netns: Teach network device kobjects which namespace they are in.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ecryptfs / keystore.c
blob89c5476506ef36c8c3de7520565b8360d70eb83b
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
38 /**
39 * request_key returned an error instead of a valid key address;
40 * determine the type of error, make appropriate log entries, and
41 * return an error code.
43 static int process_request_key_err(long err_code)
45 int rc = 0;
47 switch (err_code) {
48 case -ENOKEY:
49 ecryptfs_printk(KERN_WARNING, "No key\n");
50 rc = -ENOENT;
51 break;
52 case -EKEYEXPIRED:
53 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 rc = -ETIME;
55 break;
56 case -EKEYREVOKED:
57 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 rc = -EINVAL;
59 break;
60 default:
61 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 "[0x%.16x]\n", err_code);
63 rc = -EINVAL;
65 return rc;
68 /**
69 * ecryptfs_parse_packet_length
70 * @data: Pointer to memory containing length at offset
71 * @size: This function writes the decoded size to this memory
72 * address; zero on error
73 * @length_size: The number of bytes occupied by the encoded length
75 * Returns zero on success; non-zero on error
77 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
78 size_t *length_size)
80 int rc = 0;
82 (*length_size) = 0;
83 (*size) = 0;
84 if (data[0] < 192) {
85 /* One-byte length */
86 (*size) = (unsigned char)data[0];
87 (*length_size) = 1;
88 } else if (data[0] < 224) {
89 /* Two-byte length */
90 (*size) = (((unsigned char)(data[0]) - 192) * 256);
91 (*size) += ((unsigned char)(data[1]) + 192);
92 (*length_size) = 2;
93 } else if (data[0] == 255) {
94 /* Five-byte length; we're not supposed to see this */
95 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
96 "supported\n");
97 rc = -EINVAL;
98 goto out;
99 } else {
100 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
101 rc = -EINVAL;
102 goto out;
104 out:
105 return rc;
109 * ecryptfs_write_packet_length
110 * @dest: The byte array target into which to write the length. Must
111 * have at least 5 bytes allocated.
112 * @size: The length to write.
113 * @packet_size_length: The number of bytes used to encode the packet
114 * length is written to this address.
116 * Returns zero on success; non-zero on error.
118 int ecryptfs_write_packet_length(char *dest, size_t size,
119 size_t *packet_size_length)
121 int rc = 0;
123 if (size < 192) {
124 dest[0] = size;
125 (*packet_size_length) = 1;
126 } else if (size < 65536) {
127 dest[0] = (((size - 192) / 256) + 192);
128 dest[1] = ((size - 192) % 256);
129 (*packet_size_length) = 2;
130 } else {
131 rc = -EINVAL;
132 ecryptfs_printk(KERN_WARNING,
133 "Unsupported packet size: [%d]\n", size);
135 return rc;
138 static int
139 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
140 char **packet, size_t *packet_len)
142 size_t i = 0;
143 size_t data_len;
144 size_t packet_size_len;
145 char *message;
146 int rc;
149 * ***** TAG 64 Packet Format *****
150 * | Content Type | 1 byte |
151 * | Key Identifier Size | 1 or 2 bytes |
152 * | Key Identifier | arbitrary |
153 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
154 * | Encrypted File Encryption Key | arbitrary |
156 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
157 + session_key->encrypted_key_size);
158 *packet = kmalloc(data_len, GFP_KERNEL);
159 message = *packet;
160 if (!message) {
161 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
162 rc = -ENOMEM;
163 goto out;
165 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
166 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
167 &packet_size_len);
168 if (rc) {
169 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
170 "header; cannot generate packet length\n");
171 goto out;
173 i += packet_size_len;
174 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
175 i += ECRYPTFS_SIG_SIZE_HEX;
176 rc = ecryptfs_write_packet_length(&message[i],
177 session_key->encrypted_key_size,
178 &packet_size_len);
179 if (rc) {
180 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
181 "header; cannot generate packet length\n");
182 goto out;
184 i += packet_size_len;
185 memcpy(&message[i], session_key->encrypted_key,
186 session_key->encrypted_key_size);
187 i += session_key->encrypted_key_size;
188 *packet_len = i;
189 out:
190 return rc;
193 static int
194 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
195 struct ecryptfs_message *msg)
197 size_t i = 0;
198 char *data;
199 size_t data_len;
200 size_t m_size;
201 size_t message_len;
202 u16 checksum = 0;
203 u16 expected_checksum = 0;
204 int rc;
207 * ***** TAG 65 Packet Format *****
208 * | Content Type | 1 byte |
209 * | Status Indicator | 1 byte |
210 * | File Encryption Key Size | 1 or 2 bytes |
211 * | File Encryption Key | arbitrary |
213 message_len = msg->data_len;
214 data = msg->data;
215 if (message_len < 4) {
216 rc = -EIO;
217 goto out;
219 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
220 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
221 rc = -EIO;
222 goto out;
224 if (data[i++]) {
225 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
226 "[%d]\n", data[i-1]);
227 rc = -EIO;
228 goto out;
230 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
231 if (rc) {
232 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
233 "rc = [%d]\n", rc);
234 goto out;
236 i += data_len;
237 if (message_len < (i + m_size)) {
238 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
239 "is shorter than expected\n");
240 rc = -EIO;
241 goto out;
243 if (m_size < 3) {
244 ecryptfs_printk(KERN_ERR,
245 "The decrypted key is not long enough to "
246 "include a cipher code and checksum\n");
247 rc = -EIO;
248 goto out;
250 *cipher_code = data[i++];
251 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
252 session_key->decrypted_key_size = m_size - 3;
253 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
254 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
255 "the maximum key size [%d]\n",
256 session_key->decrypted_key_size,
257 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
258 rc = -EIO;
259 goto out;
261 memcpy(session_key->decrypted_key, &data[i],
262 session_key->decrypted_key_size);
263 i += session_key->decrypted_key_size;
264 expected_checksum += (unsigned char)(data[i++]) << 8;
265 expected_checksum += (unsigned char)(data[i++]);
266 for (i = 0; i < session_key->decrypted_key_size; i++)
267 checksum += session_key->decrypted_key[i];
268 if (expected_checksum != checksum) {
269 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
270 "encryption key; expected [%x]; calculated "
271 "[%x]\n", expected_checksum, checksum);
272 rc = -EIO;
274 out:
275 return rc;
279 static int
280 write_tag_66_packet(char *signature, u8 cipher_code,
281 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
282 size_t *packet_len)
284 size_t i = 0;
285 size_t j;
286 size_t data_len;
287 size_t checksum = 0;
288 size_t packet_size_len;
289 char *message;
290 int rc;
293 * ***** TAG 66 Packet Format *****
294 * | Content Type | 1 byte |
295 * | Key Identifier Size | 1 or 2 bytes |
296 * | Key Identifier | arbitrary |
297 * | File Encryption Key Size | 1 or 2 bytes |
298 * | File Encryption Key | arbitrary |
300 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
301 *packet = kmalloc(data_len, GFP_KERNEL);
302 message = *packet;
303 if (!message) {
304 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
305 rc = -ENOMEM;
306 goto out;
308 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
309 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
310 &packet_size_len);
311 if (rc) {
312 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
313 "header; cannot generate packet length\n");
314 goto out;
316 i += packet_size_len;
317 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
318 i += ECRYPTFS_SIG_SIZE_HEX;
319 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
320 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
321 &packet_size_len);
322 if (rc) {
323 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
324 "header; cannot generate packet length\n");
325 goto out;
327 i += packet_size_len;
328 message[i++] = cipher_code;
329 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
330 i += crypt_stat->key_size;
331 for (j = 0; j < crypt_stat->key_size; j++)
332 checksum += crypt_stat->key[j];
333 message[i++] = (checksum / 256) % 256;
334 message[i++] = (checksum % 256);
335 *packet_len = i;
336 out:
337 return rc;
340 static int
341 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
342 struct ecryptfs_message *msg)
344 size_t i = 0;
345 char *data;
346 size_t data_len;
347 size_t message_len;
348 int rc;
351 * ***** TAG 65 Packet Format *****
352 * | Content Type | 1 byte |
353 * | Status Indicator | 1 byte |
354 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
355 * | Encrypted File Encryption Key | arbitrary |
357 message_len = msg->data_len;
358 data = msg->data;
359 /* verify that everything through the encrypted FEK size is present */
360 if (message_len < 4) {
361 rc = -EIO;
362 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
363 "message length is [%d]\n", __func__, message_len, 4);
364 goto out;
366 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
367 rc = -EIO;
368 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
369 __func__);
370 goto out;
372 if (data[i++]) {
373 rc = -EIO;
374 printk(KERN_ERR "%s: Status indicator has non zero "
375 "value [%d]\n", __func__, data[i-1]);
377 goto out;
379 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
380 &data_len);
381 if (rc) {
382 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
383 "rc = [%d]\n", rc);
384 goto out;
386 i += data_len;
387 if (message_len < (i + key_rec->enc_key_size)) {
388 rc = -EIO;
389 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
390 __func__, message_len, (i + key_rec->enc_key_size));
391 goto out;
393 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
394 rc = -EIO;
395 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
396 "the maximum key size [%d]\n", __func__,
397 key_rec->enc_key_size,
398 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
399 goto out;
401 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
402 out:
403 return rc;
406 static int
407 ecryptfs_find_global_auth_tok_for_sig(
408 struct ecryptfs_global_auth_tok **global_auth_tok,
409 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
411 struct ecryptfs_global_auth_tok *walker;
412 int rc = 0;
414 (*global_auth_tok) = NULL;
415 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
416 list_for_each_entry(walker,
417 &mount_crypt_stat->global_auth_tok_list,
418 mount_crypt_stat_list) {
419 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
420 rc = key_validate(walker->global_auth_tok_key);
421 if (!rc)
422 (*global_auth_tok) = walker;
423 goto out;
426 rc = -EINVAL;
427 out:
428 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
429 return rc;
433 * ecryptfs_find_auth_tok_for_sig
434 * @auth_tok: Set to the matching auth_tok; NULL if not found
435 * @crypt_stat: inode crypt_stat crypto context
436 * @sig: Sig of auth_tok to find
438 * For now, this function simply looks at the registered auth_tok's
439 * linked off the mount_crypt_stat, so all the auth_toks that can be
440 * used must be registered at mount time. This function could
441 * potentially try a lot harder to find auth_tok's (e.g., by calling
442 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
443 * that static registration of auth_tok's will no longer be necessary.
