2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when pdflush is doing background
41 * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal"
42 * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the
43 * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()'
44 * we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/namei.h>
55 #include <linux/slab.h>
57 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
58 struct ubifs_data_node
*dn
)
60 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
61 int err
, len
, out_len
;
65 data_key_init(c
, &key
, inode
->i_ino
, block
);
66 err
= ubifs_tnc_lookup(c
, &key
, dn
);
69 /* Not found, so it must be a hole */
70 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
74 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
75 ubifs_inode(inode
)->creat_sqnum
);
76 len
= le32_to_cpu(dn
->size
);
77 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
80 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
81 out_len
= UBIFS_BLOCK_SIZE
;
82 err
= ubifs_decompress(&dn
->data
, dlen
, addr
, &out_len
,
83 le16_to_cpu(dn
->compr_type
));
84 if (err
|| len
!= out_len
)
88 * Data length can be less than a full block, even for blocks that are
89 * not the last in the file (e.g., as a result of making a hole and
90 * appending data). Ensure that the remainder is zeroed out.
92 if (len
< UBIFS_BLOCK_SIZE
)
93 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
98 ubifs_err("bad data node (block %u, inode %lu)",
100 dbg_dump_node(c
, dn
);
104 static int do_readpage(struct page
*page
)
108 unsigned int block
, beyond
;
109 struct ubifs_data_node
*dn
;
110 struct inode
*inode
= page
->mapping
->host
;
111 loff_t i_size
= i_size_read(inode
);
113 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
114 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
115 ubifs_assert(!PageChecked(page
));
116 ubifs_assert(!PagePrivate(page
));
120 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
121 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
122 if (block
>= beyond
) {
123 /* Reading beyond inode */
124 SetPageChecked(page
);
125 memset(addr
, 0, PAGE_CACHE_SIZE
);
129 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
139 if (block
>= beyond
) {
140 /* Reading beyond inode */
142 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
144 ret
= read_block(inode
, addr
, block
, dn
);
149 } else if (block
+ 1 == beyond
) {
150 int dlen
= le32_to_cpu(dn
->size
);
151 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
153 if (ilen
&& ilen
< dlen
)
154 memset(addr
+ ilen
, 0, dlen
- ilen
);
157 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
160 addr
+= UBIFS_BLOCK_SIZE
;
163 if (err
== -ENOENT
) {
164 /* Not found, so it must be a hole */
165 SetPageChecked(page
);
169 ubifs_err("cannot read page %lu of inode %lu, error %d",
170 page
->index
, inode
->i_ino
, err
);
177 SetPageUptodate(page
);
178 ClearPageError(page
);
179 flush_dcache_page(page
);
185 ClearPageUptodate(page
);
187 flush_dcache_page(page
);
193 * release_new_page_budget - release budget of a new page.
194 * @c: UBIFS file-system description object
196 * This is a helper function which releases budget corresponding to the budget
197 * of one new page of data.
199 static void release_new_page_budget(struct ubifs_info
*c
)
201 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
203 ubifs_release_budget(c
, &req
);
207 * release_existing_page_budget - release budget of an existing page.
208 * @c: UBIFS file-system description object
210 * This is a helper function which releases budget corresponding to the budget
211 * of changing one one page of data which already exists on the flash media.
213 static void release_existing_page_budget(struct ubifs_info
*c
)
215 struct ubifs_budget_req req
= { .dd_growth
= c
->page_budget
};
217 ubifs_release_budget(c
, &req
);
220 static int write_begin_slow(struct address_space
*mapping
,
221 loff_t pos
, unsigned len
, struct page
**pagep
,
224 struct inode
*inode
= mapping
->host
;
225 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
226 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
227 struct ubifs_budget_req req
= { .new_page
= 1 };
228 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 inode
->i_ino
, pos
, len
, inode
->i_size
);
235 * At the slow path we have to budget before locking the page, because
236 * budgeting may force write-back, which would wait on locked pages and
237 * deadlock if we had the page locked. At this point we do not know
238 * anything about the page, so assume that this is a new page which is
239 * written to a hole. This corresponds to largest budget. Later the
240 * budget will be amended if this is not true.
243 /* We are appending data, budget for inode change */
246 err
= ubifs_budget_space(c
, &req
);
250 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
251 if (unlikely(!page
)) {
252 ubifs_release_budget(c
, &req
);
256 if (!PageUptodate(page
)) {
257 if (!(pos
& ~PAGE_CACHE_MASK
) && len
== PAGE_CACHE_SIZE
)
258 SetPageChecked(page
);
260 err
= do_readpage(page
);
263 page_cache_release(page
);
268 SetPageUptodate(page
);
269 ClearPageError(page
);
272 if (PagePrivate(page
))
274 * The page is dirty, which means it was budgeted twice:
275 * o first time the budget was allocated by the task which
276 * made the page dirty and set the PG_private flag;
277 * o and then we budgeted for it for the second time at the
278 * very beginning of this function.
