mtd: m25p80: add support for the EON EN25P{32, 64} SPI flash chips
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / devices / m25p80.c
blob21d866c31bb9bd5cda3f4edadcfda1d2457f8165
1 /*
2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/flash.h>
36 /* Flash opcodes. */
37 #define OPCODE_WREN 0x06 /* Write enable */
38 #define OPCODE_RDSR 0x05 /* Read status register */
39 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
40 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
41 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
42 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
43 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
44 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
45 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
46 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
47 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
49 /* Used for SST flashes only. */
50 #define OPCODE_BP 0x02 /* Byte program */
51 #define OPCODE_WRDI 0x04 /* Write disable */
52 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
54 /* Status Register bits. */
55 #define SR_WIP 1 /* Write in progress */
56 #define SR_WEL 2 /* Write enable latch */
57 /* meaning of other SR_* bits may differ between vendors */
58 #define SR_BP0 4 /* Block protect 0 */
59 #define SR_BP1 8 /* Block protect 1 */
60 #define SR_BP2 0x10 /* Block protect 2 */
61 #define SR_SRWD 0x80 /* SR write protect */
63 /* Define max times to check status register before we give up. */
64 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
65 #define MAX_CMD_SIZE 4
67 #ifdef CONFIG_M25PXX_USE_FAST_READ
68 #define OPCODE_READ OPCODE_FAST_READ
69 #define FAST_READ_DUMMY_BYTE 1
70 #else
71 #define OPCODE_READ OPCODE_NORM_READ
72 #define FAST_READ_DUMMY_BYTE 0
73 #endif
75 /****************************************************************************/
77 struct m25p {
78 struct spi_device *spi;
79 struct mutex lock;
80 struct mtd_info mtd;
81 unsigned partitioned:1;
82 u16 page_size;
83 u16 addr_width;
84 u8 erase_opcode;
85 u8 *command;
88 static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
90 return container_of(mtd, struct m25p, mtd);
93 /****************************************************************************/
96 * Internal helper functions
100 * Read the status register, returning its value in the location
101 * Return the status register value.
102 * Returns negative if error occurred.
104 static int read_sr(struct m25p *flash)
106 ssize_t retval;
107 u8 code = OPCODE_RDSR;
108 u8 val;
110 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
112 if (retval < 0) {
113 dev_err(&flash->spi->dev, "error %d reading SR\n",
114 (int) retval);
115 return retval;
118 return val;
122 * Write status register 1 byte
123 * Returns negative if error occurred.
125 static int write_sr(struct m25p *flash, u8 val)
127 flash->command[0] = OPCODE_WRSR;
128 flash->command[1] = val;
130 return spi_write(flash->spi, flash->command, 2);
134 * Set write enable latch with Write Enable command.
135 * Returns negative if error occurred.
137 static inline int write_enable(struct m25p *flash)
139 u8 code = OPCODE_WREN;
141 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
145 * Send write disble instruction to the chip.
147 static inline int write_disable(struct m25p *flash)
149 u8 code = OPCODE_WRDI;
151 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
155 * Service routine to read status register until ready, or timeout occurs.
156 * Returns non-zero if error.
158 static int wait_till_ready(struct m25p *flash)
160 unsigned long deadline;
161 int sr;
163 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
165 do {
166 if ((sr = read_sr(flash)) < 0)
167 break;
168 else if (!(sr & SR_WIP))
169 return 0;
171 cond_resched();
173 } while (!time_after_eq(jiffies, deadline));
175 return 1;
179 * Erase the whole flash memory
181 * Returns 0 if successful, non-zero otherwise.