445 * Returns zero on no error; non-zero on error
447 static int
448 ecryptfs_find_auth_tok_for_sig(
449 struct ecryptfs_auth_tok **auth_tok,
450 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
451 char *sig)
453 struct ecryptfs_global_auth_tok *global_auth_tok;
454 int rc = 0;
456 (*auth_tok) = NULL;
457 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
458 mount_crypt_stat, sig)) {
459 struct key *auth_tok_key;
461 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
462 sig);
463 } else
464 (*auth_tok) = global_auth_tok->global_auth_tok;
465 return rc;
469 * write_tag_70_packet can gobble a lot of stack space. We stuff most
470 * of the function's parameters in a kmalloc'd struct to help reduce
471 * eCryptfs' overall stack usage.
473 struct ecryptfs_write_tag_70_packet_silly_stack {
474 u8 cipher_code;
475 size_t max_packet_size;
476 size_t packet_size_len;
477 size_t block_aligned_filename_size;
478 size_t block_size;
479 size_t i;
480 size_t j;
481 size_t num_rand_bytes;
482 struct mutex *tfm_mutex;
483 char *block_aligned_filename;
484 struct ecryptfs_auth_tok *auth_tok;
485 struct scatterlist src_sg;
486 struct scatterlist dst_sg;
487 struct blkcipher_desc desc;
488 char iv[ECRYPTFS_MAX_IV_BYTES];
489 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
491 struct hash_desc hash_desc;
492 struct scatterlist hash_sg;
496 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
497 * @filename: NULL-terminated filename string
499 * This is the simplest mechanism for achieving filename encryption in
500 * eCryptfs. It encrypts the given filename with the mount-wide
501 * filename encryption key (FNEK) and stores it in a packet to @dest,
502 * which the callee will encode and write directly into the dentry
503 * name.
506 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
507 size_t *packet_size,
508 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
509 char *filename, size_t filename_size)
511 struct ecryptfs_write_tag_70_packet_silly_stack *s;
512 int rc = 0;
514 s = kmalloc(sizeof(*s), GFP_KERNEL);
515 if (!s) {
516 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
517 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
518 goto out;
520 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
521 (*packet_size) = 0;
522 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
523 &s->desc.tfm,
524 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
525 if (unlikely(rc)) {
526 printk(KERN_ERR "Internal error whilst attempting to get "
527 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
528 mount_crypt_stat->global_default_fn_cipher_name, rc);
529 goto out;
531 mutex_lock(s->tfm_mutex);
532 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
533 /* Plus one for the \0 separator between the random prefix
534 * and the plaintext filename */
535 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
536 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
537 if ((s->block_aligned_filename_size % s->block_size) != 0) {
538 s->num_rand_bytes += (s->block_size
539 - (s->block_aligned_filename_size
540 % s->block_size));
541 s->block_aligned_filename_size = (s->num_rand_bytes
542 + filename_size);
544 /* Octet 0: Tag 70 identifier
545 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
546 * and block-aligned encrypted filename size)
547 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
548 * Octet N2-N3: Cipher identifier (1 octet)
549 * Octets N3-N4: Block-aligned encrypted filename
550 * - Consists of a minimum number of random characters, a \0
551 * separator, and then the filename */
552 s->max_packet_size = (1 /* Tag 70 identifier */
553 + 3 /* Max Tag 70 packet size */
554 + ECRYPTFS_SIG_SIZE /* FNEK sig */
555 + 1 /* Cipher identifier */
556 + s->block_aligned_filename_size);
557 if (dest == NULL) {
558 (*packet_size) = s->max_packet_size;
559 goto out_unlock;
561 if (s->max_packet_size > (*remaining_bytes)) {
562 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
563 "[%zd] available\n", __func__, s->max_packet_size,
564 (*remaining_bytes));
565 rc = -EINVAL;
566 goto out_unlock;
568 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
569 GFP_KERNEL);
570 if (!s->block_aligned_filename) {
571 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
572 "kzalloc [%zd] bytes\n", __func__,
573 s->block_aligned_filename_size);
574 rc = -ENOMEM;
575 goto out_unlock;
577 s->i = 0;
578 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
579 rc = ecryptfs_write_packet_length(&dest[s->i],
580 (ECRYPTFS_SIG_SIZE
581 + 1 /* Cipher code */
582 + s->block_aligned_filename_size),
583 &s->packet_size_len);
584 if (rc) {
585 printk(KERN_ERR "%s: Error generating tag 70 packet "
586 "header; cannot generate packet length; rc = [%d]\n",
587 __func__, rc);
588 goto out_free_unlock;
590 s->i += s->packet_size_len;
591 ecryptfs_from_hex(&dest[s->i],
592 mount_crypt_stat->global_default_fnek_sig,
593 ECRYPTFS_SIG_SIZE);
594 s->i += ECRYPTFS_SIG_SIZE;
595 s->cipher_code = ecryptfs_code_for_cipher_string(
596 mount_crypt_stat->global_default_fn_cipher_name,
597 mount_crypt_stat->global_default_fn_cipher_key_bytes);
598 if (s->cipher_code == 0) {
599 printk(KERN_WARNING "%s: Unable to generate code for "
600 "cipher [%s] with key bytes [%zd]\n", __func__,
601 mount_crypt_stat->global_default_fn_cipher_name,
602 mount_crypt_stat->global_default_fn_cipher_key_bytes);
603 rc = -EINVAL;
604 goto out_free_unlock;
606 dest[s->i++] = s->cipher_code;
607 rc = ecryptfs_find_auth_tok_for_sig(
608 &s->auth_tok, mount_crypt_stat,
609 mount_crypt_stat->global_default_fnek_sig);
610 if (rc) {
611 printk(KERN_ERR "%s: Error attempting to find auth tok for "
612 "fnek sig [%s]; rc = [%d]\n", __func__,
613 mount_crypt_stat->global_default_fnek_sig, rc);
614 goto out_free_unlock;
616 /* TODO: Support other key modules than passphrase for
617 * filename encryption */
618 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
619 rc = -EOPNOTSUPP;
620 printk(KERN_INFO "%s: Filename encryption only supports "
621 "password tokens\n", __func__);
622 goto out_free_unlock;
624 sg_init_one(
625 &s->hash_sg,
626 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
627 s->auth_tok->token.password.session_key_encryption_key_bytes);
628 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
629 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
630 CRYPTO_ALG_ASYNC);
631 if (IS_ERR(s->hash_desc.tfm)) {
632 rc = PTR_ERR(s->hash_desc.tfm);
633 printk(KERN_ERR "%s: Error attempting to "
634 "allocate hash crypto context; rc = [%d]\n",
635 __func__, rc);
636 goto out_free_unlock;
638 rc = crypto_hash_init(&s->hash_desc);
639 if (rc) {
640 printk(KERN_ERR
641 "%s: Error initializing crypto hash; rc = [%d]\n",
642 __func__, rc);
643 goto out_release_free_unlock;
645 rc = crypto_hash_update(
646 &s->hash_desc, &s->hash_sg,
647 s->auth_tok->token.password.session_key_encryption_key_bytes);
648 if (rc) {
649 printk(KERN_ERR
650 "%s: Error updating crypto hash; rc = [%d]\n",
651 __func__, rc);
652 goto out_release_free_unlock;
654 rc = crypto_hash_final(&s->hash_desc, s->hash);
655 if (rc) {
656 printk(KERN_ERR
657 "%s: Error finalizing crypto hash; rc = [%d]\n",
658 __func__, rc);
659 goto out_release_free_unlock;
661 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
662 s->block_aligned_filename[s->j] =
663 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
664 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
665 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
666 sg_init_one(&s->hash_sg, (u8 *)s->hash,
667 ECRYPTFS_TAG_70_DIGEST_SIZE);
668 rc = crypto_hash_init(&s->hash_desc);
669 if (rc) {
670 printk(KERN_ERR
671 "%s: Error initializing crypto hash; "
672 "rc = [%d]\n", __func__, rc);
673 goto out_release_free_unlock;
675 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
676 ECRYPTFS_TAG_70_DIGEST_SIZE);
677 if (rc) {
678 printk(KERN_ERR
679 "%s: Error updating crypto hash; "
680 "rc = [%d]\n", __func__, rc);
681 goto out_release_free_unlock;
683 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
684 if (rc) {
685 printk(KERN_ERR
686 "%s: Error finalizing crypto hash; "
687 "rc = [%d]\n", __func__, rc);
688 goto out_release_free_unlock;
690 memcpy(s->hash, s->tmp_hash,
691 ECRYPTFS_TAG_70_DIGEST_SIZE);
693 if (s->block_aligned_filename[s->j] == '\0')
694 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
696 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
697 filename_size);
698 rc = virt_to_scatterlist(s->block_aligned_filename,
699 s->block_aligned_filename_size, &s->src_sg, 1);
700 if (rc != 1) {
701 printk(KERN_ERR "%s: Internal error whilst attempting to "
702 "convert filename memory to scatterlist; "
703 "expected rc = 1; got rc = [%d]. "
704 "block_aligned_filename_size = [%zd]\n", __func__, rc,
705 s->block_aligned_filename_size);
706 goto out_release_free_unlock;
708 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
709 &s->dst_sg, 1);
710 if (rc != 1) {
711 printk(KERN_ERR "%s: Internal error whilst attempting to "
712 "convert encrypted filename memory to scatterlist; "
713 "expected rc = 1; got rc = [%d]. "
714 "block_aligned_filename_size = [%zd]\n", __func__, rc,
715 s->block_aligned_filename_size);
716 goto out_release_free_unlock;
718 /* The characters in the first block effectively do the job
719 * of the IV here, so we just use 0's for the IV. Note the
720 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
721 * >= ECRYPTFS_MAX_IV_BYTES. */
722 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
723 s->desc.info = s->iv;
724 rc = crypto_blkcipher_setkey(
725 s->desc.tfm,
726 s->auth_tok->token.password.session_key_encryption_key,
727 mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 if (rc < 0) {
