[PATCH] x86: Pnp byte granularity
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob4ef24a397684f7b9a51c70e94843f4cff35ed281
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include "filemap.h"
33 * FIXME: remove all knowledge of the buffer layer from the core VM
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
37 #include <asm/uaccess.h>
38 #include <asm/mman.h>
40 static ssize_t
41 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42 loff_t offset, unsigned long nr_segs);
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
46 * though.
48 * Shared mappings now work. 15.8.1995 Bruno.
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 * Lock ordering:
59 * ->i_mmap_lock (vmtruncate)
60 * ->private_lock (__free_pte->__set_page_dirty_buffers)
61 * ->swap_lock (exclusive_swap_page, others)
62 * ->mapping->tree_lock
64 * ->i_sem
65 * ->i_mmap_lock (truncate->unmap_mapping_range)
67 * ->mmap_sem
68 * ->i_mmap_lock
69 * ->page_table_lock or pte_lock (various, mainly in memory.c)
70 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
72 * ->mmap_sem
73 * ->lock_page (access_process_vm)
75 * ->mmap_sem
76 * ->i_sem (msync)
78 * ->i_sem
79 * ->i_alloc_sem (various)
81 * ->inode_lock
82 * ->sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
85 * ->i_mmap_lock
86 * ->anon_vma.lock (vma_adjust)
88 * ->anon_vma.lock
89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 * ->page_table_lock or pte_lock
92 * ->swap_lock (try_to_unmap_one)
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * ->inode_lock (page_remove_rmap->set_page_dirty)
99 * ->inode_lock (zap_pte_range->set_page_dirty)
100 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
102 * ->task->proc_lock
103 * ->dcache_lock (proc_pid_lookup)
107 * Remove a page from the page cache and free it. Caller has to make
108 * sure the page is locked and that nobody else uses it - or that usage
109 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
111 void __remove_from_page_cache(struct page *page)
113 struct address_space *mapping = page->mapping;
115 radix_tree_delete(&mapping->page_tree, page->index);
116 page->mapping = NULL;
117 mapping->nrpages--;
118 pagecache_acct(-1);
121 void remove_from_page_cache(struct page *page)
123 struct address_space *mapping = page->mapping;
125 BUG_ON(!PageLocked(page));
127 write_lock_irq(&mapping->tree_lock);
128 __remove_from_page_cache(page);
129 write_unlock_irq(&mapping->tree_lock);
132 static int sync_page(void *word)
134 struct address_space *mapping;
135 struct page *page;
137 page = container_of((unsigned long *)word, struct page, flags);
140 * page_mapping() is being called without PG_locked held.
141 * Some knowledge of the state and use of the page is used to
142 * reduce the requirements down to a memory barrier.
143 * The danger here is of a stale page_mapping() return value
144 * indicating a struct address_space different from the one it's
145 * associated with when it is associated with one.
146 * After smp_mb(), it's either the correct page_mapping() for
147 * the page, or an old page_mapping() and the page's own
148 * page_mapping() has gone NULL.
149 * The ->sync_page() address_space operation must tolerate
150 * page_mapping() going NULL. By an amazing coincidence,
151 * this comes about because none of the users of the page
152 * in the ->sync_page() methods make essential use of the
153 * page_mapping(), merely passing the page down to the backing
154 * device's unplug functions when it's non-NULL, which in turn
155 * ignore it for all cases but swap, where only page_private(page) is
156 * of interest. When page_mapping() does go NULL, the entire
157 * call stack gracefully ignores the page and returns.
158 * -- wli
160 smp_mb();
161 mapping = page_mapping(page);
162 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163 mapping->a_ops->sync_page(page);
164 io_schedule();
165 return 0;
169 * filemap_fdatawrite_range - start writeback against all of a mapping's
170 * dirty pages that lie within the byte offsets <start, end>
171 * @mapping: address space structure to write
172 * @start: offset in bytes where the range starts
173 * @end: offset in bytes where the range ends
174 * @sync_mode: enable synchronous operation
176 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177 * opposed to a regular memory * cleansing writeback. The difference between
178 * these two operations is that if a dirty page/buffer is encountered, it must
179 * be waited upon, and not just skipped over.
181 static int __filemap_fdatawrite_range(struct address_space *mapping,
182 loff_t start, loff_t end, int sync_mode)
184 int ret;
185 struct writeback_control wbc = {
186 .sync_mode = sync_mode,
187 .nr_to_write = mapping->nrpages * 2,
188 .start = start,
189 .end = end,
192 if (!mapping_cap_writeback_dirty(mapping))
193 return 0;
195 ret = do_writepages(mapping, &wbc);
196 return ret;
199 static inline int __filemap_fdatawrite(struct address_space *mapping,
200 int sync_mode)
202 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
205 int filemap_fdatawrite(struct address_space *mapping)
207 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
209 EXPORT_SYMBOL(filemap_fdatawrite);
211 static int filemap_fdatawrite_range(struct address_space *mapping,
212 loff_t start, loff_t end)
214 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
218 * This is a mostly non-blocking flush. Not suitable for data-integrity
219 * purposes - I/O may not be started against all dirty pages.
221 int filemap_flush(struct address_space *mapping)
223 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
225 EXPORT_SYMBOL(filemap_flush);
228 * Wait for writeback to complete against pages indexed by start->end
229 * inclusive
231 static int wait_on_page_writeback_range(struct address_space *mapping,
232 pgoff_t start, pgoff_t end)
234 struct pagevec pvec;
235 int nr_pages;
236 int ret = 0;
237 pgoff_t index;
239 if (end < start)
240 return 0;
242 pagevec_init(&pvec, 0);
243 index = start;
244 while ((index <= end) &&
245 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246 PAGECACHE_TAG_WRITEBACK,
247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
248 unsigned i;
250 for (i = 0; i < nr_pages; i++) {
251 struct page *page = pvec.pages[i];
253 /* until radix tree lookup accepts end_index */
254 if (page->index > end)
255 continue;
257 wait_on_page_writeback(page);
258 if (PageError(page))
259 ret = -EIO;
261 pagevec_release(&pvec);
262 cond_resched();
265 /* Check for outstanding write errors */
266 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
267 ret = -ENOSPC;
268 if (test_and_clear_bit(AS_EIO, &mapping->flags))
269 ret = -EIO;
271 return ret;
275 * Write and wait upon all the pages in the passed range. This is a "data
276 * integrity" operation. It waits upon in-flight writeout before starting and
277 * waiting upon new writeout. If there was an IO error, return it.
279 * We need to re-take i_sem during the generic_osync_inode list walk because
280 * it is otherwise livelockable.
282 int sync_page_range(struct inode *inode, struct address_space *mapping,
283 loff_t pos, size_t count)
285 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
287 int ret;
289 if (!mapping_cap_writeback_dirty(mapping) || !count)
290 return 0;
291 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
292 if (ret == 0) {
293 down(&inode->i_sem);
294 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
295 up(&inode->i_sem);
297 if (ret == 0)
298 ret = wait_on_page_writeback_range(mapping, start, end);
299 return ret;
301 EXPORT_SYMBOL(sync_page_range);
304 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
305 * as it forces O_SYNC writers to different parts of the same file
306 * to be serialised right until io completion.