183 static int erase_chip(struct m25p *flash)
185 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
186 dev_name(&flash->spi->dev), __func__,
187 (long long)(flash->mtd.size >> 10));
189 /* Wait until finished previous write command. */
190 if (wait_till_ready(flash))
191 return 1;
193 /* Send write enable, then erase commands. */
194 write_enable(flash);
196 /* Set up command buffer. */
197 flash->command[0] = OPCODE_CHIP_ERASE;
199 spi_write(flash->spi, flash->command, 1);
201 return 0;
204 static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
206 /* opcode is in cmd[0] */
207 cmd[1] = addr >> (flash->addr_width * 8 - 8);
208 cmd[2] = addr >> (flash->addr_width * 8 - 16);
209 cmd[3] = addr >> (flash->addr_width * 8 - 24);
212 static int m25p_cmdsz(struct m25p *flash)
214 return 1 + flash->addr_width;
218 * Erase one sector of flash memory at offset ``offset'' which is any
219 * address within the sector which should be erased.
221 * Returns 0 if successful, non-zero otherwise.
223 static int erase_sector(struct m25p *flash, u32 offset)
225 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
226 dev_name(&flash->spi->dev), __func__,
227 flash->mtd.erasesize / 1024, offset);
229 /* Wait until finished previous write command. */
230 if (wait_till_ready(flash))
231 return 1;
233 /* Send write enable, then erase commands. */
234 write_enable(flash);
236 /* Set up command buffer. */
237 flash->command[0] = flash->erase_opcode;
238 m25p_addr2cmd(flash, offset, flash->command);
240 spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
242 return 0;
245 /****************************************************************************/
248 * MTD implementation
252 * Erase an address range on the flash chip. The address range may extend
253 * one or more erase sectors. Return an error is there is a problem erasing.
255 static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
257 struct m25p *flash = mtd_to_m25p(mtd);
258 u32 addr,len;
259 uint32_t rem;
261 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
262 dev_name(&flash->spi->dev), __func__, "at",
263 (long long)instr->addr, (long long)instr->len);
265 /* sanity checks */
266 if (instr->addr + instr->len > flash->mtd.size)
267 return -EINVAL;
268 div_u64_rem(instr->len, mtd->erasesize, &rem);
269 if (rem)
270 return -EINVAL;
272 addr = instr->addr;
273 len = instr->len;
275 mutex_lock(&flash->lock);
277 /* whole-chip erase? */
278 if (len == flash->mtd.size) {
279 if (erase_chip(flash)) {
280 instr->state = MTD_ERASE_FAILED;
281 mutex_unlock(&flash->lock);
282 return -EIO;
285 /* REVISIT in some cases we could speed up erasing large regions
286 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
287 * to use "small sector erase", but that's not always optimal.
290 /* "sector"-at-a-time erase */
291 } else {
292 while (len) {
293 if (erase_sector(flash, addr)) {
294 instr->state = MTD_ERASE_FAILED;
295 mutex_unlock(&flash->lock);
296 return -EIO;
299 addr += mtd->erasesize;
300 len -= mtd->erasesize;
304 mutex_unlock(&flash->lock);
306 instr->state = MTD_ERASE_DONE;
307 mtd_erase_callback(instr);
309 return 0;
313 * Read an address range from the flash chip. The address range
314 * may be any size provided it is within the physical boundaries.
316 static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
317 size_t *retlen, u_char *buf)
319 struct m25p *flash = mtd_to_m25p(mtd);
320 struct spi_transfer t[2];
321 struct spi_message m;
323 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
324 dev_name(&flash->spi->dev), __func__, "from",
325 (u32)from, len);
327 /* sanity checks */
328 if (!len)
329 return 0;
331 if (from + len > flash->mtd.size)
332 return -EINVAL;
334 spi_message_init(&m);
335 memset(t, 0, (sizeof t));
337 /* NOTE:
338 * OPCODE_FAST_READ (if available) is faster.
339 * Should add 1 byte DUMMY_BYTE.
341 t[0].tx_buf = flash->command;
342 t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
343 spi_message_add_tail(&t[0], &m);
345 t[1].rx_buf = buf;
346 t[1].len = len;
347 spi_message_add_tail(&t[1], &m);
349 /* Byte count starts at zero. */
350 if (retlen)
351 *retlen = 0;
353 mutex_lock(&flash->lock);
355 /* Wait till previous write/erase is done. */
356 if (wait_till_ready(flash)) {
357 /* REVISIT status return?? */
358 mutex_unlock(&flash->lock);
359 return 1;
362 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
363 * clocks; and at this writing, every chip this driver handles
364 * supports that opcode.
