percpu: reorganize chunk creation and destruction
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / percpu.c
blob105f171aad2918c9b5e98930095ac1736d08a952
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
47 * To use this allocator, arch code should do the followings.
49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 * regular address to percpu pointer and back if they need to be
51 * different from the default
53 * - use pcpu_setup_first_chunk() during percpu area initialization to
54 * setup the first chunk containing the kernel static percpu area
57 #include <linux/bitmap.h>
58 #include <linux/bootmem.h>
59 #include <linux/err.h>
60 #include <linux/list.h>
61 #include <linux/log2.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/mutex.h>
65 #include <linux/percpu.h>
66 #include <linux/pfn.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/vmalloc.h>
70 #include <linux/workqueue.h>
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr) \
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
92 #endif
94 struct pcpu_chunk {
95 struct list_head list; /* linked to pcpu_slot lists */
96 int free_size; /* free bytes in the chunk */
97 int contig_hint; /* max contiguous size hint */
98 void *base_addr; /* base address of this chunk */
99 int map_used; /* # of map entries used */
100 int map_alloc; /* # of map entries allocated */
101 int *map; /* allocation map */
102 struct vm_struct **vms; /* mapped vmalloc regions */
103 bool immutable; /* no [de]population allowed */
104 unsigned long populated[]; /* populated bitmap */
107 static int pcpu_unit_pages __read_mostly;
108 static int pcpu_unit_size __read_mostly;
109 static int pcpu_nr_units __read_mostly;
110 static int pcpu_atom_size __read_mostly;
111 static int pcpu_nr_slots __read_mostly;
112 static size_t pcpu_chunk_struct_size __read_mostly;
114 /* cpus with the lowest and highest unit numbers */
115 static unsigned int pcpu_first_unit_cpu __read_mostly;
116 static unsigned int pcpu_last_unit_cpu __read_mostly;
118 /* the address of the first chunk which starts with the kernel static area */
119 void *pcpu_base_addr __read_mostly;
120 EXPORT_SYMBOL_GPL(pcpu_base_addr);
122 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
123 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
125 /* group information, used for vm allocation */
126 static int pcpu_nr_groups __read_mostly;
127 static const unsigned long *pcpu_group_offsets __read_mostly;
128 static const size_t *pcpu_group_sizes __read_mostly;
131 * The first chunk which always exists. Note that unlike other
132 * chunks, this one can be allocated and mapped in several different
133 * ways and thus often doesn't live in the vmalloc area.
135 static struct pcpu_chunk *pcpu_first_chunk;
138 * Optional reserved chunk. This chunk reserves part of the first
139 * chunk and serves it for reserved allocations. The amount of
140 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
141 * area doesn't exist, the following variables contain NULL and 0
142 * respectively.
144 static struct pcpu_chunk *pcpu_reserved_chunk;
145 static int pcpu_reserved_chunk_limit;
148 * Synchronization rules.
150 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
151 * protects allocation/reclaim paths, chunks, populated bitmap and
152 * vmalloc mapping. The latter is a spinlock and protects the index
153 * data structures - chunk slots, chunks and area maps in chunks.
155 * During allocation, pcpu_alloc_mutex is kept locked all the time and
156 * pcpu_lock is grabbed and released as necessary. All actual memory
157 * allocations are done using GFP_KERNEL with pcpu_lock released. In
158 * general, percpu memory can't be allocated with irq off but
159 * irqsave/restore are still used in alloc path so that it can be used
160 * from early init path - sched_init() specifically.
162 * Free path accesses and alters only the index data structures, so it
163 * can be safely called from atomic context. When memory needs to be
164 * returned to the system, free path schedules reclaim_work which
165 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166 * reclaimed, release both locks and frees the chunks. Note that it's
167 * necessary to grab both locks to remove a chunk from circulation as
168 * allocation path might be referencing the chunk with only
169 * pcpu_alloc_mutex locked.
171 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
172 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
174 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
176 /* reclaim work to release fully free chunks, scheduled from free path */
177 static void pcpu_reclaim(struct work_struct *work);
178 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
180 static bool pcpu_addr_in_first_chunk(void *addr)
182 void *first_start = pcpu_first_chunk->base_addr;
184 return addr >= first_start && addr < first_start + pcpu_unit_size;
187 static bool pcpu_addr_in_reserved_chunk(void *addr)
189 void *first_start = pcpu_first_chunk->base_addr;
191 return addr >= first_start &&
192 addr < first_start + pcpu_reserved_chunk_limit;
195 static int __pcpu_size_to_slot(int size)
197 int highbit = fls(size); /* size is in bytes */
198 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
201 static int pcpu_size_to_slot(int size)
203 if (size == pcpu_unit_size)
204 return pcpu_nr_slots - 1;
205 return __pcpu_size_to_slot(size);
208 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
210 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
211 return 0;
213 return pcpu_size_to_slot(chunk->free_size);
216 static int pcpu_page_idx(unsigned int cpu, int page_idx)
218 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
221 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
222 unsigned int cpu, int page_idx)
224 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
225 (page_idx << PAGE_SHIFT);
228 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
229 unsigned int cpu, int page_idx)
231 /* must not be used on pre-mapped chunk */
232 WARN_ON(chunk->immutable);
234 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
237 /* set the pointer to a chunk in a page struct */
238 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
240 page->index = (unsigned long)pcpu;
243 /* obtain pointer to a chunk from a page struct */
244 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
246 return (struct pcpu_chunk *)page->index;
249 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
251 *rs = find_next_zero_bit(chunk->populated, end, *rs);
252 *re = find_next_bit(chunk->populated, end, *rs + 1);
255 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
257 *rs = find_next_bit(chunk->populated, end, *rs);
258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
262 * (Un)populated page region iterators. Iterate over (un)populated
263 * page regions betwen @start and @end in @chunk. @rs and @re should
264 * be integer variables and will be set to start and end page index of
265 * the current region.
267 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
272 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
278 * pcpu_mem_alloc - allocate memory
279 * @size: bytes to allocate
281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
282 * kzalloc() is used; otherwise, vmalloc() is used. The returned
283 * memory is always zeroed.
285 * CONTEXT:
286 * Does GFP_KERNEL allocation.
288 * RETURNS:
289 * Pointer to the allocated area on success, NULL on failure.
291 static void *pcpu_mem_alloc(size_t size)
293 if (size <= PAGE_SIZE)
294 return kzalloc(size, GFP_KERNEL);
295 else {
296 void *ptr = vmalloc(size);
297 if (ptr)
298 memset(ptr, 0, size);
299 return ptr;
304 * pcpu_mem_free - free memory
305 * @ptr: memory to free
306 * @size: size of the area
308 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
310 static void pcpu_mem_free(void *ptr, size_t size)
312 if (size <= PAGE_SIZE)
313 kfree(ptr);
314 else
315 vfree(ptr);
319 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
320 * @chunk: chunk of interest
321 * @oslot: the previous slot it was on
323 * This function is called after an allocation or free changed @chunk.
324 * New slot according to the changed state is determined and @chunk is
325 * moved to the slot. Note that the reserved chunk is never put on
326 * chunk slots.
328 * CONTEXT:
329 * pcpu_lock.
