCBC && t != CFG_FCBD && t != CFG_FCBE && t != CFG_FCBF &&
4649 t != CFG_DEAUTHENTICATE_ADDR
4652 HCFASSERT( DO_ASSERT, ltvp->typ )
4655 #endif // HCF_ASSERT
4657 rc = setup_bap( ifbp, ltvp->typ, 0, IO_OUT );
4658 put_frag( ifbp, (wci_bufp)ltvp, 2*ltvp->len + 2 BE_PAR(2) );
4659 /*28*/ if ( rc == HCF_SUCCESS ) {
4660 rc = cmd_exe( ifbp, HCMD_ACCESS + HCMD_ACCESS_WRITE, ltvp->typ );
4663 return rc;
4664 } // put_info
4667 #if (HCF_DL_ONLY) == 0
4668 /************************************************************************************************************
4670 *.SUBMODULE int put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4671 *.PURPOSE accumulates a ( series of) buffers into a single Info block into the MailBox.
4673 *.ARGUMENTS
4674 * ifbp address of the Interface Block
4675 * ltvp address of structure specifying the "type" and the fragments of the information to be synthesized
4676 * as an LTV into the MailBox
4678 *.RETURNS
4680 *.DESCRIPTION
4681 * If the data does not fit (including no MailBox is available), the IFB_MBTally is incremented and an
4682 * error status is returned.
4683 * HCF_ASSERT does not catch.
4684 * Calling put_info_mb when their is no MailBox available, is considered a design error in the MSF.
4686 * Note that there is always at least 1 word of unused space in the mail box.
4687 * As a consequence:
4688 * - no problem in pointer arithmetic (MB_RP == MB_WP means unambiguously mail box is completely empty
4689 * - There is always free space to write an L field with a value of zero after each MB_Info block. This
4690 * allows for an easy scan mechanism in the "get MB_Info block" logic.
4693 *.DIAGRAM
4694 *1: Calculate L field of the MBIB, i.e. 1 for the T-field + the cumulative length of the fragments.
4695 *2: The free space in the MailBox is calculated (2a: free part from Write Ptr to Read Ptr, 2b: free part
4696 * turns out to wrap around) . If this space suffices to store the number of words reflected by len (T-field
4697 * + Value-field) plus the additional MailBox Info L-field + a trailing 0 to act as the L-field of a trailing
4698 * dummy or empty LTV record, then a MailBox Info block is build in the MailBox consisting of
4699 * - the value len in the first word
4700 * - type in the second word
4701 * - a copy of the contents of the fragments in the second and higher word
4703 *4: Since put_info_mb() can more or less directly be called from the MSF level, the I/F must be robust
4704 * against out-of-range variables. As failsafe coding, the MB update is skipped by changing tlen to 0 if
4705 * len == 0; This will indirectly cause an assert as result of the violation of the next if clause.
4706 *6: Check whether the free space in MailBox suffices (this covers the complete absence of the MailBox).
4707 * Note that len is unsigned, so even MSF I/F violation works out O.K.
4708 * The '2' in the expression "len+2" is used because 1 word is needed for L itself and 1 word is needed
4709 * for the zero-sentinel
4710 *8: update MailBox Info length report to MSF with "oldest" MB Info Block size. Be carefull here, if you get
4711 * here before the MailBox is registered, you can't read from the buffer addressed by IFB_MBp (it is the
4712 * Null buffer) so don't move this code till the end of this routine but keep it where there is garuanteed
4713 * a buffer.
