e1000e: 82579 do not gate auto config of PHY by hardware during nominal use
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000e / ich8lan.c
blob57b5435599ab1d61c58e393d04e0a2f3912d66fc
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
59 #include "e1000.h"
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
143 /* Strapping Option Register - RO */
144 #define E1000_STRAP 0x0000C
145 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
146 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
148 /* OEM Bits Phy Register */
149 #define HV_OEM_BITS PHY_REG(768, 25)
150 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
151 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
152 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
154 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
155 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
157 /* KMRN Mode Control */
158 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
159 #define HV_KMRN_MDIO_SLOW 0x0400
161 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
162 /* Offset 04h HSFSTS */
163 union ich8_hws_flash_status {
164 struct ich8_hsfsts {
165 u16 flcdone :1; /* bit 0 Flash Cycle Done */
166 u16 flcerr :1; /* bit 1 Flash Cycle Error */
167 u16 dael :1; /* bit 2 Direct Access error Log */
168 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
169 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
170 u16 reserved1 :2; /* bit 13:6 Reserved */
171 u16 reserved2 :6; /* bit 13:6 Reserved */
172 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
173 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
174 } hsf_status;
175 u16 regval;
178 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
179 /* Offset 06h FLCTL */
180 union ich8_hws_flash_ctrl {
181 struct ich8_hsflctl {
182 u16 flcgo :1; /* 0 Flash Cycle Go */
183 u16 flcycle :2; /* 2:1 Flash Cycle */
184 u16 reserved :5; /* 7:3 Reserved */
185 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
186 u16 flockdn :6; /* 15:10 Reserved */
187 } hsf_ctrl;
188 u16 regval;
191 /* ICH Flash Region Access Permissions */
192 union ich8_hws_flash_regacc {
193 struct ich8_flracc {
194 u32 grra :8; /* 0:7 GbE region Read Access */
195 u32 grwa :8; /* 8:15 GbE region Write Access */
196 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
197 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
198 } hsf_flregacc;
199 u16 regval;
202 /* ICH Flash Protected Region */
203 union ich8_flash_protected_range {
204 struct ich8_pr {
205 u32 base:13; /* 0:12 Protected Range Base */
206 u32 reserved1:2; /* 13:14 Reserved */
207 u32 rpe:1; /* 15 Read Protection Enable */
208 u32 limit:13; /* 16:28 Protected Range Limit */
209 u32 reserved2:2; /* 29:30 Reserved */
210 u32 wpe:1; /* 31 Write Protection Enable */
211 } range;
212 u32 regval;
215 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
216 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
217 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
218 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
219 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
220 u32 offset, u8 byte);
221 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
222 u8 *data);
223 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
224 u16 *data);
225 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
226 u8 size, u16 *data);
227 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
228 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
230 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
232 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
233 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
234 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
235 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
236 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
237 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
238 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
239 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
240 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
242 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
243 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
244 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
245 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
246 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
248 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
250 return readw(hw->flash_address + reg);
253 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
255 return readl(hw->flash_address + reg);
258 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
260 writew(val, hw->flash_address + reg);
263 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
265 writel(val, hw->flash_address + reg);
268 #define er16flash(reg) __er16flash(hw, (reg))
269 #define er32flash(reg) __er32flash(hw, (reg))
270 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
271 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
274 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
275 * @hw: pointer to the HW structure
277 * Initialize family-specific PHY parameters and function pointers.
279 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
281 struct e1000_phy_info *phy = &hw->phy;
282 u32 ctrl, fwsm;
283 s32 ret_val = 0;
285 phy->addr = 1;
286 phy->reset_delay_us = 100;
288 phy->ops.read_reg = e1000_read_phy_reg_hv;
289 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
290 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
291 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
292 phy->ops.write_reg = e1000_write_phy_reg_hv;
293 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
294 phy->ops.power_up = e1000_power_up_phy_copper;
295 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
296 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
299 * The MAC-PHY interconnect may still be in SMBus mode
300 * after Sx->S0. If the manageability engine (ME) is
301 * disabled, then toggle the LANPHYPC Value bit to force
302 * the interconnect to PCIe mode.
304 fwsm = er32(FWSM);
305 if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
306 ctrl = er32(CTRL);
307 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
308 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
309 ew32(CTRL, ctrl);
310 udelay(10);
311 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
312 ew32(CTRL, ctrl);
313 msleep(50);
316 * Gate automatic PHY configuration by hardware on
317 * non-managed 82579
319 if (hw->mac.type == e1000_pch2lan)
320 e1000_gate_hw_phy_config_ich8lan(hw, true);
324 * Reset the PHY before any acccess to it. Doing so, ensures that
325 * the PHY is in a known good state before we read/write PHY registers.
326 * The generic reset is sufficient here, because we haven't determined
327 * the PHY type yet.
329 ret_val = e1000e_phy_hw_reset_generic(hw);
330 if (ret_val)
331 goto out;
333 /* Ungate automatic PHY configuration on non-managed 82579 */
334 if ((hw->mac.type == e1000_pch2lan) &&
335 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
336 msleep(10);
337 e1000_gate_hw_phy_config_ich8lan(hw, false);
340 phy->id = e1000_phy_unknown;
341 ret_val = e1000e_get_phy_id(hw);
342 if (ret_val)
343 goto out;
344 if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
346 * In case the PHY needs to be in mdio slow mode (eg. 82577),
347 * set slow mode and try to get the PHY id again.
349 ret_val = e1000_set_mdio_slow_mode_hv(hw);
350 if (ret_val)
351 goto out;
352 ret_val = e1000e_get_phy_id(hw);
353 if (ret_val)
354 goto out;
356 phy->type = e1000e_get_phy_type_from_id(phy->id);
358 switch (phy->type) {
359 case e1000_phy_82577:
360 case e1000_phy_82579:
361 phy->ops.check_polarity = e1000_check_polarity_82577;
362 phy->ops.force_speed_duplex =
363 e1000_phy_force_speed_duplex_82577;
364 phy->ops.get_cable_length = e1000_get_cable_length_82577;
365 phy->ops.get_info = e1000_get_phy_info_82577;
366 phy->ops.commit = e1000e_phy_sw_reset;
367 break;
368 case e1000_phy_82578:
369 phy->ops.check_polarity = e1000_check_polarity_m88;
370 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
371 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
372 phy->ops.get_info = e1000e_get_phy_info_m88;
373 break;
374 default:
375 ret_val = -E1000_ERR_PHY;
376 break;
379 out:
380 return ret_val;
384 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
385 * @hw: pointer to the HW structure
387 * Initialize family-specific PHY parameters and function pointers.
389 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
391 struct e1000_phy_info *phy = &hw->phy;
392 s32 ret_val;
393 u16 i = 0;
395 phy->addr = 1;
396 phy->reset_delay_us = 100;
398 phy->ops.power_up = e1000_power_up_phy_copper;
399 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
402 * We may need to do this twice - once for IGP and if that fails,
403 * we'll set BM func pointers and try again
405 ret_val = e1000e_determine_phy_address(hw);
406 if (ret_val) {
407 phy->ops.write_reg = e1000e_write_phy_reg_bm;
408 phy->ops.read_reg = e1000e_read_phy_reg_bm;
409 ret_val = e1000e_determine_phy_address(hw);
410 if (ret_val) {
411 e_dbg("Cannot determine PHY addr. Erroring out\n");
412 return ret_val;
416 phy->id = 0;
417 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
418 (i++ < 100)) {
419 msleep(1);
420 ret_val = e1000e_get_phy_id(hw);
421 if (ret_val)
422 return ret_val;
425 /* Verify phy id */
426 switch (phy->id) {
427 case IGP03E1000_E_PHY_ID:
428 phy->type = e1000_phy_igp_3;
429 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
430 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
431 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
432 phy->ops.get_info = e1000e_get_phy_info_igp;
433 phy->ops.check_polarity = e1000_check_polarity_igp;
434 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
435 break;
436 case IFE_E_PHY_ID:
437 case IFE_PLUS_E_PHY_ID:
438 case IFE_C_E_PHY_ID:
439 phy->type = e1000_phy_ife;
440 phy->autoneg_mask = E1000_ALL_NOT_GIG;
441 phy->ops.get_info = e1000_get_phy_info_ife;
442 phy->ops.check_polarity = e1000_check_polarity_ife;
443 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
444 break;
445 case BME1000_E_PHY_ID:
446 phy->type = e1000_phy_bm;
447 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
448 phy->ops.read_reg = e1000e_read_phy_reg_bm;
449 phy->ops.write_reg = e1000e_write_phy_reg_bm;
450 phy->ops.commit = e1000e_phy_sw_reset;
451 phy->ops.get_info = e1000e_get_phy_info_m88;
452 phy->ops.check_polarity = e1000_check_polarity_m88;
453 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
454 break;
455 default:
456 return -E1000_ERR_PHY;
457 break;
460 return 0;
464 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
465 * @hw: pointer to the HW structure
467 * Initialize family-specific NVM parameters and function
468 * pointers.
470 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
472 struct e1000_nvm_info *nvm = &hw->nvm;
473 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
474 u32 gfpreg, sector_base_addr, sector_end_addr;
475 u16 i;
477 /* Can't read flash registers if the register set isn't mapped. */
478 if (!hw->flash_address) {
479 e_dbg("ERROR: Flash registers not mapped\n");
480 return -E1000_ERR_CONFIG;
483 nvm->type = e1000_nvm_flash_sw;
485 gfpreg = er32flash(ICH_FLASH_GFPREG);
488 * sector_X_addr is a "sector"-aligned address (4096 bytes)
489 * Add 1 to sector_end_addr since this sector is included in
490 * the overall size.
492 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
493 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
495 /* flash_base_addr is byte-aligned */
496 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
499 * find total size of the NVM, then cut in half since the total
500 * size represents two separate NVM banks.
502 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
503 << FLASH_SECTOR_ADDR_SHIFT;
504 nvm->flash_bank_size /= 2;
505 /* Adjust to word count */
506 nvm->flash_bank_size /= sizeof(u16);
508 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
510 /* Clear shadow ram */
511 for (i = 0; i < nvm->word_size; i++) {
512 dev_spec->shadow_ram[i].modified = false;
513 dev_spec->shadow_ram[i].value = 0xFFFF;
516 return 0;
520 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
521 * @hw: pointer to the HW structure
523 * Initialize family-specific MAC parameters and function
524 * pointers.
526 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
528 struct e1000_hw *hw = &adapter->hw;
529 struct e1000_mac_info *mac = &hw->mac;
531 /* Set media type function pointer */
532 hw->phy.media_type = e1000_media_type_copper;
534 /* Set mta register count */
535 mac->mta_reg_count = 32;
536 /* Set rar entry count */
537 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
538 if (mac->type == e1000_ich8lan)
539 mac->rar_entry_count--;
540 /* FWSM register */
541 mac->has_fwsm = true;
542 /* ARC subsystem not supported */
543 mac->arc_subsystem_valid = false;
544 /* Adaptive IFS supported */
545 mac->adaptive_ifs = true;
547 /* LED operations */
548 switch (mac->type) {
549 case e1000_ich8lan:
550 case e1000_ich9lan:
551 case e1000_ich10lan:
552 /* check management mode */
553 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
554 /* ID LED init */
555 mac->ops.id_led_init = e1000e_id_led_init;
556 /* setup LED */
557 mac->ops.setup_led = e1000e_setup_led_generic;
558 /* cleanup LED */
559 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
560 /* turn on/off LED */
561 mac->ops.led_on = e1000_led_on_ich8lan;
562 mac->ops.led_off = e1000_led_off_ich8lan;
563 break;
564 case e1000_pchlan:
565 case e1000_pch2lan:
566 /* check management mode */
567 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
568 /* ID LED init */
569 mac->ops.id_led_init = e1000_id_led_init_pchlan;
570 /* setup LED */
571 mac->ops.setup_led = e1000_setup_led_pchlan;
572 /* cleanup LED */
573 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
574 /* turn on/off LED */
575 mac->ops.led_on = e1000_led_on_pchlan;
576 mac->ops.led_off = e1000_led_off_pchlan;
577 break;
578 default:
579 break;
582 /* Enable PCS Lock-loss workaround for ICH8 */
583 if (mac->type == e1000_ich8lan)
584 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
586 /* Gate automatic PHY configuration by hardware on managed 82579 */
587 if ((mac->type == e1000_pch2lan) &&
588 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
589 e1000_gate_hw_phy_config_ich8lan(hw, true);
591 return 0;
595 * e1000_set_eee_pchlan - Enable/disable EEE support
596 * @hw: pointer to the HW structure
598 * Enable/disable EEE based on setting in dev_spec structure. The bits in
599 * the LPI Control register will remain set only if/when link is up.