331 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
333 int nslot = pcpu_chunk_slot(chunk);
335 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
336 if (oslot < nslot)
337 list_move(&chunk->list, &pcpu_slot[nslot]);
338 else
339 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
344 * pcpu_chunk_addr_search - determine chunk containing specified address
345 * @addr: address for which the chunk needs to be determined.
347 * RETURNS:
348 * The address of the found chunk.
350 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
352 /* is it in the first chunk? */
353 if (pcpu_addr_in_first_chunk(addr)) {
354 /* is it in the reserved area? */
355 if (pcpu_addr_in_reserved_chunk(addr))
356 return pcpu_reserved_chunk;
357 return pcpu_first_chunk;
361 * The address is relative to unit0 which might be unused and
362 * thus unmapped. Offset the address to the unit space of the
363 * current processor before looking it up in the vmalloc
364 * space. Note that any possible cpu id can be used here, so
365 * there's no need to worry about preemption or cpu hotplug.
367 addr += pcpu_unit_offsets[raw_smp_processor_id()];
368 return pcpu_get_page_chunk(vmalloc_to_page(addr));
372 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
373 * @chunk: chunk of interest
375 * Determine whether area map of @chunk needs to be extended to
376 * accomodate a new allocation.
378 * CONTEXT:
379 * pcpu_lock.
381 * RETURNS:
382 * New target map allocation length if extension is necessary, 0
383 * otherwise.
385 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
387 int new_alloc;
389 if (chunk->map_alloc >= chunk->map_used + 2)
390 return 0;
392 new_alloc = PCPU_DFL_MAP_ALLOC;
393 while (new_alloc < chunk->map_used + 2)
394 new_alloc *= 2;
396 return new_alloc;
400 * pcpu_extend_area_map - extend area map of a chunk
401 * @chunk: chunk of interest
402 * @new_alloc: new target allocation length of the area map
404 * Extend area map of @chunk to have @new_alloc entries.
406 * CONTEXT:
407 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
409 * RETURNS:
410 * 0 on success, -errno on failure.
412 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
414 int *old = NULL, *new = NULL;
415 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
416 unsigned long flags;
418 new = pcpu_mem_alloc(new_size);
419 if (!new)
420 return -ENOMEM;
422 /* acquire pcpu_lock and switch to new area map */
423 spin_lock_irqsave(&pcpu_lock, flags);
425 if (new_alloc <= chunk->map_alloc)
426 goto out_unlock;
428 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
429 memcpy(new, chunk->map, old_size);
432 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
433 * one of the first chunks and still using static map.
435 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
436 old = chunk->map;
438 chunk->map_alloc = new_alloc;
439 chunk->map = new;
440 new = NULL;
442 out_unlock:
443 spin_unlock_irqrestore(&pcpu_lock, flags);
446 * pcpu_mem_free() might end up calling vfree() which uses
447 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
449 pcpu_mem_free(old, old_size);
450 pcpu_mem_free(new, new_size);
452 return 0;
456 * pcpu_split_block - split a map block
457 * @chunk: chunk of interest
458 * @i: index of map block to split
459 * @head: head size in bytes (can be 0)
460 * @tail: tail size in bytes (can be 0)
462 * Split the @i'th map block into two or three blocks. If @head is
463 * non-zero, @head bytes block is inserted before block @i moving it
464 * to @i+1 and reducing its size by @head bytes.
466 * If @tail is non-zero, the target block, which can be @i or @i+1
467 * depending on @head, is reduced by @tail bytes and @tail byte block
468 * is inserted after the target block.
470 * @chunk->map must have enough free slots to accomodate the split.
472 * CONTEXT:
473 * pcpu_lock.
475 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
476 int head, int tail)
478 int nr_extra = !!head + !!tail;
480 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
482 /* insert new subblocks */
483 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
484 sizeof(chunk->map[0]) * (chunk->map_used - i));
485 chunk->map_used += nr_extra;
487 if (head) {
488 chunk->map[i + 1] = chunk->map[i] - head;
489 chunk->map[i++] = head;
491 if (tail) {
492 chunk->map[i++] -= tail;
493 chunk->map[i] = tail;
498 * pcpu_alloc_area - allocate area from a pcpu_chunk
499 * @chunk: chunk of interest
500 * @size: wanted size in bytes
501 * @align: wanted align
503 * Try to allocate @size bytes area aligned at @align from @chunk.
504 * Note that this function only allocates the offset. It doesn't
505 * populate or map the area.
507 * @chunk->map must have at least two free slots.
509 * CONTEXT:
510 * pcpu_lock.
512 * RETURNS:
513 * Allocated offset in @chunk on success, -1 if no matching area is
514 * found.
516 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
518 int oslot = pcpu_chunk_slot(chunk);
519 int max_contig = 0;
520 int i, off;
522 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
523 bool is_last = i + 1 == chunk->map_used;
524 int head, tail;
526 /* extra for alignment requirement */
527 head = ALIGN(off, align) - off;
528 BUG_ON(i == 0 && head != 0);
530 if (chunk->map[i] < 0)
531 continue;
532 if (chunk->map[i] < head + size) {
533 max_contig = max(chunk->map[i], max_contig);
534 continue;
538 * If head is small or the previous block is free,
539 * merge'em. Note that 'small' is defined as smaller
540 * than sizeof(int), which is very small but isn't too
541 * uncommon for percpu allocations.
543 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
544 if (chunk->map[i - 1] > 0)
545 chunk->map[i - 1] += head;
546 else {
547 chunk->map[i - 1] -= head;
548 chunk->free_size -= head;
550 chunk->map[i] -= head;
551 off += head;
552 head = 0;
555 /* if tail is small, just keep it around */
556 tail = chunk->map[i] - head - size;
557 if (tail < sizeof(int))
558 tail = 0;
560 /* split if warranted */
561 if (head || tail) {
562 pcpu_split_block(chunk, i, head, tail);
563 if (head) {
564 i++;
565 off += head;
566 max_contig = max(chunk->map[i - 1], max_contig);
568 if (tail)
569 max_contig = max(chunk->map[i + 1], max_contig);
572 /* update hint and mark allocated */
573 if (is_last)
574 chunk->contig_hint = max_contig; /* fully scanned */
575 else
576 chunk->contig_hint = max(chunk->contig_hint,
577 max_contig);
579 chunk->free_size -= chunk->map[i];
580 chunk->map[i] = -chunk->map[i];
582 pcpu_chunk_relocate(chunk, oslot);
583 return off;
586 chunk->contig_hint = max_contig; /* fully scanned */
587 pcpu_chunk_relocate(chunk, oslot);
589 /* tell the upper layer that this chunk has no matching area */
590 return -1;
594 * pcpu_free_area - free area to a pcpu_chunk
595 * @chunk: chunk of interest
596 * @freeme: offset of area to free
598 * Free area starting from @freeme to @chunk. Note that this function
599 * only modifies the allocation map. It doesn't depopulate or unmap
600 * the area.
602 * CONTEXT:
603 * pcpu_lock.
