[PATCH] CONFIG_UNWIND_INFO
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slab.c
blob26138c9f8f00906e638835baa46d5ebd7f602957
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
155 #ifndef ARCH_SLAB_MINALIGN
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
186 * kmem_bufctl_t:
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
209 /* Max number of objs-per-slab for caches which use off-slab slabs.
210 * Needed to avoid a possible looping condition in cache_grow().
212 static unsigned long offslab_limit;
215 * struct slab
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct slab {
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
231 * struct slab_rcu
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
246 struct slab_rcu {
247 struct rcu_head head;
248 struct kmem_cache *cachep;
249 void *addr;
253 * struct array_cache
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
264 struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
269 spinlock_t lock;
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init {
284 struct array_cache cache;
285 void *entries[BOOT_CPUCACHE_ENTRIES];
289 * The slab lists for all objects.
291 struct kmem_list3 {
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
296 unsigned int free_limit;
297 unsigned int colour_next; /* Per-node cache coloring */
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310 #define CACHE_CACHE 0
311 #define SIZE_AC 1
312 #define SIZE_L3 (1 + MAX_NUMNODES)
315 * This function must be completely optimized away if a constant is passed to
316 * it. Mostly the same as what is in linux/slab.h except it returns an index.
318 static __always_inline int index_of(const size_t size)
320 extern void __bad_size(void);
322 if (__builtin_constant_p(size)) {
323 int i = 0;
325 #define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330 #include "linux/kmalloc_sizes.h"
331 #undef CACHE
332 __bad_size();
333 } else
334 __bad_size();
335 return 0;
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341 static void kmem_list3_init(struct kmem_list3 *parent)
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 parent->colour_next = 0;
349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
354 #define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0)
360 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
368 * struct kmem_cache
370 * manages a cache.
373 struct kmem_cache {
374 /* 1) per-cpu data, touched during every alloc/free */
375 struct array_cache *array[NR_CPUS];
376 /* 2) Cache tunables. Protected by cache_chain_mutex */
377 unsigned int batchcount;
378 unsigned int limit;
379 unsigned int shared;
381 unsigned int buffer_size;
382 /* 3) touched by every alloc & free from the backend */
383 struct kmem_list3 *nodelists[MAX_NUMNODES];
385 unsigned int flags; /* constant flags */
386 unsigned int num; /* # of objs per slab */
388 /* 4) cache_grow/shrink */
389 /* order of pgs per slab (2^n) */
390 unsigned int gfporder;
392 /* force GFP flags, e.g. GFP_DMA */
393 gfp_t gfpflags;
395 size_t colour; /* cache colouring range */
396 unsigned int colour_off; /* colour offset */
397 struct kmem_cache *slabp_cache;
398 unsigned int slab_size;
399 unsigned int dflags; /* dynamic flags */
401 /* constructor func */
402 void (*ctor) (void *, struct kmem_cache *, unsigned long);
404 /* de-constructor func */
405 void (*dtor) (void *, struct kmem_cache *, unsigned long);
407 /* 5) cache creation/removal */
408 const char *name;
409 struct list_head next;
411 /* 6) statistics */
412 #if STATS
413 unsigned long num_active;
414 unsigned long num_allocations;
415 unsigned long high_mark;
416 unsigned long grown;
417 unsigned long reaped;
418 unsigned long errors;
419 unsigned long max_freeable;
420 unsigned long node_allocs;
421 unsigned long node_frees;
422 atomic_t allochit;
423 atomic_t allocmiss;
424 atomic_t freehit;
425 atomic_t freemiss;
426 #endif
427 #if DEBUG
429 * If debugging is enabled, then the allocator can add additional
430 * fields and/or padding to every object. buffer_size contains the total
431 * object size including these internal fields, the following two
432 * variables contain the offset to the user object and its size.
434 int obj_offset;
435 int obj_size;
436 #endif
439 #define CFLGS_OFF_SLAB (0x80000000UL)
440 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
442 #define BATCHREFILL_LIMIT 16
444 * Optimization question: fewer reaps means less probability for unnessary
445 * cpucache drain/refill cycles.
447 * OTOH the cpuarrays can contain lots of objects,
448 * which could lock up otherwise freeable slabs.
450 #define REAPTIMEOUT_CPUC (2*HZ)
451 #define REAPTIMEOUT_LIST3 (4*HZ)
453 #if STATS
454 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
455 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
456 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
457 #define STATS_INC_GROWN(x) ((x)->grown++)
458 #define STATS_INC_REAPED(x) ((x)->reaped++)
459 #define STATS_SET_HIGH(x) \
460 do { \
461 if ((x)->num_active > (x)->high_mark) \
462 (x)->high_mark = (x)->num_active; \
463 } while (0)
464 #define STATS_INC_ERR(x) ((x)->errors++)
465 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
466 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
467 #define STATS_SET_FREEABLE(x, i) \
468 do { \
469 if ((x)->max_freeable < i) \
470 (x)->max_freeable = i; \
471 } while (0)
472 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
473 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
474 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
475 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
476 #else
477 #define STATS_INC_ACTIVE(x) do { } while (0)
478 #define STATS_DEC_ACTIVE(x) do { } while (0)
479 #define STATS_INC_ALLOCED(x) do { } while (0)
480 #define STATS_INC_GROWN(x) do { } while (0)
481 #define STATS_INC_REAPED(x) do { } while (0)
482 #define STATS_SET_HIGH(x) do { } while (0)
483 #define STATS_INC_ERR(x) do { } while (0)
484 #define STATS_INC_NODEALLOCS(x) do { } while (0)
485 #define STATS_INC_NODEFREES(x) do { } while (0)
486 #define STATS_SET_FREEABLE(x, i) do { } while (0)
487 #define STATS_INC_ALLOCHIT(x) do { } while (0)
488 #define STATS_INC_ALLOCMISS(x) do { } while (0)
489 #define STATS_INC_FREEHIT(x) do { } while (0)
490 #define STATS_INC_FREEMISS(x) do { } while (0)
491 #endif
493 #if DEBUG
495 * Magic nums for obj red zoning.
496 * Placed in the first word before and the first word after an obj.
498 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
499 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
501 /* ...and for poisoning */
502 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
503 #define POISON_FREE 0x6b /* for use-after-free poisoning */
504 #define POISON_END 0xa5 /* end-byte of poisoning */
507 * memory layout of objects:
508 * 0 : objp
509 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
510 * the end of an object is aligned with the end of the real
511 * allocation. Catches writes behind the end of the allocation.
512 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
513 * redzone word.
514 * cachep->obj_offset: The real object.
515 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
516 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
517 * [BYTES_PER_WORD long]
519 static int obj_offset(struct kmem_cache *cachep)
521 return cachep->obj_offset;
524 static int obj_size(struct kmem_cache *cachep)
526 return cachep->obj_size;
529 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
535 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
537 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
538 if (cachep->flags & SLAB_STORE_USER)
539 return (unsigned long *)(objp + cachep->buffer_size -
540 2 * BYTES_PER_WORD);
541 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
544 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
546 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
547 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
550 #else
552 #define obj_offset(x) 0
553 #define obj_size(cachep) (cachep->buffer_size)
554 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558 #endif
561 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
562 * order.
564 #if defined(CONFIG_LARGE_ALLOCS)
565 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
566 #define MAX_GFP_ORDER 13 /* up to 32Mb */
567 #elif defined(CONFIG_MMU)
568 #define MAX_OBJ_ORDER 5 /* 32 pages */
569 #define MAX_GFP_ORDER 5 /* 32 pages */
570 #else
571 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
572 #define MAX_GFP_ORDER 8 /* up to 1Mb */
573 #endif
576 * Do not go above this order unless 0 objects fit into the slab.
578 #define BREAK_GFP_ORDER_HI 1
579 #define BREAK_GFP_ORDER_LO 0
580 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
583 * Functions for storing/retrieving the cachep and or slab from the page
584 * allocator. These are used to find the slab an obj belongs to. With kfree(),
585 * these are used to find the cache which an obj belongs to.
587 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589 page->lru.next = (struct list_head *)cache;
592 static inline struct kmem_cache *page_get_cache(struct page *page)
594 if (unlikely(PageCompound(page)))
595 page = (struct page *)page_private(page);
596 return (struct kmem_cache *)page->lru.next;
599 static inline void page_set_slab(struct page *page, struct slab *slab)
601 page->lru.prev = (struct list_head *)slab;
604 static inline struct slab *page_get_slab(struct page *page)
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
608 return (struct slab *)page->lru.prev;
611 static inline struct kmem_cache *virt_to_cache(const void *obj)
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
617 static inline struct slab *virt_to_slab(const void *obj)
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
623 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
626 return slab->s_mem + cache->buffer_size * idx;
629 static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 struct cache_sizes malloc_sizes[] = {
639 #define CACHE(x) { .cs_size = (x) },
640 #include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642 #undef CACHE
644 EXPORT_SYMBOL(malloc_sizes);
646 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
647 struct cache_names {
648 char *name;
649 char *name_dma;
652 static struct cache_names __initdata cache_names[] = {
653 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654 #include <linux/kmalloc_sizes.h>
655 {NULL,}
656 #undef CACHE
659 static struct arraycache_init initarray_cache __initdata =
660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
661 static struct arraycache_init initarray_generic =
662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
664 /* internal cache of cache description objs */
665 static struct kmem_cache cache_cache = {
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
669 .buffer_size = sizeof(struct kmem_cache),
670 .name = "kmem_cache",
671 #if DEBUG
672 .obj_size = sizeof(struct kmem_cache),
673 #endif
676 /* Guard access to the cache-chain. */
677 static DEFINE_MUTEX(cache_chain_mutex);
678 static struct list_head cache_chain;
681 * vm_enough_memory() looks at this to determine how many slab-allocated pages
682 * are possibly freeable under pressure
684 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
686 atomic_t slab_reclaim_pages;
689 * chicken and egg problem: delay the per-cpu array allocation
690 * until the general caches are up.
692 static enum {
693 NONE,
694 PARTIAL_AC,
695 PARTIAL_L3,
696 FULL
697 } g_cpucache_up;
699 static DEFINE_PER_CPU(struct work_struct, reap_work);
701 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
702 int node);
703 static void enable_cpucache(struct kmem_cache *cachep);
704 static void cache_reap(void *unused);
705 static int __node_shrink(struct kmem_cache *cachep, int node);
707 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
709 return cachep->array[smp_processor_id()];
712 static inline struct kmem_cache *__find_general_cachep(size_t size,
713 gfp_t gfpflags)
715 struct cache_sizes *csizep = malloc_sizes;
717 #if DEBUG
718 /* This happens if someone tries to call
719 * kmem_cache_create(), or __kmalloc(), before
720 * the generic caches are initialized.
722 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
723 #endif
724 while (size > csizep->cs_size)
725 csizep++;
728 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
729 * has cs_{dma,}cachep==NULL. Thus no special case
730 * for large kmalloc calls required.
732 if (unlikely(gfpflags & GFP_DMA))
733 return csizep->cs_dmacachep;
734 return csizep->cs_cachep;
737 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
739 return __find_general_cachep(size, gfpflags);
741 EXPORT_SYMBOL(kmem_find_general_cachep);
743 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
745 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
749 * Calculate the number of objects and left-over bytes for a given buffer size.
751 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
752 size_t align, int flags, size_t *left_over,
753 unsigned int *num)
755 int nr_objs;
756 size_t mgmt_size;
757 size_t slab_size = PAGE_SIZE << gfporder;
760 * The slab management structure can be either off the slab or
761 * on it. For the latter case, the memory allocated for a
762 * slab is used for:
764 * - The struct slab
765 * - One kmem_bufctl_t for each object
766 * - Padding to respect alignment of @align
767 * - @buffer_size bytes for each object
769 * If the slab management structure is off the slab, then the
770 * alignment will already be calculated into the size. Because
771 * the slabs are all pages aligned, the objects will be at the
772 * correct alignment when allocated.
774 if (flags & CFLGS_OFF_SLAB) {
775 mgmt_size = 0;
776 nr_objs = slab_size / buffer_size;
778 if (nr_objs > SLAB_LIMIT)
779 nr_objs = SLAB_LIMIT;
780 } else {
782 * Ignore padding for the initial guess. The padding
783 * is at most @align-1 bytes, and @buffer_size is at
784 * least @align. In the worst case, this result will
785 * be one greater than the number of objects that fit
786 * into the memory allocation when taking the padding
787 * into account.