4715 *.NOTICE
4716 * boundary testing depends on the fact that IFB_MBSize is guaranteed to be zero if no MailBox is present,
4717 * and to a lesser degree, that IFB_MBWp = IFB_MBRp = 0
4719 *.ENDDOC END DOCUMENTATION
4721 ************************************************************************************************************/
4722 #if (HCF_EXT) & HCF_EXT_MB
4724 HCF_STATIC int
4725 put_info_mb( IFBP ifbp, CFG_MB_INFO_STRCT FAR * ltvp )
4728 int rc = HCF_SUCCESS;
4729 hcf_16 i; //work counter
4730 hcf_16 *dp; //destination pointer (in MailBox)
4731 wci_recordp sp; //source pointer
4732 hcf_16 len; //total length to copy to MailBox
4733 hcf_16 tlen; //free length/working length/offset in WMP frame
4735 if ( ifbp->IFB_MBp == NULL ) return rc; //;?not sufficient
4736 HCFASSERT( ifbp->IFB_MBp != NULL, 0 ) //!!!be careful, don't get into an endless recursion
4737 HCFASSERT( ifbp->IFB_MBSize, 0 )
4739 len = 1; /* 1 */
4740 for ( i = 0; i < ltvp->frag_cnt; i++ ) {
4741 len += ltvp->frag_buf[i].frag_len;
4743 if ( ifbp->IFB_MBRp > ifbp->IFB_MBWp ) {
4744 tlen = ifbp->IFB_MBRp - ifbp->IFB_MBWp; /* 2a*/
4745 } else {
4746 if ( ifbp->IFB_MBRp == ifbp->IFB_MBWp ) {
4747 ifbp->IFB_MBRp = ifbp->IFB_MBWp = 0; // optimize Wrapping
4749 tlen = ifbp->IFB_MBSize - ifbp->IFB_MBWp; /* 2b*/
4750 if ( ( tlen <= len + 2 ) && ( len + 2 < ifbp->IFB_MBRp ) ) { //if trailing space is too small but
4751 // leading space is sufficiently large
4752 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0xFFFF; //flag dummy LTV to fill the trailing space
4753 ifbp->IFB_MBWp = 0; //reset WritePointer to begin of MailBox
4754 tlen = ifbp->IFB_MBRp; //get new available space size
4757 dp = &ifbp->IFB_MBp[ifbp->IFB_MBWp];
4758 if ( len == 0 ) {
4759 tlen = 0; //;? what is this good for
4761 if ( len + 2 >= tlen ){ /* 6 */
4762 //Do Not ASSERT, this is a normal condition
4763 IF_TALLY( ifbp->IFB_HCF_Tallies.NoBufMB++; ) /*NOP to cover against analomies with empty compound*/;
4764 rc = HCF_ERR_LEN;
4765 } else {
4766 *dp++ = len; //write Len (= size of T+V in words to MB_Info block
4767 *dp++ = ltvp->base_typ; //write Type to MB_Info block
4768 ifbp->IFB_MBWp += len + 1; //update WritePointer of MailBox
4769 for ( i = 0; i < ltvp->frag_cnt; i++ ) { // process each of the fragments
4770 sp = ltvp->frag_buf[i].frag_addr;
4771 len = ltvp->frag_buf[i].frag_len;
4772 while ( len-- ) *dp++ = *sp++;
4774 ifbp->IFB_MBp[ifbp->IFB_MBWp] = 0; //to assure get_info for CFG_MB_INFO stops
4775 ifbp->IFB_MBInfoLen = ifbp->IFB_MBp[ifbp->IFB_MBRp]; /* 8 */
4777 return rc;
4778 } // put_info_mb
4780 #endif // HCF_EXT_MB
4781 #endif // HCF_DL_ONLY
4784 /************************************************************************************************************
4786 *.SUBMODULE int setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4787 *.PURPOSE set up data access to NIC RAM via BAP_1.
4789 *.ARGUMENTS
4790 * ifbp address of I/F Block
4791 * fid FID/RID
4792 * offset !!even!! offset in FID/RID
4793 * type IO_IN, IO_OUT
4795 *.RETURNS
4796 * HCF_SUCCESS O.K
4797 * HCF_ERR_NO_NIC card is removed
4798 * HCF_ERR_DEFUNCT_TIME_OUT Fatal malfunction detected
4799 * HCF_ERR_DEFUNCT_..... if and only if IFB_DefunctStat <> 0
4801 *.DESCRIPTION
4803 * A non-zero return status indicates:
4804 * - the NIC is considered nonoperational, e.g. due to a time-out of some Hermes activity in the past
4805 * - BAP_1 could not properly be initialized
4806 * - the card is removed before completion of the data transfer
4807 * In all other cases, a zero is returned.
4808 * BAP Initialization failure indicates an H/W error which is very likely to signal complete H/W failure.
4809 * Once a BAP Initialization failure has occurred all subsequent interactions with the Hermes will return a
4810 * "defunct" status till the Hermes is re-initialized by means of an hcf_connect.
4812 * A BAP is a set of registers (Offset, Select and Data) offering read/write access to a particular FID or
4813 * RID. This access is based on a auto-increment feature.