308 static int sync_page_range_nolock(struct inode *inode,
309 struct address_space *mapping,
310 loff_t pos, size_t count)
312 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
313 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
314 int ret;
316 if (!mapping_cap_writeback_dirty(mapping) || !count)
317 return 0;
318 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
319 if (ret == 0)
320 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
321 if (ret == 0)
322 ret = wait_on_page_writeback_range(mapping, start, end);
323 return ret;
327 * filemap_fdatawait - walk the list of under-writeback pages of the given
328 * address space and wait for all of them.
330 * @mapping: address space structure to wait for
332 int filemap_fdatawait(struct address_space *mapping)
334 loff_t i_size = i_size_read(mapping->host);
336 if (i_size == 0)
337 return 0;
339 return wait_on_page_writeback_range(mapping, 0,
340 (i_size - 1) >> PAGE_CACHE_SHIFT);
342 EXPORT_SYMBOL(filemap_fdatawait);
344 int filemap_write_and_wait(struct address_space *mapping)
346 int retval = 0;
348 if (mapping->nrpages) {
349 retval = filemap_fdatawrite(mapping);
350 if (retval == 0)
351 retval = filemap_fdatawait(mapping);
353 return retval;
356 int filemap_write_and_wait_range(struct address_space *mapping,
357 loff_t lstart, loff_t lend)
359 int retval = 0;
361 if (mapping->nrpages) {
362 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
363 WB_SYNC_ALL);
364 if (retval == 0)
365 retval = wait_on_page_writeback_range(mapping,
366 lstart >> PAGE_CACHE_SHIFT,
367 lend >> PAGE_CACHE_SHIFT);
369 return retval;
373 * This function is used to add newly allocated pagecache pages:
374 * the page is new, so we can just run SetPageLocked() against it.
375 * The other page state flags were set by rmqueue().
377 * This function does not add the page to the LRU. The caller must do that.
379 int add_to_page_cache(struct page *page, struct address_space *mapping,
380 pgoff_t offset, gfp_t gfp_mask)
382 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
384 if (error == 0) {
385 write_lock_irq(&mapping->tree_lock);
386 error = radix_tree_insert(&mapping->page_tree, offset, page);
387 if (!error) {
388 page_cache_get(page);
389 SetPageLocked(page);
390 page->mapping = mapping;
391 page->index = offset;
392 mapping->nrpages++;
393 pagecache_acct(1);
395 write_unlock_irq(&mapping->tree_lock);
396 radix_tree_preload_end();
398 return error;
401 EXPORT_SYMBOL(add_to_page_cache);
403 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
404 pgoff_t offset, gfp_t gfp_mask)
406 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
407 if (ret == 0)
408 lru_cache_add(page);
409 return ret;
413 * In order to wait for pages to become available there must be
414 * waitqueues associated with pages. By using a hash table of
415 * waitqueues where the bucket discipline is to maintain all
416 * waiters on the same queue and wake all when any of the pages
417 * become available, and for the woken contexts to check to be
418 * sure the appropriate page became available, this saves space
419 * at a cost of "thundering herd" phenomena during rare hash
420 * collisions.
422 static wait_queue_head_t *page_waitqueue(struct page *page)
424 const struct zone *zone = page_zone(page);
426 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
429 static inline void wake_up_page(struct page *page, int bit)
431 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
434 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
436 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
438 if (test_bit(bit_nr, &page->flags))
439 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
440 TASK_UNINTERRUPTIBLE);
442 EXPORT_SYMBOL(wait_on_page_bit);
445 * unlock_page() - unlock a locked page
447 * @page: the page
449 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
450 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
451 * mechananism between PageLocked pages and PageWriteback pages is shared.
452 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
454 * The first mb is necessary to safely close the critical section opened by the
455 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
456 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
457 * parallel wait_on_page_locked()).
459 void fastcall unlock_page(struct page *page)
461 smp_mb__before_clear_bit();
462 if (!TestClearPageLocked(page))
463 BUG();
464 smp_mb__after_clear_bit();
465 wake_up_page(page, PG_locked);
467 EXPORT_SYMBOL(unlock_page);
470 * End writeback against a page.
472 void end_page_writeback(struct page *page)
474 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
475 if (!test_clear_page_writeback(page))
476 BUG();
478 smp_mb__after_clear_bit();
479 wake_up_page(page, PG_writeback);
481 EXPORT_SYMBOL(end_page_writeback);
484 * Get a lock on the page, assuming we need to sleep to get it.
486 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
487 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
488 * chances are that on the second loop, the block layer's plug list is empty,
489 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
491 void fastcall __lock_page(struct page *page)
493 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
495 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
496 TASK_UNINTERRUPTIBLE);
498 EXPORT_SYMBOL(__lock_page);
501 * a rather lightweight function, finding and getting a reference to a
502 * hashed page atomically.
504 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
506 struct page *page;
508 read_lock_irq(&mapping->tree_lock);
509 page = radix_tree_lookup(&mapping->page_tree, offset);
510 if (page)
511 page_cache_get(page);
512 read_unlock_irq(&mapping->tree_lock);
513 return page;
516 EXPORT_SYMBOL(find_get_page);
519 * Same as above, but trylock it instead of incrementing the count.
521 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
523 struct page *page;
525 read_lock_irq(&mapping->tree_lock);
526 page = radix_tree_lookup(&mapping->page_tree, offset);
527 if (page && TestSetPageLocked(page))
528 page = NULL;
529 read_unlock_irq(&mapping->tree_lock);
530 return page;
533 EXPORT_SYMBOL(find_trylock_page);
536 * find_lock_page - locate, pin and lock a pagecache page
538 * @mapping: the address_space to search
539 * @offset: the page index
541 * Locates the desired pagecache page, locks it, increments its reference
542 * count and returns its address.
544 * Returns zero if the page was not present. find_lock_page() may sleep.
546 struct page *find_lock_page(struct address_space *mapping,
547 unsigned long offset)
549 struct page *page;
551 read_lock_irq(&mapping->tree_lock);
552 repeat:
553 page = radix_tree_lookup(&mapping->page_tree, offset);
554 if (page) {
555 page_cache_get(page);
556 if (TestSetPageLocked(page)) {
557 read_unlock_irq(&mapping->tree_lock);
558 __lock_page(page);
559 read_lock_irq(&mapping->tree_lock);
561 /* Has the page been truncated while we slept? */
562 if (unlikely(page->mapping != mapping ||
563 page->index != offset)) {
564 unlock_page(page);
565 page_cache_release(page);
566 goto repeat;
570 read_unlock_irq(&mapping->tree_lock);
571 return page;
574 EXPORT_SYMBOL(find_lock_page);
577 * find_or_create_page - locate or add a pagecache page
579 * @mapping: the page's address_space
580 * @index: the page's index into the mapping
581 * @gfp_mask: page allocation mode
583 * Locates a page in the pagecache. If the page is not present, a new page
584 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
585 * LRU list. The returned page is locked and has its reference count
586 * incremented.
588 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
589 * allocation!
591 * find_or_create_page() returns the desired page's address, or zero on
592 * memory exhaustion.