789 nr_objs = (slab_size - sizeof(struct slab)) /
790 (buffer_size + sizeof(kmem_bufctl_t));
793 * This calculated number will be either the right
794 * amount, or one greater than what we want.
796 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
797 > slab_size)
798 nr_objs--;
800 if (nr_objs > SLAB_LIMIT)
801 nr_objs = SLAB_LIMIT;
803 mgmt_size = slab_mgmt_size(nr_objs, align);
805 *num = nr_objs;
806 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
809 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
811 static void __slab_error(const char *function, struct kmem_cache *cachep,
812 char *msg)
814 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
815 function, cachep->name, msg);
816 dump_stack();
819 #ifdef CONFIG_NUMA
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
826 static DEFINE_PER_CPU(unsigned long, reap_node);
828 static void init_reap_node(int cpu)
830 int node;
832 node = next_node(cpu_to_node(cpu), node_online_map);
833 if (node == MAX_NUMNODES)
834 node = first_node(node_online_map);
836 __get_cpu_var(reap_node) = node;
839 static void next_reap_node(void)
841 int node = __get_cpu_var(reap_node);
844 * Also drain per cpu pages on remote zones
846 if (node != numa_node_id())
847 drain_node_pages(node);
849 node = next_node(node, node_online_map);
850 if (unlikely(node >= MAX_NUMNODES))
851 node = first_node(node_online_map);
852 __get_cpu_var(reap_node) = node;
855 #else
856 #define init_reap_node(cpu) do { } while (0)
857 #define next_reap_node(void) do { } while (0)
858 #endif
861 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
862 * via the workqueue/eventd.
863 * Add the CPU number into the expiration time to minimize the possibility of
864 * the CPUs getting into lockstep and contending for the global cache chain
865 * lock.
867 static void __devinit start_cpu_timer(int cpu)
869 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
872 * When this gets called from do_initcalls via cpucache_init(),
873 * init_workqueues() has already run, so keventd will be setup
874 * at that time.
876 if (keventd_up() && reap_work->func == NULL) {
877 init_reap_node(cpu);
878 INIT_WORK(reap_work, cache_reap, NULL);
879 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
883 static struct array_cache *alloc_arraycache(int node, int entries,
884 int batchcount)
886 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
887 struct array_cache *nc = NULL;
889 nc = kmalloc_node(memsize, GFP_KERNEL, node);
890 if (nc) {
891 nc->avail = 0;
892 nc->limit = entries;
893 nc->batchcount = batchcount;
894 nc->touched = 0;
895 spin_lock_init(&nc->lock);
897 return nc;
900 #ifdef CONFIG_NUMA
901 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
902 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
904 static struct array_cache **alloc_alien_cache(int node, int limit)
906 struct array_cache **ac_ptr;
907 int memsize = sizeof(void *) * MAX_NUMNODES;
908 int i;
910 if (limit > 1)
911 limit = 12;
912 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
913 if (ac_ptr) {
914 for_each_node(i) {
915 if (i == node || !node_online(i)) {
916 ac_ptr[i] = NULL;
917 continue;
919 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
920 if (!ac_ptr[i]) {
921 for (i--; i <= 0; i--)
922 kfree(ac_ptr[i]);
923 kfree(ac_ptr);
924 return NULL;
928 return ac_ptr;
931 static void free_alien_cache(struct array_cache **ac_ptr)
933 int i;
935 if (!ac_ptr)
936 return;
937 for_each_node(i)
938 kfree(ac_ptr[i]);
939 kfree(ac_ptr);
942 static void __drain_alien_cache(struct kmem_cache *cachep,
943 struct array_cache *ac, int node)
945 struct kmem_list3 *rl3 = cachep->nodelists[node];
947 if (ac->avail) {
948 spin_lock(&rl3->list_lock);
949 free_block(cachep, ac->entry, ac->avail, node);
950 ac->avail = 0;
951 spin_unlock(&rl3->list_lock);
956 * Called from cache_reap() to regularly drain alien caches round robin.
958 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
960 int node = __get_cpu_var(reap_node);
962 if (l3->alien) {
963 struct array_cache *ac = l3->alien[node];
964 if (ac && ac->avail) {
965 spin_lock_irq(&ac->lock);
966 __drain_alien_cache(cachep, ac, node);
967 spin_unlock_irq(&ac->lock);
972 static void drain_alien_cache(struct kmem_cache *cachep,
973 struct array_cache **alien)
975 int i = 0;
976 struct array_cache *ac;
977 unsigned long flags;
979 for_each_online_node(i) {
980 ac = alien[i];
981 if (ac) {
982 spin_lock_irqsave(&ac->lock, flags);
983 __drain_alien_cache(cachep, ac, i);
984 spin_unlock_irqrestore(&ac->lock, flags);
988 #else
990 #define drain_alien_cache(cachep, alien) do { } while (0)
991 #define reap_alien(cachep, l3) do { } while (0)
993 static inline struct array_cache **alloc_alien_cache(int node, int limit)
995 return (struct array_cache **) 0x01020304ul;
998 static inline void free_alien_cache(struct array_cache **ac_ptr)
1002 #endif
1004 static int __devinit cpuup_callback(struct notifier_block *nfb,
1005 unsigned long action, void *hcpu)
1007 long cpu = (long)hcpu;
1008 struct kmem_cache *cachep;
1009 struct kmem_list3 *l3 = NULL;
1010 int node = cpu_to_node(cpu);
1011 int memsize = sizeof(struct kmem_list3);
1013 switch (action) {
1014 case CPU_UP_PREPARE:
1015 mutex_lock(&cache_chain_mutex);
1017 * We need to do this right in the beginning since
1018 * alloc_arraycache's are going to use this list.
1019 * kmalloc_node allows us to add the slab to the right
1020 * kmem_list3 and not this cpu's kmem_list3
1023 list_for_each_entry(cachep, &cache_chain, next) {
1025 * Set up the size64 kmemlist for cpu before we can
1026 * begin anything. Make sure some other cpu on this
1027 * node has not already allocated this
1029 if (!cachep->nodelists[node]) {
1030 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1031 if (!l3)
1032 goto bad;
1033 kmem_list3_init(l3);
1034 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1035 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1038 * The l3s don't come and go as CPUs come and
1039 * go. cache_chain_mutex is sufficient
1040 * protection here.
1042 cachep->nodelists[node] = l3;
1045 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1046 cachep->nodelists[node]->free_limit =
1047 (1 + nr_cpus_node(node)) *
1048 cachep->batchcount + cachep->num;
1049 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1053 * Now we can go ahead with allocating the shared arrays and
1054 * array caches
1056 list_for_each_entry(cachep, &cache_chain, next) {
1057 struct array_cache *nc;
1058 struct array_cache *shared;
1059 struct array_cache **alien;
1061 nc = alloc_arraycache(node, cachep->limit,
1062 cachep->batchcount);
1063 if (!nc)
1064 goto bad;
1065 shared = alloc_arraycache(node,
1066 cachep->shared * cachep->batchcount,
1067 0xbaadf00d);
1068 if (!shared)
1069 goto bad;
1071 alien = alloc_alien_cache(node, cachep->limit);
1072 if (!alien)
1073 goto bad;
1074 cachep->array[cpu] = nc;
1075 l3 = cachep->nodelists[node];
1076 BUG_ON(!l3);
1078 spin_lock_irq(&l3->list_lock);
1079 if (!l3->shared) {
1081 * We are serialised from CPU_DEAD or
1082 * CPU_UP_CANCELLED by the cpucontrol lock
1084 l3->shared = shared;
1085 shared = NULL;
1087 #ifdef CONFIG_NUMA
1088 if (!l3->alien) {
1089 l3->alien = alien;
1090 alien = NULL;
1092 #endif
1093 spin_unlock_irq(&l3->list_lock);
1094 kfree(shared);
1095 free_alien_cache(alien);
1097 mutex_unlock(&cache_chain_mutex);
1098 break;
1099 case CPU_ONLINE:
1100 start_cpu_timer(cpu);
1101 break;
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 case CPU_DEAD:
1105 * Even if all the cpus of a node are down, we don't free the
1106 * kmem_list3 of any cache. This to avoid a race between
1107 * cpu_down, and a kmalloc allocation from another cpu for
1108 * memory from the node of the cpu going down. The list3
1109 * structure is usually allocated from kmem_cache_create() and
1110 * gets destroyed at kmem_cache_destroy().
1112 /* fall thru */
1113 case CPU_UP_CANCELED:
1114 mutex_lock(&cache_chain_mutex);
1115 list_for_each_entry(cachep, &cache_chain, next) {
1116 struct array_cache *nc;
1117 struct array_cache *shared;
1118 struct array_cache **alien;
1119 cpumask_t mask;
1121 mask = node_to_cpumask(node);
1122 /* cpu is dead; no one can alloc from it. */
1123 nc = cachep->array[cpu];
1124 cachep->array[cpu] = NULL;
1125 l3 = cachep->nodelists[node];
1127 if (!l3)
1128 goto free_array_cache;
1130 spin_lock_irq(&l3->list_lock);
1132 /* Free limit for this kmem_list3 */
1133 l3->free_limit -= cachep->batchcount;
1134 if (nc)
1135 free_block(cachep, nc->entry, nc->avail, node);
1137 if (!cpus_empty(mask)) {
1138 spin_unlock_irq(&l3->list_lock);
1139 goto free_array_cache;
1142 shared = l3->shared;
1143 if (shared) {
1144 free_block(cachep, l3->shared->entry,
1145 l3->shared->avail, node);
1146 l3->shared = NULL;
1149 alien = l3->alien;
1150 l3->alien = NULL;
1152 spin_unlock_irq(&l3->list_lock);
1154 kfree(shared);
1155 if (alien) {
1156 drain_alien_cache(cachep, alien);
1157 free_alien_cache(alien);
1159 free_array_cache:
1160 kfree(nc);
1163 * In the previous loop, all the objects were freed to
1164 * the respective cache's slabs, now we can go ahead and
1165 * shrink each nodelist to its limit.
1167 list_for_each_entry(cachep, &cache_chain, next) {
1168 l3 = cachep->nodelists[node];
1169 if (!l3)
1170 continue;
1171 spin_lock_irq(&l3->list_lock);
1172 /* free slabs belonging to this node */
1173 __node_shrink(cachep, node);
1174 spin_unlock_irq(&l3->list_lock);
1176 mutex_unlock(&cache_chain_mutex);
1177 break;
1178 #endif
1180 return NOTIFY_OK;
1181 bad:
1182 mutex_unlock(&cache_chain_mutex);
1183 return NOTIFY_BAD;
1186 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1189 * swap the static kmem_list3 with kmalloced memory
1191 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1192 int nodeid)
1194 struct kmem_list3 *ptr;
1196 BUG_ON(cachep->nodelists[nodeid] != list);
1197 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1198 BUG_ON(!ptr);
1200 local_irq_disable();
1201 memcpy(ptr, list, sizeof(struct kmem_list3));
1202 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1203 cachep->nodelists[nodeid] = ptr;
1204 local_irq_enable();
1208 * Initialisation. Called after the page allocator have been initialised and
1209 * before smp_init().
1211 void __init kmem_cache_init(void)
1213 size_t left_over;
1214 struct cache_sizes *sizes;
1215 struct cache_names *names;
1216 int i;
1217 int order;
1219 for (i = 0; i < NUM_INIT_LISTS; i++) {
1220 kmem_list3_init(&initkmem_list3[i]);
1221 if (i < MAX_NUMNODES)
1222 cache_cache.nodelists[i] = NULL;
1226 * Fragmentation resistance on low memory - only use bigger
1227 * page orders on machines with more than 32MB of memory.
1229 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1230 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1232 /* Bootstrap is tricky, because several objects are allocated
1233 * from caches that do not exist yet:
1234 * 1) initialize the cache_cache cache: it contains the struct
1235 * kmem_cache structures of all caches, except cache_cache itself:
1236 * cache_cache is statically allocated.
1237 * Initially an __init data area is used for the head array and the
1238 * kmem_list3 structures, it's replaced with a kmalloc allocated
1239 * array at the end of the bootstrap.
1240 * 2) Create the first kmalloc cache.
1241 * The struct kmem_cache for the new cache is allocated normally.
1242 * An __init data area is used for the head array.
1243 * 3) Create the remaining kmalloc caches, with minimally sized
1244 * head arrays.
1245 * 4) Replace the __init data head arrays for cache_cache and the first
1246 * kmalloc cache with kmalloc allocated arrays.