601 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
603 s32 ret_val = 0;
604 u16 phy_reg;
606 if (hw->phy.type != e1000_phy_82579)
607 goto out;
609 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
610 if (ret_val)
611 goto out;
613 if (hw->dev_spec.ich8lan.eee_disable)
614 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
615 else
616 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
618 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
619 out:
620 return ret_val;
624 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
625 * @hw: pointer to the HW structure
627 * Checks to see of the link status of the hardware has changed. If a
628 * change in link status has been detected, then we read the PHY registers
629 * to get the current speed/duplex if link exists.
631 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
633 struct e1000_mac_info *mac = &hw->mac;
634 s32 ret_val;
635 bool link;
638 * We only want to go out to the PHY registers to see if Auto-Neg
639 * has completed and/or if our link status has changed. The
640 * get_link_status flag is set upon receiving a Link Status
641 * Change or Rx Sequence Error interrupt.
643 if (!mac->get_link_status) {
644 ret_val = 0;
645 goto out;
649 * First we want to see if the MII Status Register reports
650 * link. If so, then we want to get the current speed/duplex
651 * of the PHY.
653 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
654 if (ret_val)
655 goto out;
657 if (hw->mac.type == e1000_pchlan) {
658 ret_val = e1000_k1_gig_workaround_hv(hw, link);
659 if (ret_val)
660 goto out;
663 if (!link)
664 goto out; /* No link detected */
666 mac->get_link_status = false;
668 if (hw->phy.type == e1000_phy_82578) {
669 ret_val = e1000_link_stall_workaround_hv(hw);
670 if (ret_val)
671 goto out;
674 if (hw->mac.type == e1000_pch2lan) {
675 ret_val = e1000_k1_workaround_lv(hw);
676 if (ret_val)
677 goto out;
681 * Check if there was DownShift, must be checked
682 * immediately after link-up
684 e1000e_check_downshift(hw);
686 /* Enable/Disable EEE after link up */
687 ret_val = e1000_set_eee_pchlan(hw);
688 if (ret_val)
689 goto out;
692 * If we are forcing speed/duplex, then we simply return since
693 * we have already determined whether we have link or not.
695 if (!mac->autoneg) {
696 ret_val = -E1000_ERR_CONFIG;
697 goto out;
701 * Auto-Neg is enabled. Auto Speed Detection takes care
702 * of MAC speed/duplex configuration. So we only need to
703 * configure Collision Distance in the MAC.
705 e1000e_config_collision_dist(hw);
708 * Configure Flow Control now that Auto-Neg has completed.
709 * First, we need to restore the desired flow control
710 * settings because we may have had to re-autoneg with a
711 * different link partner.
713 ret_val = e1000e_config_fc_after_link_up(hw);
714 if (ret_val)
715 e_dbg("Error configuring flow control\n");
717 out:
718 return ret_val;
721 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
723 struct e1000_hw *hw = &adapter->hw;
724 s32 rc;
726 rc = e1000_init_mac_params_ich8lan(adapter);
727 if (rc)
728 return rc;
730 rc = e1000_init_nvm_params_ich8lan(hw);
731 if (rc)
732 return rc;
734 switch (hw->mac.type) {
735 case e1000_ich8lan:
736 case e1000_ich9lan:
737 case e1000_ich10lan:
738 rc = e1000_init_phy_params_ich8lan(hw);
739 break;
740 case e1000_pchlan:
741 case e1000_pch2lan:
742 rc = e1000_init_phy_params_pchlan(hw);
743 break;
744 default:
745 break;
747 if (rc)
748 return rc;
750 if (adapter->hw.phy.type == e1000_phy_ife) {
751 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
752 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
755 if ((adapter->hw.mac.type == e1000_ich8lan) &&
756 (adapter->hw.phy.type == e1000_phy_igp_3))
757 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
759 /* Disable EEE by default until IEEE802.3az spec is finalized */
760 if (adapter->flags2 & FLAG2_HAS_EEE)
761 adapter->hw.dev_spec.ich8lan.eee_disable = true;
763 return 0;
766 static DEFINE_MUTEX(nvm_mutex);
769 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
770 * @hw: pointer to the HW structure
772 * Acquires the mutex for performing NVM operations.
774 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
776 mutex_lock(&nvm_mutex);
778 return 0;
782 * e1000_release_nvm_ich8lan - Release NVM mutex
783 * @hw: pointer to the HW structure
785 * Releases the mutex used while performing NVM operations.
787 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
789 mutex_unlock(&nvm_mutex);
792 static DEFINE_MUTEX(swflag_mutex);
795 * e1000_acquire_swflag_ich8lan - Acquire software control flag
796 * @hw: pointer to the HW structure
798 * Acquires the software control flag for performing PHY and select
799 * MAC CSR accesses.
801 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
803 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
804 s32 ret_val = 0;
806 mutex_lock(&swflag_mutex);
808 while (timeout) {
809 extcnf_ctrl = er32(EXTCNF_CTRL);
810 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
811 break;
813 mdelay(1);
814 timeout--;
817 if (!timeout) {
818 e_dbg("SW/FW/HW has locked the resource for too long.\n");
819 ret_val = -E1000_ERR_CONFIG;
820 goto out;
823 timeout = SW_FLAG_TIMEOUT;
825 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
826 ew32(EXTCNF_CTRL, extcnf_ctrl);
828 while (timeout) {
829 extcnf_ctrl = er32(EXTCNF_CTRL);
830 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
831 break;
833 mdelay(1);
834 timeout--;
837 if (!timeout) {
838 e_dbg("Failed to acquire the semaphore.\n");
839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
840 ew32(EXTCNF_CTRL, extcnf_ctrl);
841 ret_val = -E1000_ERR_CONFIG;
842 goto out;
845 out:
846 if (ret_val)
847 mutex_unlock(&swflag_mutex);
849 return ret_val;
853 * e1000_release_swflag_ich8lan - Release software control flag
854 * @hw: pointer to the HW structure
856 * Releases the software control flag for performing PHY and select
857 * MAC CSR accesses.
859 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
861 u32 extcnf_ctrl;
863 extcnf_ctrl = er32(EXTCNF_CTRL);
864 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
865 ew32(EXTCNF_CTRL, extcnf_ctrl);
867 mutex_unlock(&swflag_mutex);
871 * e1000_check_mng_mode_ich8lan - Checks management mode
872 * @hw: pointer to the HW structure
874 * This checks if the adapter has any manageability enabled.
875 * This is a function pointer entry point only called by read/write
876 * routines for the PHY and NVM parts.
878 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
880 u32 fwsm;
882 fwsm = er32(FWSM);
883 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
884 ((fwsm & E1000_FWSM_MODE_MASK) ==
885 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
889 * e1000_check_mng_mode_pchlan - Checks management mode
890 * @hw: pointer to the HW structure
892 * This checks if the adapter has iAMT enabled.
893 * This is a function pointer entry point only called by read/write
894 * routines for the PHY and NVM parts.
896 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
898 u32 fwsm;
900 fwsm = er32(FWSM);
901 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
902 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
906 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
907 * @hw: pointer to the HW structure
909 * Checks if firmware is blocking the reset of the PHY.
910 * This is a function pointer entry point only called by
911 * reset routines.
913 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
915 u32 fwsm;
917 fwsm = er32(FWSM);
919 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
923 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
924 * @hw: pointer to the HW structure
926 * Assumes semaphore already acquired.
929 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
931 u16 phy_data;
932 u32 strap = er32(STRAP);
933 s32 ret_val = 0;
935 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
937 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
938 if (ret_val)
939 goto out;
941 phy_data &= ~HV_SMB_ADDR_MASK;
942 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
943 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
944 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
946 out:
947 return ret_val;
951 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
952 * @hw: pointer to the HW structure
954 * SW should configure the LCD from the NVM extended configuration region
955 * as a workaround for certain parts.
957 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
959 struct e1000_phy_info *phy = &hw->phy;
960 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
961 s32 ret_val = 0;
962 u16 word_addr, reg_data, reg_addr, phy_page = 0;
965 * Initialize the PHY from the NVM on ICH platforms. This
966 * is needed due to an issue where the NVM configuration is
967 * not properly autoloaded after power transitions.
968 * Therefore, after each PHY reset, we will load the
969 * configuration data out of the NVM manually.
971 switch (hw->mac.type) {
972 case e1000_ich8lan:
973 if (phy->type != e1000_phy_igp_3)
974 return ret_val;
976 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
977 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
978 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
979 break;
981 /* Fall-thru */
982 case e1000_pchlan:
983 case e1000_pch2lan:
984 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
985 break;
986 default:
987 return ret_val;
990 ret_val = hw->phy.ops.acquire(hw);
991 if (ret_val)
992 return ret_val;
994 data = er32(FEXTNVM);
995 if (!(data & sw_cfg_mask))
996 goto out;
999 * Make sure HW does not configure LCD from PHY
1000 * extended configuration before SW configuration
1002 data = er32(EXTCNF_CTRL);
1003 if (!(hw->mac.type == e1000_pch2lan)) {
1004 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1005 goto out;
1008 cnf_size = er32(EXTCNF_SIZE);
1009 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1010 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1011 if (!cnf_size)
1012 goto out;
1014 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1015 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1017 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1018 (hw->mac.type == e1000_pchlan)) ||
1019 (hw->mac.type == e1000_pch2lan)) {
1021 * HW configures the SMBus address and LEDs when the
1022 * OEM and LCD Write Enable bits are set in the NVM.
1023 * When both NVM bits are cleared, SW will configure
1024 * them instead.
1026 ret_val = e1000_write_smbus_addr(hw);
1027 if (ret_val)
1028 goto out;
1030 data = er32(LEDCTL);
1031 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1032 (u16)data);
1033 if (ret_val)
1034 goto out;
1037 /* Configure LCD from extended configuration region. */
1039 /* cnf_base_addr is in DWORD */
1040 word_addr = (u16)(cnf_base_addr << 1);
1042 for (i = 0; i < cnf_size; i++) {
1043 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1044 &reg_data);
1045 if (ret_val)
1046 goto out;
1048 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1049 1, &reg_addr);
1050 if (ret_val)
1051 goto out;
1053 /* Save off the PHY page for future writes. */
1054 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1055 phy_page = reg_data;
1056 continue;
1059 reg_addr &= PHY_REG_MASK;
1060 reg_addr |= phy_page;
1062 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1063 reg_data);
1064 if (ret_val)
1065 goto out;
1068 out:
1069 hw->phy.ops.release(hw);
1070 return ret_val;
1074 * e1000_k1_gig_workaround_hv - K1 Si workaround
1075 * @hw: pointer to the HW structure
1076 * @link: link up bool flag
1078 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1079 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1080 * If link is down, the function will restore the default K1 setting located
1081 * in the NVM.
1083 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1085 s32 ret_val = 0;
1086 u16 status_reg = 0;
1087 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1089 if (hw->mac.type != e1000_pchlan)
1090 goto out;
1092 /* Wrap the whole flow with the sw flag */
1093 ret_val = hw->phy.ops.acquire(hw);
1094 if (ret_val)
1095 goto out;
1097 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1098 if (link) {
1099 if (hw->phy.type == e1000_phy_82578) {
1100 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1101 &status_reg);
1102 if (ret_val)
1103 goto release;
1105 status_reg &= BM_CS_STATUS_LINK_UP |
1106 BM_CS_STATUS_RESOLVED |
1107 BM_CS_STATUS_SPEED_MASK;
1109 if (status_reg == (BM_CS_STATUS_LINK_UP |
1110 BM_CS_STATUS_RESOLVED |
1111 BM_CS_STATUS_SPEED_1000))
1112 k1_enable = false;
1115 if (hw->phy.type == e1000_phy_82577) {
1116 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1117 &status_reg);
1118 if (ret_val)
1119 goto release;
1121 status_reg &= HV_M_STATUS_LINK_UP |
1122 HV_M_STATUS_AUTONEG_COMPLETE |
1123 HV_M_STATUS_SPEED_MASK;
1125 if (status_reg == (HV_M_STATUS_LINK_UP |
1126 HV_M_STATUS_AUTONEG_COMPLETE |
1127 HV_M_STATUS_SPEED_1000))
1128 k1_enable = false;
1131 /* Link stall fix for link up */
1132 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1133 0x0100);
1134 if (ret_val)
1135 goto release;
1137 } else {
1138 /* Link stall fix for link down */
1139 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1140 0x4100);
1141 if (ret_val)
1142 goto release;
1145 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1147 release:
1148 hw->phy.ops.release(hw);
1149 out:
1150 return ret_val;
1154 * e1000_configure_k1_ich8lan - Configure K1 power state
1155 * @hw: pointer to the HW structure
1156 * @enable: K1 state to configure
1158 * Configure the K1 power state based on the provided parameter.