729 printk(KERN_ERR "%s: Error setting key for crypto context; "
730 "rc = [%d]. s->auth_tok->token.password.session_key_"
731 "encryption_key = [0x%p]; mount_crypt_stat->"
732 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
734 s->auth_tok->token.password.session_key_encryption_key,
735 mount_crypt_stat->global_default_fn_cipher_key_bytes);
736 goto out_release_free_unlock;
738 rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
739 s->block_aligned_filename_size);
740 if (rc) {
741 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
742 "rc = [%d]\n", __func__, rc);
743 goto out_release_free_unlock;
745 s->i += s->block_aligned_filename_size;
746 (*packet_size) = s->i;
747 (*remaining_bytes) -= (*packet_size);
748 out_release_free_unlock:
749 crypto_free_hash(s->hash_desc.tfm);
750 out_free_unlock:
751 kzfree(s->block_aligned_filename);
752 out_unlock:
753 mutex_unlock(s->tfm_mutex);
754 out:
755 kfree(s);
756 return rc;
759 struct ecryptfs_parse_tag_70_packet_silly_stack {
760 u8 cipher_code;
761 size_t max_packet_size;
762 size_t packet_size_len;
763 size_t parsed_tag_70_packet_size;
764 size_t block_aligned_filename_size;
765 size_t block_size;
766 size_t i;
767 struct mutex *tfm_mutex;
768 char *decrypted_filename;
769 struct ecryptfs_auth_tok *auth_tok;
770 struct scatterlist src_sg;
771 struct scatterlist dst_sg;
772 struct blkcipher_desc desc;
773 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
774 char iv[ECRYPTFS_MAX_IV_BYTES];
775 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
779 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
780 * @filename: This function kmalloc's the memory for the filename
781 * @filename_size: This function sets this to the amount of memory
782 * kmalloc'd for the filename
783 * @packet_size: This function sets this to the the number of octets
784 * in the packet parsed
785 * @mount_crypt_stat: The mount-wide cryptographic context
786 * @data: The memory location containing the start of the tag 70
787 * packet
788 * @max_packet_size: The maximum legal size of the packet to be parsed
789 * from @data
791 * Returns zero on success; non-zero otherwise
794 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
795 size_t *packet_size,
796 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
797 char *data, size_t max_packet_size)
799 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
800 int rc = 0;
802 (*packet_size) = 0;
803 (*filename_size) = 0;
804 (*filename) = NULL;
805 s = kmalloc(sizeof(*s), GFP_KERNEL);
806 if (!s) {
807 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
808 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
809 goto out;
811 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
812 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
813 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
814 "at least [%d]\n", __func__, max_packet_size,
815 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
816 rc = -EINVAL;
817 goto out;
819 /* Octet 0: Tag 70 identifier
820 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
821 * and block-aligned encrypted filename size)
822 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
823 * Octet N2-N3: Cipher identifier (1 octet)
824 * Octets N3-N4: Block-aligned encrypted filename
825 * - Consists of a minimum number of random numbers, a \0
826 * separator, and then the filename */
827 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
828 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
829 "tag [0x%.2x]\n", __func__,
830 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
831 rc = -EINVAL;
832 goto out;
834 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
835 &s->parsed_tag_70_packet_size,
836 &s->packet_size_len);
837 if (rc) {
838 printk(KERN_WARNING "%s: Error parsing packet length; "
839 "rc = [%d]\n", __func__, rc);
840 goto out;
842 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
843 - ECRYPTFS_SIG_SIZE - 1);
844 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
845 > max_packet_size) {
846 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
847 "size is [%zd]\n", __func__, max_packet_size,
848 (1 + s->packet_size_len + 1
849 + s->block_aligned_filename_size));
850 rc = -EINVAL;
851 goto out;
853 (*packet_size) += s->packet_size_len;
854 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
855 ECRYPTFS_SIG_SIZE);
856 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
857 (*packet_size) += ECRYPTFS_SIG_SIZE;
858 s->cipher_code = data[(*packet_size)++];
859 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
860 if (rc) {
861 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
862 __func__, s->cipher_code);
863 goto out;
865 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
866 &s->tfm_mutex,
867 s->cipher_string);
868 if (unlikely(rc)) {
869 printk(KERN_ERR "Internal error whilst attempting to get "
870 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
871 s->cipher_string, rc);
872 goto out;
874 mutex_lock(s->tfm_mutex);
875 rc = virt_to_scatterlist(&data[(*packet_size)],
876 s->block_aligned_filename_size, &s->src_sg, 1);
877 if (rc != 1) {
878 printk(KERN_ERR "%s: Internal error whilst attempting to "
879 "convert encrypted filename memory to scatterlist; "
880 "expected rc = 1; got rc = [%d]. "
881 "block_aligned_filename_size = [%zd]\n", __func__, rc,
882 s->block_aligned_filename_size);
883 goto out_unlock;
885 (*packet_size) += s->block_aligned_filename_size;
886 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
887 GFP_KERNEL);
888 if (!s->decrypted_filename) {
889 printk(KERN_ERR "%s: Out of memory whilst attempting to "
890 "kmalloc [%zd] bytes\n", __func__,
891 s->block_aligned_filename_size);
892 rc = -ENOMEM;
893 goto out_unlock;
895 rc = virt_to_scatterlist(s->decrypted_filename,
896 s->block_aligned_filename_size, &s->dst_sg, 1);
897 if (rc != 1) {
898 printk(KERN_ERR "%s: Internal error whilst attempting to "
899 "convert decrypted filename memory to scatterlist; "
900 "expected rc = 1; got rc = [%d]. "
901 "block_aligned_filename_size = [%zd]\n", __func__, rc,
902 s->block_aligned_filename_size);
903 goto out_free_unlock;
905 /* The characters in the first block effectively do the job of
906 * the IV here, so we just use 0's for the IV. Note the
907 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
908 * >= ECRYPTFS_MAX_IV_BYTES. */
909 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
910 s->desc.info = s->iv;
911 rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
912 s->fnek_sig_hex);
913 if (rc) {
914 printk(KERN_ERR "%s: Error attempting to find auth tok for "
915 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
916 rc);
917 goto out_free_unlock;
919 /* TODO: Support other key modules than passphrase for
920 * filename encryption */
921 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
922 rc = -EOPNOTSUPP;
923 printk(KERN_INFO "%s: Filename encryption only supports "
924 "password tokens\n", __func__);
925 goto out_free_unlock;
927 rc = crypto_blkcipher_setkey(
928 s->desc.tfm,
929 s->auth_tok->token.password.session_key_encryption_key,
930 mount_crypt_stat->global_default_fn_cipher_key_bytes);
931 if (rc < 0) {
932 printk(KERN_ERR "%s: Error setting key for crypto context; "
933 "rc = [%d]. s->auth_tok->token.password.session_key_"
934 "encryption_key = [0x%p]; mount_crypt_stat->"
935 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
937 s->auth_tok->token.password.session_key_encryption_key,
938 mount_crypt_stat->global_default_fn_cipher_key_bytes);
939 goto out_free_unlock;
941 rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
942 s->block_aligned_filename_size);
943 if (rc) {
944 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
945 "rc = [%d]\n", __func__, rc);
946 goto out_free_unlock;
948 s->i = 0;
949 while (s->decrypted_filename[s->i] != '\0'
950 && s->i < s->block_aligned_filename_size)
951 s->i++;
952 if (s->i == s->block_aligned_filename_size) {
953 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
954 "find valid separator between random characters and "
955 "the filename\n", __func__);
956 rc = -EINVAL;
957 goto out_free_unlock;
959 s->i++;
960 (*filename_size) = (s->block_aligned_filename_size - s->i);
961 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
962 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
963 "invalid\n", __func__, (*filename_size));
964 rc = -EINVAL;
965 goto out_free_unlock;
967 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
968 if (!(*filename)) {
969 printk(KERN_ERR "%s: Out of memory whilst attempting to "
970 "kmalloc [%zd] bytes\n", __func__,
971 ((*filename_size) + 1));
972 rc = -ENOMEM;
973 goto out_free_unlock;
975 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
976 (*filename)[(*filename_size)] = '\0';
977 out_free_unlock:
978 kfree(s->decrypted_filename);
979 out_unlock:
980 mutex_unlock(s->tfm_mutex);
981 out:
982 if (rc) {
983 (*packet_size) = 0;
984 (*filename_size) = 0;
985 (*filename) = NULL;
987 kfree(s);
988 return rc;
991 static int
992 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
994 int rc = 0;
996 (*sig) = NULL;
997 switch (auth_tok->token_type) {
998 case ECRYPTFS_PASSWORD:
999 (*sig) = auth_tok->token.password.signature;
1000 break;
1001 case ECRYPTFS_PRIVATE_KEY:
1002 (*sig) = auth_tok->token.private_key.signature;
1003 break;
1004 default:
1005 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1006 auth_tok->token_type);
1007 rc = -EINVAL;
1009 return rc;
1013 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1014 * @auth_tok: The key authentication token used to decrypt the session key
1015 * @crypt_stat: The cryptographic context
1017 * Returns zero on success; non-zero error otherwise.