1247 * 5) Replace the __init data for kmem_list3 for cache_cache and
1248 * the other cache's with kmalloc allocated memory.
1249 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1252 /* 1) create the cache_cache */
1253 INIT_LIST_HEAD(&cache_chain);
1254 list_add(&cache_cache.next, &cache_chain);
1255 cache_cache.colour_off = cache_line_size();
1256 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1257 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1259 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1260 cache_line_size());
1262 for (order = 0; order < MAX_ORDER; order++) {
1263 cache_estimate(order, cache_cache.buffer_size,
1264 cache_line_size(), 0, &left_over, &cache_cache.num);
1265 if (cache_cache.num)
1266 break;
1268 if (!cache_cache.num)
1269 BUG();
1270 cache_cache.gfporder = order;
1271 cache_cache.colour = left_over / cache_cache.colour_off;
1272 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1273 sizeof(struct slab), cache_line_size());
1275 /* 2+3) create the kmalloc caches */
1276 sizes = malloc_sizes;
1277 names = cache_names;
1280 * Initialize the caches that provide memory for the array cache and the
1281 * kmem_list3 structures first. Without this, further allocations will
1282 * bug.
1285 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1286 sizes[INDEX_AC].cs_size,
1287 ARCH_KMALLOC_MINALIGN,
1288 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1289 NULL, NULL);
1291 if (INDEX_AC != INDEX_L3) {
1292 sizes[INDEX_L3].cs_cachep =
1293 kmem_cache_create(names[INDEX_L3].name,
1294 sizes[INDEX_L3].cs_size,
1295 ARCH_KMALLOC_MINALIGN,
1296 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1297 NULL, NULL);
1300 while (sizes->cs_size != ULONG_MAX) {
1302 * For performance, all the general caches are L1 aligned.
1303 * This should be particularly beneficial on SMP boxes, as it
1304 * eliminates "false sharing".
1305 * Note for systems short on memory removing the alignment will
1306 * allow tighter packing of the smaller caches.
1308 if (!sizes->cs_cachep) {
1309 sizes->cs_cachep = kmem_cache_create(names->name,
1310 sizes->cs_size,
1311 ARCH_KMALLOC_MINALIGN,
1312 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1313 NULL, NULL);
1316 /* Inc off-slab bufctl limit until the ceiling is hit. */
1317 if (!(OFF_SLAB(sizes->cs_cachep))) {
1318 offslab_limit = sizes->cs_size - sizeof(struct slab);
1319 offslab_limit /= sizeof(kmem_bufctl_t);
1322 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1323 sizes->cs_size,
1324 ARCH_KMALLOC_MINALIGN,
1325 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1326 SLAB_PANIC,
1327 NULL, NULL);
1328 sizes++;
1329 names++;
1331 /* 4) Replace the bootstrap head arrays */
1333 void *ptr;
1335 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1337 local_irq_disable();
1338 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1339 memcpy(ptr, cpu_cache_get(&cache_cache),
1340 sizeof(struct arraycache_init));
1341 cache_cache.array[smp_processor_id()] = ptr;
1342 local_irq_enable();
1344 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1346 local_irq_disable();
1347 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1348 != &initarray_generic.cache);
1349 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1350 sizeof(struct arraycache_init));
1351 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1352 ptr;
1353 local_irq_enable();
1355 /* 5) Replace the bootstrap kmem_list3's */
1357 int node;
1358 /* Replace the static kmem_list3 structures for the boot cpu */
1359 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1360 numa_node_id());
1362 for_each_online_node(node) {
1363 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1364 &initkmem_list3[SIZE_AC + node], node);
1366 if (INDEX_AC != INDEX_L3) {
1367 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1368 &initkmem_list3[SIZE_L3 + node],
1369 node);
1374 /* 6) resize the head arrays to their final sizes */
1376 struct kmem_cache *cachep;
1377 mutex_lock(&cache_chain_mutex);
1378 list_for_each_entry(cachep, &cache_chain, next)
1379 enable_cpucache(cachep);
1380 mutex_unlock(&cache_chain_mutex);
1383 /* Done! */
1384 g_cpucache_up = FULL;
1387 * Register a cpu startup notifier callback that initializes
1388 * cpu_cache_get for all new cpus
1390 register_cpu_notifier(&cpucache_notifier);
1393 * The reap timers are started later, with a module init call: That part
1394 * of the kernel is not yet operational.
1398 static int __init cpucache_init(void)
1400 int cpu;
1403 * Register the timers that return unneeded pages to the page allocator
1405 for_each_online_cpu(cpu)
1406 start_cpu_timer(cpu);
1407 return 0;
1409 __initcall(cpucache_init);
1412 * Interface to system's page allocator. No need to hold the cache-lock.
1414 * If we requested dmaable memory, we will get it. Even if we
1415 * did not request dmaable memory, we might get it, but that
1416 * would be relatively rare and ignorable.
1418 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1420 struct page *page;
1421 void *addr;
1422 int i;
1424 flags |= cachep->gfpflags;
1425 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1426 if (!page)
1427 return NULL;
1428 addr = page_address(page);
1430 i = (1 << cachep->gfporder);
1431 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432 atomic_add(i, &slab_reclaim_pages);
1433 add_page_state(nr_slab, i);
1434 while (i--) {
1435 __SetPageSlab(page);
1436 page++;
1438 return addr;
1442 * Interface to system's page release.
1444 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1446 unsigned long i = (1 << cachep->gfporder);
1447 struct page *page = virt_to_page(addr);
1448 const unsigned long nr_freed = i;
1450 while (i--) {
1451 BUG_ON(!PageSlab(page));
1452 __ClearPageSlab(page);
1453 page++;
1455 sub_page_state(nr_slab, nr_freed);
1456 if (current->reclaim_state)
1457 current->reclaim_state->reclaimed_slab += nr_freed;
1458 free_pages((unsigned long)addr, cachep->gfporder);
1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1463 static void kmem_rcu_free(struct rcu_head *head)
1465 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1466 struct kmem_cache *cachep = slab_rcu->cachep;
1468 kmem_freepages(cachep, slab_rcu->addr);
1469 if (OFF_SLAB(cachep))
1470 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1473 #if DEBUG
1475 #ifdef CONFIG_DEBUG_PAGEALLOC
1476 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1477 unsigned long caller)
1479 int size = obj_size(cachep);
1481 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1483 if (size < 5 * sizeof(unsigned long))
1484 return;
1486 *addr++ = 0x12345678;
1487 *addr++ = caller;
1488 *addr++ = smp_processor_id();
1489 size -= 3 * sizeof(unsigned long);
1491 unsigned long *sptr = &caller;
1492 unsigned long svalue;
1494 while (!kstack_end(sptr)) {
1495 svalue = *sptr++;
1496 if (kernel_text_address(svalue)) {
1497 *addr++ = svalue;
1498 size -= sizeof(unsigned long);
1499 if (size <= sizeof(unsigned long))
1500 break;
1505 *addr++ = 0x87654321;
1507 #endif
1509 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1511 int size = obj_size(cachep);
1512 addr = &((char *)addr)[obj_offset(cachep)];
1514 memset(addr, val, size);
1515 *(unsigned char *)(addr + size - 1) = POISON_END;
1518 static void dump_line(char *data, int offset, int limit)
1520 int i;
1521 printk(KERN_ERR "%03x:", offset);
1522 for (i = 0; i < limit; i++)
1523 printk(" %02x", (unsigned char)data[offset + i]);
1524 printk("\n");
1526 #endif
1528 #if DEBUG
1530 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1532 int i, size;
1533 char *realobj;
1535 if (cachep->flags & SLAB_RED_ZONE) {
1536 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1537 *dbg_redzone1(cachep, objp),
1538 *dbg_redzone2(cachep, objp));
1541 if (cachep->flags & SLAB_STORE_USER) {
1542 printk(KERN_ERR "Last user: [<%p>]",
1543 *dbg_userword(cachep, objp));
1544 print_symbol("(%s)",
1545 (unsigned long)*dbg_userword(cachep, objp));
1546 printk("\n");
1548 realobj = (char *)objp + obj_offset(cachep);
1549 size = obj_size(cachep);
1550 for (i = 0; i < size && lines; i += 16, lines--) {
1551 int limit;
1552 limit = 16;
1553 if (i + limit > size)
1554 limit = size - i;
1555 dump_line(realobj, i, limit);
1559 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1561 char *realobj;
1562 int size, i;
1563 int lines = 0;
1565 realobj = (char *)objp + obj_offset(cachep);
1566 size = obj_size(cachep);
1568 for (i = 0; i < size; i++) {
1569 char exp = POISON_FREE;
1570 if (i == size - 1)
1571 exp = POISON_END;
1572 if (realobj[i] != exp) {
1573 int limit;
1574 /* Mismatch ! */
1575 /* Print header */
1576 if (lines == 0) {
1577 printk(KERN_ERR
1578 "Slab corruption: start=%p, len=%d\n",
1579 realobj, size);
1580 print_objinfo(cachep, objp, 0);
1582 /* Hexdump the affected line */
1583 i = (i / 16) * 16;
1584 limit = 16;
1585 if (i + limit > size)
1586 limit = size - i;
1587 dump_line(realobj, i, limit);
1588 i += 16;
1589 lines++;
1590 /* Limit to 5 lines */
1591 if (lines > 5)
1592 break;
1595 if (lines != 0) {
1596 /* Print some data about the neighboring objects, if they
1597 * exist:
1599 struct slab *slabp = virt_to_slab(objp);
1600 unsigned int objnr;
1602 objnr = obj_to_index(cachep, slabp, objp);
1603 if (objnr) {
1604 objp = index_to_obj(cachep, slabp, objnr - 1);
1605 realobj = (char *)objp + obj_offset(cachep);
1606 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1607 realobj, size);
1608 print_objinfo(cachep, objp, 2);
1610 if (objnr + 1 < cachep->num) {
1611 objp = index_to_obj(cachep, slabp, objnr + 1);
1612 realobj = (char *)objp + obj_offset(cachep);
1613 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1614 realobj, size);
1615 print_objinfo(cachep, objp, 2);
1619 #endif
1621 #if DEBUG
1623 * slab_destroy_objs - destroy a slab and its objects
1624 * @cachep: cache pointer being destroyed
1625 * @slabp: slab pointer being destroyed
1627 * Call the registered destructor for each object in a slab that is being
1628 * destroyed.
1630 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1632 int i;
1633 for (i = 0; i < cachep->num; i++) {
1634 void *objp = index_to_obj(cachep, slabp, i);
1636 if (cachep->flags & SLAB_POISON) {
1637 #ifdef CONFIG_DEBUG_PAGEALLOC
1638 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1639 OFF_SLAB(cachep))
1640 kernel_map_pages(virt_to_page(objp),
1641 cachep->buffer_size / PAGE_SIZE, 1);
1642 else
1643 check_poison_obj(cachep, objp);
1644 #else
1645 check_poison_obj(cachep, objp);
1646 #endif
1648 if (cachep->flags & SLAB_RED_ZONE) {
1649 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1650 slab_error(cachep, "start of a freed object "
1651 "was overwritten");
1652 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1653 slab_error(cachep, "end of a freed object "
1654 "was overwritten");
1656 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1657 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1660 #else
1661 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1663 if (cachep->dtor) {
1664 int i;
1665 for (i = 0; i < cachep->num; i++) {
1666 void *objp = index_to_obj(cachep, slabp, i);
1667 (cachep->dtor) (objp, cachep, 0);
1671 #endif
1674 * slab_destroy - destroy and release all objects in a slab
1675 * @cachep: cache pointer being destroyed
1676 * @slabp: slab pointer being destroyed
1678 * Destroy all the objs in a slab, and release the mem back to the system.
1679 * Before calling the slab must have been unlinked from the cache. The
1680 * cache-lock is not held/needed.
1682 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1684 void *addr = slabp->s_mem - slabp->colouroff;
1686 slab_destroy_objs(cachep, slabp);
1687 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1688 struct slab_rcu *slab_rcu;
1690 slab_rcu = (struct slab_rcu *)slabp;
1691 slab_rcu->cachep = cachep;
1692 slab_rcu->addr = addr;
1693 call_rcu(&slab_rcu->head, kmem_rcu_free);
1694 } else {
1695 kmem_freepages(cachep, addr);
1696 if (OFF_SLAB(cachep))
1697 kmem_cache_free(cachep->slabp_cache, slabp);
1702 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1703 * size of kmem_list3.