1159 * Assumes semaphore already acquired.
1161 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1163 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1165 s32 ret_val = 0;
1166 u32 ctrl_reg = 0;
1167 u32 ctrl_ext = 0;
1168 u32 reg = 0;
1169 u16 kmrn_reg = 0;
1171 ret_val = e1000e_read_kmrn_reg_locked(hw,
1172 E1000_KMRNCTRLSTA_K1_CONFIG,
1173 &kmrn_reg);
1174 if (ret_val)
1175 goto out;
1177 if (k1_enable)
1178 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1179 else
1180 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1182 ret_val = e1000e_write_kmrn_reg_locked(hw,
1183 E1000_KMRNCTRLSTA_K1_CONFIG,
1184 kmrn_reg);
1185 if (ret_val)
1186 goto out;
1188 udelay(20);
1189 ctrl_ext = er32(CTRL_EXT);
1190 ctrl_reg = er32(CTRL);
1192 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1193 reg |= E1000_CTRL_FRCSPD;
1194 ew32(CTRL, reg);
1196 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1197 udelay(20);
1198 ew32(CTRL, ctrl_reg);
1199 ew32(CTRL_EXT, ctrl_ext);
1200 udelay(20);
1202 out:
1203 return ret_val;
1207 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1208 * @hw: pointer to the HW structure
1209 * @d0_state: boolean if entering d0 or d3 device state
1211 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1212 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1213 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1215 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1217 s32 ret_val = 0;
1218 u32 mac_reg;
1219 u16 oem_reg;
1221 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1222 return ret_val;
1224 ret_val = hw->phy.ops.acquire(hw);
1225 if (ret_val)
1226 return ret_val;
1228 if (!(hw->mac.type == e1000_pch2lan)) {
1229 mac_reg = er32(EXTCNF_CTRL);
1230 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1231 goto out;
1234 mac_reg = er32(FEXTNVM);
1235 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1236 goto out;
1238 mac_reg = er32(PHY_CTRL);
1240 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1241 if (ret_val)
1242 goto out;
1244 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1246 if (d0_state) {
1247 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1248 oem_reg |= HV_OEM_BITS_GBE_DIS;
1250 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1251 oem_reg |= HV_OEM_BITS_LPLU;
1252 } else {
1253 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1254 oem_reg |= HV_OEM_BITS_GBE_DIS;
1256 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1257 oem_reg |= HV_OEM_BITS_LPLU;
1259 /* Restart auto-neg to activate the bits */
1260 if (!e1000_check_reset_block(hw))
1261 oem_reg |= HV_OEM_BITS_RESTART_AN;
1262 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1264 out:
1265 hw->phy.ops.release(hw);
1267 return ret_val;
1272 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1273 * @hw: pointer to the HW structure
1275 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1277 s32 ret_val;
1278 u16 data;
1280 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1281 if (ret_val)
1282 return ret_val;
1284 data |= HV_KMRN_MDIO_SLOW;
1286 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1288 return ret_val;
1292 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1293 * done after every PHY reset.
1295 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1297 s32 ret_val = 0;
1298 u16 phy_data;
1300 if (hw->mac.type != e1000_pchlan)
1301 return ret_val;
1303 /* Set MDIO slow mode before any other MDIO access */
1304 if (hw->phy.type == e1000_phy_82577) {
1305 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1306 if (ret_val)
1307 goto out;
1310 if (((hw->phy.type == e1000_phy_82577) &&
1311 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1312 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1313 /* Disable generation of early preamble */
1314 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1315 if (ret_val)
1316 return ret_val;
1318 /* Preamble tuning for SSC */
1319 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1320 if (ret_val)
1321 return ret_val;
1324 if (hw->phy.type == e1000_phy_82578) {
1326 * Return registers to default by doing a soft reset then
1327 * writing 0x3140 to the control register.
1329 if (hw->phy.revision < 2) {
1330 e1000e_phy_sw_reset(hw);
1331 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1335 /* Select page 0 */
1336 ret_val = hw->phy.ops.acquire(hw);
1337 if (ret_val)
1338 return ret_val;
1340 hw->phy.addr = 1;
1341 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1342 hw->phy.ops.release(hw);
1343 if (ret_val)
1344 goto out;
1347 * Configure the K1 Si workaround during phy reset assuming there is
1348 * link so that it disables K1 if link is in 1Gbps.
1350 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1351 if (ret_val)
1352 goto out;
1354 /* Workaround for link disconnects on a busy hub in half duplex */
1355 ret_val = hw->phy.ops.acquire(hw);
1356 if (ret_val)
1357 goto out;
1358 ret_val = hw->phy.ops.read_reg_locked(hw,
1359 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1360 &phy_data);
1361 if (ret_val)
1362 goto release;
1363 ret_val = hw->phy.ops.write_reg_locked(hw,
1364 PHY_REG(BM_PORT_CTRL_PAGE, 17),
1365 phy_data & 0x00FF);
1366 release:
1367 hw->phy.ops.release(hw);
1368 out:
1369 return ret_val;
1373 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1374 * @hw: pointer to the HW structure
1376 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1378 u32 mac_reg;
1379 u16 i;
1381 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1382 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1383 mac_reg = er32(RAL(i));
1384 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1385 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1386 mac_reg = er32(RAH(i));
1387 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1388 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1392 static u32 e1000_calc_rx_da_crc(u8 mac[])
1394 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
1395 u32 i, j, mask, crc;
1397 crc = 0xffffffff;
1398 for (i = 0; i < 6; i++) {
1399 crc = crc ^ mac[i];
1400 for (j = 8; j > 0; j--) {
1401 mask = (crc & 1) * (-1);
1402 crc = (crc >> 1) ^ (poly & mask);
1405 return ~crc;
1409 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1410 * with 82579 PHY
1411 * @hw: pointer to the HW structure
1412 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1414 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1416 s32 ret_val = 0;
1417 u16 phy_reg, data;
1418 u32 mac_reg;
1419 u16 i;
1421 if (hw->mac.type != e1000_pch2lan)
1422 goto out;
1424 /* disable Rx path while enabling/disabling workaround */
1425 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1426 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1427 if (ret_val)
1428 goto out;
1430 if (enable) {
1432 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1433 * SHRAL/H) and initial CRC values to the MAC
1435 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1436 u8 mac_addr[ETH_ALEN] = {0};
1437 u32 addr_high, addr_low;
1439 addr_high = er32(RAH(i));
1440 if (!(addr_high & E1000_RAH_AV))
1441 continue;
1442 addr_low = er32(RAL(i));
1443 mac_addr[0] = (addr_low & 0xFF);
1444 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1445 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1446 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1447 mac_addr[4] = (addr_high & 0xFF);
1448 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1450 ew32(PCH_RAICC(i),
1451 e1000_calc_rx_da_crc(mac_addr));
1454 /* Write Rx addresses to the PHY */
1455 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1457 /* Enable jumbo frame workaround in the MAC */
1458 mac_reg = er32(FFLT_DBG);
1459 mac_reg &= ~(1 << 14);
1460 mac_reg |= (7 << 15);
1461 ew32(FFLT_DBG, mac_reg);
1463 mac_reg = er32(RCTL);
1464 mac_reg |= E1000_RCTL_SECRC;
1465 ew32(RCTL, mac_reg);
1467 ret_val = e1000e_read_kmrn_reg(hw,
1468 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1469 &data);
1470 if (ret_val)
1471 goto out;
1472 ret_val = e1000e_write_kmrn_reg(hw,
1473 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1474 data | (1 << 0));
1475 if (ret_val)
1476 goto out;
1477 ret_val = e1000e_read_kmrn_reg(hw,
1478 E1000_KMRNCTRLSTA_HD_CTRL,
1479 &data);
1480 if (ret_val)
1481 goto out;
1482 data &= ~(0xF << 8);
1483 data |= (0xB << 8);
1484 ret_val = e1000e_write_kmrn_reg(hw,
1485 E1000_KMRNCTRLSTA_HD_CTRL,
1486 data);
1487 if (ret_val)
1488 goto out;
1490 /* Enable jumbo frame workaround in the PHY */
1491 e1e_rphy(hw, PHY_REG(769, 23), &data);
1492 data &= ~(0x7F << 5);
1493 data |= (0x37 << 5);
1494 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1495 if (ret_val)
1496 goto out;
1497 e1e_rphy(hw, PHY_REG(769, 16), &data);
1498 data &= ~(1 << 13);
1499 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1500 if (ret_val)
1501 goto out;
1502 e1e_rphy(hw, PHY_REG(776, 20), &data);
1503 data &= ~(0x3FF << 2);
1504 data |= (0x1A << 2);
1505 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1506 if (ret_val)
1507 goto out;
1508 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1509 if (ret_val)
1510 goto out;
1511 e1e_rphy(hw, HV_PM_CTRL, &data);
1512 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1513 if (ret_val)
1514 goto out;
1515 } else {
1516 /* Write MAC register values back to h/w defaults */
1517 mac_reg = er32(FFLT_DBG);
1518 mac_reg &= ~(0xF << 14);
1519 ew32(FFLT_DBG, mac_reg);
1521 mac_reg = er32(RCTL);
1522 mac_reg &= ~E1000_RCTL_SECRC;
1523 ew32(RCTL, mac_reg);
1525 ret_val = e1000e_read_kmrn_reg(hw,
1526 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1527 &data);
1528 if (ret_val)
1529 goto out;
1530 ret_val = e1000e_write_kmrn_reg(hw,
1531 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1532 data & ~(1 << 0));
1533 if (ret_val)
1534 goto out;
1535 ret_val = e1000e_read_kmrn_reg(hw,
1536 E1000_KMRNCTRLSTA_HD_CTRL,
1537 &data);
1538 if (ret_val)
1539 goto out;
1540 data &= ~(0xF << 8);
1541 data |= (0xB << 8);
1542 ret_val = e1000e_write_kmrn_reg(hw,
1543 E1000_KMRNCTRLSTA_HD_CTRL,
1544 data);
1545 if (ret_val)
1546 goto out;
1548 /* Write PHY register values back to h/w defaults */
1549 e1e_rphy(hw, PHY_REG(769, 23), &data);
1550 data &= ~(0x7F << 5);
1551 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1552 if (ret_val)
1553 goto out;
1554 e1e_rphy(hw, PHY_REG(769, 16), &data);
1555 data |= (1 << 13);
1556 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1557 if (ret_val)
1558 goto out;
1559 e1e_rphy(hw, PHY_REG(776, 20), &data);
1560 data &= ~(0x3FF << 2);
1561 data |= (0x8 << 2);
1562 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1563 if (ret_val)
1564 goto out;
1565 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1566 if (ret_val)
1567 goto out;
1568 e1e_rphy(hw, HV_PM_CTRL, &data);
1569 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1570 if (ret_val)
1571 goto out;
1574 /* re-enable Rx path after enabling/disabling workaround */
1575 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1577 out:
1578 return ret_val;
1582 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1583 * done after every PHY reset.
1585 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1587 s32 ret_val = 0;
1589 if (hw->mac.type != e1000_pch2lan)
1590 goto out;
1592 /* Set MDIO slow mode before any other MDIO access */
1593 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1595 out:
1596 return ret_val;
1600 * e1000_k1_gig_workaround_lv - K1 Si workaround
1601 * @hw: pointer to the HW structure
1603 * Workaround to set the K1 beacon duration for 82579 parts
1605 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1607 s32 ret_val = 0;
1608 u16 status_reg = 0;
1609 u32 mac_reg;
1611 if (hw->mac.type != e1000_pch2lan)
1612 goto out;
1614 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1615 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1616 if (ret_val)
1617 goto out;
1619 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1620 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1621 mac_reg = er32(FEXTNVM4);
1622 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1624 if (status_reg & HV_M_STATUS_SPEED_1000)
1625 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1626 else
1627 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1629 ew32(FEXTNVM4, mac_reg);
1632 out:
1633 return ret_val;
1637 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1638 * @hw: pointer to the HW structure
1639 * @gate: boolean set to true to gate, false to ungate
1641 * Gate/ungate the automatic PHY configuration via hardware; perform
1642 * the configuration via software instead.