1019 static int
1020 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1021 struct ecryptfs_crypt_stat *crypt_stat)
1023 u8 cipher_code = 0;
1024 struct ecryptfs_msg_ctx *msg_ctx;
1025 struct ecryptfs_message *msg = NULL;
1026 char *auth_tok_sig;
1027 char *payload;
1028 size_t payload_len;
1029 int rc;
1031 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1032 if (rc) {
1033 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1034 auth_tok->token_type);
1035 goto out;
1037 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1038 &payload, &payload_len);
1039 if (rc) {
1040 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1041 goto out;
1043 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1044 if (rc) {
1045 ecryptfs_printk(KERN_ERR, "Error sending message to "
1046 "ecryptfsd\n");
1047 goto out;
1049 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1050 if (rc) {
1051 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1052 "from the user space daemon\n");
1053 rc = -EIO;
1054 goto out;
1056 rc = parse_tag_65_packet(&(auth_tok->session_key),
1057 &cipher_code, msg);
1058 if (rc) {
1059 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1060 rc);
1061 goto out;
1063 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1064 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1065 auth_tok->session_key.decrypted_key_size);
1066 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1067 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1068 if (rc) {
1069 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1070 cipher_code)
1071 goto out;
1073 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1074 if (ecryptfs_verbosity > 0) {
1075 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1076 ecryptfs_dump_hex(crypt_stat->key,
1077 crypt_stat->key_size);
1079 out:
1080 if (msg)
1081 kfree(msg);
1082 return rc;
1085 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1087 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1088 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1090 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1091 auth_tok_list_head, list) {
1092 list_del(&auth_tok_list_item->list);
1093 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1094 auth_tok_list_item);
1098 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1101 * parse_tag_1_packet
1102 * @crypt_stat: The cryptographic context to modify based on packet contents
1103 * @data: The raw bytes of the packet.
1104 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1105 * a new authentication token will be placed at the
1106 * end of this list for this packet.
1107 * @new_auth_tok: Pointer to a pointer to memory that this function
1108 * allocates; sets the memory address of the pointer to
1109 * NULL on error. This object is added to the
1110 * auth_tok_list.
1111 * @packet_size: This function writes the size of the parsed packet
1112 * into this memory location; zero on error.
1113 * @max_packet_size: The maximum allowable packet size
1115 * Returns zero on success; non-zero on error.
1117 static int
1118 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1119 unsigned char *data, struct list_head *auth_tok_list,
1120 struct ecryptfs_auth_tok **new_auth_tok,
1121 size_t *packet_size, size_t max_packet_size)
1123 size_t body_size;
1124 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1125 size_t length_size;
1126 int rc = 0;
1128 (*packet_size) = 0;
1129 (*new_auth_tok) = NULL;
1131 * This format is inspired by OpenPGP; see RFC 2440
1132 * packet tag 1
1134 * Tag 1 identifier (1 byte)
1135 * Max Tag 1 packet size (max 3 bytes)
1136 * Version (1 byte)
1137 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1138 * Cipher identifier (1 byte)
1139 * Encrypted key size (arbitrary)
1141 * 12 bytes minimum packet size
1143 if (unlikely(max_packet_size < 12)) {
1144 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1145 rc = -EINVAL;
1146 goto out;
1148 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1149 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1150 ECRYPTFS_TAG_1_PACKET_TYPE);
1151 rc = -EINVAL;
1152 goto out;
1154 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1155 * at end of function upon failure */
1156 auth_tok_list_item =
1157 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1158 GFP_KERNEL);
1159 if (!auth_tok_list_item) {
1160 printk(KERN_ERR "Unable to allocate memory\n");
1161 rc = -ENOMEM;
1162 goto out;
1164 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1165 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1166 &length_size);
1167 if (rc) {
1168 printk(KERN_WARNING "Error parsing packet length; "
1169 "rc = [%d]\n", rc);
1170 goto out_free;
1172 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1173 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1174 rc = -EINVAL;
1175 goto out_free;
1177 (*packet_size) += length_size;
1178 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1179 printk(KERN_WARNING "Packet size exceeds max\n");
1180 rc = -EINVAL;
1181 goto out_free;
1183 if (unlikely(data[(*packet_size)++] != 0x03)) {
1184 printk(KERN_WARNING "Unknown version number [%d]\n",
1185 data[(*packet_size) - 1]);
1186 rc = -EINVAL;
1187 goto out_free;
1189 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1190 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1191 *packet_size += ECRYPTFS_SIG_SIZE;
1192 /* This byte is skipped because the kernel does not need to
1193 * know which public key encryption algorithm was used */
1194 (*packet_size)++;
1195 (*new_auth_tok)->session_key.encrypted_key_size =
1196 body_size - (ECRYPTFS_SIG_SIZE + 2);
1197 if ((*new_auth_tok)->session_key.encrypted_key_size
1198 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1199 printk(KERN_WARNING "Tag 1 packet contains key larger "
1200 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1201 rc = -EINVAL;
1202 goto out;
1204 memcpy((*new_auth_tok)->session_key.encrypted_key,
1205 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1206 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1207 (*new_auth_tok)->session_key.flags &=
1208 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1209 (*new_auth_tok)->session_key.flags |=
1210 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1211 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1212 (*new_auth_tok)->flags = 0;
1213 (*new_auth_tok)->session_key.flags &=
1214 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1215 (*new_auth_tok)->session_key.flags &=
1216 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1217 list_add(&auth_tok_list_item->list, auth_tok_list);
1218 goto out;
1219 out_free:
1220 (*new_auth_tok) = NULL;
1221 memset(auth_tok_list_item, 0,
1222 sizeof(struct ecryptfs_auth_tok_list_item));
1223 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1224 auth_tok_list_item);
1225 out:
1226 if (rc)
1227 (*packet_size) = 0;
1228 return rc;
1232 * parse_tag_3_packet
1233 * @crypt_stat: The cryptographic context to modify based on packet
1234 * contents.
1235 * @data: The raw bytes of the packet.
1236 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1237 * a new authentication token will be placed at the end
1238 * of this list for this packet.
1239 * @new_auth_tok: Pointer to a pointer to memory that this function
1240 * allocates; sets the memory address of the pointer to
1241 * NULL on error. This object is added to the
1242 * auth_tok_list.
1243 * @packet_size: This function writes the size of the parsed packet
1244 * into this memory location; zero on error.
1245 * @max_packet_size: maximum number of bytes to parse
1247 * Returns zero on success; non-zero on error.