594 struct page *find_or_create_page(struct address_space *mapping,
595 unsigned long index, gfp_t gfp_mask)
597 struct page *page, *cached_page = NULL;
598 int err;
599 repeat:
600 page = find_lock_page(mapping, index);
601 if (!page) {
602 if (!cached_page) {
603 cached_page = alloc_page(gfp_mask);
604 if (!cached_page)
605 return NULL;
607 err = add_to_page_cache_lru(cached_page, mapping,
608 index, gfp_mask);
609 if (!err) {
610 page = cached_page;
611 cached_page = NULL;
612 } else if (err == -EEXIST)
613 goto repeat;
615 if (cached_page)
616 page_cache_release(cached_page);
617 return page;
620 EXPORT_SYMBOL(find_or_create_page);
623 * find_get_pages - gang pagecache lookup
624 * @mapping: The address_space to search
625 * @start: The starting page index
626 * @nr_pages: The maximum number of pages
627 * @pages: Where the resulting pages are placed
629 * find_get_pages() will search for and return a group of up to
630 * @nr_pages pages in the mapping. The pages are placed at @pages.
631 * find_get_pages() takes a reference against the returned pages.
633 * The search returns a group of mapping-contiguous pages with ascending
634 * indexes. There may be holes in the indices due to not-present pages.
636 * find_get_pages() returns the number of pages which were found.
638 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
639 unsigned int nr_pages, struct page **pages)
641 unsigned int i;
642 unsigned int ret;
644 read_lock_irq(&mapping->tree_lock);
645 ret = radix_tree_gang_lookup(&mapping->page_tree,
646 (void **)pages, start, nr_pages);
647 for (i = 0; i < ret; i++)
648 page_cache_get(pages[i]);
649 read_unlock_irq(&mapping->tree_lock);
650 return ret;
654 * Like find_get_pages, except we only return pages which are tagged with
655 * `tag'. We update *index to index the next page for the traversal.
657 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
658 int tag, unsigned int nr_pages, struct page **pages)
660 unsigned int i;
661 unsigned int ret;
663 read_lock_irq(&mapping->tree_lock);
664 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
665 (void **)pages, *index, nr_pages, tag);
666 for (i = 0; i < ret; i++)
667 page_cache_get(pages[i]);
668 if (ret)
669 *index = pages[ret - 1]->index + 1;
670 read_unlock_irq(&mapping->tree_lock);
671 return ret;
675 * Same as grab_cache_page, but do not wait if the page is unavailable.
676 * This is intended for speculative data generators, where the data can
677 * be regenerated if the page couldn't be grabbed. This routine should
678 * be safe to call while holding the lock for another page.
680 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
681 * and deadlock against the caller's locked page.
683 struct page *
684 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
686 struct page *page = find_get_page(mapping, index);
687 gfp_t gfp_mask;
689 if (page) {
690 if (!TestSetPageLocked(page))
691 return page;
692 page_cache_release(page);
693 return NULL;
695 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
696 page = alloc_pages(gfp_mask, 0);
697 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
698 page_cache_release(page);
699 page = NULL;
701 return page;
704 EXPORT_SYMBOL(grab_cache_page_nowait);
707 * This is a generic file read routine, and uses the
708 * mapping->a_ops->readpage() function for the actual low-level
709 * stuff.
711 * This is really ugly. But the goto's actually try to clarify some
712 * of the logic when it comes to error handling etc.
714 * Note the struct file* is only passed for the use of readpage. It may be
715 * NULL.
717 void do_generic_mapping_read(struct address_space *mapping,
718 struct file_ra_state *_ra,
719 struct file *filp,
720 loff_t *ppos,
721 read_descriptor_t *desc,
722 read_actor_t actor)
724 struct inode *inode = mapping->host;
725 unsigned long index;
726 unsigned long end_index;
727 unsigned long offset;
728 unsigned long last_index;
729 unsigned long next_index;
730 unsigned long prev_index;
731 loff_t isize;
732 struct page *cached_page;
733 int error;
734 struct file_ra_state ra = *_ra;
736 cached_page = NULL;
737 index = *ppos >> PAGE_CACHE_SHIFT;
738 next_index = index;
739 prev_index = ra.prev_page;
740 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
741 offset = *ppos & ~PAGE_CACHE_MASK;
743 isize = i_size_read(inode);
744 if (!isize)
745 goto out;
747 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
748 for (;;) {
749 struct page *page;
750 unsigned long nr, ret;
752 /* nr is the maximum number of bytes to copy from this page */
753 nr = PAGE_CACHE_SIZE;
754 if (index >= end_index) {
755 if (index > end_index)
756 goto out;
757 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
758 if (nr <= offset) {
759 goto out;
762 nr = nr - offset;
764 cond_resched();
765 if (index == next_index)
766 next_index = page_cache_readahead(mapping, &ra, filp,
767 index, last_index - index);
769 find_page:
770 page = find_get_page(mapping, index);
771 if (unlikely(page == NULL)) {
772 handle_ra_miss(mapping, &ra, index);
773 goto no_cached_page;
775 if (!PageUptodate(page))
776 goto page_not_up_to_date;
777 page_ok:
779 /* If users can be writing to this page using arbitrary
780 * virtual addresses, take care about potential aliasing
781 * before reading the page on the kernel side.
783 if (mapping_writably_mapped(mapping))
784 flush_dcache_page(page);
787 * When (part of) the same page is read multiple times
788 * in succession, only mark it as accessed the first time.
790 if (prev_index != index)
791 mark_page_accessed(page);
792 prev_index = index;
795 * Ok, we have the page, and it's up-to-date, so
796 * now we can copy it to user space...
798 * The actor routine returns how many bytes were actually used..
799 * NOTE! This may not be the same as how much of a user buffer
800 * we filled up (we may be padding etc), so we can only update
801 * "pos" here (the actor routine has to update the user buffer
802 * pointers and the remaining count).
804 ret = actor(desc, page, offset, nr);
805 offset += ret;
806 index += offset >> PAGE_CACHE_SHIFT;
807 offset &= ~PAGE_CACHE_MASK;
809 page_cache_release(page);
810 if (ret == nr && desc->count)
811 continue;
812 goto out;
814 page_not_up_to_date:
815 /* Get exclusive access to the page ... */
816 lock_page(page);
818 /* Did it get unhashed before we got the lock? */
819 if (!page->mapping) {
820 unlock_page(page);
821 page_cache_release(page);
822 continue;
825 /* Did somebody else fill it already? */
826 if (PageUptodate(page)) {
827 unlock_page(page);
828 goto page_ok;
831 readpage:
832 /* Start the actual read. The read will unlock the page. */
833 error = mapping->a_ops->readpage(filp, page);
835 if (unlikely(error)) {
836 if (error == AOP_TRUNCATED_PAGE) {
837 page_cache_release(page);
838 goto find_page;
840 goto readpage_error;
843 if (!PageUptodate(page)) {
844 lock_page(page);
845 if (!PageUptodate(page)) {
846 if (page->mapping == NULL) {
848 * invalidate_inode_pages got it
850 unlock_page(page);
851 page_cache_release(page);
852 goto find_page;
854 unlock_page(page);
855 error = -EIO;
856 goto readpage_error;
858 unlock_page(page);
862 * i_size must be checked after we have done ->readpage.
864 * Checking i_size after the readpage allows us to calculate
865 * the correct value for "nr", which means the zero-filled
866 * part of the page is not copied back to userspace (unless
867 * another truncate extends the file - this is desired though).