367 /* Set up the write data buffer. */
368 flash->command[0] = OPCODE_READ;
369 m25p_addr2cmd(flash, from, flash->command);
371 spi_sync(flash->spi, &m);
373 *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
375 mutex_unlock(&flash->lock);
377 return 0;
381 * Write an address range to the flash chip. Data must be written in
382 * FLASH_PAGESIZE chunks. The address range may be any size provided
383 * it is within the physical boundaries.
385 static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
386 size_t *retlen, const u_char *buf)
388 struct m25p *flash = mtd_to_m25p(mtd);
389 u32 page_offset, page_size;
390 struct spi_transfer t[2];
391 struct spi_message m;
393 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
394 dev_name(&flash->spi->dev), __func__, "to",
395 (u32)to, len);
397 if (retlen)
398 *retlen = 0;
400 /* sanity checks */
401 if (!len)
402 return(0);
404 if (to + len > flash->mtd.size)
405 return -EINVAL;
407 spi_message_init(&m);
408 memset(t, 0, (sizeof t));
410 t[0].tx_buf = flash->command;
411 t[0].len = m25p_cmdsz(flash);
412 spi_message_add_tail(&t[0], &m);
414 t[1].tx_buf = buf;
415 spi_message_add_tail(&t[1], &m);
417 mutex_lock(&flash->lock);
419 /* Wait until finished previous write command. */
420 if (wait_till_ready(flash)) {
421 mutex_unlock(&flash->lock);
422 return 1;
425 write_enable(flash);
427 /* Set up the opcode in the write buffer. */
428 flash->command[0] = OPCODE_PP;
429 m25p_addr2cmd(flash, to, flash->command);
431 page_offset = to & (flash->page_size - 1);
433 /* do all the bytes fit onto one page? */
434 if (page_offset + len <= flash->page_size) {
435 t[1].len = len;
437 spi_sync(flash->spi, &m);
439 *retlen = m.actual_length - m25p_cmdsz(flash);
440 } else {
441 u32 i;
443 /* the size of data remaining on the first page */
444 page_size = flash->page_size - page_offset;
446 t[1].len = page_size;
447 spi_sync(flash->spi, &m);
449 *retlen = m.actual_length - m25p_cmdsz(flash);
451 /* write everything in flash->page_size chunks */
452 for (i = page_size; i < len; i += page_size) {
453 page_size = len - i;
454 if (page_size > flash->page_size)
455 page_size = flash->page_size;
457 /* write the next page to flash */
458 m25p_addr2cmd(flash, to + i, flash->command);
460 t[1].tx_buf = buf + i;
461 t[1].len = page_size;
463 wait_till_ready(flash);
465 write_enable(flash);
467 spi_sync(flash->spi, &m);
469 if (retlen)
470 *retlen += m.actual_length - m25p_cmdsz(flash);
474 mutex_unlock(&flash->lock);
476 return 0;
479 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
480 size_t *retlen, const u_char *buf)
482 struct m25p *flash = mtd_to_m25p(mtd);
483 struct spi_transfer t[2];
484 struct spi_message m;
485 size_t actual;
486 int cmd_sz, ret;
488 if (retlen)
489 *retlen = 0;
491 /* sanity checks */
492 if (!len)
493 return 0;
495 if (to + len > flash->mtd.size)
496 return -EINVAL;
498 spi_message_init(&m);
499 memset(t, 0, (sizeof t));
501 t[0].tx_buf = flash->command;
502 t[0].len = m25p_cmdsz(flash);
503 spi_message_add_tail(&t[0], &m);
505 t[1].tx_buf = buf;
506 spi_message_add_tail(&t[1], &m);
508 mutex_lock(&flash->lock);
510 /* Wait until finished previous write command. */
511 ret = wait_till_ready(flash);
512 if (ret)
513 goto time_out;
515 write_enable(flash);
517 actual = to % 2;
518 /* Start write from odd address. */
519 if (actual) {
520 flash->command[0] = OPCODE_BP;
521 m25p_addr2cmd(flash, to, flash->command);
523 /* write one byte. */
524 t[1].len = 1;
525 spi_sync(flash->spi, &m);
526 ret = wait_till_ready(flash);
527 if (ret)
528 goto time_out;
529 *retlen += m.actual_length - m25p_cmdsz(flash);
531 to += actual;
533 flash->command[0] = OPCODE_AAI_WP;