605 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
607 int oslot = pcpu_chunk_slot(chunk);
608 int i, off;
610 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
611 if (off == freeme)
612 break;
613 BUG_ON(off != freeme);
614 BUG_ON(chunk->map[i] > 0);
616 chunk->map[i] = -chunk->map[i];
617 chunk->free_size += chunk->map[i];
619 /* merge with previous? */
620 if (i > 0 && chunk->map[i - 1] >= 0) {
621 chunk->map[i - 1] += chunk->map[i];
622 chunk->map_used--;
623 memmove(&chunk->map[i], &chunk->map[i + 1],
624 (chunk->map_used - i) * sizeof(chunk->map[0]));
625 i--;
627 /* merge with next? */
628 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
629 chunk->map[i] += chunk->map[i + 1];
630 chunk->map_used--;
631 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
632 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
635 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
636 pcpu_chunk_relocate(chunk, oslot);
639 static struct pcpu_chunk *pcpu_alloc_chunk(void)
641 struct pcpu_chunk *chunk;
643 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
644 if (!chunk)
645 return NULL;
647 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
648 if (!chunk->map) {
649 kfree(chunk);
650 return NULL;
653 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
654 chunk->map[chunk->map_used++] = pcpu_unit_size;
656 INIT_LIST_HEAD(&chunk->list);
657 chunk->free_size = pcpu_unit_size;
658 chunk->contig_hint = pcpu_unit_size;
660 return chunk;
663 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
665 if (!chunk)
666 return;
667 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
668 kfree(chunk);
672 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
673 * @chunk: chunk of interest
674 * @bitmapp: output parameter for bitmap
675 * @may_alloc: may allocate the array
677 * Returns pointer to array of pointers to struct page and bitmap,
678 * both of which can be indexed with pcpu_page_idx(). The returned
679 * array is cleared to zero and *@bitmapp is copied from
680 * @chunk->populated. Note that there is only one array and bitmap
681 * and access exclusion is the caller's responsibility.
683 * CONTEXT:
684 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
685 * Otherwise, don't care.
687 * RETURNS:
688 * Pointer to temp pages array on success, NULL on failure.
690 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
691 unsigned long **bitmapp,
692 bool may_alloc)
694 static struct page **pages;
695 static unsigned long *bitmap;
696 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
697 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
698 sizeof(unsigned long);
700 if (!pages || !bitmap) {
701 if (may_alloc && !pages)
702 pages = pcpu_mem_alloc(pages_size);
703 if (may_alloc && !bitmap)
704 bitmap = pcpu_mem_alloc(bitmap_size);
705 if (!pages || !bitmap)
706 return NULL;
709 memset(pages, 0, pages_size);
710 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
712 *bitmapp = bitmap;
713 return pages;
717 * pcpu_free_pages - free pages which were allocated for @chunk
718 * @chunk: chunk pages were allocated for
719 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
720 * @populated: populated bitmap
721 * @page_start: page index of the first page to be freed
722 * @page_end: page index of the last page to be freed + 1
724 * Free pages [@page_start and @page_end) in @pages for all units.
725 * The pages were allocated for @chunk.
727 static void pcpu_free_pages(struct pcpu_chunk *chunk,
728 struct page **pages, unsigned long *populated,
729 int page_start, int page_end)
731 unsigned int cpu;
732 int i;
734 for_each_possible_cpu(cpu) {
735 for (i = page_start; i < page_end; i++) {
736 struct page *page = pages[pcpu_page_idx(cpu, i)];
738 if (page)
739 __free_page(page);
745 * pcpu_alloc_pages - allocates pages for @chunk
746 * @chunk: target chunk
747 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
748 * @populated: populated bitmap
749 * @page_start: page index of the first page to be allocated
750 * @page_end: page index of the last page to be allocated + 1
752 * Allocate pages [@page_start,@page_end) into @pages for all units.
753 * The allocation is for @chunk. Percpu core doesn't care about the
754 * content of @pages and will pass it verbatim to pcpu_map_pages().
756 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
757 struct page **pages, unsigned long *populated,
758 int page_start, int page_end)
760 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
761 unsigned int cpu;
762 int i;
764 for_each_possible_cpu(cpu) {
765 for (i = page_start; i < page_end; i++) {
766 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
768 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
769 if (!*pagep) {
770 pcpu_free_pages(chunk, pages, populated,
771 page_start, page_end);
772 return -ENOMEM;
776 return 0;
780 * pcpu_pre_unmap_flush - flush cache prior to unmapping
781 * @chunk: chunk the regions to be flushed belongs to
782 * @page_start: page index of the first page to be flushed
783 * @page_end: page index of the last page to be flushed + 1
785 * Pages in [@page_start,@page_end) of @chunk are about to be
786 * unmapped. Flush cache. As each flushing trial can be very
787 * expensive, issue flush on the whole region at once rather than
788 * doing it for each cpu. This could be an overkill but is more
789 * scalable.
791 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
792 int page_start, int page_end)
794 flush_cache_vunmap(
795 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
796 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
799 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
801 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
805 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
806 * @chunk: chunk of interest
807 * @pages: pages array which can be used to pass information to free
808 * @populated: populated bitmap
809 * @page_start: page index of the first page to unmap
810 * @page_end: page index of the last page to unmap + 1
812 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
813 * Corresponding elements in @pages were cleared by the caller and can
814 * be used to carry information to pcpu_free_pages() which will be
815 * called after all unmaps are finished. The caller should call
816 * proper pre/post flush functions.
818 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
819 struct page **pages, unsigned long *populated,
820 int page_start, int page_end)
822 unsigned int cpu;
823 int i;
825 for_each_possible_cpu(cpu) {
826 for (i = page_start; i < page_end; i++) {
827 struct page *page;
829 page = pcpu_chunk_page(chunk, cpu, i);
830 WARN_ON(!page);
831 pages[pcpu_page_idx(cpu, i)] = page;
833 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
834 page_end - page_start);
837 for (i = page_start; i < page_end; i++)
838 __clear_bit(i, populated);
842 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
843 * @chunk: pcpu_chunk the regions to be flushed belong to
844 * @page_start: page index of the first page to be flushed
845 * @page_end: page index of the last page to be flushed + 1
847 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
848 * TLB for the regions. This can be skipped if the area is to be
849 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
851 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
852 * for the whole region.
854 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
855 int page_start, int page_end)
857 flush_tlb_kernel_range(
858 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
859 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
862 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
863 int nr_pages)
865 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
866 PAGE_KERNEL, pages);
870 * pcpu_map_pages - map pages into a pcpu_chunk
871 * @chunk: chunk of interest
872 * @pages: pages array containing pages to be mapped
873 * @populated: populated bitmap
874 * @page_start: page index of the first page to map
875 * @page_end: page index of the last page to map + 1
877 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
878 * caller is responsible for calling pcpu_post_map_flush() after all
879 * mappings are complete.
881 * This function is responsible for setting corresponding bits in
882 * @chunk->populated bitmap and whatever is necessary for reverse
883 * lookup (addr -> chunk).
885 static int pcpu_map_pages(struct pcpu_chunk *chunk,
886 struct page **pages, unsigned long *populated,
887 int page_start, int page_end)
889 unsigned int cpu, tcpu;
890 int i, err;
892 for_each_possible_cpu(cpu) {
893 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
894 &pages[pcpu_page_idx(cpu, page_start)],
895 page_end - page_start);
896 if (err < 0)
897 goto err;
900 /* mapping successful, link chunk and mark populated */
901 for (i = page_start; i < page_end; i++) {
902 for_each_possible_cpu(cpu)
903 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
904 chunk);
905 __set_bit(i, populated);
908 return 0;
910 err:
911 for_each_possible_cpu(tcpu) {
912 if (tcpu == cpu)
913 break;
914 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
915 page_end - page_start);
917 return err;
921 * pcpu_post_map_flush - flush cache after mapping
922 * @chunk: pcpu_chunk the regions to be flushed belong to
923 * @page_start: page index of the first page to be flushed
924 * @page_end: page index of the last page to be flushed + 1
926 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
927 * cache.