869 isize = i_size_read(inode);
870 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
871 if (unlikely(!isize || index > end_index)) {
872 page_cache_release(page);
873 goto out;
876 /* nr is the maximum number of bytes to copy from this page */
877 nr = PAGE_CACHE_SIZE;
878 if (index == end_index) {
879 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
880 if (nr <= offset) {
881 page_cache_release(page);
882 goto out;
885 nr = nr - offset;
886 goto page_ok;
888 readpage_error:
889 /* UHHUH! A synchronous read error occurred. Report it */
890 desc->error = error;
891 page_cache_release(page);
892 goto out;
894 no_cached_page:
896 * Ok, it wasn't cached, so we need to create a new
897 * page..
899 if (!cached_page) {
900 cached_page = page_cache_alloc_cold(mapping);
901 if (!cached_page) {
902 desc->error = -ENOMEM;
903 goto out;
906 error = add_to_page_cache_lru(cached_page, mapping,
907 index, GFP_KERNEL);
908 if (error) {
909 if (error == -EEXIST)
910 goto find_page;
911 desc->error = error;
912 goto out;
914 page = cached_page;
915 cached_page = NULL;
916 goto readpage;
919 out:
920 *_ra = ra;
922 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
923 if (cached_page)
924 page_cache_release(cached_page);
925 if (filp)
926 file_accessed(filp);
929 EXPORT_SYMBOL(do_generic_mapping_read);
931 int file_read_actor(read_descriptor_t *desc, struct page *page,
932 unsigned long offset, unsigned long size)
934 char *kaddr;
935 unsigned long left, count = desc->count;
937 if (size > count)
938 size = count;
941 * Faults on the destination of a read are common, so do it before
942 * taking the kmap.
944 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
945 kaddr = kmap_atomic(page, KM_USER0);
946 left = __copy_to_user_inatomic(desc->arg.buf,
947 kaddr + offset, size);
948 kunmap_atomic(kaddr, KM_USER0);
949 if (left == 0)
950 goto success;
953 /* Do it the slow way */
954 kaddr = kmap(page);
955 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
956 kunmap(page);
958 if (left) {
959 size -= left;
960 desc->error = -EFAULT;
962 success:
963 desc->count = count - size;
964 desc->written += size;
965 desc->arg.buf += size;
966 return size;
970 * This is the "read()" routine for all filesystems
971 * that can use the page cache directly.
973 ssize_t
974 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
975 unsigned long nr_segs, loff_t *ppos)
977 struct file *filp = iocb->ki_filp;
978 ssize_t retval;
979 unsigned long seg;
980 size_t count;
982 count = 0;
983 for (seg = 0; seg < nr_segs; seg++) {
984 const struct iovec *iv = &iov[seg];
987 * If any segment has a negative length, or the cumulative
988 * length ever wraps negative then return -EINVAL.
990 count += iv->iov_len;
991 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
992 return -EINVAL;
993 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
994 continue;
995 if (seg == 0)
996 return -EFAULT;
997 nr_segs = seg;
998 count -= iv->iov_len; /* This segment is no good */
999 break;
1002 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1003 if (filp->f_flags & O_DIRECT) {
1004 loff_t pos = *ppos, size;
1005 struct address_space *mapping;
1006 struct inode *inode;
1008 mapping = filp->f_mapping;
1009 inode = mapping->host;
1010 retval = 0;
1011 if (!count)
1012 goto out; /* skip atime */
1013 size = i_size_read(inode);
1014 if (pos < size) {
1015 retval = generic_file_direct_IO(READ, iocb,
1016 iov, pos, nr_segs);
1017 if (retval > 0 && !is_sync_kiocb(iocb))
1018 retval = -EIOCBQUEUED;
1019 if (retval > 0)
1020 *ppos = pos + retval;
1022 file_accessed(filp);
1023 goto out;
1026 retval = 0;
1027 if (count) {
1028 for (seg = 0; seg < nr_segs; seg++) {
1029 read_descriptor_t desc;
1031 desc.written = 0;
1032 desc.arg.buf = iov[seg].iov_base;
1033 desc.count = iov[seg].iov_len;
1034 if (desc.count == 0)
1035 continue;
1036 desc.error = 0;
1037 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1038 retval += desc.written;
1039 if (desc.error) {
1040 retval = retval ?: desc.error;
1041 break;
1045 out:
1046 return retval;
1049 EXPORT_SYMBOL(__generic_file_aio_read);
1051 ssize_t
1052 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1054 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1056 BUG_ON(iocb->ki_pos != pos);
1057 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1060 EXPORT_SYMBOL(generic_file_aio_read);
1062 ssize_t
1063 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1065 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1066 struct kiocb kiocb;
1067 ssize_t ret;
1069 init_sync_kiocb(&kiocb, filp);
1070 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1071 if (-EIOCBQUEUED == ret)
1072 ret = wait_on_sync_kiocb(&kiocb);
1073 return ret;
1076 EXPORT_SYMBOL(generic_file_read);
1078 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1080 ssize_t written;
1081 unsigned long count = desc->count;
1082 struct file *file = desc->arg.data;
1084 if (size > count)
1085 size = count;
1087 written = file->f_op->sendpage(file, page, offset,
1088 size, &file->f_pos, size<count);
1089 if (written < 0) {
1090 desc->error = written;
1091 written = 0;
1093 desc->count = count - written;
1094 desc->written += written;
1095 return written;
1098 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1099 size_t count, read_actor_t actor, void *target)
1101 read_descriptor_t desc;
1103 if (!count)
1104 return 0;
1106 desc.written = 0;
1107 desc.count = count;
1108 desc.arg.data = target;
1109 desc.error = 0;
1111 do_generic_file_read(in_file, ppos, &desc, actor);
1112 if (desc.written)
1113 return desc.written;
1114 return desc.error;
1117 EXPORT_SYMBOL(generic_file_sendfile);
1119 static ssize_t
1120 do_readahead(struct address_space *mapping, struct file *filp,
1121 unsigned long index, unsigned long nr)
1123 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1124 return -EINVAL;
1126 force_page_cache_readahead(mapping, filp, index,
1127 max_sane_readahead(nr));
1128 return 0;
1131 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1133 ssize_t ret;
1134 struct file *file;
1136 ret = -EBADF;
1137 file = fget(fd);
1138 if (file) {
1139 if (file->f_mode & FMODE_READ) {
1140 struct address_space *mapping = file->f_mapping;
1141 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1142 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1143 unsigned long len = end - start + 1;
1144 ret = do_readahead(mapping, file, start, len);
1146 fput(file);
1148 return ret;
1151 #ifdef CONFIG_MMU
1153 * This adds the requested page to the page cache if it isn't already there,
1154 * and schedules an I/O to read in its contents from disk.
1156 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1157 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1159 struct address_space *mapping = file->f_mapping;
1160 struct page *page;
1161 int ret;
1163 do {
1164 page = page_cache_alloc_cold(mapping);
1165 if (!page)
1166 return -ENOMEM;
1168 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1169 if (ret == 0)
1170 ret = mapping->a_ops->readpage(file, page);
1171 else if (ret == -EEXIST)
1172 ret = 0; /* losing race to add is OK */
1174 page_cache_release(page);
1176 } while (ret == AOP_TRUNCATED_PAGE);
1178 return ret;
1181 #define MMAP_LOTSAMISS (100)
1184 * filemap_nopage() is invoked via the vma operations vector for a
1185 * mapped memory region to read in file data during a page fault.
1187 * The goto's are kind of ugly, but this streamlines the normal case of having
1188 * it in the page cache, and handles the special cases reasonably without
1189 * having a lot of duplicated code.