534 m25p_addr2cmd(flash, to, flash->command);
536 /* Write out most of the data here. */
537 cmd_sz = m25p_cmdsz(flash);
538 for (; actual < len - 1; actual += 2) {
539 t[0].len = cmd_sz;
540 /* write two bytes. */
541 t[1].len = 2;
542 t[1].tx_buf = buf + actual;
544 spi_sync(flash->spi, &m);
545 ret = wait_till_ready(flash);
546 if (ret)
547 goto time_out;
548 *retlen += m.actual_length - cmd_sz;
549 cmd_sz = 1;
550 to += 2;
552 write_disable(flash);
553 ret = wait_till_ready(flash);
554 if (ret)
555 goto time_out;
557 /* Write out trailing byte if it exists. */
558 if (actual != len) {
559 write_enable(flash);
560 flash->command[0] = OPCODE_BP;
561 m25p_addr2cmd(flash, to, flash->command);
562 t[0].len = m25p_cmdsz(flash);
563 t[1].len = 1;
564 t[1].tx_buf = buf + actual;
566 spi_sync(flash->spi, &m);
567 ret = wait_till_ready(flash);
568 if (ret)
569 goto time_out;
570 *retlen += m.actual_length - m25p_cmdsz(flash);
571 write_disable(flash);
574 time_out:
575 mutex_unlock(&flash->lock);
576 return ret;
579 /****************************************************************************/
582 * SPI device driver setup and teardown
585 struct flash_info {
586 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
587 * a high byte of zero plus three data bytes: the manufacturer id,
588 * then a two byte device id.
590 u32 jedec_id;
591 u16 ext_id;
593 /* The size listed here is what works with OPCODE_SE, which isn't
594 * necessarily called a "sector" by the vendor.
596 unsigned sector_size;
597 u16 n_sectors;
599 u16 page_size;
600 u16 addr_width;
602 u16 flags;
603 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
604 #define M25P_NO_ERASE 0x02 /* No erase command needed */
607 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
608 ((kernel_ulong_t)&(struct flash_info) { \
609 .jedec_id = (_jedec_id), \
610 .ext_id = (_ext_id), \
611 .sector_size = (_sector_size), \
612 .n_sectors = (_n_sectors), \
613 .page_size = 256, \
614 .addr_width = 3, \
615 .flags = (_flags), \
618 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
619 ((kernel_ulong_t)&(struct flash_info) { \
620 .sector_size = (_sector_size), \
621 .n_sectors = (_n_sectors), \
622 .page_size = (_page_size), \
623 .addr_width = (_addr_width), \
624 .flags = M25P_NO_ERASE, \
627 /* NOTE: double check command sets and memory organization when you add
628 * more flash chips. This current list focusses on newer chips, which
629 * have been converging on command sets which including JEDEC ID.
631 static const struct spi_device_id m25p_ids[] = {
632 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
633 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
634 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
636 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
637 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
639 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
640 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
641 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
642 { "at26df321", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
644 /* EON -- en25pxx */
645 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
646 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
648 /* Macronix */
649 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
650 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
651 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
652 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
653 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
654 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
656 /* Spansion -- single (large) sector size only, at least
657 * for the chips listed here (without boot sectors).