929 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
930 * for the whole region.
932 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
933 int page_start, int page_end)
935 flush_cache_vmap(
936 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
937 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
941 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
942 * @chunk: chunk to depopulate
943 * @off: offset to the area to depopulate
944 * @size: size of the area to depopulate in bytes
945 * @flush: whether to flush cache and tlb or not
947 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
948 * from @chunk. If @flush is true, vcache is flushed before unmapping
949 * and tlb after.
951 * CONTEXT:
952 * pcpu_alloc_mutex.
954 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
956 int page_start = PFN_DOWN(off);
957 int page_end = PFN_UP(off + size);
958 struct page **pages;
959 unsigned long *populated;
960 int rs, re;
962 /* quick path, check whether it's empty already */
963 rs = page_start;
964 pcpu_next_unpop(chunk, &rs, &re, page_end);
965 if (rs == page_start && re == page_end)
966 return;
968 /* immutable chunks can't be depopulated */
969 WARN_ON(chunk->immutable);
972 * If control reaches here, there must have been at least one
973 * successful population attempt so the temp pages array must
974 * be available now.
976 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
977 BUG_ON(!pages);
979 /* unmap and free */
980 pcpu_pre_unmap_flush(chunk, page_start, page_end);
982 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
983 pcpu_unmap_pages(chunk, pages, populated, rs, re);
985 /* no need to flush tlb, vmalloc will handle it lazily */
987 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
988 pcpu_free_pages(chunk, pages, populated, rs, re);
990 /* commit new bitmap */
991 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
995 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
996 * @chunk: chunk of interest
997 * @off: offset to the area to populate
998 * @size: size of the area to populate in bytes
1000 * For each cpu, populate and map pages [@page_start,@page_end) into
1001 * @chunk. The area is cleared on return.
1003 * CONTEXT:
1004 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
1006 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
1008 int page_start = PFN_DOWN(off);
1009 int page_end = PFN_UP(off + size);
1010 int free_end = page_start, unmap_end = page_start;
1011 struct page **pages;
1012 unsigned long *populated;
1013 unsigned int cpu;
1014 int rs, re, rc;
1016 /* quick path, check whether all pages are already there */
1017 rs = page_start;
1018 pcpu_next_pop(chunk, &rs, &re, page_end);
1019 if (rs == page_start && re == page_end)
1020 goto clear;
1022 /* need to allocate and map pages, this chunk can't be immutable */
1023 WARN_ON(chunk->immutable);
1025 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
1026 if (!pages)
1027 return -ENOMEM;
1029 /* alloc and map */
1030 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1031 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
1032 if (rc)
1033 goto err_free;
1034 free_end = re;
1037 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1038 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
1039 if (rc)
1040 goto err_unmap;
1041 unmap_end = re;
1043 pcpu_post_map_flush(chunk, page_start, page_end);
1045 /* commit new bitmap */
1046 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1047 clear:
1048 for_each_possible_cpu(cpu)
1049 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1050 return 0;
1052 err_unmap:
1053 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1054 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1055 pcpu_unmap_pages(chunk, pages, populated, rs, re);
1056 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1057 err_free:
1058 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1059 pcpu_free_pages(chunk, pages, populated, rs, re);
1060 return rc;
1063 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
1065 if (chunk && chunk->vms)
1066 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1067 pcpu_free_chunk(chunk);
1070 static struct pcpu_chunk *pcpu_create_chunk(void)
1072 struct pcpu_chunk *chunk;
1073 struct vm_struct **vms;
1075 chunk = pcpu_alloc_chunk();
1076 if (!chunk)
1077 return NULL;
1079 vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1080 pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
1081 if (!vms) {
1082 pcpu_free_chunk(chunk);
1083 return NULL;
1086 chunk->vms = vms;
1087 chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
1088 return chunk;
1092 * pcpu_alloc - the percpu allocator
1093 * @size: size of area to allocate in bytes
1094 * @align: alignment of area (max PAGE_SIZE)
1095 * @reserved: allocate from the reserved chunk if available
1097 * Allocate percpu area of @size bytes aligned at @align.
1099 * CONTEXT:
1100 * Does GFP_KERNEL allocation.
1102 * RETURNS:
1103 * Percpu pointer to the allocated area on success, NULL on failure.
1105 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
1107 static int warn_limit = 10;
1108 struct pcpu_chunk *chunk;
1109 const char *err;
1110 int slot, off, new_alloc;
1111 unsigned long flags;
1113 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1114 WARN(true, "illegal size (%zu) or align (%zu) for "
1115 "percpu allocation\n", size, align);
1116 return NULL;
1119 mutex_lock(&pcpu_alloc_mutex);
1120 spin_lock_irqsave(&pcpu_lock, flags);
1122 /* serve reserved allocations from the reserved chunk if available */
1123 if (reserved && pcpu_reserved_chunk) {
1124 chunk = pcpu_reserved_chunk;
1126 if (size > chunk->contig_hint) {
1127 err = "alloc from reserved chunk failed";
1128 goto fail_unlock;
1131 while ((new_alloc = pcpu_need_to_extend(chunk))) {
1132 spin_unlock_irqrestore(&pcpu_lock, flags);
1133 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1134 err = "failed to extend area map of reserved chunk";
1135 goto fail_unlock_mutex;
1137 spin_lock_irqsave(&pcpu_lock, flags);
1140 off = pcpu_alloc_area(chunk, size, align);
1141 if (off >= 0)
1142 goto area_found;
1144 err = "alloc from reserved chunk failed";
1145 goto fail_unlock;
1148 restart:
1149 /* search through normal chunks */
1150 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1151 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1152 if (size > chunk->contig_hint)
1153 continue;
1155 new_alloc = pcpu_need_to_extend(chunk);
1156 if (new_alloc) {
1157 spin_unlock_irqrestore(&pcpu_lock, flags);
1158 if (pcpu_extend_area_map(chunk,
1159 new_alloc) < 0) {
1160 err = "failed to extend area map";
1161 goto fail_unlock_mutex;
1163 spin_lock_irqsave(&pcpu_lock, flags);
1165 * pcpu_lock has been dropped, need to
1166 * restart cpu_slot list walking.