1249 static int
1250 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1251 unsigned char *data, struct list_head *auth_tok_list,
1252 struct ecryptfs_auth_tok **new_auth_tok,
1253 size_t *packet_size, size_t max_packet_size)
1255 size_t body_size;
1256 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1257 size_t length_size;
1258 int rc = 0;
1260 (*packet_size) = 0;
1261 (*new_auth_tok) = NULL;
1263 *This format is inspired by OpenPGP; see RFC 2440
1264 * packet tag 3
1266 * Tag 3 identifier (1 byte)
1267 * Max Tag 3 packet size (max 3 bytes)
1268 * Version (1 byte)
1269 * Cipher code (1 byte)
1270 * S2K specifier (1 byte)
1271 * Hash identifier (1 byte)
1272 * Salt (ECRYPTFS_SALT_SIZE)
1273 * Hash iterations (1 byte)
1274 * Encrypted key (arbitrary)
1276 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1278 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1279 printk(KERN_ERR "Max packet size too large\n");
1280 rc = -EINVAL;
1281 goto out;
1283 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1284 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1285 ECRYPTFS_TAG_3_PACKET_TYPE);
1286 rc = -EINVAL;
1287 goto out;
1289 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1290 * at end of function upon failure */
1291 auth_tok_list_item =
1292 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1293 if (!auth_tok_list_item) {
1294 printk(KERN_ERR "Unable to allocate memory\n");
1295 rc = -ENOMEM;
1296 goto out;
1298 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1299 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1300 &length_size);
1301 if (rc) {
1302 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1303 rc);
1304 goto out_free;
1306 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1307 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1308 rc = -EINVAL;
1309 goto out_free;
1311 (*packet_size) += length_size;
1312 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1313 printk(KERN_ERR "Packet size exceeds max\n");
1314 rc = -EINVAL;
1315 goto out_free;
1317 (*new_auth_tok)->session_key.encrypted_key_size =
1318 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1319 if ((*new_auth_tok)->session_key.encrypted_key_size
1320 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1321 printk(KERN_WARNING "Tag 3 packet contains key larger "
1322 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1323 rc = -EINVAL;
1324 goto out_free;
1326 if (unlikely(data[(*packet_size)++] != 0x04)) {
1327 printk(KERN_WARNING "Unknown version number [%d]\n",
1328 data[(*packet_size) - 1]);
1329 rc = -EINVAL;
1330 goto out_free;
1332 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1333 (u16)data[(*packet_size)]);
1334 if (rc)
1335 goto out_free;
1336 /* A little extra work to differentiate among the AES key
1337 * sizes; see RFC2440 */
1338 switch(data[(*packet_size)++]) {
1339 case RFC2440_CIPHER_AES_192:
1340 crypt_stat->key_size = 24;
1341 break;
1342 default:
1343 crypt_stat->key_size =
1344 (*new_auth_tok)->session_key.encrypted_key_size;
1346 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1347 if (rc)
1348 goto out_free;
1349 if (unlikely(data[(*packet_size)++] != 0x03)) {
1350 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1351 rc = -ENOSYS;
1352 goto out_free;
1354 /* TODO: finish the hash mapping */
1355 switch (data[(*packet_size)++]) {
1356 case 0x01: /* See RFC2440 for these numbers and their mappings */
1357 /* Choose MD5 */
1358 memcpy((*new_auth_tok)->token.password.salt,
1359 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1360 (*packet_size) += ECRYPTFS_SALT_SIZE;
1361 /* This conversion was taken straight from RFC2440 */
1362 (*new_auth_tok)->token.password.hash_iterations =
1363 ((u32) 16 + (data[(*packet_size)] & 15))
1364 << ((data[(*packet_size)] >> 4) + 6);
1365 (*packet_size)++;
1366 /* Friendly reminder:
1367 * (*new_auth_tok)->session_key.encrypted_key_size =
1368 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1369 memcpy((*new_auth_tok)->session_key.encrypted_key,
1370 &data[(*packet_size)],
1371 (*new_auth_tok)->session_key.encrypted_key_size);
1372 (*packet_size) +=
1373 (*new_auth_tok)->session_key.encrypted_key_size;
1374 (*new_auth_tok)->session_key.flags &=
1375 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1376 (*new_auth_tok)->session_key.flags |=
1377 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1378 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1379 break;
1380 default:
1381 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1382 "[%d]\n", data[(*packet_size) - 1]);
1383 rc = -ENOSYS;
1384 goto out_free;
1386 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1387 /* TODO: Parametarize; we might actually want userspace to
1388 * decrypt the session key. */
1389 (*new_auth_tok)->session_key.flags &=
1390 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1391 (*new_auth_tok)->session_key.flags &=
1392 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1393 list_add(&auth_tok_list_item->list, auth_tok_list);
1394 goto out;
1395 out_free:
1396 (*new_auth_tok) = NULL;
1397 memset(auth_tok_list_item, 0,
1398 sizeof(struct ecryptfs_auth_tok_list_item));
1399 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1400 auth_tok_list_item);
1401 out:
1402 if (rc)
1403 (*packet_size) = 0;
1404 return rc;
1408 * parse_tag_11_packet
1409 * @data: The raw bytes of the packet
1410 * @contents: This function writes the data contents of the literal
1411 * packet into this memory location
1412 * @max_contents_bytes: The maximum number of bytes that this function
1413 * is allowed to write into contents
1414 * @tag_11_contents_size: This function writes the size of the parsed
1415 * contents into this memory location; zero on
1416 * error
1417 * @packet_size: This function writes the size of the parsed packet
1418 * into this memory location; zero on error
1419 * @max_packet_size: maximum number of bytes to parse
1421 * Returns zero on success; non-zero on error.
1423 static int
1424 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1425 size_t max_contents_bytes, size_t *tag_11_contents_size,
1426 size_t *packet_size, size_t max_packet_size)
1428 size_t body_size;
1429 size_t length_size;
1430 int rc = 0;
1432 (*packet_size) = 0;
1433 (*tag_11_contents_size) = 0;
1434 /* This format is inspired by OpenPGP; see RFC 2440
1435 * packet tag 11
1437 * Tag 11 identifier (1 byte)
1438 * Max Tag 11 packet size (max 3 bytes)
1439 * Binary format specifier (1 byte)
1440 * Filename length (1 byte)
1441 * Filename ("_CONSOLE") (8 bytes)
1442 * Modification date (4 bytes)
1443 * Literal data (arbitrary)
1445 * We need at least 16 bytes of data for the packet to even be
1446 * valid.
1448 if (max_packet_size < 16) {
1449 printk(KERN_ERR "Maximum packet size too small\n");
1450 rc = -EINVAL;
1451 goto out;
1453 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1454 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1455 rc = -EINVAL;
1456 goto out;
1458 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1459 &length_size);
1460 if (rc) {
1461 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1462 goto out;
1464 if (body_size < 14) {
1465 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1466 rc = -EINVAL;
1467 goto out;
1469 (*packet_size) += length_size;
1470 (*tag_11_contents_size) = (body_size - 14);
1471 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1472 printk(KERN_ERR "Packet size exceeds max\n");
1473 rc = -EINVAL;
1474 goto out;
1476 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1477 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1478 "expected size\n");
1479 rc = -EINVAL;
1480 goto out;
1482 if (data[(*packet_size)++] != 0x62) {
1483 printk(KERN_WARNING "Unrecognizable packet\n");
1484 rc = -EINVAL;
1485 goto out;
1487 if (data[(*packet_size)++] != 0x08) {
1488 printk(KERN_WARNING "Unrecognizable packet\n");
1489 rc = -EINVAL;
1490 goto out;
1492 (*packet_size) += 12; /* Ignore filename and modification date */
1493 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1494 (*packet_size) += (*tag_11_contents_size);
1495 out:
1496 if (rc) {
1497 (*packet_size) = 0;
1498 (*tag_11_contents_size) = 0;
1500 return rc;
1504 * ecryptfs_verify_version
1505 * @version: The version number to confirm
1507 * Returns zero on good version; non-zero otherwise
1509 static int ecryptfs_verify_version(u16 version)
1511 int rc = 0;
1512 unsigned char major;
1513 unsigned char minor;
1515 major = ((version >> 8) & 0xFF);
1516 minor = (version & 0xFF);
1517 if (major != ECRYPTFS_VERSION_MAJOR) {
1518 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1519 "Expected [%d]; got [%d]\n",
1520 ECRYPTFS_VERSION_MAJOR, major);
1521 rc = -EINVAL;
1522 goto out;
1524 if (minor != ECRYPTFS_VERSION_MINOR) {
1525 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1526 "Expected [%d]; got [%d]\n",
1527 ECRYPTFS_VERSION_MINOR, minor);
1528 rc = -EINVAL;
1529 goto out;
1531 out:
1532 return rc;
1535 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1536 struct ecryptfs_auth_tok **auth_tok,
1537 char *sig)
1539 int rc = 0;
1541 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1542 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1543 printk(KERN_ERR "Could not find key with description: [%s]\n",
1544 sig);
1545 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1546 goto out;
1548 (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1549 if (ecryptfs_verify_version((*auth_tok)->version)) {
1550 printk(KERN_ERR
1551 "Data structure version mismatch. "
1552 "Userspace tools must match eCryptfs "
1553 "kernel module with major version [%d] "
1554 "and minor version [%d]\n",
1555 ECRYPTFS_VERSION_MAJOR,
1556 ECRYPTFS_VERSION_MINOR);
1557 rc = -EINVAL;
1558 goto out;
1560 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1561 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1562 printk(KERN_ERR "Invalid auth_tok structure "
1563 "returned from key query\n");
1564 rc = -EINVAL;
1565 goto out;
1567 out:
1568 return rc;
1572 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1573 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1574 * @crypt_stat: The cryptographic context
1576 * Returns zero on success; non-zero error otherwise
1578 static int
1579 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1580 struct ecryptfs_crypt_stat *crypt_stat)
1582 struct scatterlist dst_sg[2];
1583 struct scatterlist src_sg[2];
1584 struct mutex *tfm_mutex;
1585 struct blkcipher_desc desc = {
1586 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1588 int rc = 0;
1590 if (unlikely(ecryptfs_verbosity > 0)) {
1591 ecryptfs_printk(
1592 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1593 auth_tok->token.password.session_key_encryption_key_bytes);
1594 ecryptfs_dump_hex(
1595 auth_tok->token.password.session_key_encryption_key,
1596 auth_tok->token.password.session_key_encryption_key_bytes);
1598 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1599 crypt_stat->cipher);
1600 if (unlikely(rc)) {
1601 printk(KERN_ERR "Internal error whilst attempting to get "
1602 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1603 crypt_stat->cipher, rc);
1604 goto out;
1606 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1607 auth_tok->session_key.encrypted_key_size,
1608 src_sg, 2);
1609 if (rc < 1 || rc > 2) {
1610 printk(KERN_ERR "Internal error whilst attempting to convert "
1611 "auth_tok->session_key.encrypted_key to scatterlist; "
1612 "expected rc = 1; got rc = [%d]. "
1613 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1614 auth_tok->session_key.encrypted_key_size);
1615 goto out;
1617 auth_tok->session_key.decrypted_key_size =
1618 auth_tok->session_key.encrypted_key_size;
1619 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1620 auth_tok->session_key.decrypted_key_size,
1621 dst_sg, 2);
1622 if (rc < 1 || rc > 2) {
1623 printk(KERN_ERR "Internal error whilst attempting to convert "
1624 "auth_tok->session_key.decrypted_key to scatterlist; "
1625 "expected rc = 1; got rc = [%d]\n", rc);
1626 goto out;
1628 mutex_lock(tfm_mutex);
1629 rc = crypto_blkcipher_setkey(
1630 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1631 crypt_stat->key_size);
1632 if (unlikely(rc < 0)) {
1633 mutex_unlock(tfm_mutex);
1634 printk(KERN_ERR "Error setting key for crypto context\n");
1635 rc = -EINVAL;
1636 goto out;
1638 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1639 auth_tok->session_key.encrypted_key_size);
1640 mutex_unlock(tfm_mutex);
1641 if (unlikely(rc)) {
1642 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1643 goto out;
1645 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1646 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1647 auth_tok->session_key.decrypted_key_size);
1648 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1649 if (unlikely(ecryptfs_verbosity > 0)) {
1650 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1651 crypt_stat->key_size);
1652 ecryptfs_dump_hex(crypt_stat->key,
1653 crypt_stat->key_size);
1655 out:
1656 return rc;
1660 * ecryptfs_parse_packet_set
1661 * @crypt_stat: The cryptographic context
1662 * @src: Virtual address of region of memory containing the packets
1663 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1665 * Get crypt_stat to have the file's session key if the requisite key
1666 * is available to decrypt the session key.