4814 * There are two BAPs but these days the HCF uses only BAP_1 and leaves BAP_0 to the PCI Busmastering H/W.
4816 * The BAP-mechanism is based on the Busy bit in the Offset register (see the Hermes definition). The waiting
4817 * for Busy must occur between writing the Offset register and accessing the Data register. The
4818 * implementation to wait for the Busy bit drop after each write to the Offset register, implies that the
4819 * requirement that the Busy bit is low before the Select register is written, is automatically met.
4820 * BAP-setup may be time consuming (e.g. 380 usec for large offsets occurs frequently). The wait for Busy bit
4821 * drop is protected by a loop counter, which is initialized with IFB_TickIni, which is calibrated in init.
4823 * The NIC I/F is optimized for word transfer and can only handle word transfer at a word boundary in NIC
4824 * RAM. The intended solution for transfer of a single byte has multiple H/W flaws. There have been different
4825 * S/W Workaround strategies. RID access is hcf_16 based by "nature", so no byte access problems. For Tx/Rx
4826 * FID access, the byte logic became obsolete by absorbing it in the double word oriented nature of the MIC
4827 * feature.
4830 *.DIAGRAM
4832 *2: the test on rc checks whether the HCF went into "defunct" mode ( e.g. BAP initialization or a call to
4833 * cmd_wait did ever fail).
4834 *4: the select register and offset register are set
4835 * the offset register is monitored till a successful condition (no busy bit) is detected or till the
4836 * (calibrated) protection counter expires
4837 * If the counter expires, this is reflected in IFB_DefunctStat, so all subsequent calls to setup_bap fail
4838 * immediately ( see 2)
4839 *6: initialization of the carry as used by pet/get_frag
4840 *8: HREG_OFFSET_ERR is ignored as error because:
4841 * a: the Hermes is robust against it
4842 * b: it is not known what causes it (probably a bug), hence no strategy can be specified which level is
4843 * to handle this error in which way. In the past, it could be induced by the MSF level, e.g. by calling
4844 * hcf_rcv_msg while there was no Rx-FID available. Since this is an MSF-error which is caught by ASSERT,
4845 * there is no run-time action required by the HCF.
4846 * Lumping the Offset error in with the Busy bit error, as has been done in the past turns out to be a
4847 * disaster or a life saver, just depending on what the cause of the error is. Since no prediction can be
4848 * done about the future, it is "felt" to be the best strategy to ignore this error. One day the code was
4849 * accompanied by the following comment:
4850 * // ignore HREG_OFFSET_ERR, someone, supposedly the MSF programmer ;) made a bug. Since we don't know
4851 * // what is going on, we might as well go on - under management pressure - by ignoring it
4853 *.ENDDOC END DOCUMENTATION
4855 ************************************************************************************************************/
4856 HCF_STATIC int
4857 setup_bap( IFBP ifbp, hcf_16 fid, int offset, int type )
4859 PROT_CNT_INI
4860 int rc;
4862 HCFTRACE( ifbp, HCF_TRACE_STRIO );
4863 if ( ( rc = ifbp->IFB_DefunctStat ) == HCF_SUCCESS ) { /*2*/
4864 OPW( HREG_SELECT_1, fid ); /*4*/
4865 OPW( HREG_OFFSET_1, offset );
4866 if ( type == IO_IN ) {
4867 ifbp->IFB_CarryIn = 0;
4869 else ifbp->IFB_CarryOut = 0;
4870 HCF_WAIT_WHILE( IPW( HREG_OFFSET_1) & HCMD_BUSY );
4871 HCFASSERT( !( IPW( HREG_OFFSET_1) & HREG_OFFSET_ERR ), MERGE_2( fid, offset ) ) /*8*/
4872 if ( prot_cnt == 0 ) {
4873 HCFASSERT( DO_ASSERT, MERGE_2( fid, offset ) )
4874 rc = ifbp->IFB_DefunctStat = HCF_ERR_DEFUNCT_TIME_OUT;
4875 ifbp->IFB_CardStat |= CARD_STAT_DEFUNCT;
4878 HCFTRACE( ifbp, HCF_TRACE_STRIO | HCF_TRACE_EXIT );
4879 return rc;
4880 } // setup_bap