1168 goto restart;
1171 off = pcpu_alloc_area(chunk, size, align);
1172 if (off >= 0)
1173 goto area_found;
1177 /* hmmm... no space left, create a new chunk */
1178 spin_unlock_irqrestore(&pcpu_lock, flags);
1180 chunk = pcpu_create_chunk();
1181 if (!chunk) {
1182 err = "failed to allocate new chunk";
1183 goto fail_unlock_mutex;
1186 spin_lock_irqsave(&pcpu_lock, flags);
1187 pcpu_chunk_relocate(chunk, -1);
1188 goto restart;
1190 area_found:
1191 spin_unlock_irqrestore(&pcpu_lock, flags);
1193 /* populate, map and clear the area */
1194 if (pcpu_populate_chunk(chunk, off, size)) {
1195 spin_lock_irqsave(&pcpu_lock, flags);
1196 pcpu_free_area(chunk, off);
1197 err = "failed to populate";
1198 goto fail_unlock;
1201 mutex_unlock(&pcpu_alloc_mutex);
1203 /* return address relative to base address */
1204 return __addr_to_pcpu_ptr(chunk->base_addr + off);
1206 fail_unlock:
1207 spin_unlock_irqrestore(&pcpu_lock, flags);
1208 fail_unlock_mutex:
1209 mutex_unlock(&pcpu_alloc_mutex);
1210 if (warn_limit) {
1211 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1212 "%s\n", size, align, err);
1213 dump_stack();
1214 if (!--warn_limit)
1215 pr_info("PERCPU: limit reached, disable warning\n");
1217 return NULL;
1221 * __alloc_percpu - allocate dynamic percpu area
1222 * @size: size of area to allocate in bytes
1223 * @align: alignment of area (max PAGE_SIZE)
1225 * Allocate percpu area of @size bytes aligned at @align. Might
1226 * sleep. Might trigger writeouts.
1228 * CONTEXT:
1229 * Does GFP_KERNEL allocation.
1231 * RETURNS:
1232 * Percpu pointer to the allocated area on success, NULL on failure.
1234 void __percpu *__alloc_percpu(size_t size, size_t align)
1236 return pcpu_alloc(size, align, false);
1238 EXPORT_SYMBOL_GPL(__alloc_percpu);
1241 * __alloc_reserved_percpu - allocate reserved percpu area
1242 * @size: size of area to allocate in bytes
1243 * @align: alignment of area (max PAGE_SIZE)
1245 * Allocate percpu area of @size bytes aligned at @align from reserved
1246 * percpu area if arch has set it up; otherwise, allocation is served
1247 * from the same dynamic area. Might sleep. Might trigger writeouts.
1249 * CONTEXT:
1250 * Does GFP_KERNEL allocation.
1252 * RETURNS:
1253 * Percpu pointer to the allocated area on success, NULL on failure.
1255 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1257 return pcpu_alloc(size, align, true);
1261 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1262 * @work: unused
1264 * Reclaim all fully free chunks except for the first one.
1266 * CONTEXT:
1267 * workqueue context.
1269 static void pcpu_reclaim(struct work_struct *work)
1271 LIST_HEAD(todo);
1272 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1273 struct pcpu_chunk *chunk, *next;
1275 mutex_lock(&pcpu_alloc_mutex);
1276 spin_lock_irq(&pcpu_lock);
1278 list_for_each_entry_safe(chunk, next, head, list) {
1279 WARN_ON(chunk->immutable);
1281 /* spare the first one */
1282 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1283 continue;
1285 list_move(&chunk->list, &todo);
1288 spin_unlock_irq(&pcpu_lock);
1290 list_for_each_entry_safe(chunk, next, &todo, list) {
1291 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1292 pcpu_destroy_chunk(chunk);
1295 mutex_unlock(&pcpu_alloc_mutex);
1299 * free_percpu - free percpu area
1300 * @ptr: pointer to area to free
1302 * Free percpu area @ptr.
1304 * CONTEXT:
1305 * Can be called from atomic context.
1307 void free_percpu(void __percpu *ptr)
1309 void *addr;
1310 struct pcpu_chunk *chunk;
1311 unsigned long flags;
1312 int off;
1314 if (!ptr)
1315 return;
1317 addr = __pcpu_ptr_to_addr(ptr);
1319 spin_lock_irqsave(&pcpu_lock, flags);
1321 chunk = pcpu_chunk_addr_search(addr);
1322 off = addr - chunk->base_addr;
1324 pcpu_free_area(chunk, off);
1326 /* if there are more than one fully free chunks, wake up grim reaper */
1327 if (chunk->free_size == pcpu_unit_size) {
1328 struct pcpu_chunk *pos;
1330 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1331 if (pos != chunk) {
1332 schedule_work(&pcpu_reclaim_work);
1333 break;
1337 spin_unlock_irqrestore(&pcpu_lock, flags);
1339 EXPORT_SYMBOL_GPL(free_percpu);
1342 * is_kernel_percpu_address - test whether address is from static percpu area
1343 * @addr: address to test
1345 * Test whether @addr belongs to in-kernel static percpu area. Module
1346 * static percpu areas are not considered. For those, use
1347 * is_module_percpu_address().
1349 * RETURNS:
1350 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1352 bool is_kernel_percpu_address(unsigned long addr)
1354 const size_t static_size = __per_cpu_end - __per_cpu_start;
1355 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1356 unsigned int cpu;
1358 for_each_possible_cpu(cpu) {
1359 void *start = per_cpu_ptr(base, cpu);
1361 if ((void *)addr >= start && (void *)addr < start + static_size)
1362 return true;
1364 return false;
1368 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1369 * @addr: the address to be converted to physical address
1371 * Given @addr which is dereferenceable address obtained via one of
1372 * percpu access macros, this function translates it into its physical
1373 * address. The caller is responsible for ensuring @addr stays valid
1374 * until this function finishes.
1376 * RETURNS:
1377 * The physical address for @addr.
1379 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1381 if (pcpu_addr_in_first_chunk(addr)) {
1382 if ((unsigned long)addr < VMALLOC_START ||
1383 (unsigned long)addr >= VMALLOC_END)
1384 return __pa(addr);
1385 else
1386 return page_to_phys(vmalloc_to_page(addr));
1387 } else
1388 return page_to_phys(vmalloc_to_page(addr));
1391 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1392 size_t reserved_size,
1393 ssize_t *dyn_sizep)
1395 size_t size_sum;
1397 size_sum = PFN_ALIGN(static_size + reserved_size +
1398 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1399 if (*dyn_sizep != 0)
1400 *dyn_sizep = size_sum - static_size - reserved_size;
1402 return size_sum;
1406 * pcpu_alloc_alloc_info - allocate percpu allocation info
1407 * @nr_groups: the number of groups
1408 * @nr_units: the number of units
1410 * Allocate ai which is large enough for @nr_groups groups containing
1411 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1412 * cpu_map array which is long enough for @nr_units and filled with
1413 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1414 * pointer of other groups.
1416 * RETURNS:
1417 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1418 * failure.
1420 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1421 int nr_units)
1423 struct pcpu_alloc_info *ai;
1424 size_t base_size, ai_size;
1425 void *ptr;
1426 int unit;
1428 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1429 __alignof__(ai->groups[0].cpu_map[0]));
1430 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1432 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1433 if (!ptr)
1434 return NULL;
1435 ai = ptr;
1436 ptr += base_size;
1438 ai->groups[0].cpu_map = ptr;
1440 for (unit = 0; unit < nr_units; unit++)
1441 ai->groups[0].cpu_map[unit] = NR_CPUS;
1443 ai->nr_groups = nr_groups;
1444 ai->__ai_size = PFN_ALIGN(ai_size);
1446 return ai;
1450 * pcpu_free_alloc_info - free percpu allocation info
1451 * @ai: pcpu_alloc_info to free
1453 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1455 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1457 free_bootmem(__pa(ai), ai->__ai_size);
1461 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1462 * @reserved_size: the size of reserved percpu area in bytes
1463 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1464 * @atom_size: allocation atom size
1465 * @cpu_distance_fn: callback to determine distance between cpus, optional
1467 * This function determines grouping of units, their mappings to cpus
1468 * and other parameters considering needed percpu size, allocation
1469 * atom size and distances between CPUs.