1668 * Returns Zero if a valid authentication token was retrieved and
1669 * processed; negative value for file not encrypted or for error
1670 * conditions.
1672 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1673 unsigned char *src,
1674 struct dentry *ecryptfs_dentry)
1676 size_t i = 0;
1677 size_t found_auth_tok;
1678 size_t next_packet_is_auth_tok_packet;
1679 struct list_head auth_tok_list;
1680 struct ecryptfs_auth_tok *matching_auth_tok;
1681 struct ecryptfs_auth_tok *candidate_auth_tok;
1682 char *candidate_auth_tok_sig;
1683 size_t packet_size;
1684 struct ecryptfs_auth_tok *new_auth_tok;
1685 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1686 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1687 size_t tag_11_contents_size;
1688 size_t tag_11_packet_size;
1689 int rc = 0;
1691 INIT_LIST_HEAD(&auth_tok_list);
1692 /* Parse the header to find as many packets as we can; these will be
1693 * added the our &auth_tok_list */
1694 next_packet_is_auth_tok_packet = 1;
1695 while (next_packet_is_auth_tok_packet) {
1696 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1698 switch (src[i]) {
1699 case ECRYPTFS_TAG_3_PACKET_TYPE:
1700 rc = parse_tag_3_packet(crypt_stat,
1701 (unsigned char *)&src[i],
1702 &auth_tok_list, &new_auth_tok,
1703 &packet_size, max_packet_size);
1704 if (rc) {
1705 ecryptfs_printk(KERN_ERR, "Error parsing "
1706 "tag 3 packet\n");
1707 rc = -EIO;
1708 goto out_wipe_list;
1710 i += packet_size;
1711 rc = parse_tag_11_packet((unsigned char *)&src[i],
1712 sig_tmp_space,
1713 ECRYPTFS_SIG_SIZE,
1714 &tag_11_contents_size,
1715 &tag_11_packet_size,
1716 max_packet_size);
1717 if (rc) {
1718 ecryptfs_printk(KERN_ERR, "No valid "
1719 "(ecryptfs-specific) literal "
1720 "packet containing "
1721 "authentication token "
1722 "signature found after "
1723 "tag 3 packet\n");
1724 rc = -EIO;
1725 goto out_wipe_list;
1727 i += tag_11_packet_size;
1728 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1729 ecryptfs_printk(KERN_ERR, "Expected "
1730 "signature of size [%d]; "
1731 "read size [%d]\n",
1732 ECRYPTFS_SIG_SIZE,
1733 tag_11_contents_size);
1734 rc = -EIO;
1735 goto out_wipe_list;
1737 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1738 sig_tmp_space, tag_11_contents_size);
1739 new_auth_tok->token.password.signature[
1740 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1741 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1742 break;
1743 case ECRYPTFS_TAG_1_PACKET_TYPE:
1744 rc = parse_tag_1_packet(crypt_stat,
1745 (unsigned char *)&src[i],
1746 &auth_tok_list, &new_auth_tok,
1747 &packet_size, max_packet_size);
1748 if (rc) {
1749 ecryptfs_printk(KERN_ERR, "Error parsing "
1750 "tag 1 packet\n");
1751 rc = -EIO;
1752 goto out_wipe_list;
1754 i += packet_size;
1755 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1756 break;
1757 case ECRYPTFS_TAG_11_PACKET_TYPE:
1758 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1759 "(Tag 11 not allowed by itself)\n");
1760 rc = -EIO;
1761 goto out_wipe_list;
1762 break;
1763 default:
1764 ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1765 "[%d] of the file header; hex value of "
1766 "character is [0x%.2x]\n", i, src[i]);
1767 next_packet_is_auth_tok_packet = 0;
1770 if (list_empty(&auth_tok_list)) {
1771 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1772 "eCryptfs file; this is not supported in this version "
1773 "of the eCryptfs kernel module\n");
1774 rc = -EINVAL;
1775 goto out;
1777 /* auth_tok_list contains the set of authentication tokens
1778 * parsed from the metadata. We need to find a matching
1779 * authentication token that has the secret component(s)
1780 * necessary to decrypt the EFEK in the auth_tok parsed from
1781 * the metadata. There may be several potential matches, but
1782 * just one will be sufficient to decrypt to get the FEK. */
1783 find_next_matching_auth_tok:
1784 found_auth_tok = 0;
1785 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1786 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1787 if (unlikely(ecryptfs_verbosity > 0)) {
1788 ecryptfs_printk(KERN_DEBUG,
1789 "Considering cadidate auth tok:\n");
1790 ecryptfs_dump_auth_tok(candidate_auth_tok);
1792 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1793 candidate_auth_tok);
1794 if (rc) {
1795 printk(KERN_ERR
1796 "Unrecognized candidate auth tok type: [%d]\n",
1797 candidate_auth_tok->token_type);
1798 rc = -EINVAL;
1799 goto out_wipe_list;
1801 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1802 crypt_stat->mount_crypt_stat,
1803 candidate_auth_tok_sig);
1804 if (matching_auth_tok) {
1805 found_auth_tok = 1;
1806 goto found_matching_auth_tok;
1809 if (!found_auth_tok) {
1810 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1811 "authentication token\n");
1812 rc = -EIO;
1813 goto out_wipe_list;
1815 found_matching_auth_tok:
1816 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1817 memcpy(&(candidate_auth_tok->token.private_key),
1818 &(matching_auth_tok->token.private_key),
1819 sizeof(struct ecryptfs_private_key));
1820 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1821 crypt_stat);
1822 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1823 memcpy(&(candidate_auth_tok->token.password),
1824 &(matching_auth_tok->token.password),
1825 sizeof(struct ecryptfs_password));
1826 rc = decrypt_passphrase_encrypted_session_key(
1827 candidate_auth_tok, crypt_stat);
1829 if (rc) {
1830 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1832 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1833 "session key for authentication token with sig "
1834 "[%.*s]; rc = [%d]. Removing auth tok "
1835 "candidate from the list and searching for "
1836 "the next match.\n", candidate_auth_tok_sig,
1837 ECRYPTFS_SIG_SIZE_HEX, rc);
1838 list_for_each_entry_safe(auth_tok_list_item,
1839 auth_tok_list_item_tmp,
1840 &auth_tok_list, list) {
1841 if (candidate_auth_tok
1842 == &auth_tok_list_item->auth_tok) {
1843 list_del(&auth_tok_list_item->list);
1844 kmem_cache_free(
1845 ecryptfs_auth_tok_list_item_cache,
1846 auth_tok_list_item);
1847 goto find_next_matching_auth_tok;
1850 BUG();
1852 rc = ecryptfs_compute_root_iv(crypt_stat);
1853 if (rc) {
1854 ecryptfs_printk(KERN_ERR, "Error computing "
1855 "the root IV\n");
1856 goto out_wipe_list;
1858 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1859 if (rc) {
1860 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1861 "context for cipher [%s]; rc = [%d]\n",
1862 crypt_stat->cipher, rc);
1864 out_wipe_list:
1865 wipe_auth_tok_list(&auth_tok_list);
1866 out:
1867 return rc;
1870 static int
1871 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1872 struct ecryptfs_crypt_stat *crypt_stat,
1873 struct ecryptfs_key_record *key_rec)
1875 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1876 char *payload = NULL;
1877 size_t payload_len;
1878 struct ecryptfs_message *msg;
1879 int rc;
1881 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1882 ecryptfs_code_for_cipher_string(
1883 crypt_stat->cipher,
1884 crypt_stat->key_size),
1885 crypt_stat, &payload, &payload_len);
1886 if (rc) {
1887 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1888 goto out;
1890 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1891 if (rc) {
1892 ecryptfs_printk(KERN_ERR, "Error sending message to "
1893 "ecryptfsd\n");
1894 goto out;
1896 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1897 if (rc) {
1898 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1899 "from the user space daemon\n");
1900 rc = -EIO;
1901 goto out;
1903 rc = parse_tag_67_packet(key_rec, msg);
1904 if (rc)
1905 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1906 kfree(msg);
1907 out:
1908 kfree(payload);
1909 return rc;
1912 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1913 * @dest: Buffer into which to write the packet
1914 * @remaining_bytes: Maximum number of bytes that can be writtn
1915 * @auth_tok: The authentication token used for generating the tag 1 packet
1916 * @crypt_stat: The cryptographic context
1917 * @key_rec: The key record struct for the tag 1 packet
1918 * @packet_size: This function will write the number of bytes that end
1919 * up constituting the packet; set to zero on error
1921 * Returns zero on success; non-zero on error.