1191 struct page *filemap_nopage(struct vm_area_struct *area,
1192 unsigned long address, int *type)
1194 int error;
1195 struct file *file = area->vm_file;
1196 struct address_space *mapping = file->f_mapping;
1197 struct file_ra_state *ra = &file->f_ra;
1198 struct inode *inode = mapping->host;
1199 struct page *page;
1200 unsigned long size, pgoff;
1201 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1203 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1205 retry_all:
1206 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1207 if (pgoff >= size)
1208 goto outside_data_content;
1210 /* If we don't want any read-ahead, don't bother */
1211 if (VM_RandomReadHint(area))
1212 goto no_cached_page;
1215 * The readahead code wants to be told about each and every page
1216 * so it can build and shrink its windows appropriately
1218 * For sequential accesses, we use the generic readahead logic.
1220 if (VM_SequentialReadHint(area))
1221 page_cache_readahead(mapping, ra, file, pgoff, 1);
1224 * Do we have something in the page cache already?
1226 retry_find:
1227 page = find_get_page(mapping, pgoff);
1228 if (!page) {
1229 unsigned long ra_pages;
1231 if (VM_SequentialReadHint(area)) {
1232 handle_ra_miss(mapping, ra, pgoff);
1233 goto no_cached_page;
1235 ra->mmap_miss++;
1238 * Do we miss much more than hit in this file? If so,
1239 * stop bothering with read-ahead. It will only hurt.
1241 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1242 goto no_cached_page;
1245 * To keep the pgmajfault counter straight, we need to
1246 * check did_readaround, as this is an inner loop.
1248 if (!did_readaround) {
1249 majmin = VM_FAULT_MAJOR;
1250 inc_page_state(pgmajfault);
1252 did_readaround = 1;
1253 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1254 if (ra_pages) {
1255 pgoff_t start = 0;
1257 if (pgoff > ra_pages / 2)
1258 start = pgoff - ra_pages / 2;
1259 do_page_cache_readahead(mapping, file, start, ra_pages);
1261 page = find_get_page(mapping, pgoff);
1262 if (!page)
1263 goto no_cached_page;
1266 if (!did_readaround)
1267 ra->mmap_hit++;
1270 * Ok, found a page in the page cache, now we need to check
1271 * that it's up-to-date.
1273 if (!PageUptodate(page))
1274 goto page_not_uptodate;
1276 success:
1278 * Found the page and have a reference on it.
1280 mark_page_accessed(page);
1281 if (type)
1282 *type = majmin;
1283 return page;
1285 outside_data_content:
1287 * An external ptracer can access pages that normally aren't
1288 * accessible..
1290 if (area->vm_mm == current->mm)
1291 return NULL;
1292 /* Fall through to the non-read-ahead case */
1293 no_cached_page:
1295 * We're only likely to ever get here if MADV_RANDOM is in
1296 * effect.
1298 error = page_cache_read(file, pgoff);
1299 grab_swap_token();
1302 * The page we want has now been added to the page cache.
1303 * In the unlikely event that someone removed it in the
1304 * meantime, we'll just come back here and read it again.
1306 if (error >= 0)
1307 goto retry_find;
1310 * An error return from page_cache_read can result if the
1311 * system is low on memory, or a problem occurs while trying
1312 * to schedule I/O.
1314 if (error == -ENOMEM)
1315 return NOPAGE_OOM;
1316 return NULL;
1318 page_not_uptodate:
1319 if (!did_readaround) {
1320 majmin = VM_FAULT_MAJOR;
1321 inc_page_state(pgmajfault);
1323 lock_page(page);
1325 /* Did it get unhashed while we waited for it? */
1326 if (!page->mapping) {
1327 unlock_page(page);
1328 page_cache_release(page);
1329 goto retry_all;
1332 /* Did somebody else get it up-to-date? */
1333 if (PageUptodate(page)) {
1334 unlock_page(page);
1335 goto success;
1338 error = mapping->a_ops->readpage(file, page);
1339 if (!error) {
1340 wait_on_page_locked(page);
1341 if (PageUptodate(page))
1342 goto success;
1343 } else if (error == AOP_TRUNCATED_PAGE) {
1344 page_cache_release(page);
1345 goto retry_find;
1349 * Umm, take care of errors if the page isn't up-to-date.
1350 * Try to re-read it _once_. We do this synchronously,
1351 * because there really aren't any performance issues here
1352 * and we need to check for errors.
1354 lock_page(page);
1356 /* Somebody truncated the page on us? */
1357 if (!page->mapping) {
1358 unlock_page(page);
1359 page_cache_release(page);
1360 goto retry_all;
1363 /* Somebody else successfully read it in? */
1364 if (PageUptodate(page)) {
1365 unlock_page(page);
1366 goto success;
1368 ClearPageError(page);
1369 error = mapping->a_ops->readpage(file, page);
1370 if (!error) {
1371 wait_on_page_locked(page);
1372 if (PageUptodate(page))
1373 goto success;
1374 } else if (error == AOP_TRUNCATED_PAGE) {
1375 page_cache_release(page);
1376 goto retry_find;
1380 * Things didn't work out. Return zero to tell the
1381 * mm layer so, possibly freeing the page cache page first.
1383 page_cache_release(page);
1384 return NULL;
1387 EXPORT_SYMBOL(filemap_nopage);
1389 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1390 int nonblock)
1392 struct address_space *mapping = file->f_mapping;
1393 struct page *page;
1394 int error;
1397 * Do we have something in the page cache already?
1399 retry_find:
1400 page = find_get_page(mapping, pgoff);
1401 if (!page) {
1402 if (nonblock)
1403 return NULL;
1404 goto no_cached_page;
1408 * Ok, found a page in the page cache, now we need to check
1409 * that it's up-to-date.
1411 if (!PageUptodate(page)) {
1412 if (nonblock) {
1413 page_cache_release(page);
1414 return NULL;
1416 goto page_not_uptodate;
1419 success:
1421 * Found the page and have a reference on it.
1423 mark_page_accessed(page);
1424 return page;
1426 no_cached_page:
1427 error = page_cache_read(file, pgoff);
1430 * The page we want has now been added to the page cache.
1431 * In the unlikely event that someone removed it in the
1432 * meantime, we'll just come back here and read it again.
1434 if (error >= 0)
1435 goto retry_find;
1438 * An error return from page_cache_read can result if the
1439 * system is low on memory, or a problem occurs while trying
1440 * to schedule I/O.
1442 return NULL;
1444 page_not_uptodate:
1445 lock_page(page);
1447 /* Did it get unhashed while we waited for it? */
1448 if (!page->mapping) {
1449 unlock_page(page);
1450 goto err;
1453 /* Did somebody else get it up-to-date? */
1454 if (PageUptodate(page)) {
1455 unlock_page(page);
1456 goto success;
1459 error = mapping->a_ops->readpage(file, page);
1460 if (!error) {
1461 wait_on_page_locked(page);
1462 if (PageUptodate(page))
1463 goto success;
1464 } else if (error == AOP_TRUNCATED_PAGE) {
1465 page_cache_release(page);
1466 goto retry_find;
1470 * Umm, take care of errors if the page isn't up-to-date.
1471 * Try to re-read it _once_. We do this synchronously,
1472 * because there really aren't any performance issues here
1473 * and we need to check for errors.