1471 * Groups are always mutliples of atom size and CPUs which are of
1472 * LOCAL_DISTANCE both ways are grouped together and share space for
1473 * units in the same group. The returned configuration is guaranteed
1474 * to have CPUs on different nodes on different groups and >=75% usage
1475 * of allocated virtual address space.
1477 * RETURNS:
1478 * On success, pointer to the new allocation_info is returned. On
1479 * failure, ERR_PTR value is returned.
1481 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1482 size_t reserved_size, ssize_t dyn_size,
1483 size_t atom_size,
1484 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1486 static int group_map[NR_CPUS] __initdata;
1487 static int group_cnt[NR_CPUS] __initdata;
1488 const size_t static_size = __per_cpu_end - __per_cpu_start;
1489 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1490 size_t size_sum, min_unit_size, alloc_size;
1491 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1492 int last_allocs, group, unit;
1493 unsigned int cpu, tcpu;
1494 struct pcpu_alloc_info *ai;
1495 unsigned int *cpu_map;
1497 /* this function may be called multiple times */
1498 memset(group_map, 0, sizeof(group_map));
1499 memset(group_cnt, 0, sizeof(group_map));
1502 * Determine min_unit_size, alloc_size and max_upa such that
1503 * alloc_size is multiple of atom_size and is the smallest
1504 * which can accomodate 4k aligned segments which are equal to
1505 * or larger than min_unit_size.
1507 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1508 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1510 alloc_size = roundup(min_unit_size, atom_size);
1511 upa = alloc_size / min_unit_size;
1512 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1513 upa--;
1514 max_upa = upa;
1516 /* group cpus according to their proximity */
1517 for_each_possible_cpu(cpu) {
1518 group = 0;
1519 next_group:
1520 for_each_possible_cpu(tcpu) {
1521 if (cpu == tcpu)
1522 break;
1523 if (group_map[tcpu] == group && cpu_distance_fn &&
1524 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1525 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1526 group++;
1527 nr_groups = max(nr_groups, group + 1);
1528 goto next_group;
1531 group_map[cpu] = group;
1532 group_cnt[group]++;
1533 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1537 * Expand unit size until address space usage goes over 75%
1538 * and then as much as possible without using more address
1539 * space.
1541 last_allocs = INT_MAX;
1542 for (upa = max_upa; upa; upa--) {
1543 int allocs = 0, wasted = 0;
1545 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1546 continue;
1548 for (group = 0; group < nr_groups; group++) {
1549 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1550 allocs += this_allocs;
1551 wasted += this_allocs * upa - group_cnt[group];
1555 * Don't accept if wastage is over 25%. The
1556 * greater-than comparison ensures upa==1 always
1557 * passes the following check.
1559 if (wasted > num_possible_cpus() / 3)
1560 continue;
1562 /* and then don't consume more memory */
1563 if (allocs > last_allocs)
1564 break;
1565 last_allocs = allocs;
1566 best_upa = upa;
1568 upa = best_upa;
1570 /* allocate and fill alloc_info */
1571 for (group = 0; group < nr_groups; group++)
1572 nr_units += roundup(group_cnt[group], upa);
1574 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1575 if (!ai)
1576 return ERR_PTR(-ENOMEM);
1577 cpu_map = ai->groups[0].cpu_map;
1579 for (group = 0; group < nr_groups; group++) {
1580 ai->groups[group].cpu_map = cpu_map;
1581 cpu_map += roundup(group_cnt[group], upa);
1584 ai->static_size = static_size;
1585 ai->reserved_size = reserved_size;
1586 ai->dyn_size = dyn_size;
1587 ai->unit_size = alloc_size / upa;
1588 ai->atom_size = atom_size;
1589 ai->alloc_size = alloc_size;
1591 for (group = 0, unit = 0; group_cnt[group]; group++) {
1592 struct pcpu_group_info *gi = &ai->groups[group];
1595 * Initialize base_offset as if all groups are located
1596 * back-to-back. The caller should update this to
1597 * reflect actual allocation.
1599 gi->base_offset = unit * ai->unit_size;
1601 for_each_possible_cpu(cpu)
1602 if (group_map[cpu] == group)
1603 gi->cpu_map[gi->nr_units++] = cpu;
1604 gi->nr_units = roundup(gi->nr_units, upa);
1605 unit += gi->nr_units;
1607 BUG_ON(unit != nr_units);
1609 return ai;
1613 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1614 * @lvl: loglevel
1615 * @ai: allocation info to dump
1617 * Print out information about @ai using loglevel @lvl.
1619 static void pcpu_dump_alloc_info(const char *lvl,
1620 const struct pcpu_alloc_info *ai)
1622 int group_width = 1, cpu_width = 1, width;
1623 char empty_str[] = "--------";
1624 int alloc = 0, alloc_end = 0;
1625 int group, v;
1626 int upa, apl; /* units per alloc, allocs per line */
1628 v = ai->nr_groups;
1629 while (v /= 10)
1630 group_width++;
1632 v = num_possible_cpus();
1633 while (v /= 10)
1634 cpu_width++;
1635 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1637 upa = ai->alloc_size / ai->unit_size;
1638 width = upa * (cpu_width + 1) + group_width + 3;
1639 apl = rounddown_pow_of_two(max(60 / width, 1));
1641 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1642 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1643 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1645 for (group = 0; group < ai->nr_groups; group++) {
1646 const struct pcpu_group_info *gi = &ai->groups[group];
1647 int unit = 0, unit_end = 0;
1649 BUG_ON(gi->nr_units % upa);
1650 for (alloc_end += gi->nr_units / upa;
1651 alloc < alloc_end; alloc++) {
1652 if (!(alloc % apl)) {
1653 printk("\n");
1654 printk("%spcpu-alloc: ", lvl);
1656 printk("[%0*d] ", group_width, group);
1658 for (unit_end += upa; unit < unit_end; unit++)
1659 if (gi->cpu_map[unit] != NR_CPUS)
1660 printk("%0*d ", cpu_width,
1661 gi->cpu_map[unit]);
1662 else
1663 printk("%s ", empty_str);
1666 printk("\n");
1670 * pcpu_setup_first_chunk - initialize the first percpu chunk
1671 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1672 * @base_addr: mapped address
1674 * Initialize the first percpu chunk which contains the kernel static
1675 * perpcu area. This function is to be called from arch percpu area
1676 * setup path.
1678 * @ai contains all information necessary to initialize the first
1679 * chunk and prime the dynamic percpu allocator.
1681 * @ai->static_size is the size of static percpu area.
1683 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1684 * reserve after the static area in the first chunk. This reserves
1685 * the first chunk such that it's available only through reserved
1686 * percpu allocation. This is primarily used to serve module percpu
1687 * static areas on architectures where the addressing model has
1688 * limited offset range for symbol relocations to guarantee module
1689 * percpu symbols fall inside the relocatable range.
1691 * @ai->dyn_size determines the number of bytes available for dynamic
1692 * allocation in the first chunk. The area between @ai->static_size +
1693 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1695 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1696 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1697 * @ai->dyn_size.
1699 * @ai->atom_size is the allocation atom size and used as alignment
1700 * for vm areas.
1702 * @ai->alloc_size is the allocation size and always multiple of
1703 * @ai->atom_size. This is larger than @ai->atom_size if
1704 * @ai->unit_size is larger than @ai->atom_size.