1705 static void set_up_list3s(struct kmem_cache *cachep, int index)
1707 int node;
1709 for_each_online_node(node) {
1710 cachep->nodelists[node] = &initkmem_list3[index + node];
1711 cachep->nodelists[node]->next_reap = jiffies +
1712 REAPTIMEOUT_LIST3 +
1713 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1718 * calculate_slab_order - calculate size (page order) of slabs
1719 * @cachep: pointer to the cache that is being created
1720 * @size: size of objects to be created in this cache.
1721 * @align: required alignment for the objects.
1722 * @flags: slab allocation flags
1724 * Also calculates the number of objects per slab.
1726 * This could be made much more intelligent. For now, try to avoid using
1727 * high order pages for slabs. When the gfp() functions are more friendly
1728 * towards high-order requests, this should be changed.
1730 static size_t calculate_slab_order(struct kmem_cache *cachep,
1731 size_t size, size_t align, unsigned long flags)
1733 size_t left_over = 0;
1734 int gfporder;
1736 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1737 unsigned int num;
1738 size_t remainder;
1740 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1741 if (!num)
1742 continue;
1744 /* More than offslab_limit objects will cause problems */
1745 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1746 break;
1748 /* Found something acceptable - save it away */
1749 cachep->num = num;
1750 cachep->gfporder = gfporder;
1751 left_over = remainder;
1754 * A VFS-reclaimable slab tends to have most allocations
1755 * as GFP_NOFS and we really don't want to have to be allocating
1756 * higher-order pages when we are unable to shrink dcache.
1758 if (flags & SLAB_RECLAIM_ACCOUNT)
1759 break;
1762 * Large number of objects is good, but very large slabs are
1763 * currently bad for the gfp()s.
1765 if (gfporder >= slab_break_gfp_order)
1766 break;
1769 * Acceptable internal fragmentation?
1771 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1772 break;
1774 return left_over;
1777 static void setup_cpu_cache(struct kmem_cache *cachep)
1779 if (g_cpucache_up == FULL) {
1780 enable_cpucache(cachep);
1781 return;
1783 if (g_cpucache_up == NONE) {
1785 * Note: the first kmem_cache_create must create the cache
1786 * that's used by kmalloc(24), otherwise the creation of
1787 * further caches will BUG().
1789 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1792 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1793 * the first cache, then we need to set up all its list3s,
1794 * otherwise the creation of further caches will BUG().
1796 set_up_list3s(cachep, SIZE_AC);
1797 if (INDEX_AC == INDEX_L3)
1798 g_cpucache_up = PARTIAL_L3;
1799 else
1800 g_cpucache_up = PARTIAL_AC;
1801 } else {
1802 cachep->array[smp_processor_id()] =
1803 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1805 if (g_cpucache_up == PARTIAL_AC) {
1806 set_up_list3s(cachep, SIZE_L3);
1807 g_cpucache_up = PARTIAL_L3;
1808 } else {
1809 int node;
1810 for_each_online_node(node) {
1811 cachep->nodelists[node] =
1812 kmalloc_node(sizeof(struct kmem_list3),
1813 GFP_KERNEL, node);
1814 BUG_ON(!cachep->nodelists[node]);
1815 kmem_list3_init(cachep->nodelists[node]);
1819 cachep->nodelists[numa_node_id()]->next_reap =
1820 jiffies + REAPTIMEOUT_LIST3 +
1821 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1823 cpu_cache_get(cachep)->avail = 0;
1824 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1825 cpu_cache_get(cachep)->batchcount = 1;
1826 cpu_cache_get(cachep)->touched = 0;
1827 cachep->batchcount = 1;
1828 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1832 * kmem_cache_create - Create a cache.
1833 * @name: A string which is used in /proc/slabinfo to identify this cache.
1834 * @size: The size of objects to be created in this cache.
1835 * @align: The required alignment for the objects.
1836 * @flags: SLAB flags
1837 * @ctor: A constructor for the objects.
1838 * @dtor: A destructor for the objects.
1840 * Returns a ptr to the cache on success, NULL on failure.
1841 * Cannot be called within a int, but can be interrupted.
1842 * The @ctor is run when new pages are allocated by the cache
1843 * and the @dtor is run before the pages are handed back.
1845 * @name must be valid until the cache is destroyed. This implies that
1846 * the module calling this has to destroy the cache before getting unloaded.
1848 * The flags are
1850 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1851 * to catch references to uninitialised memory.
1853 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1854 * for buffer overruns.
1856 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1857 * cacheline. This can be beneficial if you're counting cycles as closely
1858 * as davem.
1860 struct kmem_cache *
1861 kmem_cache_create (const char *name, size_t size, size_t align,
1862 unsigned long flags,
1863 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1864 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1866 size_t left_over, slab_size, ralign;
1867 struct kmem_cache *cachep = NULL;
1868 struct list_head *p;
1871 * Sanity checks... these are all serious usage bugs.
1873 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1874 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1875 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1876 name);
1877 BUG();
1881 * Prevent CPUs from coming and going.
1882 * lock_cpu_hotplug() nests outside cache_chain_mutex
1884 lock_cpu_hotplug();
1886 mutex_lock(&cache_chain_mutex);
1888 list_for_each(p, &cache_chain) {
1889 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1890 mm_segment_t old_fs = get_fs();
1891 char tmp;
1892 int res;
1895 * This happens when the module gets unloaded and doesn't
1896 * destroy its slab cache and no-one else reuses the vmalloc
1897 * area of the module. Print a warning.
1899 set_fs(KERNEL_DS);
1900 res = __get_user(tmp, pc->name);
1901 set_fs(old_fs);
1902 if (res) {
1903 printk("SLAB: cache with size %d has lost its name\n",
1904 pc->buffer_size);
1905 continue;
1908 if (!strcmp(pc->name, name)) {
1909 printk("kmem_cache_create: duplicate cache %s\n", name);
1910 dump_stack();
1911 goto oops;
1915 #if DEBUG
1916 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1917 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1918 /* No constructor, but inital state check requested */
1919 printk(KERN_ERR "%s: No con, but init state check "
1920 "requested - %s\n", __FUNCTION__, name);
1921 flags &= ~SLAB_DEBUG_INITIAL;
1923 #if FORCED_DEBUG
1925 * Enable redzoning and last user accounting, except for caches with
1926 * large objects, if the increased size would increase the object size
1927 * above the next power of two: caches with object sizes just above a
1928 * power of two have a significant amount of internal fragmentation.
1930 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1931 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1932 if (!(flags & SLAB_DESTROY_BY_RCU))
1933 flags |= SLAB_POISON;
1934 #endif
1935 if (flags & SLAB_DESTROY_BY_RCU)
1936 BUG_ON(flags & SLAB_POISON);
1937 #endif
1938 if (flags & SLAB_DESTROY_BY_RCU)
1939 BUG_ON(dtor);
1942 * Always checks flags, a caller might be expecting debug support which
1943 * isn't available.
1945 if (flags & ~CREATE_MASK)
1946 BUG();
1949 * Check that size is in terms of words. This is needed to avoid
1950 * unaligned accesses for some archs when redzoning is used, and makes
1951 * sure any on-slab bufctl's are also correctly aligned.
1953 if (size & (BYTES_PER_WORD - 1)) {
1954 size += (BYTES_PER_WORD - 1);
1955 size &= ~(BYTES_PER_WORD - 1);
1958 /* calculate the final buffer alignment: */
1960 /* 1) arch recommendation: can be overridden for debug */
1961 if (flags & SLAB_HWCACHE_ALIGN) {
1963 * Default alignment: as specified by the arch code. Except if
1964 * an object is really small, then squeeze multiple objects into
1965 * one cacheline.
1967 ralign = cache_line_size();
1968 while (size <= ralign / 2)
1969 ralign /= 2;
1970 } else {
1971 ralign = BYTES_PER_WORD;
1973 /* 2) arch mandated alignment: disables debug if necessary */
1974 if (ralign < ARCH_SLAB_MINALIGN) {
1975 ralign = ARCH_SLAB_MINALIGN;
1976 if (ralign > BYTES_PER_WORD)
1977 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1979 /* 3) caller mandated alignment: disables debug if necessary */
1980 if (ralign < align) {
1981 ralign = align;
1982 if (ralign > BYTES_PER_WORD)
1983 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1986 * 4) Store it. Note that the debug code below can reduce
1987 * the alignment to BYTES_PER_WORD.
1989 align = ralign;
1991 /* Get cache's description obj. */
1992 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1993 if (!cachep)
1994 goto oops;
1995 memset(cachep, 0, sizeof(struct kmem_cache));
1997 #if DEBUG
1998 cachep->obj_size = size;
2000 if (flags & SLAB_RED_ZONE) {
2001 /* redzoning only works with word aligned caches */
2002 align = BYTES_PER_WORD;
2004 /* add space for red zone words */
2005 cachep->obj_offset += BYTES_PER_WORD;
2006 size += 2 * BYTES_PER_WORD;
2008 if (flags & SLAB_STORE_USER) {
2009 /* user store requires word alignment and
2010 * one word storage behind the end of the real
2011 * object.
2013 align = BYTES_PER_WORD;
2014 size += BYTES_PER_WORD;
2016 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2017 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2018 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2019 cachep->obj_offset += PAGE_SIZE - size;
2020 size = PAGE_SIZE;
2022 #endif
2023 #endif
2025 /* Determine if the slab management is 'on' or 'off' slab. */
2026 if (size >= (PAGE_SIZE >> 3))
2028 * Size is large, assume best to place the slab management obj
2029 * off-slab (should allow better packing of objs).
2031 flags |= CFLGS_OFF_SLAB;
2033 size = ALIGN(size, align);
2035 left_over = calculate_slab_order(cachep, size, align, flags);
2037 if (!cachep->num) {
2038 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2039 kmem_cache_free(&cache_cache, cachep);
2040 cachep = NULL;
2041 goto oops;
2043 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2044 + sizeof(struct slab), align);
2047 * If the slab has been placed off-slab, and we have enough space then
2048 * move it on-slab. This is at the expense of any extra colouring.
2050 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2051 flags &= ~CFLGS_OFF_SLAB;
2052 left_over -= slab_size;
2055 if (flags & CFLGS_OFF_SLAB) {
2056 /* really off slab. No need for manual alignment */
2057 slab_size =
2058 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2061 cachep->colour_off = cache_line_size();
2062 /* Offset must be a multiple of the alignment. */
2063 if (cachep->colour_off < align)
2064 cachep->colour_off = align;
2065 cachep->colour = left_over / cachep->colour_off;
2066 cachep->slab_size = slab_size;
2067 cachep->flags = flags;
2068 cachep->gfpflags = 0;
2069 if (flags & SLAB_CACHE_DMA)
2070 cachep->gfpflags |= GFP_DMA;
2071 cachep->buffer_size = size;
2073 if (flags & CFLGS_OFF_SLAB)
2074 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2075 cachep->ctor = ctor;
2076 cachep->dtor = dtor;
2077 cachep->name = name;
2080 setup_cpu_cache(cachep);
2082 /* cache setup completed, link it into the list */
2083 list_add(&cachep->next, &cache_chain);
2084 oops:
2085 if (!cachep && (flags & SLAB_PANIC))
2086 panic("kmem_cache_create(): failed to create slab `%s'\n",
2087 name);
2088 mutex_unlock(&cache_chain_mutex);
2089 unlock_cpu_hotplug();
2090 return cachep;
2092 EXPORT_SYMBOL(kmem_cache_create);
2094 #if DEBUG
2095 static void check_irq_off(void)
2097 BUG_ON(!irqs_disabled());
2100 static void check_irq_on(void)
2102 BUG_ON(irqs_disabled());
2105 static void check_spinlock_acquired(struct kmem_cache *cachep)
2107 #ifdef CONFIG_SMP
2108 check_irq_off();
2109 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2110 #endif
2113 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2115 #ifdef CONFIG_SMP
2116 check_irq_off();
2117 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2118 #endif
2121 #else
2122 #define check_irq_off() do { } while(0)
2123 #define check_irq_on() do { } while(0)
2124 #define check_spinlock_acquired(x) do { } while(0)
2125 #define check_spinlock_acquired_node(x, y) do { } while(0)
2126 #endif
2128 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2129 struct array_cache *ac,
2130 int force, int node);
2132 static void do_drain(void *arg)
2134 struct kmem_cache *cachep = arg;
2135 struct array_cache *ac;
2136 int node = numa_node_id();
2138 check_irq_off();
2139 ac = cpu_cache_get(cachep);
2140 spin_lock(&cachep->nodelists[node]->list_lock);
2141 free_block(cachep, ac->entry, ac->avail, node);
2142 spin_unlock(&cachep->nodelists[node]->list_lock);
2143 ac->avail = 0;
2146 static void drain_cpu_caches(struct kmem_cache *cachep)
2148 struct kmem_list3 *l3;
2149 int node;
2151 on_each_cpu(do_drain, cachep, 1, 1);
2152 check_irq_on();
2153 for_each_online_node(node) {
2154 l3 = cachep->nodelists[node];
2155 if (l3) {
2156 drain_array(cachep, l3, l3->shared, 1, node);
2157 if (l3->alien)
2158 drain_alien_cache(cachep, l3->alien);
2163 static int __node_shrink(struct kmem_cache *cachep, int node)
2165 struct slab *slabp;
2166 struct kmem_list3 *l3 = cachep->nodelists[node];
2167 int ret;
2169 for (;;) {
2170 struct list_head *p;
2172 p = l3->slabs_free.prev;
2173 if (p == &l3->slabs_free)
2174 break;
2176 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2177 #if DEBUG
2178 if (slabp->inuse)
2179 BUG();
2180 #endif
2181 list_del(&slabp->list);
2183 l3->free_objects -= cachep->num;
2184 spin_unlock_irq(&l3->list_lock);
2185 slab_destroy(cachep, slabp);
2186 spin_lock_irq(&l3->list_lock);
2188 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2189 return ret;
2192 static int __cache_shrink(struct kmem_cache *cachep)
2194 int ret = 0, i = 0;
2195 struct kmem_list3 *l3;
2197 drain_cpu_caches(cachep);
2199 check_irq_on();
2200 for_each_online_node(i) {
2201 l3 = cachep->nodelists[i];
2202 if (l3) {
2203 spin_lock_irq(&l3->list_lock);
2204 ret += __node_shrink(cachep, i);
2205 spin_unlock_irq(&l3->list_lock);
2208 return (ret ? 1 : 0);
2212 * kmem_cache_shrink - Shrink a cache.