280 * So what we have to do is to release the page budget we
283 release_new_page_budget(c
);
284 else if (!PageChecked(page
))
286 * We are changing a page which already exists on the media.
287 * This means that changing the page does not make the amount
288 * of indexing information larger, and this part of the budget
289 * which we have already acquired may be released.
291 ubifs_convert_page_budget(c
);
294 struct ubifs_inode
*ui
= ubifs_inode(inode
);
297 * 'ubifs_write_end()' is optimized from the fast-path part of
298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 * if data is appended.
301 mutex_lock(&ui
->ui_mutex
);
304 * The inode is dirty already, so we may free the
305 * budget we allocated.
307 ubifs_release_dirty_inode_budget(c
, ui
);
315 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316 * @c: UBIFS file-system description object
317 * @page: page to allocate budget for
318 * @ui: UBIFS inode object the page belongs to
319 * @appending: non-zero if the page is appended
321 * This is a helper function for 'ubifs_write_begin()' which allocates budget
322 * for the operation. The budget is allocated differently depending on whether
323 * this is appending, whether the page is dirty or not, and so on. This
324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325 * in case of success and %-ENOSPC in case of failure.
327 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
328 struct ubifs_inode
*ui
, int appending
)
330 struct ubifs_budget_req req
= { .fast
= 1 };
332 if (PagePrivate(page
)) {
335 * The page is dirty and we are not appending, which
336 * means no budget is needed at all.
340 mutex_lock(&ui
->ui_mutex
);
343 * The page is dirty and we are appending, so the inode
344 * has to be marked as dirty. However, it is already
345 * dirty, so we do not need any budget. We may return,
346 * but @ui->ui_mutex hast to be left locked because we
347 * should prevent write-back from flushing the inode
348 * and freeing the budget. The lock will be released in
349 * 'ubifs_write_end()'.
354 * The page is dirty, we are appending, the inode is clean, so
355 * we need to budget the inode change.
359 if (PageChecked(page
))
361 * The page corresponds to a hole and does not
362 * exist on the media. So changing it makes
363 * make the amount of indexing information
364 * larger, and we have to budget for a new
370 * Not a hole, the change will not add any new
371 * indexing information, budget for page
374 req
.dirtied_page
= 1;
377 mutex_lock(&ui
->ui_mutex
);
380 * The inode is clean but we will have to mark
381 * it as dirty because we are appending. This
388 return ubifs_budget_space(c
, &req
);
392 * This function is called when a page of data is going to be written. Since
393 * the page of data will not necessarily go to the flash straight away, UBIFS
394 * has to reserve space on the media for it, which is done by means of
397 * This is the hot-path of the file-system and we are trying to optimize it as
398 * much as possible. For this reasons it is split on 2 parts - slow and fast.
400 * There many budgeting cases:
401 * o a new page is appended - we have to budget for a new page and for
402 * changing the inode; however, if the inode is already dirty, there is
403 * no need to budget for it;
404 * o an existing clean page is changed - we have budget for it; if the page
405 * does not exist on the media (a hole), we have to budget for a new
406 * page; otherwise, we may budget for changing an existing page; the
407 * difference between these cases is that changing an existing page does
408 * not introduce anything new to the FS indexing information, so it does
409 * not grow, and smaller budget is acquired in this case;
410 * o an existing dirty page is changed - no need to budget at all, because
411 * the page budget has been acquired by earlier, when the page has been
414 * UBIFS budgeting sub-system may force write-back if it thinks there is no
415 * space to reserve. This imposes some locking restrictions and makes it
416 * impossible to take into account the above cases, and makes it impossible to
417 * optimize budgeting.
419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420 * there is a plenty of flash space and the budget will be acquired quickly,
421 * without forcing write-back. The slow path does not make this assumption.
423 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
424 loff_t pos
, unsigned len
, unsigned flags
,
425 struct page
**pagep
, void **fsdata
)
427 struct inode
*inode
= mapping
->host
;
428 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
429 struct ubifs_inode
*ui
= ubifs_inode(inode
);
430 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
431 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
432 int skipped_read
= 0;
435 ubifs_assert(ubifs_inode(inode
)->ui_size
== inode
->i_size
);
437 if (unlikely(c
->ro_media
))
440 /* Try out the fast-path part first */
441 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
445 if (!PageUptodate(page
)) {
446 /* The page is not loaded from the flash */
447 if (!(pos
& ~PAGE_CACHE_MASK
) && len
== PAGE_CACHE_SIZE
) {
449 * We change whole page so no need to load it. But we
450 * have to set the @PG_checked flag to make the further
451 * code know that the page is new. This might be not
452 * true, but it is better to budget more than to read
453 * the page from the media.