1475 lock_page(page);
1477 /* Somebody truncated the page on us? */
1478 if (!page->mapping) {
1479 unlock_page(page);
1480 goto err;
1482 /* Somebody else successfully read it in? */
1483 if (PageUptodate(page)) {
1484 unlock_page(page);
1485 goto success;
1488 ClearPageError(page);
1489 error = mapping->a_ops->readpage(file, page);
1490 if (!error) {
1491 wait_on_page_locked(page);
1492 if (PageUptodate(page))
1493 goto success;
1494 } else if (error == AOP_TRUNCATED_PAGE) {
1495 page_cache_release(page);
1496 goto retry_find;
1500 * Things didn't work out. Return zero to tell the
1501 * mm layer so, possibly freeing the page cache page first.
1503 err:
1504 page_cache_release(page);
1506 return NULL;
1509 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1510 unsigned long len, pgprot_t prot, unsigned long pgoff,
1511 int nonblock)
1513 struct file *file = vma->vm_file;
1514 struct address_space *mapping = file->f_mapping;
1515 struct inode *inode = mapping->host;
1516 unsigned long size;
1517 struct mm_struct *mm = vma->vm_mm;
1518 struct page *page;
1519 int err;
1521 if (!nonblock)
1522 force_page_cache_readahead(mapping, vma->vm_file,
1523 pgoff, len >> PAGE_CACHE_SHIFT);
1525 repeat:
1526 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1527 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1528 return -EINVAL;
1530 page = filemap_getpage(file, pgoff, nonblock);
1532 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1533 * done in shmem_populate calling shmem_getpage */
1534 if (!page && !nonblock)
1535 return -ENOMEM;
1537 if (page) {
1538 err = install_page(mm, vma, addr, page, prot);
1539 if (err) {
1540 page_cache_release(page);
1541 return err;
1543 } else if (vma->vm_flags & VM_NONLINEAR) {
1544 /* No page was found just because we can't read it in now (being
1545 * here implies nonblock != 0), but the page may exist, so set
1546 * the PTE to fault it in later. */
1547 err = install_file_pte(mm, vma, addr, pgoff, prot);
1548 if (err)
1549 return err;
1552 len -= PAGE_SIZE;
1553 addr += PAGE_SIZE;
1554 pgoff++;
1555 if (len)
1556 goto repeat;
1558 return 0;
1560 EXPORT_SYMBOL(filemap_populate);
1562 struct vm_operations_struct generic_file_vm_ops = {
1563 .nopage = filemap_nopage,
1564 .populate = filemap_populate,
1567 /* This is used for a general mmap of a disk file */
1569 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1571 struct address_space *mapping = file->f_mapping;
1573 if (!mapping->a_ops->readpage)
1574 return -ENOEXEC;
1575 file_accessed(file);
1576 vma->vm_ops = &generic_file_vm_ops;
1577 return 0;
1581 * This is for filesystems which do not implement ->writepage.
1583 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1585 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1586 return -EINVAL;
1587 return generic_file_mmap(file, vma);
1589 #else
1590 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1592 return -ENOSYS;
1594 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1596 return -ENOSYS;
1598 #endif /* CONFIG_MMU */
1600 EXPORT_SYMBOL(generic_file_mmap);
1601 EXPORT_SYMBOL(generic_file_readonly_mmap);
1603 static inline struct page *__read_cache_page(struct address_space *mapping,
1604 unsigned long index,
1605 int (*filler)(void *,struct page*),
1606 void *data)
1608 struct page *page, *cached_page = NULL;
1609 int err;
1610 repeat:
1611 page = find_get_page(mapping, index);
1612 if (!page) {
1613 if (!cached_page) {
1614 cached_page = page_cache_alloc_cold(mapping);
1615 if (!cached_page)
1616 return ERR_PTR(-ENOMEM);
1618 err = add_to_page_cache_lru(cached_page, mapping,
1619 index, GFP_KERNEL);
1620 if (err == -EEXIST)
1621 goto repeat;
1622 if (err < 0) {
1623 /* Presumably ENOMEM for radix tree node */
1624 page_cache_release(cached_page);
1625 return ERR_PTR(err);
1627 page = cached_page;
1628 cached_page = NULL;
1629 err = filler(data, page);
1630 if (err < 0) {
1631 page_cache_release(page);
1632 page = ERR_PTR(err);
1635 if (cached_page)
1636 page_cache_release(cached_page);
1637 return page;
1641 * Read into the page cache. If a page already exists,
1642 * and PageUptodate() is not set, try to fill the page.
1644 struct page *read_cache_page(struct address_space *mapping,
1645 unsigned long index,
1646 int (*filler)(void *,struct page*),
1647 void *data)
1649 struct page *page;
1650 int err;
1652 retry:
1653 page = __read_cache_page(mapping, index, filler, data);
1654 if (IS_ERR(page))
1655 goto out;
1656 mark_page_accessed(page);
1657 if (PageUptodate(page))
1658 goto out;
1660 lock_page(page);
1661 if (!page->mapping) {
1662 unlock_page(page);
1663 page_cache_release(page);
1664 goto retry;
1666 if (PageUptodate(page)) {
1667 unlock_page(page);
1668 goto out;
1670 err = filler(data, page);
1671 if (err < 0) {
1672 page_cache_release(page);
1673 page = ERR_PTR(err);
1675 out:
1676 return page;
1679 EXPORT_SYMBOL(read_cache_page);
1682 * If the page was newly created, increment its refcount and add it to the
1683 * caller's lru-buffering pagevec. This function is specifically for
1684 * generic_file_write().
1686 static inline struct page *
1687 __grab_cache_page(struct address_space *mapping, unsigned long index,
1688 struct page **cached_page, struct pagevec *lru_pvec)
1690 int err;
1691 struct page *page;
1692 repeat:
1693 page = find_lock_page(mapping, index);
1694 if (!page) {
1695 if (!*cached_page) {
1696 *cached_page = page_cache_alloc(mapping);
1697 if (!*cached_page)
1698 return NULL;
1700 err = add_to_page_cache(*cached_page, mapping,
1701 index, GFP_KERNEL);
1702 if (err == -EEXIST)
1703 goto repeat;
1704 if (err == 0) {
1705 page = *cached_page;
1706 page_cache_get(page);
1707 if (!pagevec_add(lru_pvec, page))
1708 __pagevec_lru_add(lru_pvec);
1709 *cached_page = NULL;
1712 return page;
1716 * The logic we want is
1718 * if suid or (sgid and xgrp)
1719 * remove privs
1721 int remove_suid(struct dentry *dentry)
1723 mode_t mode = dentry->d_inode->i_mode;
1724 int kill = 0;
1725 int result = 0;
1727 /* suid always must be killed */
1728 if (unlikely(mode & S_ISUID))
1729 kill = ATTR_KILL_SUID;
1732 * sgid without any exec bits is just a mandatory locking mark; leave
1733 * it alone. If some exec bits are set, it's a real sgid; kill it.