2213 * @cachep: The cache to shrink.
2215 * Releases as many slabs as possible for a cache.
2216 * To help debugging, a zero exit status indicates all slabs were released.
2218 int kmem_cache_shrink(struct kmem_cache *cachep)
2220 if (!cachep || in_interrupt())
2221 BUG();
2223 return __cache_shrink(cachep);
2225 EXPORT_SYMBOL(kmem_cache_shrink);
2228 * kmem_cache_destroy - delete a cache
2229 * @cachep: the cache to destroy
2231 * Remove a struct kmem_cache object from the slab cache.
2232 * Returns 0 on success.
2234 * It is expected this function will be called by a module when it is
2235 * unloaded. This will remove the cache completely, and avoid a duplicate
2236 * cache being allocated each time a module is loaded and unloaded, if the
2237 * module doesn't have persistent in-kernel storage across loads and unloads.
2239 * The cache must be empty before calling this function.
2241 * The caller must guarantee that noone will allocate memory from the cache
2242 * during the kmem_cache_destroy().
2244 int kmem_cache_destroy(struct kmem_cache *cachep)
2246 int i;
2247 struct kmem_list3 *l3;
2249 if (!cachep || in_interrupt())
2250 BUG();
2252 /* Don't let CPUs to come and go */
2253 lock_cpu_hotplug();
2255 /* Find the cache in the chain of caches. */
2256 mutex_lock(&cache_chain_mutex);
2258 * the chain is never empty, cache_cache is never destroyed
2260 list_del(&cachep->next);
2261 mutex_unlock(&cache_chain_mutex);
2263 if (__cache_shrink(cachep)) {
2264 slab_error(cachep, "Can't free all objects");
2265 mutex_lock(&cache_chain_mutex);
2266 list_add(&cachep->next, &cache_chain);
2267 mutex_unlock(&cache_chain_mutex);
2268 unlock_cpu_hotplug();
2269 return 1;
2272 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2273 synchronize_rcu();
2275 for_each_online_cpu(i)
2276 kfree(cachep->array[i]);
2278 /* NUMA: free the list3 structures */
2279 for_each_online_node(i) {
2280 l3 = cachep->nodelists[i];
2281 if (l3) {
2282 kfree(l3->shared);
2283 free_alien_cache(l3->alien);
2284 kfree(l3);
2287 kmem_cache_free(&cache_cache, cachep);
2288 unlock_cpu_hotplug();
2289 return 0;
2291 EXPORT_SYMBOL(kmem_cache_destroy);
2293 /* Get the memory for a slab management obj. */
2294 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2295 int colour_off, gfp_t local_flags)
2297 struct slab *slabp;
2299 if (OFF_SLAB(cachep)) {
2300 /* Slab management obj is off-slab. */
2301 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2302 if (!slabp)
2303 return NULL;
2304 } else {
2305 slabp = objp + colour_off;
2306 colour_off += cachep->slab_size;
2308 slabp->inuse = 0;
2309 slabp->colouroff = colour_off;
2310 slabp->s_mem = objp + colour_off;
2311 return slabp;
2314 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2316 return (kmem_bufctl_t *) (slabp + 1);
2319 static void cache_init_objs(struct kmem_cache *cachep,
2320 struct slab *slabp, unsigned long ctor_flags)
2322 int i;
2324 for (i = 0; i < cachep->num; i++) {
2325 void *objp = index_to_obj(cachep, slabp, i);
2326 #if DEBUG
2327 /* need to poison the objs? */
2328 if (cachep->flags & SLAB_POISON)
2329 poison_obj(cachep, objp, POISON_FREE);
2330 if (cachep->flags & SLAB_STORE_USER)
2331 *dbg_userword(cachep, objp) = NULL;
2333 if (cachep->flags & SLAB_RED_ZONE) {
2334 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2335 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2338 * Constructors are not allowed to allocate memory from the same
2339 * cache which they are a constructor for. Otherwise, deadlock.
2340 * They must also be threaded.
2342 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2343 cachep->ctor(objp + obj_offset(cachep), cachep,
2344 ctor_flags);
2346 if (cachep->flags & SLAB_RED_ZONE) {
2347 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2348 slab_error(cachep, "constructor overwrote the"
2349 " end of an object");
2350 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2351 slab_error(cachep, "constructor overwrote the"
2352 " start of an object");
2354 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2355 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2356 kernel_map_pages(virt_to_page(objp),
2357 cachep->buffer_size / PAGE_SIZE, 0);
2358 #else
2359 if (cachep->ctor)
2360 cachep->ctor(objp, cachep, ctor_flags);
2361 #endif
2362 slab_bufctl(slabp)[i] = i + 1;
2364 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2365 slabp->free = 0;
2368 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2370 if (flags & SLAB_DMA)
2371 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2372 else
2373 BUG_ON(cachep->gfpflags & GFP_DMA);
2376 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2377 int nodeid)
2379 void *objp = index_to_obj(cachep, slabp, slabp->free);
2380 kmem_bufctl_t next;
2382 slabp->inuse++;
2383 next = slab_bufctl(slabp)[slabp->free];
2384 #if DEBUG
2385 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2386 WARN_ON(slabp->nodeid != nodeid);
2387 #endif
2388 slabp->free = next;
2390 return objp;
2393 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2394 void *objp, int nodeid)
2396 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2398 #if DEBUG
2399 /* Verify that the slab belongs to the intended node */
2400 WARN_ON(slabp->nodeid != nodeid);
2402 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2403 printk(KERN_ERR "slab: double free detected in cache "
2404 "'%s', objp %p\n", cachep->name, objp);
2405 BUG();
2407 #endif
2408 slab_bufctl(slabp)[objnr] = slabp->free;
2409 slabp->free = objnr;
2410 slabp->inuse--;
2413 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2414 void *objp)
2416 int i;
2417 struct page *page;
2419 /* Nasty!!!!!! I hope this is OK. */
2420 page = virt_to_page(objp);
2422 i = 1;
2423 if (likely(!PageCompound(page)))
2424 i <<= cachep->gfporder;
2425 do {
2426 page_set_cache(page, cachep);
2427 page_set_slab(page, slabp);
2428 page++;
2429 } while (--i);
2433 * Grow (by 1) the number of slabs within a cache. This is called by
2434 * kmem_cache_alloc() when there are no active objs left in a cache.
2436 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2438 struct slab *slabp;
2439 void *objp;
2440 size_t offset;
2441 gfp_t local_flags;
2442 unsigned long ctor_flags;
2443 struct kmem_list3 *l3;
2446 * Be lazy and only check for valid flags here, keeping it out of the
2447 * critical path in kmem_cache_alloc().
2449 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2450 BUG();
2451 if (flags & SLAB_NO_GROW)
2452 return 0;
2454 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2455 local_flags = (flags & SLAB_LEVEL_MASK);
2456 if (!(local_flags & __GFP_WAIT))
2458 * Not allowed to sleep. Need to tell a constructor about
2459 * this - it might need to know...
2461 ctor_flags |= SLAB_CTOR_ATOMIC;
2463 /* Take the l3 list lock to change the colour_next on this node */
2464 check_irq_off();
2465 l3 = cachep->nodelists[nodeid];
2466 spin_lock(&l3->list_lock);
2468 /* Get colour for the slab, and cal the next value. */
2469 offset = l3->colour_next;
2470 l3->colour_next++;
2471 if (l3->colour_next >= cachep->colour)
2472 l3->colour_next = 0;
2473 spin_unlock(&l3->list_lock);
2475 offset *= cachep->colour_off;
2477 if (local_flags & __GFP_WAIT)
2478 local_irq_enable();
2481 * The test for missing atomic flag is performed here, rather than
2482 * the more obvious place, simply to reduce the critical path length
2483 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2484 * will eventually be caught here (where it matters).
2486 kmem_flagcheck(cachep, flags);
2489 * Get mem for the objs. Attempt to allocate a physical page from
2490 * 'nodeid'.
2492 objp = kmem_getpages(cachep, flags, nodeid);
2493 if (!objp)
2494 goto failed;
2496 /* Get slab management. */
2497 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2498 if (!slabp)
2499 goto opps1;
2501 slabp->nodeid = nodeid;
2502 set_slab_attr(cachep, slabp, objp);
2504 cache_init_objs(cachep, slabp, ctor_flags);
2506 if (local_flags & __GFP_WAIT)
2507 local_irq_disable();
2508 check_irq_off();
2509 spin_lock(&l3->list_lock);
2511 /* Make slab active. */
2512 list_add_tail(&slabp->list, &(l3->slabs_free));
2513 STATS_INC_GROWN(cachep);
2514 l3->free_objects += cachep->num;
2515 spin_unlock(&l3->list_lock);
2516 return 1;
2517 opps1:
2518 kmem_freepages(cachep, objp);
2519 failed:
2520 if (local_flags & __GFP_WAIT)
2521 local_irq_disable();
2522 return 0;
2525 #if DEBUG
2528 * Perform extra freeing checks:
2529 * - detect bad pointers.
2530 * - POISON/RED_ZONE checking
2531 * - destructor calls, for caches with POISON+dtor
2533 static void kfree_debugcheck(const void *objp)
2535 struct page *page;
2537 if (!virt_addr_valid(objp)) {
2538 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2539 (unsigned long)objp);
2540 BUG();
2542 page = virt_to_page(objp);
2543 if (!PageSlab(page)) {
2544 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2545 (unsigned long)objp);
2546 BUG();
2550 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2551 void *caller)
2553 struct page *page;
2554 unsigned int objnr;
2555 struct slab *slabp;
2557 objp -= obj_offset(cachep);
2558 kfree_debugcheck(objp);
2559 page = virt_to_page(objp);
2561 if (page_get_cache(page) != cachep) {
2562 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2563 "cache %p, got %p\n",
2564 page_get_cache(page), cachep);
2565 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2566 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2567 page_get_cache(page)->name);
2568 WARN_ON(1);
2570 slabp = page_get_slab(page);
2572 if (cachep->flags & SLAB_RED_ZONE) {
2573 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2574 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2575 slab_error(cachep, "double free, or memory outside"
2576 " object was overwritten");
2577 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2578 "redzone 2:0x%lx.\n",
2579 objp, *dbg_redzone1(cachep, objp),
2580 *dbg_redzone2(cachep, objp));
2582 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2583 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2585 if (cachep->flags & SLAB_STORE_USER)
2586 *dbg_userword(cachep, objp) = caller;
2588 objnr = obj_to_index(cachep, slabp, objp);
2590 BUG_ON(objnr >= cachep->num);
2591 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2593 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2595 * Need to call the slab's constructor so the caller can
2596 * perform a verify of its state (debugging). Called without
2597 * the cache-lock held.