455 SetPageChecked(page
);
458 err
= do_readpage(page
);
461 page_cache_release(page
);
466 SetPageUptodate(page
);
467 ClearPageError(page
);
470 err
= allocate_budget(c
, page
, ui
, appending
);
472 ubifs_assert(err
== -ENOSPC
);
474 * If we skipped reading the page because we were going to
475 * write all of it, then it is not up to date.
478 ClearPageChecked(page
);
479 ClearPageUptodate(page
);
482 * Budgeting failed which means it would have to force
483 * write-back but didn't, because we set the @fast flag in the
484 * request. Write-back cannot be done now, while we have the
485 * page locked, because it would deadlock. Unlock and free
486 * everything and fall-back to slow-path.
489 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
490 mutex_unlock(&ui
->ui_mutex
);
493 page_cache_release(page
);
495 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
499 * Whee, we acquired budgeting quickly - without involving
500 * garbage-collection, committing or forcing write-back. We return
501 * with @ui->ui_mutex locked if we are appending pages, and unlocked
502 * otherwise. This is an optimization (slightly hacky though).
510 * cancel_budget - cancel budget.
511 * @c: UBIFS file-system description object
512 * @page: page to cancel budget for
513 * @ui: UBIFS inode object the page belongs to
514 * @appending: non-zero if the page is appended
516 * This is a helper function for a page write operation. It unlocks the
517 * @ui->ui_mutex in case of appending.
519 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
520 struct ubifs_inode
*ui
, int appending
)
524 ubifs_release_dirty_inode_budget(c
, ui
);
525 mutex_unlock(&ui
->ui_mutex
);
527 if (!PagePrivate(page
)) {
528 if (PageChecked(page
))
529 release_new_page_budget(c
);
531 release_existing_page_budget(c
);
535 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
536 loff_t pos
, unsigned len
, unsigned copied
,
537 struct page
*page
, void *fsdata
)
539 struct inode
*inode
= mapping
->host
;
540 struct ubifs_inode
*ui
= ubifs_inode(inode
);
541 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
542 loff_t end_pos
= pos
+ len
;
543 int appending
= !!(end_pos
> inode
->i_size
);
545 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
546 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
548 if (unlikely(copied
< len
&& len
== PAGE_CACHE_SIZE
)) {
550 * VFS copied less data to the page that it intended and
551 * declared in its '->write_begin()' call via the @len
552 * argument. If the page was not up-to-date, and @len was
553 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
554 * not load it from the media (for optimization reasons). This
555 * means that part of the page contains garbage. So read the
558 dbg_gen("copied %d instead of %d, read page and repeat",
560 cancel_budget(c
, page
, ui
, appending
);
563 * Return 0 to force VFS to repeat the whole operation, or the
564 * error code if 'do_readpage()' fails.
566 copied
= do_readpage(page
);
570 if (!PagePrivate(page
)) {
571 SetPagePrivate(page
);
572 atomic_long_inc(&c
->dirty_pg_cnt
);
573 __set_page_dirty_nobuffers(page
);
577 i_size_write(inode
, end_pos
);
578 ui
->ui_size
= end_pos
;
580 * Note, we do not set @I_DIRTY_PAGES (which means that the
581 * inode has dirty pages), this has been done in
582 * '__set_page_dirty_nobuffers()'.
584 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
585 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
586 mutex_unlock(&ui
->ui_mutex
);
591 page_cache_release(page
);
596 * populate_page - copy data nodes into a page for bulk-read.
597 * @c: UBIFS file-system description object
599 * @bu: bulk-read information
600 * @n: next zbranch slot
602 * This function returns %0 on success and a negative error code on failure.