1644 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1646 u32 extcnf_ctrl;
1648 if (hw->mac.type != e1000_pch2lan)
1649 return;
1651 extcnf_ctrl = er32(EXTCNF_CTRL);
1653 if (gate)
1654 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1655 else
1656 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1658 ew32(EXTCNF_CTRL, extcnf_ctrl);
1659 return;
1663 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1664 * @hw: pointer to the HW structure
1666 * Check the appropriate indication the MAC has finished configuring the
1667 * PHY after a software reset.
1669 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1671 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1673 /* Wait for basic configuration completes before proceeding */
1674 do {
1675 data = er32(STATUS);
1676 data &= E1000_STATUS_LAN_INIT_DONE;
1677 udelay(100);
1678 } while ((!data) && --loop);
1681 * If basic configuration is incomplete before the above loop
1682 * count reaches 0, loading the configuration from NVM will
1683 * leave the PHY in a bad state possibly resulting in no link.
1685 if (loop == 0)
1686 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1688 /* Clear the Init Done bit for the next init event */
1689 data = er32(STATUS);
1690 data &= ~E1000_STATUS_LAN_INIT_DONE;
1691 ew32(STATUS, data);
1695 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1696 * @hw: pointer to the HW structure
1698 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1700 s32 ret_val = 0;
1701 u16 reg;
1703 if (e1000_check_reset_block(hw))
1704 goto out;
1706 /* Allow time for h/w to get to quiescent state after reset */
1707 msleep(10);
1709 /* Perform any necessary post-reset workarounds */
1710 switch (hw->mac.type) {
1711 case e1000_pchlan:
1712 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1713 if (ret_val)
1714 goto out;
1715 break;
1716 case e1000_pch2lan:
1717 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1718 if (ret_val)
1719 goto out;
1720 break;
1721 default:
1722 break;
1725 /* Dummy read to clear the phy wakeup bit after lcd reset */
1726 if (hw->mac.type >= e1000_pchlan)
1727 e1e_rphy(hw, BM_WUC, &reg);
1729 /* Configure the LCD with the extended configuration region in NVM */
1730 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1731 if (ret_val)
1732 goto out;
1734 /* Configure the LCD with the OEM bits in NVM */
1735 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1737 /* Ungate automatic PHY configuration on non-managed 82579 */
1738 if ((hw->mac.type == e1000_pch2lan) &&
1739 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1740 msleep(10);
1741 e1000_gate_hw_phy_config_ich8lan(hw, false);
1744 out:
1745 return ret_val;
1749 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1750 * @hw: pointer to the HW structure
1752 * Resets the PHY
1753 * This is a function pointer entry point called by drivers
1754 * or other shared routines.
1756 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1758 s32 ret_val = 0;
1760 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1761 if ((hw->mac.type == e1000_pch2lan) &&
1762 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1763 e1000_gate_hw_phy_config_ich8lan(hw, true);
1765 ret_val = e1000e_phy_hw_reset_generic(hw);
1766 if (ret_val)
1767 goto out;
1769 ret_val = e1000_post_phy_reset_ich8lan(hw);
1771 out:
1772 return ret_val;
1776 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1777 * @hw: pointer to the HW structure
1778 * @active: true to enable LPLU, false to disable
1780 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1781 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1782 * the phy speed. This function will manually set the LPLU bit and restart
1783 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1784 * since it configures the same bit.
1786 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1788 s32 ret_val = 0;
1789 u16 oem_reg;
1791 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1792 if (ret_val)
1793 goto out;
1795 if (active)
1796 oem_reg |= HV_OEM_BITS_LPLU;
1797 else
1798 oem_reg &= ~HV_OEM_BITS_LPLU;
1800 oem_reg |= HV_OEM_BITS_RESTART_AN;
1801 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1803 out:
1804 return ret_val;
1808 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1809 * @hw: pointer to the HW structure
1810 * @active: true to enable LPLU, false to disable
1812 * Sets the LPLU D0 state according to the active flag. When
1813 * activating LPLU this function also disables smart speed
1814 * and vice versa. LPLU will not be activated unless the
1815 * device autonegotiation advertisement meets standards of
1816 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1817 * This is a function pointer entry point only called by
1818 * PHY setup routines.
1820 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1822 struct e1000_phy_info *phy = &hw->phy;
1823 u32 phy_ctrl;
1824 s32 ret_val = 0;
1825 u16 data;
1827 if (phy->type == e1000_phy_ife)
1828 return ret_val;
1830 phy_ctrl = er32(PHY_CTRL);
1832 if (active) {
1833 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1834 ew32(PHY_CTRL, phy_ctrl);
1836 if (phy->type != e1000_phy_igp_3)
1837 return 0;
1840 * Call gig speed drop workaround on LPLU before accessing
1841 * any PHY registers
1843 if (hw->mac.type == e1000_ich8lan)
1844 e1000e_gig_downshift_workaround_ich8lan(hw);
1846 /* When LPLU is enabled, we should disable SmartSpeed */
1847 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1848 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1849 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1850 if (ret_val)
1851 return ret_val;
1852 } else {
1853 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1854 ew32(PHY_CTRL, phy_ctrl);
1856 if (phy->type != e1000_phy_igp_3)
1857 return 0;
1860 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1861 * during Dx states where the power conservation is most
1862 * important. During driver activity we should enable
1863 * SmartSpeed, so performance is maintained.
1865 if (phy->smart_speed == e1000_smart_speed_on) {
1866 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1867 &data);
1868 if (ret_val)
1869 return ret_val;
1871 data |= IGP01E1000_PSCFR_SMART_SPEED;
1872 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1873 data);
1874 if (ret_val)
1875 return ret_val;
1876 } else if (phy->smart_speed == e1000_smart_speed_off) {
1877 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1878 &data);
1879 if (ret_val)
1880 return ret_val;
1882 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1883 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1884 data);
1885 if (ret_val)
1886 return ret_val;
1890 return 0;
1894 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1895 * @hw: pointer to the HW structure
1896 * @active: true to enable LPLU, false to disable
1898 * Sets the LPLU D3 state according to the active flag. When
1899 * activating LPLU this function also disables smart speed
1900 * and vice versa. LPLU will not be activated unless the
1901 * device autonegotiation advertisement meets standards of
1902 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1903 * This is a function pointer entry point only called by
1904 * PHY setup routines.
1906 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1908 struct e1000_phy_info *phy = &hw->phy;
1909 u32 phy_ctrl;
1910 s32 ret_val;
1911 u16 data;
1913 phy_ctrl = er32(PHY_CTRL);
1915 if (!active) {
1916 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1917 ew32(PHY_CTRL, phy_ctrl);
1919 if (phy->type != e1000_phy_igp_3)
1920 return 0;
1923 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1924 * during Dx states where the power conservation is most
1925 * important. During driver activity we should enable
1926 * SmartSpeed, so performance is maintained.
1928 if (phy->smart_speed == e1000_smart_speed_on) {
1929 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1930 &data);
1931 if (ret_val)
1932 return ret_val;
1934 data |= IGP01E1000_PSCFR_SMART_SPEED;
1935 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1936 data);
1937 if (ret_val)
1938 return ret_val;
1939 } else if (phy->smart_speed == e1000_smart_speed_off) {
1940 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1941 &data);
1942 if (ret_val)
1943 return ret_val;
1945 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1946 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1947 data);
1948 if (ret_val)
1949 return ret_val;
1951 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1952 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1953 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1954 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1955 ew32(PHY_CTRL, phy_ctrl);
1957 if (phy->type != e1000_phy_igp_3)
1958 return 0;
1961 * Call gig speed drop workaround on LPLU before accessing
1962 * any PHY registers
1964 if (hw->mac.type == e1000_ich8lan)
1965 e1000e_gig_downshift_workaround_ich8lan(hw);
1967 /* When LPLU is enabled, we should disable SmartSpeed */
1968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1969 if (ret_val)
1970 return ret_val;
1972 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1973 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1976 return 0;
1980 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1981 * @hw: pointer to the HW structure
1982 * @bank: pointer to the variable that returns the active bank
1984 * Reads signature byte from the NVM using the flash access registers.
1985 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1987 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1989 u32 eecd;
1990 struct e1000_nvm_info *nvm = &hw->nvm;
1991 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1992 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1993 u8 sig_byte = 0;
1994 s32 ret_val = 0;
1996 switch (hw->mac.type) {
1997 case e1000_ich8lan:
1998 case e1000_ich9lan:
1999 eecd = er32(EECD);
2000 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2001 E1000_EECD_SEC1VAL_VALID_MASK) {
2002 if (eecd & E1000_EECD_SEC1VAL)
2003 *bank = 1;
2004 else
2005 *bank = 0;
2007 return 0;
2009 e_dbg("Unable to determine valid NVM bank via EEC - "
2010 "reading flash signature\n");
2011 /* fall-thru */
2012 default:
2013 /* set bank to 0 in case flash read fails */
2014 *bank = 0;
2016 /* Check bank 0 */
2017 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2018 &sig_byte);
2019 if (ret_val)
2020 return ret_val;
2021 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2022 E1000_ICH_NVM_SIG_VALUE) {
2023 *bank = 0;
2024 return 0;
2027 /* Check bank 1 */
2028 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2029 bank1_offset,
2030 &sig_byte);
2031 if (ret_val)
2032 return ret_val;
2033 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2034 E1000_ICH_NVM_SIG_VALUE) {
2035 *bank = 1;
2036 return 0;
2039 e_dbg("ERROR: No valid NVM bank present\n");
2040 return -E1000_ERR_NVM;
2043 return 0;
2047 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2048 * @hw: pointer to the HW structure
2049 * @offset: The offset (in bytes) of the word(s) to read.
2050 * @words: Size of data to read in words
2051 * @data: Pointer to the word(s) to read at offset.
2053 * Reads a word(s) from the NVM using the flash access registers.
2055 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2056 u16 *data)
2058 struct e1000_nvm_info *nvm = &hw->nvm;
2059 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2060 u32 act_offset;
2061 s32 ret_val = 0;
2062 u32 bank = 0;
2063 u16 i, word;
2065 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2066 (words == 0)) {
2067 e_dbg("nvm parameter(s) out of bounds\n");
2068 ret_val = -E1000_ERR_NVM;
2069 goto out;
2072 nvm->ops.acquire(hw);
2074 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2075 if (ret_val) {
2076 e_dbg("Could not detect valid bank, assuming bank 0\n");
2077 bank = 0;
2080 act_offset = (bank) ? nvm->flash_bank_size : 0;
2081 act_offset += offset;
2083 ret_val = 0;
2084 for (i = 0; i < words; i++) {
2085 if ((dev_spec->shadow_ram) &&
2086 (dev_spec->shadow_ram[offset+i].modified)) {
2087 data[i] = dev_spec->shadow_ram[offset+i].value;
2088 } else {
2089 ret_val = e1000_read_flash_word_ich8lan(hw,
2090 act_offset + i,
2091 &word);
2092 if (ret_val)
2093 break;
2094 data[i] = word;
2098 nvm->ops.release(hw);
2100 out:
2101 if (ret_val)
2102 e_dbg("NVM read error: %d\n", ret_val);
2104 return ret_val;
2108 * e1000_flash_cycle_init_ich8lan - Initialize flash
2109 * @hw: pointer to the HW structure
2111 * This function does initial flash setup so that a new read/write/erase cycle
2112 * can be started.
2114 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2116 union ich8_hws_flash_status hsfsts;
2117 s32 ret_val = -E1000_ERR_NVM;
2118 s32 i = 0;
2120 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2122 /* Check if the flash descriptor is valid */
2123 if (hsfsts.hsf_status.fldesvalid == 0) {
2124 e_dbg("Flash descriptor invalid. "
2125 "SW Sequencing must be used.\n");
2126 return -E1000_ERR_NVM;
2129 /* Clear FCERR and DAEL in hw status by writing 1 */
2130 hsfsts.hsf_status.flcerr = 1;
2131 hsfsts.hsf_status.dael = 1;
2133 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2136 * Either we should have a hardware SPI cycle in progress
2137 * bit to check against, in order to start a new cycle or
2138 * FDONE bit should be changed in the hardware so that it
2139 * is 1 after hardware reset, which can then be used as an
2140 * indication whether a cycle is in progress or has been
2141 * completed.
2144 if (hsfsts.hsf_status.flcinprog == 0) {
2146 * There is no cycle running at present,
2147 * so we can start a cycle.
2148 * Begin by setting Flash Cycle Done.
2150 hsfsts.hsf_status.flcdone = 1;
2151 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2152 ret_val = 0;
2153 } else {
2155 * Otherwise poll for sometime so the current
2156 * cycle has a chance to end before giving up.