2599 cachep->ctor(objp + obj_offset(cachep),
2600 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2602 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2603 /* we want to cache poison the object,
2604 * call the destruction callback
2606 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2608 if (cachep->flags & SLAB_POISON) {
2609 #ifdef CONFIG_DEBUG_PAGEALLOC
2610 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2611 store_stackinfo(cachep, objp, (unsigned long)caller);
2612 kernel_map_pages(virt_to_page(objp),
2613 cachep->buffer_size / PAGE_SIZE, 0);
2614 } else {
2615 poison_obj(cachep, objp, POISON_FREE);
2617 #else
2618 poison_obj(cachep, objp, POISON_FREE);
2619 #endif
2621 return objp;
2624 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2626 kmem_bufctl_t i;
2627 int entries = 0;
2629 /* Check slab's freelist to see if this obj is there. */
2630 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2631 entries++;
2632 if (entries > cachep->num || i >= cachep->num)
2633 goto bad;
2635 if (entries != cachep->num - slabp->inuse) {
2636 bad:
2637 printk(KERN_ERR "slab: Internal list corruption detected in "
2638 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2639 cachep->name, cachep->num, slabp, slabp->inuse);
2640 for (i = 0;
2641 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2642 i++) {
2643 if (i % 16 == 0)
2644 printk("\n%03x:", i);
2645 printk(" %02x", ((unsigned char *)slabp)[i]);
2647 printk("\n");
2648 BUG();
2651 #else
2652 #define kfree_debugcheck(x) do { } while(0)
2653 #define cache_free_debugcheck(x,objp,z) (objp)
2654 #define check_slabp(x,y) do { } while(0)
2655 #endif
2657 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2659 int batchcount;
2660 struct kmem_list3 *l3;
2661 struct array_cache *ac;
2663 check_irq_off();
2664 ac = cpu_cache_get(cachep);
2665 retry:
2666 batchcount = ac->batchcount;
2667 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2669 * If there was little recent activity on this cache, then
2670 * perform only a partial refill. Otherwise we could generate
2671 * refill bouncing.
2673 batchcount = BATCHREFILL_LIMIT;
2675 l3 = cachep->nodelists[numa_node_id()];
2677 BUG_ON(ac->avail > 0 || !l3);
2678 spin_lock(&l3->list_lock);
2680 if (l3->shared) {
2681 struct array_cache *shared_array = l3->shared;
2682 if (shared_array->avail) {
2683 if (batchcount > shared_array->avail)
2684 batchcount = shared_array->avail;
2685 shared_array->avail -= batchcount;
2686 ac->avail = batchcount;
2687 memcpy(ac->entry,
2688 &(shared_array->entry[shared_array->avail]),
2689 sizeof(void *) * batchcount);
2690 shared_array->touched = 1;
2691 goto alloc_done;
2694 while (batchcount > 0) {
2695 struct list_head *entry;
2696 struct slab *slabp;
2697 /* Get slab alloc is to come from. */
2698 entry = l3->slabs_partial.next;
2699 if (entry == &l3->slabs_partial) {
2700 l3->free_touched = 1;
2701 entry = l3->slabs_free.next;
2702 if (entry == &l3->slabs_free)
2703 goto must_grow;
2706 slabp = list_entry(entry, struct slab, list);
2707 check_slabp(cachep, slabp);
2708 check_spinlock_acquired(cachep);
2709 while (slabp->inuse < cachep->num && batchcount--) {
2710 STATS_INC_ALLOCED(cachep);
2711 STATS_INC_ACTIVE(cachep);
2712 STATS_SET_HIGH(cachep);
2714 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2715 numa_node_id());
2717 check_slabp(cachep, slabp);
2719 /* move slabp to correct slabp list: */
2720 list_del(&slabp->list);
2721 if (slabp->free == BUFCTL_END)
2722 list_add(&slabp->list, &l3->slabs_full);
2723 else
2724 list_add(&slabp->list, &l3->slabs_partial);
2727 must_grow:
2728 l3->free_objects -= ac->avail;
2729 alloc_done:
2730 spin_unlock(&l3->list_lock);
2732 if (unlikely(!ac->avail)) {
2733 int x;
2734 x = cache_grow(cachep, flags, numa_node_id());
2736 /* cache_grow can reenable interrupts, then ac could change. */
2737 ac = cpu_cache_get(cachep);
2738 if (!x && ac->avail == 0) /* no objects in sight? abort */
2739 return NULL;
2741 if (!ac->avail) /* objects refilled by interrupt? */
2742 goto retry;
2744 ac->touched = 1;
2745 return ac->entry[--ac->avail];
2748 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2749 gfp_t flags)
2751 might_sleep_if(flags & __GFP_WAIT);
2752 #if DEBUG
2753 kmem_flagcheck(cachep, flags);
2754 #endif
2757 #if DEBUG
2758 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2759 gfp_t flags, void *objp, void *caller)
2761 if (!objp)
2762 return objp;
2763 if (cachep->flags & SLAB_POISON) {
2764 #ifdef CONFIG_DEBUG_PAGEALLOC
2765 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2766 kernel_map_pages(virt_to_page(objp),
2767 cachep->buffer_size / PAGE_SIZE, 1);
2768 else
2769 check_poison_obj(cachep, objp);
2770 #else
2771 check_poison_obj(cachep, objp);
2772 #endif
2773 poison_obj(cachep, objp, POISON_INUSE);
2775 if (cachep->flags & SLAB_STORE_USER)
2776 *dbg_userword(cachep, objp) = caller;
2778 if (cachep->flags & SLAB_RED_ZONE) {
2779 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2780 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2781 slab_error(cachep, "double free, or memory outside"
2782 " object was overwritten");
2783 printk(KERN_ERR
2784 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2785 objp, *dbg_redzone1(cachep, objp),
2786 *dbg_redzone2(cachep, objp));
2788 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2789 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2791 objp += obj_offset(cachep);
2792 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2793 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2795 if (!(flags & __GFP_WAIT))
2796 ctor_flags |= SLAB_CTOR_ATOMIC;
2798 cachep->ctor(objp, cachep, ctor_flags);
2800 return objp;
2802 #else
2803 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2804 #endif
2806 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2808 void *objp;
2809 struct array_cache *ac;
2811 #ifdef CONFIG_NUMA
2812 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2813 objp = alternate_node_alloc(cachep, flags);
2814 if (objp != NULL)
2815 return objp;
2817 #endif
2819 check_irq_off();
2820 ac = cpu_cache_get(cachep);
2821 if (likely(ac->avail)) {
2822 STATS_INC_ALLOCHIT(cachep);
2823 ac->touched = 1;
2824 objp = ac->entry[--ac->avail];
2825 } else {
2826 STATS_INC_ALLOCMISS(cachep);
2827 objp = cache_alloc_refill(cachep, flags);
2829 return objp;
2832 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2833 gfp_t flags, void *caller)
2835 unsigned long save_flags;
2836 void *objp;
2838 cache_alloc_debugcheck_before(cachep, flags);
2840 local_irq_save(save_flags);
2841 objp = ____cache_alloc(cachep, flags);
2842 local_irq_restore(save_flags);
2843 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2844 caller);
2845 prefetchw(objp);
2846 return objp;
2849 #ifdef CONFIG_NUMA
2851 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2853 * If we are in_interrupt, then process context, including cpusets and
2854 * mempolicy, may not apply and should not be used for allocation policy.
2856 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2858 int nid_alloc, nid_here;
2860 if (in_interrupt())
2861 return NULL;
2862 nid_alloc = nid_here = numa_node_id();
2863 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2864 nid_alloc = cpuset_mem_spread_node();
2865 else if (current->mempolicy)
2866 nid_alloc = slab_node(current->mempolicy);
2867 if (nid_alloc != nid_here)
2868 return __cache_alloc_node(cachep, flags, nid_alloc);
2869 return NULL;
2873 * A interface to enable slab creation on nodeid
2875 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2876 int nodeid)
2878 struct list_head *entry;
2879 struct slab *slabp;
2880 struct kmem_list3 *l3;
2881 void *obj;
2882 int x;
2884 l3 = cachep->nodelists[nodeid];
2885 BUG_ON(!l3);
2887 retry:
2888 check_irq_off();
2889 spin_lock(&l3->list_lock);
2890 entry = l3->slabs_partial.next;
2891 if (entry == &l3->slabs_partial) {
2892 l3->free_touched = 1;
2893 entry = l3->slabs_free.next;
2894 if (entry == &l3->slabs_free)
2895 goto must_grow;
2898 slabp = list_entry(entry, struct slab, list);
2899 check_spinlock_acquired_node(cachep, nodeid);
2900 check_slabp(cachep, slabp);
2902 STATS_INC_NODEALLOCS(cachep);
2903 STATS_INC_ACTIVE(cachep);
2904 STATS_SET_HIGH(cachep);
2906 BUG_ON(slabp->inuse == cachep->num);
2908 obj = slab_get_obj(cachep, slabp, nodeid);
2909 check_slabp(cachep, slabp);
2910 l3->free_objects--;
2911 /* move slabp to correct slabp list: */
2912 list_del(&slabp->list);
2914 if (slabp->free == BUFCTL_END)
2915 list_add(&slabp->list, &l3->slabs_full);
2916 else
2917 list_add(&slabp->list, &l3->slabs_partial);
2919 spin_unlock(&l3->list_lock);
2920 goto done;
2922 must_grow:
2923 spin_unlock(&l3->list_lock);
2924 x = cache_grow(cachep, flags, nodeid);
2926 if (!x)
2927 return NULL;
2929 goto retry;
2930 done:
2931 return obj;
2933 #endif
2936 * Caller needs to acquire correct kmem_list's list_lock
2938 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2939 int node)
2941 int i;
2942 struct kmem_list3 *l3;
2944 for (i = 0; i < nr_objects; i++) {
2945 void *objp = objpp[i];
2946 struct slab *slabp;
2948 slabp = virt_to_slab(objp);
2949 l3 = cachep->nodelists[node];
2950 list_del(&slabp->list);
2951 check_spinlock_acquired_node(cachep, node);
2952 check_slabp(cachep, slabp);
2953 slab_put_obj(cachep, slabp, objp, node);
2954 STATS_DEC_ACTIVE(cachep);
2955 l3->free_objects++;
2956 check_slabp(cachep, slabp);
2958 /* fixup slab chains */
2959 if (slabp->inuse == 0) {
2960 if (l3->free_objects > l3->free_limit) {
2961 l3->free_objects -= cachep->num;
2962 slab_destroy(cachep, slabp);
2963 } else {
2964 list_add(&slabp->list, &l3->slabs_free);
2966 } else {
2967 /* Unconditionally move a slab to the end of the
2968 * partial list on free - maximum time for the
2969 * other objects to be freed, too.
2971 list_add_tail(&slabp->list, &l3->slabs_partial);
2976 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2978 int batchcount;
2979 struct kmem_list3 *l3;
2980 int node = numa_node_id();
2982 batchcount = ac->batchcount;
2983 #if DEBUG
2984 BUG_ON(!batchcount || batchcount > ac->avail);
2985 #endif
2986 check_irq_off();
2987 l3 = cachep->nodelists[node];
2988 spin_lock(&l3->list_lock);
2989 if (l3->shared) {
2990 struct array_cache *shared_array = l3->shared;
2991 int max = shared_array->limit - shared_array->avail;
2992 if (max) {
2993 if (batchcount > max)
2994 batchcount = max;
2995 memcpy(&(shared_array->entry[shared_array->avail]),
2996 ac->entry, sizeof(void *) * batchcount);
2997 shared_array->avail += batchcount;
2998 goto free_done;
3002 free_block(cachep, ac->entry, batchcount, node);
3003 free_done:
3004 #if STATS
3006 int i = 0;
3007 struct list_head *p;
3009 p = l3->slabs_free.next;
3010 while (p != &(l3->slabs_free)) {
3011 struct slab *slabp;
3013 slabp = list_entry(p, struct slab, list);
3014 BUG_ON(slabp->inuse);
3016 i++;
3017 p = p->next;
3019 STATS_SET_FREEABLE(cachep, i);
3021 #endif
3022 spin_unlock(&l3->list_lock);
3023 ac->avail -= batchcount;
3024 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3028 * Release an obj back to its cache. If the obj has a constructed state, it must
3029 * be in this state _before_ it is released. Called with disabled ints.