604 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
605 struct bu_info
*bu
, int *n
)
607 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
608 struct inode
*inode
= page
->mapping
->host
;
609 loff_t i_size
= i_size_read(inode
);
610 unsigned int page_block
;
614 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
615 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
617 addr
= zaddr
= kmap(page
);
619 end_index
= (i_size
- 1) >> PAGE_CACHE_SHIFT
;
620 if (!i_size
|| page
->index
> end_index
) {
622 memset(addr
, 0, PAGE_CACHE_SIZE
);
626 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
628 int err
, len
, out_len
, dlen
;
632 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
633 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
634 struct ubifs_data_node
*dn
;
636 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
638 ubifs_assert(le64_to_cpu(dn
->ch
.sqnum
) >
639 ubifs_inode(inode
)->creat_sqnum
);
641 len
= le32_to_cpu(dn
->size
);
642 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
645 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
646 out_len
= UBIFS_BLOCK_SIZE
;
647 err
= ubifs_decompress(&dn
->data
, dlen
, addr
, &out_len
,
648 le16_to_cpu(dn
->compr_type
));
649 if (err
|| len
!= out_len
)
652 if (len
< UBIFS_BLOCK_SIZE
)
653 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
656 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
657 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
662 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
664 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
666 addr
+= UBIFS_BLOCK_SIZE
;
670 if (end_index
== page
->index
) {
671 int len
= i_size
& (PAGE_CACHE_SIZE
- 1);
673 if (len
&& len
< read
)
674 memset(zaddr
+ len
, 0, read
- len
);
679 SetPageChecked(page
);
683 SetPageUptodate(page
);
684 ClearPageError(page
);
685 flush_dcache_page(page
);
691 ClearPageUptodate(page
);
693 flush_dcache_page(page
);
695 ubifs_err("bad data node (block %u, inode %lu)",
696 page_block
, inode
->i_ino
);
701 * ubifs_do_bulk_read - do bulk-read.
702 * @c: UBIFS file-system description object
703 * @bu: bulk-read information
704 * @page1: first page to read
706 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
708 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
711 pgoff_t offset
= page1
->index
, end_index
;
712 struct address_space
*mapping
= page1
->mapping
;
713 struct inode
*inode
= mapping
->host
;
714 struct ubifs_inode
*ui
= ubifs_inode(inode
);
715 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
716 int allocate
= bu
->buf
? 0 : 1;
719 err
= ubifs_tnc_get_bu_keys(c
, bu
);
724 /* Turn off bulk-read at the end of the file */
725 ui
->read_in_a_row
= 1;
729 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
732 * This happens when there are multiple blocks per page and the
733 * blocks for the first page we are looking for, are not
734 * together. If all the pages were like this, bulk-read would
735 * reduce performance, so we turn it off for a while.
743 * Allocate bulk-read buffer depending on how many data
744 * nodes we are going to read.
746 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
747 bu
->zbranch
[bu
->cnt
- 1].len
-
749 ubifs_assert(bu
->buf_len
> 0);
750 ubifs_assert(bu
->buf_len
<= c
->leb_size
);
751 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
756 err
= ubifs_tnc_bulk_read(c
, bu
);
761 err
= populate_page(c
, page1
, bu
, &n
);
768 isize
= i_size_read(inode
);
771 end_index
= ((isize
- 1) >> PAGE_CACHE_SHIFT
);
773 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
774 pgoff_t page_offset
= offset
+ page_idx
;
777 if (page_offset
> end_index
)
779 page
= find_or_create_page(mapping
, page_offset
,
780 GFP_NOFS
| __GFP_COLD
);
783 if (!PageUptodate(page
))
784 err
= populate_page(c
, page
, bu
, &n
);
786 page_cache_release(page
);
791 ui
->last_page_read
= offset
+ page_idx
- 1;
799 ubifs_warn("ignoring error %d and skipping bulk-read", err
);
803 ui
->read_in_a_row
= ui
->bulk_read
= 0;
808 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
809 * @page: page from which to start bulk-read.
811 * Some flash media are capable of reading sequentially at faster rates. UBIFS
812 * bulk-read facility is designed to take advantage of that, by reading in one
813 * go consecutive data nodes that are also located consecutively in the same
814 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
816 static int ubifs_bulk_read(struct page
*page
)
818 struct inode
*inode
= page
->mapping
->host
;
819 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
820 struct ubifs_inode
*ui
= ubifs_inode(inode
);
821 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
823 int err
= 0, allocated
= 0;
825 ui
->last_page_read
= index
;
830 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
831 * so don't bother if we cannot lock the mutex.
833 if (!mutex_trylock(&ui
->ui_mutex
))
836 if (index
!= last_page_read
+ 1) {
837 /* Turn off bulk-read if we stop reading sequentially */
838 ui
->read_in_a_row
= 1;
844 if (!ui
->bulk_read
) {
845 ui
->read_in_a_row
+= 1;
846 if (ui
->read_in_a_row
< 3)
848 /* Three reads in a row, so switch on bulk-read */
853 * If possible, try to use pre-allocated bulk-read information, which
854 * is protected by @c->bu_mutex.