2158 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2159 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2160 if (hsfsts.hsf_status.flcinprog == 0) {
2161 ret_val = 0;
2162 break;
2164 udelay(1);
2166 if (ret_val == 0) {
2168 * Successful in waiting for previous cycle to timeout,
2169 * now set the Flash Cycle Done.
2171 hsfsts.hsf_status.flcdone = 1;
2172 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2173 } else {
2174 e_dbg("Flash controller busy, cannot get access\n");
2178 return ret_val;
2182 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2183 * @hw: pointer to the HW structure
2184 * @timeout: maximum time to wait for completion
2186 * This function starts a flash cycle and waits for its completion.
2188 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2190 union ich8_hws_flash_ctrl hsflctl;
2191 union ich8_hws_flash_status hsfsts;
2192 s32 ret_val = -E1000_ERR_NVM;
2193 u32 i = 0;
2195 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2196 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2197 hsflctl.hsf_ctrl.flcgo = 1;
2198 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2200 /* wait till FDONE bit is set to 1 */
2201 do {
2202 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2203 if (hsfsts.hsf_status.flcdone == 1)
2204 break;
2205 udelay(1);
2206 } while (i++ < timeout);
2208 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2209 return 0;
2211 return ret_val;
2215 * e1000_read_flash_word_ich8lan - Read word from flash
2216 * @hw: pointer to the HW structure
2217 * @offset: offset to data location
2218 * @data: pointer to the location for storing the data
2220 * Reads the flash word at offset into data. Offset is converted
2221 * to bytes before read.
2223 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2224 u16 *data)
2226 /* Must convert offset into bytes. */
2227 offset <<= 1;
2229 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2233 * e1000_read_flash_byte_ich8lan - Read byte from flash
2234 * @hw: pointer to the HW structure
2235 * @offset: The offset of the byte to read.
2236 * @data: Pointer to a byte to store the value read.
2238 * Reads a single byte from the NVM using the flash access registers.
2240 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2241 u8 *data)
2243 s32 ret_val;
2244 u16 word = 0;
2246 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2247 if (ret_val)
2248 return ret_val;
2250 *data = (u8)word;
2252 return 0;
2256 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2257 * @hw: pointer to the HW structure
2258 * @offset: The offset (in bytes) of the byte or word to read.
2259 * @size: Size of data to read, 1=byte 2=word
2260 * @data: Pointer to the word to store the value read.
2262 * Reads a byte or word from the NVM using the flash access registers.
2264 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2265 u8 size, u16 *data)
2267 union ich8_hws_flash_status hsfsts;
2268 union ich8_hws_flash_ctrl hsflctl;
2269 u32 flash_linear_addr;
2270 u32 flash_data = 0;
2271 s32 ret_val = -E1000_ERR_NVM;
2272 u8 count = 0;
2274 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2275 return -E1000_ERR_NVM;
2277 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2278 hw->nvm.flash_base_addr;
2280 do {
2281 udelay(1);
2282 /* Steps */
2283 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2284 if (ret_val != 0)
2285 break;
2287 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2288 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2289 hsflctl.hsf_ctrl.fldbcount = size - 1;
2290 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2291 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2293 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2295 ret_val = e1000_flash_cycle_ich8lan(hw,
2296 ICH_FLASH_READ_COMMAND_TIMEOUT);
2299 * Check if FCERR is set to 1, if set to 1, clear it
2300 * and try the whole sequence a few more times, else
2301 * read in (shift in) the Flash Data0, the order is
2302 * least significant byte first msb to lsb
2304 if (ret_val == 0) {
2305 flash_data = er32flash(ICH_FLASH_FDATA0);
2306 if (size == 1) {
2307 *data = (u8)(flash_data & 0x000000FF);
2308 } else if (size == 2) {
2309 *data = (u16)(flash_data & 0x0000FFFF);
2311 break;
2312 } else {
2314 * If we've gotten here, then things are probably
2315 * completely hosed, but if the error condition is
2316 * detected, it won't hurt to give it another try...
2317 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2319 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2320 if (hsfsts.hsf_status.flcerr == 1) {
2321 /* Repeat for some time before giving up. */
2322 continue;
2323 } else if (hsfsts.hsf_status.flcdone == 0) {
2324 e_dbg("Timeout error - flash cycle "
2325 "did not complete.\n");
2326 break;
2329 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2331 return ret_val;
2335 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2336 * @hw: pointer to the HW structure
2337 * @offset: The offset (in bytes) of the word(s) to write.
2338 * @words: Size of data to write in words
2339 * @data: Pointer to the word(s) to write at offset.
2341 * Writes a byte or word to the NVM using the flash access registers.
2343 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2344 u16 *data)
2346 struct e1000_nvm_info *nvm = &hw->nvm;
2347 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2348 u16 i;
2350 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2351 (words == 0)) {
2352 e_dbg("nvm parameter(s) out of bounds\n");
2353 return -E1000_ERR_NVM;
2356 nvm->ops.acquire(hw);
2358 for (i = 0; i < words; i++) {
2359 dev_spec->shadow_ram[offset+i].modified = true;
2360 dev_spec->shadow_ram[offset+i].value = data[i];
2363 nvm->ops.release(hw);
2365 return 0;
2369 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2370 * @hw: pointer to the HW structure
2372 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2373 * which writes the checksum to the shadow ram. The changes in the shadow
2374 * ram are then committed to the EEPROM by processing each bank at a time
2375 * checking for the modified bit and writing only the pending changes.
2376 * After a successful commit, the shadow ram is cleared and is ready for
2377 * future writes.
2379 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2381 struct e1000_nvm_info *nvm = &hw->nvm;
2382 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2383 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2384 s32 ret_val;
2385 u16 data;
2387 ret_val = e1000e_update_nvm_checksum_generic(hw);
2388 if (ret_val)
2389 goto out;
2391 if (nvm->type != e1000_nvm_flash_sw)
2392 goto out;
2394 nvm->ops.acquire(hw);
2397 * We're writing to the opposite bank so if we're on bank 1,
2398 * write to bank 0 etc. We also need to erase the segment that
2399 * is going to be written
2401 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2402 if (ret_val) {
2403 e_dbg("Could not detect valid bank, assuming bank 0\n");
2404 bank = 0;
2407 if (bank == 0) {
2408 new_bank_offset = nvm->flash_bank_size;
2409 old_bank_offset = 0;
2410 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2411 if (ret_val)
2412 goto release;
2413 } else {
2414 old_bank_offset = nvm->flash_bank_size;
2415 new_bank_offset = 0;
2416 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2417 if (ret_val)
2418 goto release;
2421 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2423 * Determine whether to write the value stored
2424 * in the other NVM bank or a modified value stored
2425 * in the shadow RAM
2427 if (dev_spec->shadow_ram[i].modified) {
2428 data = dev_spec->shadow_ram[i].value;
2429 } else {
2430 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2431 old_bank_offset,
2432 &data);
2433 if (ret_val)
2434 break;
2438 * If the word is 0x13, then make sure the signature bits
2439 * (15:14) are 11b until the commit has completed.
2440 * This will allow us to write 10b which indicates the
2441 * signature is valid. We want to do this after the write
2442 * has completed so that we don't mark the segment valid
2443 * while the write is still in progress
2445 if (i == E1000_ICH_NVM_SIG_WORD)
2446 data |= E1000_ICH_NVM_SIG_MASK;
2448 /* Convert offset to bytes. */
2449 act_offset = (i + new_bank_offset) << 1;
2451 udelay(100);
2452 /* Write the bytes to the new bank. */
2453 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2454 act_offset,
2455 (u8)data);
2456 if (ret_val)
2457 break;
2459 udelay(100);
2460 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2461 act_offset + 1,
2462 (u8)(data >> 8));
2463 if (ret_val)
2464 break;
2468 * Don't bother writing the segment valid bits if sector
2469 * programming failed.
2471 if (ret_val) {
2472 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2473 e_dbg("Flash commit failed.\n");
2474 goto release;
2478 * Finally validate the new segment by setting bit 15:14
2479 * to 10b in word 0x13 , this can be done without an
2480 * erase as well since these bits are 11 to start with
2481 * and we need to change bit 14 to 0b
2483 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2484 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2485 if (ret_val)
2486 goto release;
2488 data &= 0xBFFF;
2489 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2490 act_offset * 2 + 1,
2491 (u8)(data >> 8));
2492 if (ret_val)
2493 goto release;
2496 * And invalidate the previously valid segment by setting
2497 * its signature word (0x13) high_byte to 0b. This can be
2498 * done without an erase because flash erase sets all bits
2499 * to 1's. We can write 1's to 0's without an erase
2501 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2502 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2503 if (ret_val)
2504 goto release;
2506 /* Great! Everything worked, we can now clear the cached entries. */
2507 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2508 dev_spec->shadow_ram[i].modified = false;
2509 dev_spec->shadow_ram[i].value = 0xFFFF;
2512 release:
2513 nvm->ops.release(hw);
2516 * Reload the EEPROM, or else modifications will not appear
2517 * until after the next adapter reset.
2519 if (!ret_val) {
2520 e1000e_reload_nvm(hw);
2521 msleep(10);
2524 out:
2525 if (ret_val)
2526 e_dbg("NVM update error: %d\n", ret_val);
2528 return ret_val;
2532 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2533 * @hw: pointer to the HW structure
2535 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2536 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2537 * calculated, in which case we need to calculate the checksum and set bit 6.
2539 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2541 s32 ret_val;
2542 u16 data;
2545 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2546 * needs to be fixed. This bit is an indication that the NVM
2547 * was prepared by OEM software and did not calculate the
2548 * checksum...a likely scenario.
2550 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2551 if (ret_val)
2552 return ret_val;
2554 if ((data & 0x40) == 0) {
2555 data |= 0x40;
2556 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2557 if (ret_val)
2558 return ret_val;
2559 ret_val = e1000e_update_nvm_checksum(hw);
2560 if (ret_val)
2561 return ret_val;
2564 return e1000e_validate_nvm_checksum_generic(hw);
2568 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2569 * @hw: pointer to the HW structure
2571 * To prevent malicious write/erase of the NVM, set it to be read-only
2572 * so that the hardware ignores all write/erase cycles of the NVM via
2573 * the flash control registers. The shadow-ram copy of the NVM will
2574 * still be updated, however any updates to this copy will not stick
2575 * across driver reloads.
2577 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2579 struct e1000_nvm_info *nvm = &hw->nvm;
2580 union ich8_flash_protected_range pr0;
2581 union ich8_hws_flash_status hsfsts;
2582 u32 gfpreg;
2584 nvm->ops.acquire(hw);
2586 gfpreg = er32flash(ICH_FLASH_GFPREG);
2588 /* Write-protect GbE Sector of NVM */
2589 pr0.regval = er32flash(ICH_FLASH_PR0);
2590 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2591 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2592 pr0.range.wpe = true;
2593 ew32flash(ICH_FLASH_PR0, pr0.regval);
2596 * Lock down a subset of GbE Flash Control Registers, e.g.
2597 * PR0 to prevent the write-protection from being lifted.
2598 * Once FLOCKDN is set, the registers protected by it cannot
2599 * be written until FLOCKDN is cleared by a hardware reset.
2601 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2602 hsfsts.hsf_status.flockdn = true;
2603 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2605 nvm->ops.release(hw);
2609 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2610 * @hw: pointer to the HW structure
2611 * @offset: The offset (in bytes) of the byte/word to read.
2612 * @size: Size of data to read, 1=byte 2=word
2613 * @data: The byte(s) to write to the NVM.
2615 * Writes one/two bytes to the NVM using the flash access registers.
2617 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2618 u8 size, u16 data)
2620 union ich8_hws_flash_status hsfsts;
2621 union ich8_hws_flash_ctrl hsflctl;
2622 u32 flash_linear_addr;
2623 u32 flash_data = 0;
2624 s32 ret_val;
2625 u8 count = 0;
2627 if (size < 1 || size > 2 || data > size * 0xff ||
2628 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2629 return -E1000_ERR_NVM;
2631 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2632 hw->nvm.flash_base_addr;
2634 do {
2635 udelay(1);
2636 /* Steps */
2637 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2638 if (ret_val)
2639 break;
2641 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2642 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2643 hsflctl.hsf_ctrl.fldbcount = size -1;
2644 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2645 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2647 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2649 if (size == 1)
2650 flash_data = (u32)data & 0x00FF;
2651 else
2652 flash_data = (u32)data;
2654 ew32flash(ICH_FLASH_FDATA0, flash_data);
2657 * check if FCERR is set to 1 , if set to 1, clear it
2658 * and try the whole sequence a few more times else done
2660 ret_val = e1000_flash_cycle_ich8lan(hw,
2661 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2662 if (!ret_val)
2663 break;
2666 * If we're here, then things are most likely
2667 * completely hosed, but if the error condition
2668 * is detected, it won't hurt to give it another
2669 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2671 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2672 if (hsfsts.hsf_status.flcerr == 1)
2673 /* Repeat for some time before giving up. */
2674 continue;
2675 if (hsfsts.hsf_status.flcdone == 0) {
2676 e_dbg("Timeout error - flash cycle "
2677 "did not complete.");
2678 break;
2680 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2682 return ret_val;
2686 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2687 * @hw: pointer to the HW structure
2688 * @offset: The index of the byte to read.