1735 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1736 kill |= ATTR_KILL_SGID;
1738 if (unlikely(kill && !capable(CAP_FSETID))) {
1739 struct iattr newattrs;
1741 newattrs.ia_valid = ATTR_FORCE | kill;
1742 result = notify_change(dentry, &newattrs);
1744 return result;
1746 EXPORT_SYMBOL(remove_suid);
1748 size_t
1749 __filemap_copy_from_user_iovec(char *vaddr,
1750 const struct iovec *iov, size_t base, size_t bytes)
1752 size_t copied = 0, left = 0;
1754 while (bytes) {
1755 char __user *buf = iov->iov_base + base;
1756 int copy = min(bytes, iov->iov_len - base);
1758 base = 0;
1759 left = __copy_from_user_inatomic(vaddr, buf, copy);
1760 copied += copy;
1761 bytes -= copy;
1762 vaddr += copy;
1763 iov++;
1765 if (unlikely(left)) {
1766 /* zero the rest of the target like __copy_from_user */
1767 if (bytes)
1768 memset(vaddr, 0, bytes);
1769 break;
1772 return copied - left;
1776 * Performs necessary checks before doing a write
1778 * Can adjust writing position aor amount of bytes to write.
1779 * Returns appropriate error code that caller should return or
1780 * zero in case that write should be allowed.
1782 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1784 struct inode *inode = file->f_mapping->host;
1785 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1787 if (unlikely(*pos < 0))
1788 return -EINVAL;
1790 if (!isblk) {
1791 /* FIXME: this is for backwards compatibility with 2.4 */
1792 if (file->f_flags & O_APPEND)
1793 *pos = i_size_read(inode);
1795 if (limit != RLIM_INFINITY) {
1796 if (*pos >= limit) {
1797 send_sig(SIGXFSZ, current, 0);
1798 return -EFBIG;
1800 if (*count > limit - (typeof(limit))*pos) {
1801 *count = limit - (typeof(limit))*pos;
1807 * LFS rule
1809 if (unlikely(*pos + *count > MAX_NON_LFS &&
1810 !(file->f_flags & O_LARGEFILE))) {
1811 if (*pos >= MAX_NON_LFS) {
1812 send_sig(SIGXFSZ, current, 0);
1813 return -EFBIG;
1815 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1816 *count = MAX_NON_LFS - (unsigned long)*pos;
1821 * Are we about to exceed the fs block limit ?
1823 * If we have written data it becomes a short write. If we have
1824 * exceeded without writing data we send a signal and return EFBIG.
1825 * Linus frestrict idea will clean these up nicely..
1827 if (likely(!isblk)) {
1828 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1829 if (*count || *pos > inode->i_sb->s_maxbytes) {
1830 send_sig(SIGXFSZ, current, 0);
1831 return -EFBIG;
1833 /* zero-length writes at ->s_maxbytes are OK */
1836 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1837 *count = inode->i_sb->s_maxbytes - *pos;
1838 } else {
1839 loff_t isize;
1840 if (bdev_read_only(I_BDEV(inode)))
1841 return -EPERM;
1842 isize = i_size_read(inode);
1843 if (*pos >= isize) {
1844 if (*count || *pos > isize)
1845 return -ENOSPC;
1848 if (*pos + *count > isize)
1849 *count = isize - *pos;
1851 return 0;
1853 EXPORT_SYMBOL(generic_write_checks);
1855 ssize_t
1856 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1857 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1858 size_t count, size_t ocount)
1860 struct file *file = iocb->ki_filp;
1861 struct address_space *mapping = file->f_mapping;
1862 struct inode *inode = mapping->host;
1863 ssize_t written;
1865 if (count != ocount)
1866 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1868 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1869 if (written > 0) {
1870 loff_t end = pos + written;
1871 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1872 i_size_write(inode, end);
1873 mark_inode_dirty(inode);
1875 *ppos = end;
1879 * Sync the fs metadata but not the minor inode changes and
1880 * of course not the data as we did direct DMA for the IO.
1881 * i_sem is held, which protects generic_osync_inode() from
1882 * livelocking.
1884 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1885 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1886 if (err < 0)
1887 written = err;
1889 if (written == count && !is_sync_kiocb(iocb))
1890 written = -EIOCBQUEUED;
1891 return written;
1893 EXPORT_SYMBOL(generic_file_direct_write);
1895 ssize_t
1896 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1897 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1898 size_t count, ssize_t written)
1900 struct file *file = iocb->ki_filp;
1901 struct address_space * mapping = file->f_mapping;
1902 struct address_space_operations *a_ops = mapping->a_ops;
1903 struct inode *inode = mapping->host;
1904 long status = 0;
1905 struct page *page;
1906 struct page *cached_page = NULL;
1907 size_t bytes;
1908 struct pagevec lru_pvec;
1909 const struct iovec *cur_iov = iov; /* current iovec */
1910 size_t iov_base = 0; /* offset in the current iovec */
1911 char __user *buf;
1913 pagevec_init(&lru_pvec, 0);
1916 * handle partial DIO write. Adjust cur_iov if needed.
1918 if (likely(nr_segs == 1))
1919 buf = iov->iov_base + written;
1920 else {
1921 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1922 buf = cur_iov->iov_base + iov_base;
1925 do {
1926 unsigned long index;
1927 unsigned long offset;
1928 unsigned long maxlen;
1929 size_t copied;
1931 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1932 index = pos >> PAGE_CACHE_SHIFT;
1933 bytes = PAGE_CACHE_SIZE - offset;
1934 if (bytes > count)
1935 bytes = count;
1938 * Bring in the user page that we will copy from _first_.
1939 * Otherwise there's a nasty deadlock on copying from the
1940 * same page as we're writing to, without it being marked
1941 * up-to-date.
1943 maxlen = cur_iov->iov_len - iov_base;
1944 if (maxlen > bytes)
1945 maxlen = bytes;
1946 fault_in_pages_readable(buf, maxlen);
1948 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1949 if (!page) {
1950 status = -ENOMEM;
1951 break;
1954 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1955 if (unlikely(status)) {
1956 loff_t isize = i_size_read(inode);
1958 if (status != AOP_TRUNCATED_PAGE)
1959 unlock_page(page);
1960 page_cache_release(page);
1961 if (status == AOP_TRUNCATED_PAGE)
1962 continue;
1964 * prepare_write() may have instantiated a few blocks
1965 * outside i_size. Trim these off again.
1967 if (pos + bytes > isize)
1968 vmtruncate(inode, isize);
1969 break;
1971 if (likely(nr_segs == 1))
1972 copied = filemap_copy_from_user(page, offset,
1973 buf, bytes);
1974 else
1975 copied = filemap_copy_from_user_iovec(page, offset,
1976 cur_iov, iov_base, bytes);
1977 flush_dcache_page(page);
1978 status = a_ops->commit_write(file, page, offset, offset+bytes);
1979 if (status == AOP_TRUNCATED_PAGE) {
1980 page_cache_release(page);
1981 continue;
1983 if (likely(copied > 0)) {
1984 if (!status)
1985 status = copied;
1987 if (status >= 0) {
1988 written += status;
1989 count -= status;
1990 pos += status;
1991 buf += status;
1992 if (unlikely(nr_segs > 1)) {
1993 filemap_set_next_iovec(&cur_iov,
1994 &iov_base, status);
1995 if (count)
1996 buf = cur_iov->iov_base +
1997 iov_base;
1998 } else {
1999 iov_base += status;
2003 if (unlikely(copied != bytes))
2004 if (status >= 0)
2005 status = -EFAULT;
2006 unlock_page(page);
2007 mark_page_accessed(page);
2008 page_cache_release(page);
2009 if (status < 0)
2010 break;
2011 balance_dirty_pages_ratelimited(mapping);
2012 cond_resched();
2013 } while (count);
2014 *ppos = pos;
2016 if (cached_page)
2017 page_cache_release(cached_page);
2020 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2022 if (likely(status >= 0)) {
2023 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2024 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2025 status = generic_osync_inode(inode, mapping,
2026 OSYNC_METADATA|OSYNC_DATA);
2031 * If we get here for O_DIRECT writes then we must have fallen through
2032 * to buffered writes (block instantiation inside i_size). So we sync
2033 * the file data here, to try to honour O_DIRECT expectations.