856 if (mutex_trylock(&c
->bu_mutex
))
859 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
867 bu
->buf_len
= c
->max_bu_buf_len
;
868 data_key_init(c
, &bu
->key
, inode
->i_ino
,
869 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
870 err
= ubifs_do_bulk_read(c
, bu
, page
);
873 mutex_unlock(&c
->bu_mutex
);
878 mutex_unlock(&ui
->ui_mutex
);
882 static int ubifs_readpage(struct file
*file
, struct page
*page
)
884 if (ubifs_bulk_read(page
))
891 static int do_writepage(struct page
*page
, int len
)
893 int err
= 0, i
, blen
;
897 struct inode
*inode
= page
->mapping
->host
;
898 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
901 spin_lock(&ui
->ui_lock
);
902 ubifs_assert(page
->index
<= ui
->synced_i_size
<< PAGE_CACHE_SIZE
);
903 spin_unlock(&ui
->ui_lock
);
906 /* Update radix tree tags */
907 set_page_writeback(page
);
910 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
913 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
914 data_key_init(c
, &key
, inode
->i_ino
, block
);
915 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
918 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
926 ubifs_err("cannot write page %lu of inode %lu, error %d",
927 page
->index
, inode
->i_ino
, err
);
928 ubifs_ro_mode(c
, err
);
931 ubifs_assert(PagePrivate(page
));
932 if (PageChecked(page
))
933 release_new_page_budget(c
);
935 release_existing_page_budget(c
);
937 atomic_long_dec(&c
->dirty_pg_cnt
);
938 ClearPagePrivate(page
);
939 ClearPageChecked(page
);
943 end_page_writeback(page
);
948 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
949 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
950 * situation when a we have an inode with size 0, then a megabyte of data is
951 * appended to the inode, then write-back starts and flushes some amount of the
952 * dirty pages, the journal becomes full, commit happens and finishes, and then
953 * an unclean reboot happens. When the file system is mounted next time, the
954 * inode size would still be 0, but there would be many pages which are beyond
955 * the inode size, they would be indexed and consume flash space. Because the
956 * journal has been committed, the replay would not be able to detect this
957 * situation and correct the inode size. This means UBIFS would have to scan
958 * whole index and correct all inode sizes, which is long an unacceptable.
960 * To prevent situations like this, UBIFS writes pages back only if they are
961 * within the last synchronized inode size, i.e. the size which has been
962 * written to the flash media last time. Otherwise, UBIFS forces inode
963 * write-back, thus making sure the on-flash inode contains current inode size,
964 * and then keeps writing pages back.
966 * Some locking issues explanation. 'ubifs_writepage()' first is called with
967 * the page locked, and it locks @ui_mutex. However, write-back does take inode
968 * @i_mutex, which means other VFS operations may be run on this inode at the
969 * same time. And the problematic one is truncation to smaller size, from where
970 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
971 * drops the truncated pages. And while dropping the pages, it takes the page
972 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
973 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
974 * means that @inode->i_size is changed while @ui_mutex is unlocked.
976 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
977 * inode size. How do we do this if @inode->i_size may became smaller while we
978 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
979 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
980 * internally and updates it under @ui_mutex.
982 * Q: why we do not worry that if we race with truncation, we may end up with a
983 * situation when the inode is truncated while we are in the middle of
984 * 'do_writepage()', so we do write beyond inode size?
985 * A: If we are in the middle of 'do_writepage()', truncation would be locked
986 * on the page lock and it would not write the truncated inode node to the
987 * journal before we have finished.
989 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
991 struct inode
*inode
= page
->mapping
->host
;
992 struct ubifs_inode
*ui
= ubifs_inode(inode
);
993 loff_t i_size
= i_size_read(inode
), synced_i_size
;
994 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
995 int err
, len
= i_size
& (PAGE_CACHE_SIZE
- 1);
998 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
999 inode
->i_ino
, page
->index
, page
->flags
);
1000 ubifs_assert(PagePrivate(page
));
1002 /* Is the page fully outside @i_size? (truncate in progress) */
1003 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1008 spin_lock(&ui
->ui_lock
);
1009 synced_i_size
= ui
->synced_i_size
;
1010 spin_unlock(&ui
->ui_lock
);
1012 /* Is the page fully inside @i_size? */
1013 if (page
->index
< end_index
) {
1014 if (page
->index
>= synced_i_size
>> PAGE_CACHE_SHIFT
) {
1015 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1019 * The inode has been written, but the write-buffer has
1020 * not been synchronized, so in case of an unclean
1021 * reboot we may end up with some pages beyond inode
1022 * size, but they would be in the journal (because
1023 * commit flushes write buffers) and recovery would deal
1027 return do_writepage(page
, PAGE_CACHE_SIZE
);
1031 * The page straddles @i_size. It must be zeroed out on each and every
1032 * writepage invocation because it may be mmapped. "A file is mapped
1033 * in multiples of the page size. For a file that is not a multiple of
1034 * the page size, the remaining memory is zeroed when mapped, and
1035 * writes to that region are not written out to the file."