2689 * @data: The byte to write to the NVM.
2691 * Writes a single byte to the NVM using the flash access registers.
2693 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2694 u8 data)
2696 u16 word = (u16)data;
2698 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2702 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2703 * @hw: pointer to the HW structure
2704 * @offset: The offset of the byte to write.
2705 * @byte: The byte to write to the NVM.
2707 * Writes a single byte to the NVM using the flash access registers.
2708 * Goes through a retry algorithm before giving up.
2710 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2711 u32 offset, u8 byte)
2713 s32 ret_val;
2714 u16 program_retries;
2716 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2717 if (!ret_val)
2718 return ret_val;
2720 for (program_retries = 0; program_retries < 100; program_retries++) {
2721 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2722 udelay(100);
2723 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2724 if (!ret_val)
2725 break;
2727 if (program_retries == 100)
2728 return -E1000_ERR_NVM;
2730 return 0;
2734 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2735 * @hw: pointer to the HW structure
2736 * @bank: 0 for first bank, 1 for second bank, etc.
2738 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2739 * bank N is 4096 * N + flash_reg_addr.
2741 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2743 struct e1000_nvm_info *nvm = &hw->nvm;
2744 union ich8_hws_flash_status hsfsts;
2745 union ich8_hws_flash_ctrl hsflctl;
2746 u32 flash_linear_addr;
2747 /* bank size is in 16bit words - adjust to bytes */
2748 u32 flash_bank_size = nvm->flash_bank_size * 2;
2749 s32 ret_val;
2750 s32 count = 0;
2751 s32 j, iteration, sector_size;
2753 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2756 * Determine HW Sector size: Read BERASE bits of hw flash status
2757 * register
2758 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2759 * consecutive sectors. The start index for the nth Hw sector
2760 * can be calculated as = bank * 4096 + n * 256
2761 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2762 * The start index for the nth Hw sector can be calculated
2763 * as = bank * 4096
2764 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2765 * (ich9 only, otherwise error condition)
2766 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2768 switch (hsfsts.hsf_status.berasesz) {
2769 case 0:
2770 /* Hw sector size 256 */
2771 sector_size = ICH_FLASH_SEG_SIZE_256;
2772 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2773 break;
2774 case 1:
2775 sector_size = ICH_FLASH_SEG_SIZE_4K;
2776 iteration = 1;
2777 break;
2778 case 2:
2779 sector_size = ICH_FLASH_SEG_SIZE_8K;
2780 iteration = 1;
2781 break;
2782 case 3:
2783 sector_size = ICH_FLASH_SEG_SIZE_64K;
2784 iteration = 1;
2785 break;
2786 default:
2787 return -E1000_ERR_NVM;
2790 /* Start with the base address, then add the sector offset. */
2791 flash_linear_addr = hw->nvm.flash_base_addr;
2792 flash_linear_addr += (bank) ? flash_bank_size : 0;
2794 for (j = 0; j < iteration ; j++) {
2795 do {
2796 /* Steps */
2797 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2798 if (ret_val)
2799 return ret_val;
2802 * Write a value 11 (block Erase) in Flash
2803 * Cycle field in hw flash control
2805 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2806 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2807 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2810 * Write the last 24 bits of an index within the
2811 * block into Flash Linear address field in Flash
2812 * Address.
2814 flash_linear_addr += (j * sector_size);
2815 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2817 ret_val = e1000_flash_cycle_ich8lan(hw,
2818 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2819 if (ret_val == 0)
2820 break;
2823 * Check if FCERR is set to 1. If 1,
2824 * clear it and try the whole sequence
2825 * a few more times else Done
2827 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2828 if (hsfsts.hsf_status.flcerr == 1)
2829 /* repeat for some time before giving up */
2830 continue;
2831 else if (hsfsts.hsf_status.flcdone == 0)
2832 return ret_val;
2833 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2836 return 0;
2840 * e1000_valid_led_default_ich8lan - Set the default LED settings
2841 * @hw: pointer to the HW structure
2842 * @data: Pointer to the LED settings
2844 * Reads the LED default settings from the NVM to data. If the NVM LED
2845 * settings is all 0's or F's, set the LED default to a valid LED default
2846 * setting.
2848 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2850 s32 ret_val;
2852 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2853 if (ret_val) {
2854 e_dbg("NVM Read Error\n");
2855 return ret_val;
2858 if (*data == ID_LED_RESERVED_0000 ||
2859 *data == ID_LED_RESERVED_FFFF)
2860 *data = ID_LED_DEFAULT_ICH8LAN;
2862 return 0;
2866 * e1000_id_led_init_pchlan - store LED configurations
2867 * @hw: pointer to the HW structure
2869 * PCH does not control LEDs via the LEDCTL register, rather it uses
2870 * the PHY LED configuration register.
2872 * PCH also does not have an "always on" or "always off" mode which
2873 * complicates the ID feature. Instead of using the "on" mode to indicate
2874 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2875 * use "link_up" mode. The LEDs will still ID on request if there is no
2876 * link based on logic in e1000_led_[on|off]_pchlan().
2878 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2880 struct e1000_mac_info *mac = &hw->mac;
2881 s32 ret_val;
2882 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2883 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2884 u16 data, i, temp, shift;
2886 /* Get default ID LED modes */
2887 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2888 if (ret_val)
2889 goto out;
2891 mac->ledctl_default = er32(LEDCTL);
2892 mac->ledctl_mode1 = mac->ledctl_default;
2893 mac->ledctl_mode2 = mac->ledctl_default;
2895 for (i = 0; i < 4; i++) {
2896 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2897 shift = (i * 5);
2898 switch (temp) {
2899 case ID_LED_ON1_DEF2:
2900 case ID_LED_ON1_ON2:
2901 case ID_LED_ON1_OFF2:
2902 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2903 mac->ledctl_mode1 |= (ledctl_on << shift);
2904 break;
2905 case ID_LED_OFF1_DEF2:
2906 case ID_LED_OFF1_ON2:
2907 case ID_LED_OFF1_OFF2:
2908 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2909 mac->ledctl_mode1 |= (ledctl_off << shift);
2910 break;
2911 default:
2912 /* Do nothing */
2913 break;
2915 switch (temp) {
2916 case ID_LED_DEF1_ON2:
2917 case ID_LED_ON1_ON2:
2918 case ID_LED_OFF1_ON2:
2919 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2920 mac->ledctl_mode2 |= (ledctl_on << shift);
2921 break;
2922 case ID_LED_DEF1_OFF2:
2923 case ID_LED_ON1_OFF2:
2924 case ID_LED_OFF1_OFF2:
2925 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2926 mac->ledctl_mode2 |= (ledctl_off << shift);
2927 break;
2928 default:
2929 /* Do nothing */
2930 break;
2934 out:
2935 return ret_val;
2939 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2940 * @hw: pointer to the HW structure
2942 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2943 * register, so the the bus width is hard coded.
2945 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2947 struct e1000_bus_info *bus = &hw->bus;
2948 s32 ret_val;
2950 ret_val = e1000e_get_bus_info_pcie(hw);
2953 * ICH devices are "PCI Express"-ish. They have
2954 * a configuration space, but do not contain
2955 * PCI Express Capability registers, so bus width
2956 * must be hardcoded.
2958 if (bus->width == e1000_bus_width_unknown)
2959 bus->width = e1000_bus_width_pcie_x1;
2961 return ret_val;
2965 * e1000_reset_hw_ich8lan - Reset the hardware
2966 * @hw: pointer to the HW structure
2968 * Does a full reset of the hardware which includes a reset of the PHY and
2969 * MAC.
2971 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2973 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2974 u16 reg;
2975 u32 ctrl, icr, kab;
2976 s32 ret_val;
2979 * Prevent the PCI-E bus from sticking if there is no TLP connection
2980 * on the last TLP read/write transaction when MAC is reset.
2982 ret_val = e1000e_disable_pcie_master(hw);
2983 if (ret_val)
2984 e_dbg("PCI-E Master disable polling has failed.\n");
2986 e_dbg("Masking off all interrupts\n");
2987 ew32(IMC, 0xffffffff);
2990 * Disable the Transmit and Receive units. Then delay to allow
2991 * any pending transactions to complete before we hit the MAC
2992 * with the global reset.
2994 ew32(RCTL, 0);
2995 ew32(TCTL, E1000_TCTL_PSP);
2996 e1e_flush();
2998 msleep(10);
3000 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3001 if (hw->mac.type == e1000_ich8lan) {
3002 /* Set Tx and Rx buffer allocation to 8k apiece. */
3003 ew32(PBA, E1000_PBA_8K);
3004 /* Set Packet Buffer Size to 16k. */
3005 ew32(PBS, E1000_PBS_16K);
3008 if (hw->mac.type == e1000_pchlan) {
3009 /* Save the NVM K1 bit setting*/
3010 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3011 if (ret_val)
3012 return ret_val;
3014 if (reg & E1000_NVM_K1_ENABLE)
3015 dev_spec->nvm_k1_enabled = true;
3016 else
3017 dev_spec->nvm_k1_enabled = false;
3020 ctrl = er32(CTRL);
3022 if (!e1000_check_reset_block(hw)) {
3024 * Full-chip reset requires MAC and PHY reset at the same
3025 * time to make sure the interface between MAC and the
3026 * external PHY is reset.
3028 ctrl |= E1000_CTRL_PHY_RST;
3031 * Gate automatic PHY configuration by hardware on
3032 * non-managed 82579
3034 if ((hw->mac.type == e1000_pch2lan) &&
3035 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3036 e1000_gate_hw_phy_config_ich8lan(hw, true);
3038 ret_val = e1000_acquire_swflag_ich8lan(hw);
3039 e_dbg("Issuing a global reset to ich8lan\n");
3040 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3041 msleep(20);
3043 if (!ret_val)
3044 e1000_release_swflag_ich8lan(hw);
3046 if (ctrl & E1000_CTRL_PHY_RST) {
3047 ret_val = hw->phy.ops.get_cfg_done(hw);
3048 if (ret_val)
3049 goto out;
3051 ret_val = e1000_post_phy_reset_ich8lan(hw);
3052 if (ret_val)
3053 goto out;
3057 * For PCH, this write will make sure that any noise
3058 * will be detected as a CRC error and be dropped rather than show up
3059 * as a bad packet to the DMA engine.
3061 if (hw->mac.type == e1000_pchlan)
3062 ew32(CRC_OFFSET, 0x65656565);
3064 ew32(IMC, 0xffffffff);
3065 icr = er32(ICR);
3067 kab = er32(KABGTXD);
3068 kab |= E1000_KABGTXD_BGSQLBIAS;
3069 ew32(KABGTXD, kab);
3071 out:
3072 return ret_val;
3076 * e1000_init_hw_ich8lan - Initialize the hardware
3077 * @hw: pointer to the HW structure
3079 * Prepares the hardware for transmit and receive by doing the following:
3080 * - initialize hardware bits
3081 * - initialize LED identification
3082 * - setup receive address registers
3083 * - setup flow control
3084 * - setup transmit descriptors
3085 * - clear statistics
3087 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3089 struct e1000_mac_info *mac = &hw->mac;
3090 u32 ctrl_ext, txdctl, snoop;
3091 s32 ret_val;
3092 u16 i;
3094 e1000_initialize_hw_bits_ich8lan(hw);
3096 /* Initialize identification LED */
3097 ret_val = mac->ops.id_led_init(hw);
3098 if (ret_val)
3099 e_dbg("Error initializing identification LED\n");
3100 /* This is not fatal and we should not stop init due to this */
3102 /* Setup the receive address. */
3103 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3105 /* Zero out the Multicast HASH table */
3106 e_dbg("Zeroing the MTA\n");
3107 for (i = 0; i < mac->mta_reg_count; i++)
3108 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3111 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3112 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3113 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3115 if (hw->phy.type == e1000_phy_82578) {
3116 hw->phy.ops.read_reg(hw, BM_WUC, &i);
3117 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3118 if (ret_val)
3119 return ret_val;
3122 /* Setup link and flow control */
3123 ret_val = e1000_setup_link_ich8lan(hw);
3125 /* Set the transmit descriptor write-back policy for both queues */
3126 txdctl = er32(TXDCTL(0));
3127 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3128 E1000_TXDCTL_FULL_TX_DESC_WB;
3129 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3130 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3131 ew32(TXDCTL(0), txdctl);
3132 txdctl = er32(TXDCTL(1));
3133 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3134 E1000_TXDCTL_FULL_TX_DESC_WB;
3135 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3136 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3137 ew32(TXDCTL(1), txdctl);
3140 * ICH8 has opposite polarity of no_snoop bits.