659 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
660 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
661 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
662 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
663 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
664 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
665 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
666 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
667 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
669 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
670 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
671 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
672 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
673 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
674 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
675 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
676 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
677 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
679 /* ST Microelectronics -- newer production may have feature updates */
680 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
681 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
682 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
683 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
684 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
685 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
686 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
687 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
688 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
690 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
691 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
692 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
693 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
694 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
695 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
696 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
697 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
698 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
700 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
701 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
702 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
704 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
705 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
707 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
708 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
709 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
710 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
711 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
712 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
713 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
714 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
716 /* Catalyst / On Semiconductor -- non-JEDEC */
717 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
718 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
719 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
720 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
721 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
722 { },
724 MODULE_DEVICE_TABLE(spi, m25p_ids);
726 static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
728 int tmp;
729 u8 code = OPCODE_RDID;
730 u8 id[5];
731 u32 jedec;
732 u16 ext_jedec;
733 struct flash_info *info;
735 /* JEDEC also defines an optional "extended device information"
736 * string for after vendor-specific data, after the three bytes
737 * we use here. Supporting some chips might require using it.
739 tmp = spi_write_then_read(spi, &code, 1, id, 5);
740 if (tmp < 0) {
741 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
742 dev_name(&spi->dev), tmp);
743 return ERR_PTR(tmp);
745 jedec = id[0];
746 jedec = jedec << 8;
747 jedec |= id[1];
748 jedec = jedec << 8;
749 jedec |= id[2];
751 ext_jedec = id[3] << 8 | id[4];
753 for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
754 info = (void *)m25p_ids[tmp].driver_data;
755 if (info->jedec_id == jedec) {
756 if (info->ext_id != 0 && info->ext_id != ext_jedec)
757 continue;
758 return &m25p_ids[tmp];
761 return ERR_PTR(-ENODEV);
766 * board specific setup should have ensured the SPI clock used here
767 * matches what the READ command supports, at least until this driver
768 * understands FAST_READ (for clocks over 25 MHz).
770 static int __devinit m25p_probe(struct spi_device *spi)
772 const struct spi_device_id *id = spi_get_device_id(spi);
773 struct flash_platform_data *data;
774 struct m25p *flash;
775 struct flash_info *info;
776 unsigned i;
778 /* Platform data helps sort out which chip type we have, as
779 * well as how this board partitions it. If we don't have
780 * a chip ID, try the JEDEC id commands; they'll work for most
781 * newer chips, even if we don't recognize the particular chip.
783 data = spi->dev.platform_data;
784 if (data && data->type) {
785 const struct spi_device_id *plat_id;
787 for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
788 plat_id = &m25p_ids[i];
789 if (strcmp(data->type, plat_id->name))
790 continue;
791 break;
794 if (plat_id)
795 id = plat_id;