1037 kaddr
= kmap_atomic(page
, KM_USER0
);
1038 memset(kaddr
+ len
, 0, PAGE_CACHE_SIZE
- len
);
1039 flush_dcache_page(page
);
1040 kunmap_atomic(kaddr
, KM_USER0
);
1042 if (i_size
> synced_i_size
) {
1043 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1048 return do_writepage(page
, len
);
1056 * do_attr_changes - change inode attributes.
1057 * @inode: inode to change attributes for
1058 * @attr: describes attributes to change
1060 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1062 if (attr
->ia_valid
& ATTR_UID
)
1063 inode
->i_uid
= attr
->ia_uid
;
1064 if (attr
->ia_valid
& ATTR_GID
)
1065 inode
->i_gid
= attr
->ia_gid
;
1066 if (attr
->ia_valid
& ATTR_ATIME
)
1067 inode
->i_atime
= timespec_trunc(attr
->ia_atime
,
1068 inode
->i_sb
->s_time_gran
);
1069 if (attr
->ia_valid
& ATTR_MTIME
)
1070 inode
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
1071 inode
->i_sb
->s_time_gran
);
1072 if (attr
->ia_valid
& ATTR_CTIME
)
1073 inode
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
1074 inode
->i_sb
->s_time_gran
);
1075 if (attr
->ia_valid
& ATTR_MODE
) {
1076 umode_t mode
= attr
->ia_mode
;
1078 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1080 inode
->i_mode
= mode
;
1085 * do_truncation - truncate an inode.
1086 * @c: UBIFS file-system description object
1087 * @inode: inode to truncate
1088 * @attr: inode attribute changes description
1090 * This function implements VFS '->setattr()' call when the inode is truncated
1091 * to a smaller size. Returns zero in case of success and a negative error code
1092 * in case of failure.
1094 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1095 const struct iattr
*attr
)
1098 struct ubifs_budget_req req
;
1099 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1100 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1101 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1103 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1104 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1107 * If this is truncation to a smaller size, and we do not truncate on a
1108 * block boundary, budget for changing one data block, because the last
1109 * block will be re-written.
1111 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1112 req
.dirtied_page
= 1;
1114 req
.dirtied_ino
= 1;
1115 /* A funny way to budget for truncation node */
1116 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1117 err
= ubifs_budget_space(c
, &req
);
1120 * Treat truncations to zero as deletion and always allow them,
1121 * just like we do for '->unlink()'.
1123 if (new_size
|| err
!= -ENOSPC
)
1128 err
= vmtruncate(inode
, new_size
);
1133 pgoff_t index
= new_size
>> PAGE_CACHE_SHIFT
;
1136 page
= find_lock_page(inode
->i_mapping
, index
);
1138 if (PageDirty(page
)) {
1140 * 'ubifs_jnl_truncate()' will try to truncate
1141 * the last data node, but it contains
1142 * out-of-date data because the page is dirty.
1143 * Write the page now, so that
1144 * 'ubifs_jnl_truncate()' will see an already
1145 * truncated (and up to date) data node.
1147 ubifs_assert(PagePrivate(page
));
1149 clear_page_dirty_for_io(page
);
1150 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1152 (PAGE_CACHE_SIZE
- 1);
1153 err
= do_writepage(page
, offset
);
1154 page_cache_release(page
);
1158 * We could now tell 'ubifs_jnl_truncate()' not
1159 * to read the last block.
1163 * We could 'kmap()' the page and pass the data
1164 * to 'ubifs_jnl_truncate()' to save it from
1165 * having to read it.
1168 page_cache_release(page
);
1173 mutex_lock(&ui
->ui_mutex
);
1174 ui
->ui_size
= inode
->i_size
;
1175 /* Truncation changes inode [mc]time */
1176 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1177 /* Other attributes may be changed at the same time as well */
1178 do_attr_changes(inode
, attr
);
1179 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1180 mutex_unlock(&ui
->ui_mutex
);
1184 ubifs_release_budget(c
, &req
);
1186 c
->nospace
= c
->nospace_rp
= 0;
1193 * do_setattr - change inode attributes.
1194 * @c: UBIFS file-system description object
1195 * @inode: inode to change attributes for
1196 * @attr: inode attribute changes description
1198 * This function implements VFS '->setattr()' call for all cases except
1199 * truncations to smaller size. Returns zero in case of success and a negative
1200 * error code in case of failure.
1202 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1203 const struct iattr
*attr
)
1206 loff_t new_size
= attr
->ia_size
;
1207 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1208 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1209 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1211 err
= ubifs_budget_space(c
, &req
);
1215 if (attr
->ia_valid
& ATTR_SIZE
) {
1216 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1217 err
= vmtruncate(inode
, new_size
);
1222 mutex_lock(&ui
->ui_mutex
);
1223 if (attr
->ia_valid
& ATTR_SIZE
) {
1224 /* Truncation changes inode [mc]time */
1225 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1226 /* 'vmtruncate()' changed @i_size, update @ui_size */
1227 ui
->ui_size
= inode
->i_size
;
1230 do_attr_changes(inode
, attr
);
1232 release
= ui
->dirty
;
1233 if (attr
->ia_valid
& ATTR_SIZE
)
1235 * Inode length changed, so we have to make sure
1236 * @I_DIRTY_DATASYNC is set.