3141 * By default, we should use snoop behavior.
3143 if (mac->type == e1000_ich8lan)
3144 snoop = PCIE_ICH8_SNOOP_ALL;
3145 else
3146 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3147 e1000e_set_pcie_no_snoop(hw, snoop);
3149 ctrl_ext = er32(CTRL_EXT);
3150 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3151 ew32(CTRL_EXT, ctrl_ext);
3154 * Clear all of the statistics registers (clear on read). It is
3155 * important that we do this after we have tried to establish link
3156 * because the symbol error count will increment wildly if there
3157 * is no link.
3159 e1000_clear_hw_cntrs_ich8lan(hw);
3161 return 0;
3164 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3165 * @hw: pointer to the HW structure
3167 * Sets/Clears required hardware bits necessary for correctly setting up the
3168 * hardware for transmit and receive.
3170 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3172 u32 reg;
3174 /* Extended Device Control */
3175 reg = er32(CTRL_EXT);
3176 reg |= (1 << 22);
3177 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3178 if (hw->mac.type >= e1000_pchlan)
3179 reg |= E1000_CTRL_EXT_PHYPDEN;
3180 ew32(CTRL_EXT, reg);
3182 /* Transmit Descriptor Control 0 */
3183 reg = er32(TXDCTL(0));
3184 reg |= (1 << 22);
3185 ew32(TXDCTL(0), reg);
3187 /* Transmit Descriptor Control 1 */
3188 reg = er32(TXDCTL(1));
3189 reg |= (1 << 22);
3190 ew32(TXDCTL(1), reg);
3192 /* Transmit Arbitration Control 0 */
3193 reg = er32(TARC(0));
3194 if (hw->mac.type == e1000_ich8lan)
3195 reg |= (1 << 28) | (1 << 29);
3196 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3197 ew32(TARC(0), reg);
3199 /* Transmit Arbitration Control 1 */
3200 reg = er32(TARC(1));
3201 if (er32(TCTL) & E1000_TCTL_MULR)
3202 reg &= ~(1 << 28);
3203 else
3204 reg |= (1 << 28);
3205 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3206 ew32(TARC(1), reg);
3208 /* Device Status */
3209 if (hw->mac.type == e1000_ich8lan) {
3210 reg = er32(STATUS);
3211 reg &= ~(1 << 31);
3212 ew32(STATUS, reg);
3216 * work-around descriptor data corruption issue during nfs v2 udp
3217 * traffic, just disable the nfs filtering capability
3219 reg = er32(RFCTL);
3220 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3221 ew32(RFCTL, reg);
3225 * e1000_setup_link_ich8lan - Setup flow control and link settings
3226 * @hw: pointer to the HW structure
3228 * Determines which flow control settings to use, then configures flow
3229 * control. Calls the appropriate media-specific link configuration
3230 * function. Assuming the adapter has a valid link partner, a valid link
3231 * should be established. Assumes the hardware has previously been reset
3232 * and the transmitter and receiver are not enabled.
3234 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3236 s32 ret_val;
3238 if (e1000_check_reset_block(hw))
3239 return 0;
3242 * ICH parts do not have a word in the NVM to determine
3243 * the default flow control setting, so we explicitly
3244 * set it to full.
3246 if (hw->fc.requested_mode == e1000_fc_default) {
3247 /* Workaround h/w hang when Tx flow control enabled */
3248 if (hw->mac.type == e1000_pchlan)
3249 hw->fc.requested_mode = e1000_fc_rx_pause;
3250 else
3251 hw->fc.requested_mode = e1000_fc_full;
3255 * Save off the requested flow control mode for use later. Depending
3256 * on the link partner's capabilities, we may or may not use this mode.
3258 hw->fc.current_mode = hw->fc.requested_mode;
3260 e_dbg("After fix-ups FlowControl is now = %x\n",
3261 hw->fc.current_mode);
3263 /* Continue to configure the copper link. */
3264 ret_val = e1000_setup_copper_link_ich8lan(hw);
3265 if (ret_val)
3266 return ret_val;
3268 ew32(FCTTV, hw->fc.pause_time);
3269 if ((hw->phy.type == e1000_phy_82578) ||
3270 (hw->phy.type == e1000_phy_82579) ||
3271 (hw->phy.type == e1000_phy_82577)) {
3272 ew32(FCRTV_PCH, hw->fc.refresh_time);
3274 ret_val = hw->phy.ops.write_reg(hw,
3275 PHY_REG(BM_PORT_CTRL_PAGE, 27),
3276 hw->fc.pause_time);
3277 if (ret_val)
3278 return ret_val;
3281 return e1000e_set_fc_watermarks(hw);
3285 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3286 * @hw: pointer to the HW structure
3288 * Configures the kumeran interface to the PHY to wait the appropriate time
3289 * when polling the PHY, then call the generic setup_copper_link to finish
3290 * configuring the copper link.
3292 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3294 u32 ctrl;
3295 s32 ret_val;
3296 u16 reg_data;
3298 ctrl = er32(CTRL);
3299 ctrl |= E1000_CTRL_SLU;
3300 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3301 ew32(CTRL, ctrl);
3304 * Set the mac to wait the maximum time between each iteration
3305 * and increase the max iterations when polling the phy;
3306 * this fixes erroneous timeouts at 10Mbps.
3308 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3309 if (ret_val)
3310 return ret_val;
3311 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3312 &reg_data);
3313 if (ret_val)
3314 return ret_val;
3315 reg_data |= 0x3F;
3316 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3317 reg_data);
3318 if (ret_val)
3319 return ret_val;
3321 switch (hw->phy.type) {
3322 case e1000_phy_igp_3:
3323 ret_val = e1000e_copper_link_setup_igp(hw);
3324 if (ret_val)
3325 return ret_val;
3326 break;
3327 case e1000_phy_bm:
3328 case e1000_phy_82578:
3329 ret_val = e1000e_copper_link_setup_m88(hw);
3330 if (ret_val)
3331 return ret_val;
3332 break;
3333 case e1000_phy_82577:
3334 case e1000_phy_82579:
3335 ret_val = e1000_copper_link_setup_82577(hw);
3336 if (ret_val)
3337 return ret_val;
3338 break;
3339 case e1000_phy_ife:
3340 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
3341 &reg_data);
3342 if (ret_val)
3343 return ret_val;
3345 reg_data &= ~IFE_PMC_AUTO_MDIX;
3347 switch (hw->phy.mdix) {
3348 case 1:
3349 reg_data &= ~IFE_PMC_FORCE_MDIX;
3350 break;
3351 case 2:
3352 reg_data |= IFE_PMC_FORCE_MDIX;
3353 break;
3354 case 0:
3355 default:
3356 reg_data |= IFE_PMC_AUTO_MDIX;
3357 break;
3359 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
3360 reg_data);
3361 if (ret_val)
3362 return ret_val;
3363 break;
3364 default:
3365 break;
3367 return e1000e_setup_copper_link(hw);
3371 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3372 * @hw: pointer to the HW structure
3373 * @speed: pointer to store current link speed
3374 * @duplex: pointer to store the current link duplex
3376 * Calls the generic get_speed_and_duplex to retrieve the current link
3377 * information and then calls the Kumeran lock loss workaround for links at
3378 * gigabit speeds.
3380 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3381 u16 *duplex)
3383 s32 ret_val;
3385 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3386 if (ret_val)
3387 return ret_val;
3389 if ((hw->mac.type == e1000_ich8lan) &&
3390 (hw->phy.type == e1000_phy_igp_3) &&
3391 (*speed == SPEED_1000)) {
3392 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3395 return ret_val;
3399 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3400 * @hw: pointer to the HW structure
3402 * Work-around for 82566 Kumeran PCS lock loss:
3403 * On link status change (i.e. PCI reset, speed change) and link is up and
3404 * speed is gigabit-
3405 * 0) if workaround is optionally disabled do nothing
3406 * 1) wait 1ms for Kumeran link to come up
3407 * 2) check Kumeran Diagnostic register PCS lock loss bit
3408 * 3) if not set the link is locked (all is good), otherwise...
3409 * 4) reset the PHY
3410 * 5) repeat up to 10 times
3411 * Note: this is only called for IGP3 copper when speed is 1gb.
3413 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3415 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3416 u32 phy_ctrl;
3417 s32 ret_val;
3418 u16 i, data;
3419 bool link;
3421 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3422 return 0;
3425 * Make sure link is up before proceeding. If not just return.
3426 * Attempting this while link is negotiating fouled up link
3427 * stability
3429 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3430 if (!link)
3431 return 0;
3433 for (i = 0; i < 10; i++) {
3434 /* read once to clear */
3435 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3436 if (ret_val)
3437 return ret_val;
3438 /* and again to get new status */
3439 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3440 if (ret_val)
3441 return ret_val;
3443 /* check for PCS lock */
3444 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3445 return 0;
3447 /* Issue PHY reset */
3448 e1000_phy_hw_reset(hw);
3449 mdelay(5);
3451 /* Disable GigE link negotiation */
3452 phy_ctrl = er32(PHY_CTRL);
3453 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3454 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3455 ew32(PHY_CTRL, phy_ctrl);
3458 * Call gig speed drop workaround on Gig disable before accessing
3459 * any PHY registers
3461 e1000e_gig_downshift_workaround_ich8lan(hw);
3463 /* unable to acquire PCS lock */
3464 return -E1000_ERR_PHY;
3468 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3469 * @hw: pointer to the HW structure
3470 * @state: boolean value used to set the current Kumeran workaround state
3472 * If ICH8, set the current Kumeran workaround state (enabled - true
3473 * /disabled - false).
3475 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3476 bool state)
3478 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3480 if (hw->mac.type != e1000_ich8lan) {
3481 e_dbg("Workaround applies to ICH8 only.\n");
3482 return;
3485 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3489 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3490 * @hw: pointer to the HW structure
3492 * Workaround for 82566 power-down on D3 entry:
3493 * 1) disable gigabit link
3494 * 2) write VR power-down enable
3495 * 3) read it back
3496 * Continue if successful, else issue LCD reset and repeat
3498 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3500 u32 reg;
3501 u16 data;
3502 u8 retry = 0;
3504 if (hw->phy.type != e1000_phy_igp_3)
3505 return;
3507 /* Try the workaround twice (if needed) */
3508 do {
3509 /* Disable link */
3510 reg = er32(PHY_CTRL);
3511 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3512 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3513 ew32(PHY_CTRL, reg);
3516 * Call gig speed drop workaround on Gig disable before
3517 * accessing any PHY registers
3519 if (hw->mac.type == e1000_ich8lan)
3520 e1000e_gig_downshift_workaround_ich8lan(hw);
3522 /* Write VR power-down enable */
3523 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3524 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3525 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3527 /* Read it back and test */
3528 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3529 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3530 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3531 break;
3533 /* Issue PHY reset and repeat at most one more time */
3534 reg = er32(CTRL);
3535 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3536 retry++;
3537 } while (retry);
3541 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3542 * @hw: pointer to the HW structure
3544 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3545 * LPLU, Gig disable, MDIC PHY reset):
3546 * 1) Set Kumeran Near-end loopback
3547 * 2) Clear Kumeran Near-end loopback
3548 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3550 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3552 s32 ret_val;
3553 u16 reg_data;
3555 if ((hw->mac.type != e1000_ich8lan) ||
3556 (hw->phy.type != e1000_phy_igp_3))
3557 return;
3559 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3560 &reg_data);
3561 if (ret_val)
3562 return;
3563 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3564 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3565 reg_data);
3566 if (ret_val)
3567 return;
3568 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3569 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3570 reg_data);
3574 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3575 * @hw: pointer to the HW structure
3577 * During S0 to Sx transition, it is possible the link remains at gig
3578 * instead of negotiating to a lower speed. Before going to Sx, set
3579 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3580 * to a lower speed.