2035 if (unlikely(file->f_flags & O_DIRECT) && written)
2036 status = filemap_write_and_wait(mapping);
2038 pagevec_lru_add(&lru_pvec);
2039 return written ? written : status;
2041 EXPORT_SYMBOL(generic_file_buffered_write);
2043 static ssize_t
2044 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2045 unsigned long nr_segs, loff_t *ppos)
2047 struct file *file = iocb->ki_filp;
2048 struct address_space * mapping = file->f_mapping;
2049 size_t ocount; /* original count */
2050 size_t count; /* after file limit checks */
2051 struct inode *inode = mapping->host;
2052 unsigned long seg;
2053 loff_t pos;
2054 ssize_t written;
2055 ssize_t err;
2057 ocount = 0;
2058 for (seg = 0; seg < nr_segs; seg++) {
2059 const struct iovec *iv = &iov[seg];
2062 * If any segment has a negative length, or the cumulative
2063 * length ever wraps negative then return -EINVAL.
2065 ocount += iv->iov_len;
2066 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2067 return -EINVAL;
2068 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2069 continue;
2070 if (seg == 0)
2071 return -EFAULT;
2072 nr_segs = seg;
2073 ocount -= iv->iov_len; /* This segment is no good */
2074 break;
2077 count = ocount;
2078 pos = *ppos;
2080 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2082 /* We can write back this queue in page reclaim */
2083 current->backing_dev_info = mapping->backing_dev_info;
2084 written = 0;
2086 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2087 if (err)
2088 goto out;
2090 if (count == 0)
2091 goto out;
2093 err = remove_suid(file->f_dentry);
2094 if (err)
2095 goto out;
2097 inode_update_time(inode, 1);
2099 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2100 if (unlikely(file->f_flags & O_DIRECT)) {
2101 written = generic_file_direct_write(iocb, iov,
2102 &nr_segs, pos, ppos, count, ocount);
2103 if (written < 0 || written == count)
2104 goto out;
2106 * direct-io write to a hole: fall through to buffered I/O
2107 * for completing the rest of the request.
2109 pos += written;
2110 count -= written;
2113 written = generic_file_buffered_write(iocb, iov, nr_segs,
2114 pos, ppos, count, written);
2115 out:
2116 current->backing_dev_info = NULL;
2117 return written ? written : err;
2119 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2121 ssize_t
2122 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2123 unsigned long nr_segs, loff_t *ppos)
2125 struct file *file = iocb->ki_filp;
2126 struct address_space *mapping = file->f_mapping;
2127 struct inode *inode = mapping->host;
2128 ssize_t ret;
2129 loff_t pos = *ppos;
2131 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2133 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2134 int err;
2136 err = sync_page_range_nolock(inode, mapping, pos, ret);
2137 if (err < 0)
2138 ret = err;
2140 return ret;
2143 static ssize_t
2144 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2145 unsigned long nr_segs, loff_t *ppos)
2147 struct kiocb kiocb;
2148 ssize_t ret;
2150 init_sync_kiocb(&kiocb, file);
2151 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2152 if (ret == -EIOCBQUEUED)
2153 ret = wait_on_sync_kiocb(&kiocb);
2154 return ret;
2157 ssize_t
2158 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2159 unsigned long nr_segs, loff_t *ppos)
2161 struct kiocb kiocb;
2162 ssize_t ret;
2164 init_sync_kiocb(&kiocb, file);
2165 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2166 if (-EIOCBQUEUED == ret)
2167 ret = wait_on_sync_kiocb(&kiocb);
2168 return ret;
2170 EXPORT_SYMBOL(generic_file_write_nolock);
2172 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2173 size_t count, loff_t pos)
2175 struct file *file = iocb->ki_filp;
2176 struct address_space *mapping = file->f_mapping;
2177 struct inode *inode = mapping->host;
2178 ssize_t ret;
2179 struct iovec local_iov = { .iov_base = (void __user *)buf,
2180 .iov_len = count };
2182 BUG_ON(iocb->ki_pos != pos);
2184 down(&inode->i_sem);
2185 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2186 &iocb->ki_pos);
2187 up(&inode->i_sem);
2189 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2190 ssize_t err;
2192 err = sync_page_range(inode, mapping, pos, ret);
2193 if (err < 0)
2194 ret = err;
2196 return ret;
2198 EXPORT_SYMBOL(generic_file_aio_write);
2200 ssize_t generic_file_write(struct file *file, const char __user *buf,
2201 size_t count, loff_t *ppos)
2203 struct address_space *mapping = file->f_mapping;
2204 struct inode *inode = mapping->host;
2205 ssize_t ret;
2206 struct iovec local_iov = { .iov_base = (void __user *)buf,
2207 .iov_len = count };
2209 down(&inode->i_sem);
2210 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2211 up(&inode->i_sem);
2213 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2214 ssize_t err;
2216 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2217 if (err < 0)
2218 ret = err;
2220 return ret;
2222 EXPORT_SYMBOL(generic_file_write);
2224 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2225 unsigned long nr_segs, loff_t *ppos)
2227 struct kiocb kiocb;
2228 ssize_t ret;
2230 init_sync_kiocb(&kiocb, filp);
2231 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2232 if (-EIOCBQUEUED == ret)
2233 ret = wait_on_sync_kiocb(&kiocb);
2234 return ret;
2236 EXPORT_SYMBOL(generic_file_readv);
2238 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2239 unsigned long nr_segs, loff_t *ppos)
2241 struct address_space *mapping = file->f_mapping;
2242 struct inode *inode = mapping->host;
2243 ssize_t ret;
2245 down(&inode->i_sem);
2246 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2247 up(&inode->i_sem);
2249 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2250 int err;
2252 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2253 if (err < 0)
2254 ret = err;
2256 return ret;
2258 EXPORT_SYMBOL(generic_file_writev);
2261 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2262 * went wrong during pagecache shootdown.
2264 static ssize_t
2265 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2266 loff_t offset, unsigned long nr_segs)
2268 struct file *file = iocb->ki_filp;
2269 struct address_space *mapping = file->f_mapping;
2270 ssize_t retval;
2271 size_t write_len = 0;
2274 * If it's a write, unmap all mmappings of the file up-front. This
2275 * will cause any pte dirty bits to be propagated into the pageframes
2276 * for the subsequent filemap_write_and_wait().
2278 if (rw == WRITE) {
2279 write_len = iov_length(iov, nr_segs);
2280 if (mapping_mapped(mapping))
2281 unmap_mapping_range(mapping, offset, write_len, 0);
2284 retval = filemap_write_and_wait(mapping);
2285 if (retval == 0) {
2286 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2287 offset, nr_segs);
2288 if (rw == WRITE && mapping->nrpages) {
2289 pgoff_t end = (offset + write_len - 1)
2290 >> PAGE_CACHE_SHIFT;
2291 int err = invalidate_inode_pages2_range(mapping,
2292 offset >> PAGE_CACHE_SHIFT, end);
2293 if (err)
2294 retval = err;
2297 return retval;