1238 __mark_inode_dirty(inode
, I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
1240 mark_inode_dirty_sync(inode
);
1241 mutex_unlock(&ui
->ui_mutex
);
1244 ubifs_release_budget(c
, &req
);
1246 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1250 ubifs_release_budget(c
, &req
);
1254 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1257 struct inode
*inode
= dentry
->d_inode
;
1258 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1260 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1261 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1262 err
= inode_change_ok(inode
, attr
);
1266 err
= dbg_check_synced_i_size(inode
);
1270 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1271 /* Truncation to a smaller size */
1272 err
= do_truncation(c
, inode
, attr
);
1274 err
= do_setattr(c
, inode
, attr
);
1279 static void ubifs_invalidatepage(struct page
*page
, unsigned long offset
)
1281 struct inode
*inode
= page
->mapping
->host
;
1282 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1284 ubifs_assert(PagePrivate(page
));
1286 /* Partial page remains dirty */
1289 if (PageChecked(page
))
1290 release_new_page_budget(c
);
1292 release_existing_page_budget(c
);
1294 atomic_long_dec(&c
->dirty_pg_cnt
);
1295 ClearPagePrivate(page
);
1296 ClearPageChecked(page
);
1299 static void *ubifs_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1301 struct ubifs_inode
*ui
= ubifs_inode(dentry
->d_inode
);
1303 nd_set_link(nd
, ui
->data
);
1307 int ubifs_fsync(struct file
*file
, struct dentry
*dentry
, int datasync
)
1309 struct inode
*inode
= dentry
->d_inode
;
1310 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1313 dbg_gen("syncing inode %lu", inode
->i_ino
);
1316 * VFS has already synchronized dirty pages for this inode. Synchronize
1317 * the inode unless this is a 'datasync()' call.
1319 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1320 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1326 * Nodes related to this inode may still sit in a write-buffer. Flush
1329 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1337 * mctime_update_needed - check if mtime or ctime update is needed.
1338 * @inode: the inode to do the check for
1339 * @now: current time
1341 * This helper function checks if the inode mtime/ctime should be updated or
1342 * not. If current values of the time-stamps are within the UBIFS inode time
1343 * granularity, they are not updated. This is an optimization.
1345 static inline int mctime_update_needed(const struct inode
*inode
,
1346 const struct timespec
*now
)
1348 if (!timespec_equal(&inode
->i_mtime
, now
) ||
1349 !timespec_equal(&inode
->i_ctime
, now
))
1355 * update_ctime - update mtime and ctime of an inode.
1356 * @c: UBIFS file-system description object
1357 * @inode: inode to update
1359 * This function updates mtime and ctime of the inode if it is not equivalent to
1360 * current time. Returns zero in case of success and a negative error code in
1363 static int update_mctime(struct ubifs_info
*c
, struct inode
*inode
)
1365 struct timespec now
= ubifs_current_time(inode
);
1366 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1368 if (mctime_update_needed(inode
, &now
)) {
1370 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1371 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1373 err
= ubifs_budget_space(c
, &req
);
1377 mutex_lock(&ui
->ui_mutex
);
1378 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1379 release
= ui
->dirty
;
1380 mark_inode_dirty_sync(inode
);
1381 mutex_unlock(&ui
->ui_mutex
);
1383 ubifs_release_budget(c
, &req
);
1389 static ssize_t
ubifs_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1390 unsigned long nr_segs
, loff_t pos
)
1393 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1394 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1396 err
= update_mctime(c
, inode
);
1400 return generic_file_aio_write(iocb
, iov
, nr_segs
, pos
);
1403 static int ubifs_set_page_dirty(struct page
*page
)
1407 ret
= __set_page_dirty_nobuffers(page
);
1409 * An attempt to dirty a page without budgeting for it - should not
1412 ubifs_assert(ret
== 0);
1416 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1419 * An attempt to release a dirty page without budgeting for it - should
1422 if (PageWriteback(page
))
1424 ubifs_assert(PagePrivate(page
));
1426 ClearPagePrivate(page
);
1427 ClearPageChecked(page
);
1432 * mmap()d file has taken write protection fault and is being made
1433 * writable. UBIFS must ensure page is budgeted for.