3031 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3033 struct array_cache *ac = cpu_cache_get(cachep);
3035 check_irq_off();
3036 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3038 /* Make sure we are not freeing a object from another
3039 * node to the array cache on this cpu.
3041 #ifdef CONFIG_NUMA
3043 struct slab *slabp;
3044 slabp = virt_to_slab(objp);
3045 if (unlikely(slabp->nodeid != numa_node_id())) {
3046 struct array_cache *alien = NULL;
3047 int nodeid = slabp->nodeid;
3048 struct kmem_list3 *l3;
3050 l3 = cachep->nodelists[numa_node_id()];
3051 STATS_INC_NODEFREES(cachep);
3052 if (l3->alien && l3->alien[nodeid]) {
3053 alien = l3->alien[nodeid];
3054 spin_lock(&alien->lock);
3055 if (unlikely(alien->avail == alien->limit))
3056 __drain_alien_cache(cachep,
3057 alien, nodeid);
3058 alien->entry[alien->avail++] = objp;
3059 spin_unlock(&alien->lock);
3060 } else {
3061 spin_lock(&(cachep->nodelists[nodeid])->
3062 list_lock);
3063 free_block(cachep, &objp, 1, nodeid);
3064 spin_unlock(&(cachep->nodelists[nodeid])->
3065 list_lock);
3067 return;
3070 #endif
3071 if (likely(ac->avail < ac->limit)) {
3072 STATS_INC_FREEHIT(cachep);
3073 ac->entry[ac->avail++] = objp;
3074 return;
3075 } else {
3076 STATS_INC_FREEMISS(cachep);
3077 cache_flusharray(cachep, ac);
3078 ac->entry[ac->avail++] = objp;
3083 * kmem_cache_alloc - Allocate an object
3084 * @cachep: The cache to allocate from.
3085 * @flags: See kmalloc().
3087 * Allocate an object from this cache. The flags are only relevant
3088 * if the cache has no available objects.
3090 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3092 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3094 EXPORT_SYMBOL(kmem_cache_alloc);
3097 * kmem_ptr_validate - check if an untrusted pointer might
3098 * be a slab entry.
3099 * @cachep: the cache we're checking against
3100 * @ptr: pointer to validate
3102 * This verifies that the untrusted pointer looks sane:
3103 * it is _not_ a guarantee that the pointer is actually
3104 * part of the slab cache in question, but it at least
3105 * validates that the pointer can be dereferenced and
3106 * looks half-way sane.
3108 * Currently only used for dentry validation.
3110 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3112 unsigned long addr = (unsigned long)ptr;
3113 unsigned long min_addr = PAGE_OFFSET;
3114 unsigned long align_mask = BYTES_PER_WORD - 1;
3115 unsigned long size = cachep->buffer_size;
3116 struct page *page;
3118 if (unlikely(addr < min_addr))
3119 goto out;
3120 if (unlikely(addr > (unsigned long)high_memory - size))
3121 goto out;
3122 if (unlikely(addr & align_mask))
3123 goto out;
3124 if (unlikely(!kern_addr_valid(addr)))
3125 goto out;
3126 if (unlikely(!kern_addr_valid(addr + size - 1)))
3127 goto out;
3128 page = virt_to_page(ptr);
3129 if (unlikely(!PageSlab(page)))
3130 goto out;
3131 if (unlikely(page_get_cache(page) != cachep))
3132 goto out;
3133 return 1;
3134 out:
3135 return 0;
3138 #ifdef CONFIG_NUMA
3140 * kmem_cache_alloc_node - Allocate an object on the specified node
3141 * @cachep: The cache to allocate from.
3142 * @flags: See kmalloc().
3143 * @nodeid: node number of the target node.
3145 * Identical to kmem_cache_alloc, except that this function is slow
3146 * and can sleep. And it will allocate memory on the given node, which
3147 * can improve the performance for cpu bound structures.
3148 * New and improved: it will now make sure that the object gets
3149 * put on the correct node list so that there is no false sharing.
3151 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3153 unsigned long save_flags;
3154 void *ptr;
3156 cache_alloc_debugcheck_before(cachep, flags);
3157 local_irq_save(save_flags);
3159 if (nodeid == -1 || nodeid == numa_node_id() ||
3160 !cachep->nodelists[nodeid])
3161 ptr = ____cache_alloc(cachep, flags);
3162 else
3163 ptr = __cache_alloc_node(cachep, flags, nodeid);
3164 local_irq_restore(save_flags);
3166 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3167 __builtin_return_address(0));
3169 return ptr;
3171 EXPORT_SYMBOL(kmem_cache_alloc_node);
3173 void *kmalloc_node(size_t size, gfp_t flags, int node)
3175 struct kmem_cache *cachep;
3177 cachep = kmem_find_general_cachep(size, flags);
3178 if (unlikely(cachep == NULL))
3179 return NULL;
3180 return kmem_cache_alloc_node(cachep, flags, node);
3182 EXPORT_SYMBOL(kmalloc_node);
3183 #endif
3186 * kmalloc - allocate memory
3187 * @size: how many bytes of memory are required.
3188 * @flags: the type of memory to allocate.
3189 * @caller: function caller for debug tracking of the caller
3191 * kmalloc is the normal method of allocating memory
3192 * in the kernel.
3194 * The @flags argument may be one of:
3196 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3198 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3200 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3202 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3203 * must be suitable for DMA. This can mean different things on different
3204 * platforms. For example, on i386, it means that the memory must come
3205 * from the first 16MB.
3207 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3208 void *caller)
3210 struct kmem_cache *cachep;
3212 /* If you want to save a few bytes .text space: replace
3213 * __ with kmem_.
3214 * Then kmalloc uses the uninlined functions instead of the inline
3215 * functions.
3217 cachep = __find_general_cachep(size, flags);
3218 if (unlikely(cachep == NULL))
3219 return NULL;
3220 return __cache_alloc(cachep, flags, caller);
3223 #ifndef CONFIG_DEBUG_SLAB
3225 void *__kmalloc(size_t size, gfp_t flags)
3227 return __do_kmalloc(size, flags, NULL);
3229 EXPORT_SYMBOL(__kmalloc);
3231 #else
3233 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3235 return __do_kmalloc(size, flags, caller);
3237 EXPORT_SYMBOL(__kmalloc_track_caller);
3239 #endif
3241 #ifdef CONFIG_SMP
3243 * __alloc_percpu - allocate one copy of the object for every present
3244 * cpu in the system, zeroing them.
3245 * Objects should be dereferenced using the per_cpu_ptr macro only.
3247 * @size: how many bytes of memory are required.
3249 void *__alloc_percpu(size_t size)
3251 int i;
3252 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3254 if (!pdata)
3255 return NULL;
3258 * Cannot use for_each_online_cpu since a cpu may come online
3259 * and we have no way of figuring out how to fix the array
3260 * that we have allocated then....
3262 for_each_cpu(i) {
3263 int node = cpu_to_node(i);
3265 if (node_online(node))
3266 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3267 else
3268 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3270 if (!pdata->ptrs[i])
3271 goto unwind_oom;
3272 memset(pdata->ptrs[i], 0, size);
3275 /* Catch derefs w/o wrappers */
3276 return (void *)(~(unsigned long)pdata);
3278 unwind_oom:
3279 while (--i >= 0) {
3280 if (!cpu_possible(i))
3281 continue;
3282 kfree(pdata->ptrs[i]);
3284 kfree(pdata);
3285 return NULL;
3287 EXPORT_SYMBOL(__alloc_percpu);
3288 #endif
3291 * kmem_cache_free - Deallocate an object
3292 * @cachep: The cache the allocation was from.
3293 * @objp: The previously allocated object.
3295 * Free an object which was previously allocated from this
3296 * cache.
3298 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3300 unsigned long flags;
3302 local_irq_save(flags);
3303 __cache_free(cachep, objp);
3304 local_irq_restore(flags);
3306 EXPORT_SYMBOL(kmem_cache_free);
3309 * kfree - free previously allocated memory
3310 * @objp: pointer returned by kmalloc.
3312 * If @objp is NULL, no operation is performed.
3314 * Don't free memory not originally allocated by kmalloc()
3315 * or you will run into trouble.
3317 void kfree(const void *objp)
3319 struct kmem_cache *c;
3320 unsigned long flags;
3322 if (unlikely(!objp))
3323 return;
3324 local_irq_save(flags);
3325 kfree_debugcheck(objp);
3326 c = virt_to_cache(objp);
3327 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3328 __cache_free(c, (void *)objp);
3329 local_irq_restore(flags);
3331 EXPORT_SYMBOL(kfree);
3333 #ifdef CONFIG_SMP
3335 * free_percpu - free previously allocated percpu memory
3336 * @objp: pointer returned by alloc_percpu.
3338 * Don't free memory not originally allocated by alloc_percpu()
3339 * The complemented objp is to check for that.
3341 void free_percpu(const void *objp)
3343 int i;
3344 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3347 * We allocate for all cpus so we cannot use for online cpu here.
3349 for_each_cpu(i)
3350 kfree(p->ptrs[i]);
3351 kfree(p);
3353 EXPORT_SYMBOL(free_percpu);
3354 #endif
3356 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3358 return obj_size(cachep);
3360 EXPORT_SYMBOL(kmem_cache_size);
3362 const char *kmem_cache_name(struct kmem_cache *cachep)
3364 return cachep->name;
3366 EXPORT_SYMBOL_GPL(kmem_cache_name);
3369 * This initializes kmem_list3 for all nodes.
3371 static int alloc_kmemlist(struct kmem_cache *cachep)
3373 int node;
3374 struct kmem_list3 *l3;
3375 int err = 0;
3377 for_each_online_node(node) {
3378 struct array_cache *nc = NULL, *new;
3379 struct array_cache **new_alien = NULL;
3380 #ifdef CONFIG_NUMA
3381 new_alien = alloc_alien_cache(node, cachep->limit);
3382 if (!new_alien)
3383 goto fail;
3384 #endif
3385 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3386 0xbaadf00d);
3387 if (!new)
3388 goto fail;
3389 l3 = cachep->nodelists[node];
3390 if (l3) {
3391 spin_lock_irq(&l3->list_lock);
3393 nc = cachep->nodelists[node]->shared;
3394 if (nc)
3395 free_block(cachep, nc->entry, nc->avail, node);
3397 l3->shared = new;
3398 if (!cachep->nodelists[node]->alien) {
3399 l3->alien = new_alien;
3400 new_alien = NULL;
3402 l3->free_limit = (1 + nr_cpus_node(node)) *
3403 cachep->batchcount + cachep->num;
3404 spin_unlock_irq(&l3->list_lock);
3405 kfree(nc);
3406 free_alien_cache(new_alien);
3407 continue;
3409 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3410 if (!l3)
3411 goto fail;
3413 kmem_list3_init(l3);
3414 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3415 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3416 l3->shared = new;
3417 l3->alien = new_alien;
3418 l3->free_limit = (1 + nr_cpus_node(node)) *
3419 cachep->batchcount + cachep->num;
3420 cachep->nodelists[node] = l3;
3422 return err;
3423 fail:
3424 err = -ENOMEM;
3425 return err;
3428 struct ccupdate_struct {
3429 struct kmem_cache *cachep;
3430 struct array_cache *new[NR_CPUS];
3433 static void do_ccupdate_local(void *info)
3435 struct ccupdate_struct *new = info;
3436 struct array_cache *old;
3438 check_irq_off();
3439 old = cpu_cache_get(new->cachep);
3441 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3442 new->new[smp_processor_id()] = old;
3445 /* Always called with the cache_chain_mutex held */
3446 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3447 int batchcount, int shared)
3449 struct ccupdate_struct new;
3450 int i, err;
3452 memset(&new.new, 0, sizeof(new.new));
3453 for_each_online_cpu(i) {
3454 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3455 batchcount);
3456 if (!new.new[i]) {
3457 for (i--; i >= 0; i--)
3458 kfree(new.new[i]);
3459 return -ENOMEM;
3462 new.cachep = cachep;
3464 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3466 check_irq_on();
3467 cachep->batchcount = batchcount;
3468 cachep->limit = limit;
3469 cachep->shared = shared;
3471 for_each_online_cpu(i) {
3472 struct array_cache *ccold = new.new[i];
3473 if (!ccold)
3474 continue;
3475 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3476 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3477 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3478 kfree(ccold);
3481 err = alloc_kmemlist(cachep);
3482 if (err) {
3483 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3484 cachep->name, -err);
3485 BUG();
3487 return 0;
3490 /* Called with cache_chain_mutex held always */
3491 static void enable_cpucache(struct kmem_cache *cachep)
3493 int err;
3494 int limit, shared;
3497 * The head array serves three purposes:
3498 * - create a LIFO ordering, i.e. return objects that are cache-warm
3499 * - reduce the number of spinlock operations.