1923 static int
1924 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1925 struct ecryptfs_auth_tok *auth_tok,
1926 struct ecryptfs_crypt_stat *crypt_stat,
1927 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1929 size_t i;
1930 size_t encrypted_session_key_valid = 0;
1931 size_t packet_size_length;
1932 size_t max_packet_size;
1933 int rc = 0;
1935 (*packet_size) = 0;
1936 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1937 ECRYPTFS_SIG_SIZE);
1938 encrypted_session_key_valid = 0;
1939 for (i = 0; i < crypt_stat->key_size; i++)
1940 encrypted_session_key_valid |=
1941 auth_tok->session_key.encrypted_key[i];
1942 if (encrypted_session_key_valid) {
1943 memcpy(key_rec->enc_key,
1944 auth_tok->session_key.encrypted_key,
1945 auth_tok->session_key.encrypted_key_size);
1946 goto encrypted_session_key_set;
1948 if (auth_tok->session_key.encrypted_key_size == 0)
1949 auth_tok->session_key.encrypted_key_size =
1950 auth_tok->token.private_key.key_size;
1951 rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1952 if (rc) {
1953 printk(KERN_ERR "Failed to encrypt session key via a key "
1954 "module; rc = [%d]\n", rc);
1955 goto out;
1957 if (ecryptfs_verbosity > 0) {
1958 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1959 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1961 encrypted_session_key_set:
1962 /* This format is inspired by OpenPGP; see RFC 2440
1963 * packet tag 1 */
1964 max_packet_size = (1 /* Tag 1 identifier */
1965 + 3 /* Max Tag 1 packet size */
1966 + 1 /* Version */
1967 + ECRYPTFS_SIG_SIZE /* Key identifier */
1968 + 1 /* Cipher identifier */
1969 + key_rec->enc_key_size); /* Encrypted key size */
1970 if (max_packet_size > (*remaining_bytes)) {
1971 printk(KERN_ERR "Packet length larger than maximum allowable; "
1972 "need up to [%td] bytes, but there are only [%td] "
1973 "available\n", max_packet_size, (*remaining_bytes));
1974 rc = -EINVAL;
1975 goto out;
1977 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1978 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1979 (max_packet_size - 4),
1980 &packet_size_length);
1981 if (rc) {
1982 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1983 "header; cannot generate packet length\n");
1984 goto out;
1986 (*packet_size) += packet_size_length;
1987 dest[(*packet_size)++] = 0x03; /* version 3 */
1988 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1989 (*packet_size) += ECRYPTFS_SIG_SIZE;
1990 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1991 memcpy(&dest[(*packet_size)], key_rec->enc_key,
1992 key_rec->enc_key_size);
1993 (*packet_size) += key_rec->enc_key_size;
1994 out:
1995 if (rc)
1996 (*packet_size) = 0;
1997 else
1998 (*remaining_bytes) -= (*packet_size);
1999 return rc;
2003 * write_tag_11_packet
2004 * @dest: Target into which Tag 11 packet is to be written
2005 * @remaining_bytes: Maximum packet length
2006 * @contents: Byte array of contents to copy in
2007 * @contents_length: Number of bytes in contents
2008 * @packet_length: Length of the Tag 11 packet written; zero on error
2010 * Returns zero on success; non-zero on error.
2012 static int
2013 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2014 size_t contents_length, size_t *packet_length)
2016 size_t packet_size_length;
2017 size_t max_packet_size;
2018 int rc = 0;
2020 (*packet_length) = 0;
2021 /* This format is inspired by OpenPGP; see RFC 2440
2022 * packet tag 11 */
2023 max_packet_size = (1 /* Tag 11 identifier */
2024 + 3 /* Max Tag 11 packet size */
2025 + 1 /* Binary format specifier */
2026 + 1 /* Filename length */
2027 + 8 /* Filename ("_CONSOLE") */
2028 + 4 /* Modification date */
2029 + contents_length); /* Literal data */
2030 if (max_packet_size > (*remaining_bytes)) {
2031 printk(KERN_ERR "Packet length larger than maximum allowable; "
2032 "need up to [%td] bytes, but there are only [%td] "
2033 "available\n", max_packet_size, (*remaining_bytes));
2034 rc = -EINVAL;
2035 goto out;
2037 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2038 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2039 (max_packet_size - 4),
2040 &packet_size_length);
2041 if (rc) {
2042 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2043 "generate packet length. rc = [%d]\n", rc);
2044 goto out;
2046 (*packet_length) += packet_size_length;
2047 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2048 dest[(*packet_length)++] = 8;
2049 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2050 (*packet_length) += 8;
2051 memset(&dest[(*packet_length)], 0x00, 4);
2052 (*packet_length) += 4;
2053 memcpy(&dest[(*packet_length)], contents, contents_length);
2054 (*packet_length) += contents_length;
2055 out:
2056 if (rc)
2057 (*packet_length) = 0;
2058 else
2059 (*remaining_bytes) -= (*packet_length);
2060 return rc;
2064 * write_tag_3_packet
2065 * @dest: Buffer into which to write the packet
2066 * @remaining_bytes: Maximum number of bytes that can be written
2067 * @auth_tok: Authentication token
2068 * @crypt_stat: The cryptographic context
2069 * @key_rec: encrypted key
2070 * @packet_size: This function will write the number of bytes that end
2071 * up constituting the packet; set to zero on error
2073 * Returns zero on success; non-zero on error.
2075 static int
2076 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2077 struct ecryptfs_auth_tok *auth_tok,
2078 struct ecryptfs_crypt_stat *crypt_stat,
2079 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2081 size_t i;
2082 size_t encrypted_session_key_valid = 0;
2083 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2084 struct scatterlist dst_sg[2];
2085 struct scatterlist src_sg[2];
2086 struct mutex *tfm_mutex = NULL;
2087 u8 cipher_code;
2088 size_t packet_size_length;
2089 size_t max_packet_size;
2090 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2091 crypt_stat->mount_crypt_stat;
2092 struct blkcipher_desc desc = {
2093 .tfm = NULL,
2094 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2096 int rc = 0;
2098 (*packet_size) = 0;
2099 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2100 ECRYPTFS_SIG_SIZE);
2101 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2102 crypt_stat->cipher);
2103 if (unlikely(rc)) {
2104 printk(KERN_ERR "Internal error whilst attempting to get "
2105 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2106 crypt_stat->cipher, rc);
2107 goto out;
2109 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2110 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2112 printk(KERN_WARNING "No key size specified at mount; "
2113 "defaulting to [%d]\n", alg->max_keysize);
2114 mount_crypt_stat->global_default_cipher_key_size =
2115 alg->max_keysize;
2117 if (crypt_stat->key_size == 0)
2118 crypt_stat->key_size =
2119 mount_crypt_stat->global_default_cipher_key_size;
2120 if (auth_tok->session_key.encrypted_key_size == 0)
2121 auth_tok->session_key.encrypted_key_size =
2122 crypt_stat->key_size;
2123 if (crypt_stat->key_size == 24
2124 && strcmp("aes", crypt_stat->cipher) == 0) {
2125 memset((crypt_stat->key + 24), 0, 8);
2126 auth_tok->session_key.encrypted_key_size = 32;
2127 } else
2128 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2129 key_rec->enc_key_size =
2130 auth_tok->session_key.encrypted_key_size;
2131 encrypted_session_key_valid = 0;
2132 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2133 encrypted_session_key_valid |=
2134 auth_tok->session_key.encrypted_key[i];
2135 if (encrypted_session_key_valid) {
2136 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2137 "using auth_tok->session_key.encrypted_key, "
2138 "where key_rec->enc_key_size = [%d]\n",
2139 key_rec->enc_key_size);
2140 memcpy(key_rec->enc_key,
2141 auth_tok->session_key.encrypted_key,
2142 key_rec->enc_key_size);
2143 goto encrypted_session_key_set;
2145 if (auth_tok->token.password.flags &
2146 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2147 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2148 "session key encryption key of size [%d]\n",
2149 auth_tok->token.password.