1435 static int ubifs_vm_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1437 struct page
*page
= vmf
->page
;
1438 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1439 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1440 struct timespec now
= ubifs_current_time(inode
);
1441 struct ubifs_budget_req req
= { .new_page
= 1 };
1442 int err
, update_time
;
1444 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1445 i_size_read(inode
));
1446 ubifs_assert(!(inode
->i_sb
->s_flags
& MS_RDONLY
));
1448 if (unlikely(c
->ro_media
))
1449 return VM_FAULT_SIGBUS
; /* -EROFS */
1452 * We have not locked @page so far so we may budget for changing the
1453 * page. Note, we cannot do this after we locked the page, because
1454 * budgeting may cause write-back which would cause deadlock.
1456 * At the moment we do not know whether the page is dirty or not, so we
1457 * assume that it is not and budget for a new page. We could look at
1458 * the @PG_private flag and figure this out, but we may race with write
1459 * back and the page state may change by the time we lock it, so this
1460 * would need additional care. We do not bother with this at the
1461 * moment, although it might be good idea to do. Instead, we allocate
1462 * budget for a new page and amend it later on if the page was in fact
1465 * The budgeting-related logic of this function is similar to what we
1466 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1467 * for more comments.
1469 update_time
= mctime_update_needed(inode
, &now
);
1472 * We have to change inode time stamp which requires extra
1475 req
.dirtied_ino
= 1;
1477 err
= ubifs_budget_space(c
, &req
);
1478 if (unlikely(err
)) {
1480 ubifs_warn("out of space for mmapped file "
1481 "(inode number %lu)", inode
->i_ino
);
1482 return VM_FAULT_SIGBUS
;
1486 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1487 page_offset(page
) > i_size_read(inode
))) {
1488 /* Page got truncated out from underneath us */
1493 if (PagePrivate(page
))
1494 release_new_page_budget(c
);
1496 if (!PageChecked(page
))
1497 ubifs_convert_page_budget(c
);
1498 SetPagePrivate(page
);
1499 atomic_long_inc(&c
->dirty_pg_cnt
);
1500 __set_page_dirty_nobuffers(page
);
1505 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1507 mutex_lock(&ui
->ui_mutex
);
1508 inode
->i_mtime
= inode
->i_ctime
= ubifs_current_time(inode
);
1509 release
= ui
->dirty
;
1510 mark_inode_dirty_sync(inode
);
1511 mutex_unlock(&ui
->ui_mutex
);
1513 ubifs_release_dirty_inode_budget(c
, ui
);
1521 ubifs_release_budget(c
, &req
);
1523 err
= VM_FAULT_SIGBUS
;
1527 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1528 .fault
= filemap_fault
,
1529 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1532 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1536 /* 'generic_file_mmap()' takes care of NOMMU case */
1537 err
= generic_file_mmap(file
, vma
);
1540 vma
->vm_ops
= &ubifs_file_vm_ops
;
1544 const struct address_space_operations ubifs_file_address_operations
= {
1545 .readpage
= ubifs_readpage
,
1546 .writepage
= ubifs_writepage
,
1547 .write_begin
= ubifs_write_begin
,
1548 .write_end
= ubifs_write_end
,
1549 .invalidatepage
= ubifs_invalidatepage
,
1550 .set_page_dirty
= ubifs_set_page_dirty
,
1551 .releasepage
= ubifs_releasepage
,
1554 const struct inode_operations ubifs_file_inode_operations
= {
1555 .setattr
= ubifs_setattr
,
1556 .getattr
= ubifs_getattr
,
1557 #ifdef CONFIG_UBIFS_FS_XATTR
1558 .setxattr
= ubifs_setxattr
,
1559 .getxattr
= ubifs_getxattr
,
1560 .listxattr
= ubifs_listxattr
,
1561 .removexattr
= ubifs_removexattr
,
1565 const struct inode_operations ubifs_symlink_inode_operations
= {
1566 .readlink
= generic_readlink
,
1567 .follow_link
= ubifs_follow_link
,
1568 .setattr
= ubifs_setattr
,
1569 .getattr
= ubifs_getattr
,
1572 const struct file_operations ubifs_file_operations
= {
1573 .llseek
= generic_file_llseek
,
1574 .read
= do_sync_read
,
1575 .write
= do_sync_write
,
1576 .aio_read
= generic_file_aio_read
,
1577 .aio_write
= ubifs_aio_write
,
1578 .mmap
= ubifs_file_mmap
,
1579 .fsync
= ubifs_fsync
,
1580 .unlocked_ioctl
= ubifs_ioctl
,
1581 .splice_read
= generic_file_splice_read
,
1582 .splice_write
= generic_file_splice_write
,
1583 #ifdef CONFIG_COMPAT
1584 .compat_ioctl
= ubifs_compat_ioctl
,