1706 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1707 * percpu areas. Units which should be colocated are put into the
1708 * same group. Dynamic VM areas will be allocated according to these
1709 * groupings. If @ai->nr_groups is zero, a single group containing
1710 * all units is assumed.
1712 * The caller should have mapped the first chunk at @base_addr and
1713 * copied static data to each unit.
1715 * If the first chunk ends up with both reserved and dynamic areas, it
1716 * is served by two chunks - one to serve the core static and reserved
1717 * areas and the other for the dynamic area. They share the same vm
1718 * and page map but uses different area allocation map to stay away
1719 * from each other. The latter chunk is circulated in the chunk slots
1720 * and available for dynamic allocation like any other chunks.
1722 * RETURNS:
1723 * 0 on success, -errno on failure.
1725 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1726 void *base_addr)
1728 static char cpus_buf[4096] __initdata;
1729 static int smap[2], dmap[2];
1730 size_t dyn_size = ai->dyn_size;
1731 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1732 struct pcpu_chunk *schunk, *dchunk = NULL;
1733 unsigned long *group_offsets;
1734 size_t *group_sizes;
1735 unsigned long *unit_off;
1736 unsigned int cpu;
1737 int *unit_map;
1738 int group, unit, i;
1740 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1742 #define PCPU_SETUP_BUG_ON(cond) do { \
1743 if (unlikely(cond)) { \
1744 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1745 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1746 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1747 BUG(); \
1749 } while (0)
1751 /* sanity checks */
1752 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1753 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1754 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1755 PCPU_SETUP_BUG_ON(!ai->static_size);
1756 PCPU_SETUP_BUG_ON(!base_addr);
1757 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1758 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1759 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1761 /* process group information and build config tables accordingly */
1762 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1763 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1764 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1765 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1767 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1768 unit_map[cpu] = UINT_MAX;
1769 pcpu_first_unit_cpu = NR_CPUS;
1771 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1772 const struct pcpu_group_info *gi = &ai->groups[group];
1774 group_offsets[group] = gi->base_offset;
1775 group_sizes[group] = gi->nr_units * ai->unit_size;
1777 for (i = 0; i < gi->nr_units; i++) {
1778 cpu = gi->cpu_map[i];
1779 if (cpu == NR_CPUS)
1780 continue;
1782 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1783 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1784 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1786 unit_map[cpu] = unit + i;
1787 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1789 if (pcpu_first_unit_cpu == NR_CPUS)
1790 pcpu_first_unit_cpu = cpu;
1793 pcpu_last_unit_cpu = cpu;
1794 pcpu_nr_units = unit;
1796 for_each_possible_cpu(cpu)
1797 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1799 /* we're done parsing the input, undefine BUG macro and dump config */
1800 #undef PCPU_SETUP_BUG_ON
1801 pcpu_dump_alloc_info(KERN_INFO, ai);
1803 pcpu_nr_groups = ai->nr_groups;
1804 pcpu_group_offsets = group_offsets;
1805 pcpu_group_sizes = group_sizes;
1806 pcpu_unit_map = unit_map;
1807 pcpu_unit_offsets = unit_off;
1809 /* determine basic parameters */
1810 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1811 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1812 pcpu_atom_size = ai->atom_size;
1813 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1814 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1817 * Allocate chunk slots. The additional last slot is for
1818 * empty chunks.
1820 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1821 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1822 for (i = 0; i < pcpu_nr_slots; i++)
1823 INIT_LIST_HEAD(&pcpu_slot[i]);
1826 * Initialize static chunk. If reserved_size is zero, the
1827 * static chunk covers static area + dynamic allocation area
1828 * in the first chunk. If reserved_size is not zero, it
1829 * covers static area + reserved area (mostly used for module
1830 * static percpu allocation).
1832 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1833 INIT_LIST_HEAD(&schunk->list);
1834 schunk->base_addr = base_addr;
1835 schunk->map = smap;
1836 schunk->map_alloc = ARRAY_SIZE(smap);
1837 schunk->immutable = true;
1838 bitmap_fill(schunk->populated, pcpu_unit_pages);
1840 if (ai->reserved_size) {
1841 schunk->free_size = ai->reserved_size;
1842 pcpu_reserved_chunk = schunk;
1843 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1844 } else {
1845 schunk->free_size = dyn_size;
1846 dyn_size = 0; /* dynamic area covered */
1848 schunk->contig_hint = schunk->free_size;
1850 schunk->map[schunk->map_used++] = -ai->static_size;
1851 if (schunk->free_size)
1852 schunk->map[schunk->map_used++] = schunk->free_size;
1854 /* init dynamic chunk if necessary */
1855 if (dyn_size) {
1856 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1857 INIT_LIST_HEAD(&dchunk->list);
1858 dchunk->base_addr = base_addr;
1859 dchunk->map = dmap;
1860 dchunk->map_alloc = ARRAY_SIZE(dmap);
1861 dchunk->immutable = true;
1862 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1864 dchunk->contig_hint = dchunk->free_size = dyn_size;
1865 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1866 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1869 /* link the first chunk in */
1870 pcpu_first_chunk = dchunk ?: schunk;
1871 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1873 /* we're done */
1874 pcpu_base_addr = base_addr;
1875 return 0;
1878 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1879 [PCPU_FC_AUTO] = "auto",
1880 [PCPU_FC_EMBED] = "embed",
1881 [PCPU_FC_PAGE] = "page",
1884 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1886 static int __init percpu_alloc_setup(char *str)
1888 if (0)
1889 /* nada */;
1890 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1891 else if (!strcmp(str, "embed"))
1892 pcpu_chosen_fc = PCPU_FC_EMBED;
1893 #endif
1894 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1895 else if (!strcmp(str, "page"))
1896 pcpu_chosen_fc = PCPU_FC_PAGE;
1897 #endif
1898 else
1899 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1901 return 0;
1903 early_param("percpu_alloc", percpu_alloc_setup);
1905 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1906 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1908 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1909 * @reserved_size: the size of reserved percpu area in bytes
1910 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1911 * @atom_size: allocation atom size
1912 * @cpu_distance_fn: callback to determine distance between cpus, optional
1913 * @alloc_fn: function to allocate percpu page
1914 * @free_fn: funtion to free percpu page
1916 * This is a helper to ease setting up embedded first percpu chunk and
1917 * can be called where pcpu_setup_first_chunk() is expected.
1919 * If this function is used to setup the first chunk, it is allocated
1920 * by calling @alloc_fn and used as-is without being mapped into
1921 * vmalloc area. Allocations are always whole multiples of @atom_size
1922 * aligned to @atom_size.
1924 * This enables the first chunk to piggy back on the linear physical
1925 * mapping which often uses larger page size. Please note that this
1926 * can result in very sparse cpu->unit mapping on NUMA machines thus
1927 * requiring large vmalloc address space. Don't use this allocator if
1928 * vmalloc space is not orders of magnitude larger than distances
1929 * between node memory addresses (ie. 32bit NUMA machines).
1931 * When @dyn_size is positive, dynamic area might be larger than
1932 * specified to fill page alignment. When @dyn_size is auto,
1933 * @dyn_size is just big enough to fill page alignment after static
1934 * and reserved areas.
1936 * If the needed size is smaller than the minimum or specified unit
1937 * size, the leftover is returned using @free_fn.