796 else
797 dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
800 info = (void *)id->driver_data;
802 if (info->jedec_id) {
803 const struct spi_device_id *jid;
805 jid = jedec_probe(spi);
806 if (IS_ERR(jid)) {
807 return PTR_ERR(jid);
808 } else if (jid != id) {
810 * JEDEC knows better, so overwrite platform ID. We
811 * can't trust partitions any longer, but we'll let
812 * mtd apply them anyway, since some partitions may be
813 * marked read-only, and we don't want to lose that
814 * information, even if it's not 100% accurate.
816 dev_warn(&spi->dev, "found %s, expected %s\n",
817 jid->name, id->name);
818 id = jid;
819 info = (void *)jid->driver_data;
823 flash = kzalloc(sizeof *flash, GFP_KERNEL);
824 if (!flash)
825 return -ENOMEM;
826 flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
827 if (!flash->command) {
828 kfree(flash);
829 return -ENOMEM;
832 flash->spi = spi;
833 mutex_init(&flash->lock);
834 dev_set_drvdata(&spi->dev, flash);
837 * Atmel and SST serial flash tend to power
838 * up with the software protection bits set
841 if (info->jedec_id >> 16 == 0x1f ||
842 info->jedec_id >> 16 == 0xbf) {
843 write_enable(flash);
844 write_sr(flash, 0);
847 if (data && data->name)
848 flash->mtd.name = data->name;
849 else
850 flash->mtd.name = dev_name(&spi->dev);
852 flash->mtd.type = MTD_NORFLASH;
853 flash->mtd.writesize = 1;
854 flash->mtd.flags = MTD_CAP_NORFLASH;
855 flash->mtd.size = info->sector_size * info->n_sectors;
856 flash->mtd.erase = m25p80_erase;
857 flash->mtd.read = m25p80_read;
859 /* sst flash chips use AAI word program */
860 if (info->jedec_id >> 16 == 0xbf)
861 flash->mtd.write = sst_write;
862 else
863 flash->mtd.write = m25p80_write;
865 /* prefer "small sector" erase if possible */
866 if (info->flags & SECT_4K) {
867 flash->erase_opcode = OPCODE_BE_4K;
868 flash->mtd.erasesize = 4096;
869 } else {
870 flash->erase_opcode = OPCODE_SE;
871 flash->mtd.erasesize = info->sector_size;
874 if (info->flags & M25P_NO_ERASE)
875 flash->mtd.flags |= MTD_NO_ERASE;
877 flash->mtd.dev.parent = &spi->dev;
878 flash->page_size = info->page_size;
879 flash->addr_width = info->addr_width;
881 dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
882 (long long)flash->mtd.size >> 10);
884 DEBUG(MTD_DEBUG_LEVEL2,
885 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
886 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
887 flash->mtd.name,
888 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
889 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
890 flash->mtd.numeraseregions);
892 if (flash->mtd.numeraseregions)
893 for (i = 0; i < flash->mtd.numeraseregions; i++)
894 DEBUG(MTD_DEBUG_LEVEL2,
895 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
896 ".erasesize = 0x%.8x (%uKiB), "
897 ".numblocks = %d }\n",
898 i, (long long)flash->mtd.eraseregions[i].offset,
899 flash->mtd.eraseregions[i].erasesize,
900 flash->mtd.eraseregions[i].erasesize / 1024,
901 flash->mtd.eraseregions[i].numblocks);
904 /* partitions should match sector boundaries; and it may be good to
905 * use readonly partitions for writeprotected sectors (BP2..BP0).
907 if (mtd_has_partitions()) {
908 struct mtd_partition *parts = NULL;
909 int nr_parts = 0;
911 if (mtd_has_cmdlinepart()) {
912 static const char *part_probes[]
913 = { "cmdlinepart", NULL, };
915 nr_parts = parse_mtd_partitions(&flash->mtd,
916 part_probes, &parts, 0);
919 if (nr_parts <= 0 && data && data->parts) {
920 parts = data->parts;
921 nr_parts = data->nr_parts;
924 if (nr_parts > 0) {
925 for (i = 0; i < nr_parts; i++) {
926 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
927 "{.name = %s, .offset = 0x%llx, "
928 ".size = 0x%llx (%lldKiB) }\n",
929 i, parts[i].name,
930 (long long)parts[i].offset,
931 (long long)parts[i].size,
932 (long long)(parts[i].size >> 10));
934 flash->partitioned = 1;
935 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
937 } else if (data && data->nr_parts)
938 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
939 data->nr_parts, data->name);
941 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
945 static int __devexit m25p_remove(struct spi_device *spi)
947 struct m25p *flash = dev_get_drvdata(&spi->dev);
948 int status;
950 /* Clean up MTD stuff. */
951 if (mtd_has_partitions() && flash->partitioned)
952 status = del_mtd_partitions(&flash->mtd);
953 else
954 status = del_mtd_device(&flash->mtd);
955 if (status == 0) {
956 kfree(flash->command);
957 kfree(flash);
959 return 0;
963 static struct spi_driver m25p80_driver = {
964 .driver = {
965 .name = "m25p80",
966 .bus = &spi_bus_type,
967 .owner = THIS_MODULE,
969 .id_table = m25p_ids,
970 .probe = m25p_probe,
971 .remove = __devexit_p(m25p_remove),
973 /* REVISIT: many of these chips have deep power-down modes, which
974 * should clearly be entered on suspend() to minimize power use.
975 * And also when they're otherwise idle...
980 static int __init m25p80_init(void)
982 return spi_register_driver(&m25p80_driver);
986 static void __exit m25p80_exit(void)
988 spi_unregister_driver(&m25p80_driver);
992 module_init(m25p80_init);
993 module_exit(m25p80_exit);
995 MODULE_LICENSE("GPL");
996 MODULE_AUTHOR("Mike Lavender");
997 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");