3582 * Should only be called for applicable parts.
3584 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3586 u32 phy_ctrl;
3587 s32 ret_val;
3589 phy_ctrl = er32(PHY_CTRL);
3590 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3591 ew32(PHY_CTRL, phy_ctrl);
3593 if (hw->mac.type >= e1000_pchlan) {
3594 e1000_oem_bits_config_ich8lan(hw, true);
3595 ret_val = hw->phy.ops.acquire(hw);
3596 if (ret_val)
3597 return;
3598 e1000_write_smbus_addr(hw);
3599 hw->phy.ops.release(hw);
3604 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3605 * @hw: pointer to the HW structure
3607 * Return the LED back to the default configuration.
3609 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3611 if (hw->phy.type == e1000_phy_ife)
3612 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3614 ew32(LEDCTL, hw->mac.ledctl_default);
3615 return 0;
3619 * e1000_led_on_ich8lan - Turn LEDs on
3620 * @hw: pointer to the HW structure
3622 * Turn on the LEDs.
3624 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3626 if (hw->phy.type == e1000_phy_ife)
3627 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3628 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3630 ew32(LEDCTL, hw->mac.ledctl_mode2);
3631 return 0;
3635 * e1000_led_off_ich8lan - Turn LEDs off
3636 * @hw: pointer to the HW structure
3638 * Turn off the LEDs.
3640 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3642 if (hw->phy.type == e1000_phy_ife)
3643 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3644 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3646 ew32(LEDCTL, hw->mac.ledctl_mode1);
3647 return 0;
3651 * e1000_setup_led_pchlan - Configures SW controllable LED
3652 * @hw: pointer to the HW structure
3654 * This prepares the SW controllable LED for use.
3656 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3658 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3659 (u16)hw->mac.ledctl_mode1);
3663 * e1000_cleanup_led_pchlan - Restore the default LED operation
3664 * @hw: pointer to the HW structure
3666 * Return the LED back to the default configuration.
3668 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3670 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3671 (u16)hw->mac.ledctl_default);
3675 * e1000_led_on_pchlan - Turn LEDs on
3676 * @hw: pointer to the HW structure
3678 * Turn on the LEDs.
3680 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3682 u16 data = (u16)hw->mac.ledctl_mode2;
3683 u32 i, led;
3686 * If no link, then turn LED on by setting the invert bit
3687 * for each LED that's mode is "link_up" in ledctl_mode2.
3689 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3690 for (i = 0; i < 3; i++) {
3691 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3692 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3693 E1000_LEDCTL_MODE_LINK_UP)
3694 continue;
3695 if (led & E1000_PHY_LED0_IVRT)
3696 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3697 else
3698 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3702 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3706 * e1000_led_off_pchlan - Turn LEDs off
3707 * @hw: pointer to the HW structure
3709 * Turn off the LEDs.
3711 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3713 u16 data = (u16)hw->mac.ledctl_mode1;
3714 u32 i, led;
3717 * If no link, then turn LED off by clearing the invert bit
3718 * for each LED that's mode is "link_up" in ledctl_mode1.
3720 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3721 for (i = 0; i < 3; i++) {
3722 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3723 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3724 E1000_LEDCTL_MODE_LINK_UP)
3725 continue;
3726 if (led & E1000_PHY_LED0_IVRT)
3727 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3728 else
3729 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3733 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3737 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3738 * @hw: pointer to the HW structure
3740 * Read appropriate register for the config done bit for completion status
3741 * and configure the PHY through s/w for EEPROM-less parts.
3743 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3744 * config done bit, so only an error is logged and continues. If we were
3745 * to return with error, EEPROM-less silicon would not be able to be reset
3746 * or change link.
3748 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3750 s32 ret_val = 0;
3751 u32 bank = 0;
3752 u32 status;
3754 e1000e_get_cfg_done(hw);
3756 /* Wait for indication from h/w that it has completed basic config */
3757 if (hw->mac.type >= e1000_ich10lan) {
3758 e1000_lan_init_done_ich8lan(hw);
3759 } else {
3760 ret_val = e1000e_get_auto_rd_done(hw);
3761 if (ret_val) {
3763 * When auto config read does not complete, do not
3764 * return with an error. This can happen in situations
3765 * where there is no eeprom and prevents getting link.
3767 e_dbg("Auto Read Done did not complete\n");
3768 ret_val = 0;
3772 /* Clear PHY Reset Asserted bit */
3773 status = er32(STATUS);
3774 if (status & E1000_STATUS_PHYRA)
3775 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3776 else
3777 e_dbg("PHY Reset Asserted not set - needs delay\n");
3779 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3780 if (hw->mac.type <= e1000_ich9lan) {
3781 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3782 (hw->phy.type == e1000_phy_igp_3)) {
3783 e1000e_phy_init_script_igp3(hw);
3785 } else {
3786 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3787 /* Maybe we should do a basic PHY config */
3788 e_dbg("EEPROM not present\n");
3789 ret_val = -E1000_ERR_CONFIG;
3793 return ret_val;
3797 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3798 * @hw: pointer to the HW structure
3800 * In the case of a PHY power down to save power, or to turn off link during a
3801 * driver unload, or wake on lan is not enabled, remove the link.
3803 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3805 /* If the management interface is not enabled, then power down */
3806 if (!(hw->mac.ops.check_mng_mode(hw) ||
3807 hw->phy.ops.check_reset_block(hw)))
3808 e1000_power_down_phy_copper(hw);
3812 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3813 * @hw: pointer to the HW structure
3815 * Clears hardware counters specific to the silicon family and calls
3816 * clear_hw_cntrs_generic to clear all general purpose counters.
3818 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3820 u16 phy_data;
3822 e1000e_clear_hw_cntrs_base(hw);
3824 er32(ALGNERRC);
3825 er32(RXERRC);
3826 er32(TNCRS);
3827 er32(CEXTERR);
3828 er32(TSCTC);
3829 er32(TSCTFC);
3831 er32(MGTPRC);
3832 er32(MGTPDC);
3833 er32(MGTPTC);
3835 er32(IAC);
3836 er32(ICRXOC);
3838 /* Clear PHY statistics registers */
3839 if ((hw->phy.type == e1000_phy_82578) ||
3840 (hw->phy.type == e1000_phy_82579) ||
3841 (hw->phy.type == e1000_phy_82577)) {
3842 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3843 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3844 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3845 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3846 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3847 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3848 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3849 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3850 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3851 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3852 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3853 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3854 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3855 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3859 static struct e1000_mac_operations ich8_mac_ops = {
3860 .id_led_init = e1000e_id_led_init,
3861 /* check_mng_mode dependent on mac type */
3862 .check_for_link = e1000_check_for_copper_link_ich8lan,
3863 /* cleanup_led dependent on mac type */
3864 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3865 .get_bus_info = e1000_get_bus_info_ich8lan,
3866 .set_lan_id = e1000_set_lan_id_single_port,
3867 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3868 /* led_on dependent on mac type */
3869 /* led_off dependent on mac type */
3870 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3871 .reset_hw = e1000_reset_hw_ich8lan,
3872 .init_hw = e1000_init_hw_ich8lan,
3873 .setup_link = e1000_setup_link_ich8lan,
3874 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3875 /* id_led_init dependent on mac type */
3878 static struct e1000_phy_operations ich8_phy_ops = {
3879 .acquire = e1000_acquire_swflag_ich8lan,
3880 .check_reset_block = e1000_check_reset_block_ich8lan,
3881 .commit = NULL,
3882 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3883 .get_cable_length = e1000e_get_cable_length_igp_2,
3884 .read_reg = e1000e_read_phy_reg_igp,
3885 .release = e1000_release_swflag_ich8lan,
3886 .reset = e1000_phy_hw_reset_ich8lan,
3887 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3888 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3889 .write_reg = e1000e_write_phy_reg_igp,
3892 static struct e1000_nvm_operations ich8_nvm_ops = {
3893 .acquire = e1000_acquire_nvm_ich8lan,
3894 .read = e1000_read_nvm_ich8lan,
3895 .release = e1000_release_nvm_ich8lan,
3896 .update = e1000_update_nvm_checksum_ich8lan,
3897 .valid_led_default = e1000_valid_led_default_ich8lan,
3898 .validate = e1000_validate_nvm_checksum_ich8lan,
3899 .write = e1000_write_nvm_ich8lan,
3902 struct e1000_info e1000_ich8_info = {
3903 .mac = e1000_ich8lan,
3904 .flags = FLAG_HAS_WOL
3905 | FLAG_IS_ICH
3906 | FLAG_RX_CSUM_ENABLED
3907 | FLAG_HAS_CTRLEXT_ON_LOAD
3908 | FLAG_HAS_AMT
3909 | FLAG_HAS_FLASH
3910 | FLAG_APME_IN_WUC,
3911 .pba = 8,
3912 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
3913 .get_variants = e1000_get_variants_ich8lan,
3914 .mac_ops = &ich8_mac_ops,
3915 .phy_ops = &ich8_phy_ops,
3916 .nvm_ops = &ich8_nvm_ops,
3919 struct e1000_info e1000_ich9_info = {
3920 .mac = e1000_ich9lan,
3921 .flags = FLAG_HAS_JUMBO_FRAMES
3922 | FLAG_IS_ICH
3923 | FLAG_HAS_WOL
3924 | FLAG_RX_CSUM_ENABLED
3925 | FLAG_HAS_CTRLEXT_ON_LOAD
3926 | FLAG_HAS_AMT
3927 | FLAG_HAS_ERT
3928 | FLAG_HAS_FLASH
3929 | FLAG_APME_IN_WUC,
3930 .pba = 10,
3931 .max_hw_frame_size = DEFAULT_JUMBO,
3932 .get_variants = e1000_get_variants_ich8lan,
3933 .mac_ops = &ich8_mac_ops,
3934 .phy_ops = &ich8_phy_ops,
3935 .nvm_ops = &ich8_nvm_ops,
3938 struct e1000_info e1000_ich10_info = {
3939 .mac = e1000_ich10lan,
3940 .flags = FLAG_HAS_JUMBO_FRAMES
3941 | FLAG_IS_ICH
3942 | FLAG_HAS_WOL
3943 | FLAG_RX_CSUM_ENABLED
3944 | FLAG_HAS_CTRLEXT_ON_LOAD
3945 | FLAG_HAS_AMT
3946 | FLAG_HAS_ERT
3947 | FLAG_HAS_FLASH
3948 | FLAG_APME_IN_WUC,
3949 .pba = 10,
3950 .max_hw_frame_size = DEFAULT_JUMBO,
3951 .get_variants = e1000_get_variants_ich8lan,
3952 .mac_ops = &ich8_mac_ops,
3953 .phy_ops = &ich8_phy_ops,
3954 .nvm_ops = &ich8_nvm_ops,
3957 struct e1000_info e1000_pch_info = {
3958 .mac = e1000_pchlan,
3959 .flags = FLAG_IS_ICH
3960 | FLAG_HAS_WOL
3961 | FLAG_RX_CSUM_ENABLED
3962 | FLAG_HAS_CTRLEXT_ON_LOAD
3963 | FLAG_HAS_AMT
3964 | FLAG_HAS_FLASH
3965 | FLAG_HAS_JUMBO_FRAMES
3966 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3967 | FLAG_APME_IN_WUC,
3968 .flags2 = FLAG2_HAS_PHY_STATS,
3969 .pba = 26,
3970 .max_hw_frame_size = 4096,
3971 .get_variants = e1000_get_variants_ich8lan,
3972 .mac_ops = &ich8_mac_ops,
3973 .phy_ops = &ich8_phy_ops,
3974 .nvm_ops = &ich8_nvm_ops,
3977 struct e1000_info e1000_pch2_info = {
3978 .mac = e1000_pch2lan,
3979 .flags = FLAG_IS_ICH
3980 | FLAG_HAS_WOL
3981 | FLAG_RX_CSUM_ENABLED
3982 | FLAG_HAS_CTRLEXT_ON_LOAD
3983 | FLAG_HAS_AMT
3984 | FLAG_HAS_FLASH
3985 | FLAG_HAS_JUMBO_FRAMES
3986 | FLAG_APME_IN_WUC,
3987 .flags2 = FLAG2_HAS_PHY_STATS
3988 | FLAG2_HAS_EEE,
3989 .pba = 18,
3990 .max_hw_frame_size = DEFAULT_JUMBO,
3991 .get_variants = e1000_get_variants_ich8lan,
3992 .mac_ops = &ich8_mac_ops,
3993 .phy_ops = &ich8_phy_ops,
3994 .nvm_ops = &ich8_nvm_ops,