3500 * - reduce the number of linked list operations on the slab and
3501 * bufctl chains: array operations are cheaper.
3502 * The numbers are guessed, we should auto-tune as described by
3503 * Bonwick.
3505 if (cachep->buffer_size > 131072)
3506 limit = 1;
3507 else if (cachep->buffer_size > PAGE_SIZE)
3508 limit = 8;
3509 else if (cachep->buffer_size > 1024)
3510 limit = 24;
3511 else if (cachep->buffer_size > 256)
3512 limit = 54;
3513 else
3514 limit = 120;
3517 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3518 * allocation behaviour: Most allocs on one cpu, most free operations
3519 * on another cpu. For these cases, an efficient object passing between
3520 * cpus is necessary. This is provided by a shared array. The array
3521 * replaces Bonwick's magazine layer.
3522 * On uniprocessor, it's functionally equivalent (but less efficient)
3523 * to a larger limit. Thus disabled by default.
3525 shared = 0;
3526 #ifdef CONFIG_SMP
3527 if (cachep->buffer_size <= PAGE_SIZE)
3528 shared = 8;
3529 #endif
3531 #if DEBUG
3533 * With debugging enabled, large batchcount lead to excessively long
3534 * periods with disabled local interrupts. Limit the batchcount
3536 if (limit > 32)
3537 limit = 32;
3538 #endif
3539 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3540 if (err)
3541 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3542 cachep->name, -err);
3546 * Drain an array if it contains any elements taking the l3 lock only if
3547 * necessary. Note that the l3 listlock also protects the array_cache
3548 * if drain_array() is used on the shared array.
3550 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3551 struct array_cache *ac, int force, int node)
3553 int tofree;
3555 if (!ac || !ac->avail)
3556 return;
3557 if (ac->touched && !force) {
3558 ac->touched = 0;
3559 } else {
3560 spin_lock_irq(&l3->list_lock);
3561 if (ac->avail) {
3562 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3563 if (tofree > ac->avail)
3564 tofree = (ac->avail + 1) / 2;
3565 free_block(cachep, ac->entry, tofree, node);
3566 ac->avail -= tofree;
3567 memmove(ac->entry, &(ac->entry[tofree]),
3568 sizeof(void *) * ac->avail);
3570 spin_unlock_irq(&l3->list_lock);
3575 * cache_reap - Reclaim memory from caches.
3576 * @unused: unused parameter
3578 * Called from workqueue/eventd every few seconds.
3579 * Purpose:
3580 * - clear the per-cpu caches for this CPU.
3581 * - return freeable pages to the main free memory pool.
3583 * If we cannot acquire the cache chain mutex then just give up - we'll try
3584 * again on the next iteration.
3586 static void cache_reap(void *unused)
3588 struct list_head *walk;
3589 struct kmem_list3 *l3;
3590 int node = numa_node_id();
3592 if (!mutex_trylock(&cache_chain_mutex)) {
3593 /* Give up. Setup the next iteration. */
3594 schedule_delayed_work(&__get_cpu_var(reap_work),
3595 REAPTIMEOUT_CPUC);
3596 return;
3599 list_for_each(walk, &cache_chain) {
3600 struct kmem_cache *searchp;
3601 struct list_head *p;
3602 int tofree;
3603 struct slab *slabp;
3605 searchp = list_entry(walk, struct kmem_cache, next);
3606 check_irq_on();
3609 * We only take the l3 lock if absolutely necessary and we
3610 * have established with reasonable certainty that
3611 * we can do some work if the lock was obtained.
3613 l3 = searchp->nodelists[node];
3615 reap_alien(searchp, l3);
3617 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3620 * These are racy checks but it does not matter
3621 * if we skip one check or scan twice.
3623 if (time_after(l3->next_reap, jiffies))
3624 goto next;
3626 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3628 drain_array(searchp, l3, l3->shared, 0, node);
3630 if (l3->free_touched) {
3631 l3->free_touched = 0;
3632 goto next;
3635 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3636 (5 * searchp->num);
3637 do {
3639 * Do not lock if there are no free blocks.
3641 if (list_empty(&l3->slabs_free))
3642 break;
3644 spin_lock_irq(&l3->list_lock);
3645 p = l3->slabs_free.next;
3646 if (p == &(l3->slabs_free)) {
3647 spin_unlock_irq(&l3->list_lock);
3648 break;
3651 slabp = list_entry(p, struct slab, list);
3652 BUG_ON(slabp->inuse);
3653 list_del(&slabp->list);
3654 STATS_INC_REAPED(searchp);
3657 * Safe to drop the lock. The slab is no longer linked
3658 * to the cache. searchp cannot disappear, we hold
3659 * cache_chain_lock
3661 l3->free_objects -= searchp->num;
3662 spin_unlock_irq(&l3->list_lock);
3663 slab_destroy(searchp, slabp);
3664 } while (--tofree > 0);
3665 next:
3666 cond_resched();
3668 check_irq_on();
3669 mutex_unlock(&cache_chain_mutex);
3670 next_reap_node();
3671 /* Set up the next iteration */
3672 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3675 #ifdef CONFIG_PROC_FS
3677 static void print_slabinfo_header(struct seq_file *m)
3680 * Output format version, so at least we can change it
3681 * without _too_ many complaints.
3683 #if STATS
3684 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3685 #else
3686 seq_puts(m, "slabinfo - version: 2.1\n");
3687 #endif
3688 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3689 "<objperslab> <pagesperslab>");
3690 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3691 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3692 #if STATS
3693 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3694 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3695 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3696 #endif
3697 seq_putc(m, '\n');
3700 static void *s_start(struct seq_file *m, loff_t *pos)
3702 loff_t n = *pos;
3703 struct list_head *p;
3705 mutex_lock(&cache_chain_mutex);
3706 if (!n)
3707 print_slabinfo_header(m);
3708 p = cache_chain.next;
3709 while (n--) {
3710 p = p->next;
3711 if (p == &cache_chain)
3712 return NULL;
3714 return list_entry(p, struct kmem_cache, next);
3717 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3719 struct kmem_cache *cachep = p;
3720 ++*pos;
3721 return cachep->next.next == &cache_chain ?
3722 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3725 static void s_stop(struct seq_file *m, void *p)
3727 mutex_unlock(&cache_chain_mutex);
3730 static int s_show(struct seq_file *m, void *p)
3732 struct kmem_cache *cachep = p;
3733 struct list_head *q;
3734 struct slab *slabp;
3735 unsigned long active_objs;
3736 unsigned long num_objs;
3737 unsigned long active_slabs = 0;
3738 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3739 const char *name;
3740 char *error = NULL;
3741 int node;
3742 struct kmem_list3 *l3;
3744 active_objs = 0;
3745 num_slabs = 0;
3746 for_each_online_node(node) {
3747 l3 = cachep->nodelists[node];
3748 if (!l3)
3749 continue;
3751 check_irq_on();
3752 spin_lock_irq(&l3->list_lock);
3754 list_for_each(q, &l3->slabs_full) {
3755 slabp = list_entry(q, struct slab, list);
3756 if (slabp->inuse != cachep->num && !error)
3757 error = "slabs_full accounting error";
3758 active_objs += cachep->num;
3759 active_slabs++;
3761 list_for_each(q, &l3->slabs_partial) {
3762 slabp = list_entry(q, struct slab, list);
3763 if (slabp->inuse == cachep->num && !error)
3764 error = "slabs_partial inuse accounting error";
3765 if (!slabp->inuse && !error)
3766 error = "slabs_partial/inuse accounting error";
3767 active_objs += slabp->inuse;
3768 active_slabs++;
3770 list_for_each(q, &l3->slabs_free) {
3771 slabp = list_entry(q, struct slab, list);
3772 if (slabp->inuse && !error)
3773 error = "slabs_free/inuse accounting error";
3774 num_slabs++;
3776 free_objects += l3->free_objects;
3777 if (l3->shared)
3778 shared_avail += l3->shared->avail;
3780 spin_unlock_irq(&l3->list_lock);
3782 num_slabs += active_slabs;
3783 num_objs = num_slabs * cachep->num;
3784 if (num_objs - active_objs != free_objects && !error)
3785 error = "free_objects accounting error";
3787 name = cachep->name;
3788 if (error)
3789 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3791 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3792 name, active_objs, num_objs, cachep->buffer_size,
3793 cachep->num, (1 << cachep->gfporder));
3794 seq_printf(m, " : tunables %4u %4u %4u",
3795 cachep->limit, cachep->batchcount, cachep->shared);
3796 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3797 active_slabs, num_slabs, shared_avail);
3798 #if STATS
3799 { /* list3 stats */
3800 unsigned long high = cachep->high_mark;
3801 unsigned long allocs = cachep->num_allocations;
3802 unsigned long grown = cachep->grown;
3803 unsigned long reaped = cachep->reaped;
3804 unsigned long errors = cachep->errors;
3805 unsigned long max_freeable = cachep->max_freeable;
3806 unsigned long node_allocs = cachep->node_allocs;
3807 unsigned long node_frees = cachep->node_frees;
3809 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3810 %4lu %4lu %4lu %4lu", allocs, high, grown,
3811 reaped, errors, max_freeable, node_allocs,
3812 node_frees);
3814 /* cpu stats */
3816 unsigned long allochit = atomic_read(&cachep->allochit);
3817 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3818 unsigned long freehit = atomic_read(&cachep->freehit);
3819 unsigned long freemiss = atomic_read(&cachep->freemiss);
3821 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3822 allochit, allocmiss, freehit, freemiss);
3824 #endif
3825 seq_putc(m, '\n');
3826 return 0;
3830 * slabinfo_op - iterator that generates /proc/slabinfo
3832 * Output layout:
3833 * cache-name
3834 * num-active-objs
3835 * total-objs
3836 * object size
3837 * num-active-slabs
3838 * total-slabs
3839 * num-pages-per-slab
3840 * + further values on SMP and with statistics enabled
3843 struct seq_operations slabinfo_op = {
3844 .start = s_start,
3845 .next = s_next,
3846 .stop = s_stop,
3847 .show = s_show,
3850 #define MAX_SLABINFO_WRITE 128
3852 * slabinfo_write - Tuning for the slab allocator
3853 * @file: unused
3854 * @buffer: user buffer
3855 * @count: data length
3856 * @ppos: unused
3858 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3859 size_t count, loff_t *ppos)
3861 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3862 int limit, batchcount, shared, res;
3863 struct list_head *p;
3865 if (count > MAX_SLABINFO_WRITE)
3866 return -EINVAL;
3867 if (copy_from_user(&kbuf, buffer, count))
3868 return -EFAULT;
3869 kbuf[MAX_SLABINFO_WRITE] = '\0';
3871 tmp = strchr(kbuf, ' ');
3872 if (!tmp)
3873 return -EINVAL;
3874 *tmp = '\0';
3875 tmp++;
3876 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3877 return -EINVAL;
3879 /* Find the cache in the chain of caches. */
3880 mutex_lock(&cache_chain_mutex);
3881 res = -EINVAL;
3882 list_for_each(p, &cache_chain) {
3883 struct kmem_cache *cachep;
3885 cachep = list_entry(p, struct kmem_cache, next);
3886 if (!strcmp(cachep->name, kbuf)) {
3887 if (limit < 1 || batchcount < 1 ||
3888 batchcount > limit || shared < 0) {
3889 res = 0;
3890 } else {
3891 res = do_tune_cpucache(cachep, limit,
3892 batchcount, shared);
3894 break;
3897 mutex_unlock(&cache_chain_mutex);
3898 if (res >= 0)
3899 res = count;
3900 return res;
3902 #endif
3905 * ksize - get the actual amount of memory allocated for a given object
3906 * @objp: Pointer to the object
3908 * kmalloc may internally round up allocations and return more memory
3909 * than requested. ksize() can be used to determine the actual amount of
3910 * memory allocated. The caller may use this additional memory, even though
3911 * a smaller amount of memory was initially specified with the kmalloc call.
3912 * The caller must guarantee that objp points to a valid object previously
3913 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3914 * must not be freed during the duration of the call.
3916 unsigned int ksize(const void *objp)
3918 if (unlikely(objp == NULL))
3919 return 0;
3921 return obj_size(virt_to_cache(objp));