2150 session_key_encryption_key_bytes);
2151 memcpy(session_key_encryption_key,
2152 auth_tok->token.password.session_key_encryption_key,
2153 crypt_stat->key_size);
2154 ecryptfs_printk(KERN_DEBUG,
2155 "Cached session key " "encryption key: \n");
2156 if (ecryptfs_verbosity > 0)
2157 ecryptfs_dump_hex(session_key_encryption_key, 16);
2159 if (unlikely(ecryptfs_verbosity > 0)) {
2160 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2161 ecryptfs_dump_hex(session_key_encryption_key, 16);
2163 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2164 src_sg, 2);
2165 if (rc < 1 || rc > 2) {
2166 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2167 "for crypt_stat session key; expected rc = 1; "
2168 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2169 rc, key_rec->enc_key_size);
2170 rc = -ENOMEM;
2171 goto out;
2173 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2174 dst_sg, 2);
2175 if (rc < 1 || rc > 2) {
2176 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2177 "for crypt_stat encrypted session key; "
2178 "expected rc = 1; got rc = [%d]. "
2179 "key_rec->enc_key_size = [%d]\n", rc,
2180 key_rec->enc_key_size);
2181 rc = -ENOMEM;
2182 goto out;
2184 mutex_lock(tfm_mutex);
2185 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2186 crypt_stat->key_size);
2187 if (rc < 0) {
2188 mutex_unlock(tfm_mutex);
2189 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2190 "context; rc = [%d]\n", rc);
2191 goto out;
2193 rc = 0;
2194 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2195 crypt_stat->key_size);
2196 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2197 (*key_rec).enc_key_size);
2198 mutex_unlock(tfm_mutex);
2199 if (rc) {
2200 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2201 goto out;
2203 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2204 if (ecryptfs_verbosity > 0) {
2205 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2206 key_rec->enc_key_size);
2207 ecryptfs_dump_hex(key_rec->enc_key,
2208 key_rec->enc_key_size);
2210 encrypted_session_key_set:
2211 /* This format is inspired by OpenPGP; see RFC 2440
2212 * packet tag 3 */
2213 max_packet_size = (1 /* Tag 3 identifier */
2214 + 3 /* Max Tag 3 packet size */
2215 + 1 /* Version */
2216 + 1 /* Cipher code */
2217 + 1 /* S2K specifier */
2218 + 1 /* Hash identifier */
2219 + ECRYPTFS_SALT_SIZE /* Salt */
2220 + 1 /* Hash iterations */
2221 + key_rec->enc_key_size); /* Encrypted key size */
2222 if (max_packet_size > (*remaining_bytes)) {
2223 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2224 "there are only [%td] available\n", max_packet_size,
2225 (*remaining_bytes));
2226 rc = -EINVAL;
2227 goto out;
2229 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2230 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2231 * to get the number of octets in the actual Tag 3 packet */
2232 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2233 (max_packet_size - 4),
2234 &packet_size_length);
2235 if (rc) {
2236 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2237 "generate packet length. rc = [%d]\n", rc);
2238 goto out;
2240 (*packet_size) += packet_size_length;
2241 dest[(*packet_size)++] = 0x04; /* version 4 */
2242 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2243 * specified with strings */
2244 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2245 crypt_stat->key_size);
2246 if (cipher_code == 0) {
2247 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2248 "cipher [%s]\n", crypt_stat->cipher);
2249 rc = -EINVAL;
2250 goto out;
2252 dest[(*packet_size)++] = cipher_code;
2253 dest[(*packet_size)++] = 0x03; /* S2K */
2254 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2255 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2256 ECRYPTFS_SALT_SIZE);
2257 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2258 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2259 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2260 key_rec->enc_key_size);
2261 (*packet_size) += key_rec->enc_key_size;
2262 out:
2263 if (rc)
2264 (*packet_size) = 0;
2265 else
2266 (*remaining_bytes) -= (*packet_size);
2267 return rc;
2270 struct kmem_cache *ecryptfs_key_record_cache;
2273 * ecryptfs_generate_key_packet_set
2274 * @dest_base: Virtual address from which to write the key record set
2275 * @crypt_stat: The cryptographic context from which the
2276 * authentication tokens will be retrieved
2277 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2278 * for the global parameters
2279 * @len: The amount written
2280 * @max: The maximum amount of data allowed to be written
2282 * Generates a key packet set and writes it to the virtual address
2283 * passed in.
2285 * Returns zero on success; non-zero on error.
2288 ecryptfs_generate_key_packet_set(char *dest_base,
2289 struct ecryptfs_crypt_stat *crypt_stat,
2290 struct dentry *ecryptfs_dentry, size_t *len,
2291 size_t max)
2293 struct ecryptfs_auth_tok *auth_tok;
2294 struct ecryptfs_global_auth_tok *global_auth_tok;
2295 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2296 &ecryptfs_superblock_to_private(
2297 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2298 size_t written;
2299 struct ecryptfs_key_record *key_rec;
2300 struct ecryptfs_key_sig *key_sig;
2301 int rc = 0;
2303 (*len) = 0;
2304 mutex_lock(&crypt_stat->keysig_list_mutex);
2305 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2306 if (!key_rec) {
2307 rc = -ENOMEM;
2308 goto out;
2310 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2311 crypt_stat_list) {
2312 memset(key_rec, 0, sizeof(*key_rec));
2313 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2314 mount_crypt_stat,
2315 key_sig->keysig);
2316 if (rc) {
2317 printk(KERN_ERR "Error attempting to get the global "
2318 "auth_tok; rc = [%d]\n", rc);
2319 goto out_free;
2321 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2322 printk(KERN_WARNING
2323 "Skipping invalid auth tok with sig = [%s]\n",
2324 global_auth_tok->sig);
2325 continue;
2327 auth_tok = global_auth_tok->global_auth_tok;
2328 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2329 rc = write_tag_3_packet((dest_base + (*len)),
2330 &max, auth_tok,
2331 crypt_stat, key_rec,
2332 &written);
2333 if (rc) {
2334 ecryptfs_printk(KERN_WARNING, "Error "
2335 "writing tag 3 packet\n");
2336 goto out_free;
2338 (*len) += written;
2339 /* Write auth tok signature packet */
2340 rc = write_tag_11_packet((dest_base + (*len)), &max,
2341 key_rec->sig,
2342 ECRYPTFS_SIG_SIZE, &written);
2343 if (rc) {
2344 ecryptfs_printk(KERN_ERR, "Error writing "
2345 "auth tok signature packet\n");
2346 goto out_free;
2348 (*len) += written;
2349 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2350 rc = write_tag_1_packet(dest_base + (*len),
2351 &max, auth_tok,
2352 crypt_stat, key_rec, &written);
2353 if (rc) {
2354 ecryptfs_printk(KERN_WARNING, "Error "
2355 "writing tag 1 packet\n");
2356 goto out_free;
2358 (*len) += written;
2359 } else {
2360 ecryptfs_printk(KERN_WARNING, "Unsupported "
2361 "authentication token type\n");
2362 rc = -EINVAL;
2363 goto out_free;
2366 if (likely(max > 0)) {
2367 dest_base[(*len)] = 0x00;
2368 } else {
2369 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2370 rc = -EIO;
2372 out_free:
2373 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2374 out:
2375 if (rc)
2376 (*len) = 0;
2377 mutex_unlock(&crypt_stat->keysig_list_mutex);
2378 return rc;
2381 struct kmem_cache *ecryptfs_key_sig_cache;
2383 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2385 struct ecryptfs_key_sig *new_key_sig;
2387 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2388 if (!new_key_sig) {
2389 printk(KERN_ERR
2390 "Error allocating from ecryptfs_key_sig_cache\n");
2391 return -ENOMEM;
2393 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2394 /* Caller must hold keysig_list_mutex */
2395 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2397 return 0;
2400 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2403 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2404 char *sig, u32 global_auth_tok_flags)
2406 struct ecryptfs_global_auth_tok *new_auth_tok;
2407 int rc = 0;
2409 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2410 GFP_KERNEL);
2411 if (!new_auth_tok) {
2412 rc = -ENOMEM;
2413 printk(KERN_ERR "Error allocating from "
2414 "ecryptfs_global_auth_tok_cache\n");
2415 goto out;
2417 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2418 new_auth_tok->flags = global_auth_tok_flags;
2419 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2420 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2421 list_add(&new_auth_tok->mount_crypt_stat_list,
2422 &mount_crypt_stat->global_auth_tok_list);
2423 mount_crypt_stat->num_global_auth_toks++;
2424 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2425 out:
2426 return rc;