1939 * RETURNS:
1940 * 0 on success, -errno on failure.
1942 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1943 size_t atom_size,
1944 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1945 pcpu_fc_alloc_fn_t alloc_fn,
1946 pcpu_fc_free_fn_t free_fn)
1948 void *base = (void *)ULONG_MAX;
1949 void **areas = NULL;
1950 struct pcpu_alloc_info *ai;
1951 size_t size_sum, areas_size, max_distance;
1952 int group, i, rc;
1954 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1955 cpu_distance_fn);
1956 if (IS_ERR(ai))
1957 return PTR_ERR(ai);
1959 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1960 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1962 areas = alloc_bootmem_nopanic(areas_size);
1963 if (!areas) {
1964 rc = -ENOMEM;
1965 goto out_free;
1968 /* allocate, copy and determine base address */
1969 for (group = 0; group < ai->nr_groups; group++) {
1970 struct pcpu_group_info *gi = &ai->groups[group];
1971 unsigned int cpu = NR_CPUS;
1972 void *ptr;
1974 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1975 cpu = gi->cpu_map[i];
1976 BUG_ON(cpu == NR_CPUS);
1978 /* allocate space for the whole group */
1979 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1980 if (!ptr) {
1981 rc = -ENOMEM;
1982 goto out_free_areas;
1984 areas[group] = ptr;
1986 base = min(ptr, base);
1988 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1989 if (gi->cpu_map[i] == NR_CPUS) {
1990 /* unused unit, free whole */
1991 free_fn(ptr, ai->unit_size);
1992 continue;
1994 /* copy and return the unused part */
1995 memcpy(ptr, __per_cpu_load, ai->static_size);
1996 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2000 /* base address is now known, determine group base offsets */
2001 max_distance = 0;
2002 for (group = 0; group < ai->nr_groups; group++) {
2003 ai->groups[group].base_offset = areas[group] - base;
2004 max_distance = max_t(size_t, max_distance,
2005 ai->groups[group].base_offset);
2007 max_distance += ai->unit_size;
2009 /* warn if maximum distance is further than 75% of vmalloc space */
2010 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
2011 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2012 "space 0x%lx\n",
2013 max_distance, VMALLOC_END - VMALLOC_START);
2014 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2015 /* and fail if we have fallback */
2016 rc = -EINVAL;
2017 goto out_free;
2018 #endif
2021 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2022 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2023 ai->dyn_size, ai->unit_size);
2025 rc = pcpu_setup_first_chunk(ai, base);
2026 goto out_free;
2028 out_free_areas:
2029 for (group = 0; group < ai->nr_groups; group++)
2030 free_fn(areas[group],
2031 ai->groups[group].nr_units * ai->unit_size);
2032 out_free:
2033 pcpu_free_alloc_info(ai);
2034 if (areas)
2035 free_bootmem(__pa(areas), areas_size);
2036 return rc;
2038 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
2039 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
2041 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2043 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2044 * @reserved_size: the size of reserved percpu area in bytes
2045 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2046 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
2047 * @populate_pte_fn: function to populate pte
2049 * This is a helper to ease setting up page-remapped first percpu
2050 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2052 * This is the basic allocator. Static percpu area is allocated
2053 * page-by-page into vmalloc area.
2055 * RETURNS:
2056 * 0 on success, -errno on failure.
2058 int __init pcpu_page_first_chunk(size_t reserved_size,
2059 pcpu_fc_alloc_fn_t alloc_fn,
2060 pcpu_fc_free_fn_t free_fn,
2061 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2063 static struct vm_struct vm;
2064 struct pcpu_alloc_info *ai;
2065 char psize_str[16];
2066 int unit_pages;
2067 size_t pages_size;
2068 struct page **pages;
2069 int unit, i, j, rc;
2071 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2073 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2074 if (IS_ERR(ai))
2075 return PTR_ERR(ai);
2076 BUG_ON(ai->nr_groups != 1);
2077 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2079 unit_pages = ai->unit_size >> PAGE_SHIFT;
2081 /* unaligned allocations can't be freed, round up to page size */
2082 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2083 sizeof(pages[0]));
2084 pages = alloc_bootmem(pages_size);
2086 /* allocate pages */
2087 j = 0;
2088 for (unit = 0; unit < num_possible_cpus(); unit++)
2089 for (i = 0; i < unit_pages; i++) {
2090 unsigned int cpu = ai->groups[0].cpu_map[unit];
2091 void *ptr;
2093 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2094 if (!ptr) {
2095 pr_warning("PERCPU: failed to allocate %s page "
2096 "for cpu%u\n", psize_str, cpu);
2097 goto enomem;
2099 pages[j++] = virt_to_page(ptr);
2102 /* allocate vm area, map the pages and copy static data */
2103 vm.flags = VM_ALLOC;
2104 vm.size = num_possible_cpus() * ai->unit_size;
2105 vm_area_register_early(&vm, PAGE_SIZE);
2107 for (unit = 0; unit < num_possible_cpus(); unit++) {
2108 unsigned long unit_addr =
2109 (unsigned long)vm.addr + unit * ai->unit_size;
2111 for (i = 0; i < unit_pages; i++)
2112 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2114 /* pte already populated, the following shouldn't fail */
2115 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2116 unit_pages);
2117 if (rc < 0)
2118 panic("failed to map percpu area, err=%d\n", rc);
2121 * FIXME: Archs with virtual cache should flush local
2122 * cache for the linear mapping here - something
2123 * equivalent to flush_cache_vmap() on the local cpu.
2124 * flush_cache_vmap() can't be used as most supporting
2125 * data structures are not set up yet.
2128 /* copy static data */
2129 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2132 /* we're ready, commit */
2133 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2134 unit_pages, psize_str, vm.addr, ai->static_size,
2135 ai->reserved_size, ai->dyn_size);
2137 rc = pcpu_setup_first_chunk(ai, vm.addr);
2138 goto out_free_ar;
2140 enomem:
2141 while (--j >= 0)
2142 free_fn(page_address(pages[j]), PAGE_SIZE);
2143 rc = -ENOMEM;
2144 out_free_ar:
2145 free_bootmem(__pa(pages), pages_size);
2146 pcpu_free_alloc_info(ai);
2147 return rc;
2149 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2152 * Generic percpu area setup.
2154 * The embedding helper is used because its behavior closely resembles
2155 * the original non-dynamic generic percpu area setup. This is
2156 * important because many archs have addressing restrictions and might
2157 * fail if the percpu area is located far away from the previous
2158 * location. As an added bonus, in non-NUMA cases, embedding is
2159 * generally a good idea TLB-wise because percpu area can piggy back
2160 * on the physical linear memory mapping which uses large page
2161 * mappings on applicable archs.
2163 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2164 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2165 EXPORT_SYMBOL(__per_cpu_offset);
2167 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2168 size_t align)
2170 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2173 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2175 free_bootmem(__pa(ptr), size);
2178 void __init setup_per_cpu_areas(void)
2180 unsigned long delta;
2181 unsigned int cpu;
2182 int rc;
2185 * Always reserve area for module percpu variables. That's
2186 * what the legacy allocator did.
2188 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2189 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2190 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2191 if (rc < 0)
2192 panic("Failed to initialized percpu areas.");
2194 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2195 for_each_possible_cpu(cpu)
2196 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2198 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */