2 * Driver for DBRI sound chip found on Sparcs.
3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
6 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 * data time multiplexer with ISDN support (aka T7259)
14 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
17 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 * Sparc Technology Business (courtesy of Sun Support)
19 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 * available from the Lucent (formarly AT&T microelectronics) home
22 * - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 * Interfaces: CHI, Audio In & Out, 2 bits parallel
25 * Documentation: from the Crystal Semiconductor home page.
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
36 * The mmcodec is connected via the CHI bus and needs the data & some
37 * parameters (volume, output selection) timemultiplexed in 8 byte
38 * chunks. It also has a control mode, which serves for audio format setting.
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
47 * I've tried to stick to the following function naming conventions:
49 * cs4215_* CS4215 codec specific stuff
50 * dbri_* DBRI high-level stuff
51 * other DBRI low-level stuff
54 #include <sound/driver.h>
55 #include <linux/interrupt.h>
56 #include <linux/delay.h>
58 #include <sound/core.h>
59 #include <sound/pcm.h>
60 #include <sound/pcm_params.h>
61 #include <sound/info.h>
62 #include <sound/control.h>
63 #include <sound/initval.h>
68 #include <asm/atomic.h>
70 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71 MODULE_DESCRIPTION("Sun DBRI");
72 MODULE_LICENSE("GPL");
73 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
75 static int index
[SNDRV_CARDS
] = SNDRV_DEFAULT_IDX
; /* Index 0-MAX */
76 static char *id
[SNDRV_CARDS
] = SNDRV_DEFAULT_STR
; /* ID for this card */
77 static int enable
[SNDRV_CARDS
] = SNDRV_DEFAULT_ENABLE_PNP
; /* Enable this card */
79 module_param_array(index
, int, NULL
, 0444);
80 MODULE_PARM_DESC(index
, "Index value for Sun DBRI soundcard.");
81 module_param_array(id
, charp
, NULL
, 0444);
82 MODULE_PARM_DESC(id
, "ID string for Sun DBRI soundcard.");
83 module_param_array(enable
, bool, NULL
, 0444);
84 MODULE_PARM_DESC(enable
, "Enable Sun DBRI soundcard.");
95 static int dbri_debug
;
96 module_param(dbri_debug
, int, 0644);
97 MODULE_PARM_DESC(dbri_debug
, "Debug value for Sun DBRI soundcard.");
100 static char *cmds
[] = {
101 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
105 #define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
108 #define dprintk(a, x...)
110 #endif /* DBRI_DEBUG */
112 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
116 /***************************************************************************
117 CS4215 specific definitions and structures
118 ****************************************************************************/
121 __u8 data
[4]; /* Data mode: Time slots 5-8 */
122 __u8 ctrl
[4]; /* Ctrl mode: Time slots 1-4 */
124 __u8 offset
; /* Bit offset from frame sync to time slot 1 */
125 volatile __u32 status
;
126 volatile __u32 version
;
127 __u8 precision
; /* In bits, either 8 or 16 */
128 __u8 channels
; /* 1 or 2 */
135 /* Time Slot 1, Status register */
136 #define CS4215_CLB (1<<2) /* Control Latch Bit */
137 #define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
138 /* 0: line: 2.8V, speaker 8V */
139 #define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
140 #define CS4215_RSRVD_1 (1<<5)
142 /* Time Slot 2, Data Format Register */
143 #define CS4215_DFR_LINEAR16 0
144 #define CS4215_DFR_ULAW 1
145 #define CS4215_DFR_ALAW 2
146 #define CS4215_DFR_LINEAR8 3
147 #define CS4215_DFR_STEREO (1<<2)
153 { 8000, (1 << 4), (0 << 3) },
154 { 16000, (1 << 4), (1 << 3) },
155 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
156 { 32000, (1 << 4), (3 << 3) },
157 /* { NA, (1 << 4), (4 << 3) }, */
158 /* { NA, (1 << 4), (5 << 3) }, */
159 { 48000, (1 << 4), (6 << 3) },
160 { 9600, (1 << 4), (7 << 3) },
161 { 5513, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
162 { 11025, (2 << 4), (1 << 3) },
163 { 18900, (2 << 4), (2 << 3) },
164 { 22050, (2 << 4), (3 << 3) },
165 { 37800, (2 << 4), (4 << 3) },
166 { 44100, (2 << 4), (5 << 3) },
167 { 33075, (2 << 4), (6 << 3) },
168 { 6615, (2 << 4), (7 << 3) },
172 #define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
174 #define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
176 /* Time Slot 3, Serial Port Control register */
177 #define CS4215_XEN (1<<0) /* 0: Enable serial output */
178 #define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
179 #define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
180 #define CS4215_BSEL_128 (1<<2)
181 #define CS4215_BSEL_256 (2<<2)
182 #define CS4215_MCK_MAST (0<<4) /* Master clock */
183 #define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
184 #define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
185 #define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
186 #define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
188 /* Time Slot 4, Test Register */
189 #define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
190 #define CS4215_ENL (1<<1) /* Enable Loopback Testing */
192 /* Time Slot 5, Parallel Port Register */
193 /* Read only here and the same as the in data mode */
195 /* Time Slot 6, Reserved */
197 /* Time Slot 7, Version Register */
198 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
200 /* Time Slot 8, Reserved */
205 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
207 /* Time Slot 5, Output Setting */
208 #define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
209 #define CS4215_LE (1<<6) /* Line Out Enable */
210 #define CS4215_HE (1<<7) /* Headphone Enable */
212 /* Time Slot 6, Output Setting */
213 #define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
214 #define CS4215_SE (1<<6) /* Speaker Enable */
215 #define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
217 /* Time Slot 7, Input Setting */
218 #define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
219 #define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
220 #define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
221 #define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
222 #define CS4215_PIO1 (1<<7)
224 /* Time Slot 8, Input Setting */
225 #define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
226 #define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
228 /***************************************************************************
229 DBRI specific definitions and structures
230 ****************************************************************************/
232 /* DBRI main registers */
233 #define REG0 0x00UL /* Status and Control */
234 #define REG1 0x04UL /* Mode and Interrupt */
235 #define REG2 0x08UL /* Parallel IO */
236 #define REG3 0x0cUL /* Test */
237 #define REG8 0x20UL /* Command Queue Pointer */
238 #define REG9 0x24UL /* Interrupt Queue Pointer */
240 #define DBRI_NO_CMDS 64
241 #define DBRI_INT_BLK 64
242 #define DBRI_NO_DESCS 64
243 #define DBRI_NO_PIPES 32
245 #define DBRI_MM_ONB 1
250 #define DBRI_NO_STREAMS 2
252 /* One transmit/receive descriptor */
254 volatile __u32 word1
;
255 volatile __u32 ba
; /* Transmit/Receive Buffer Address */
256 volatile __u32 nda
; /* Next Descriptor Address */
257 volatile __u32 word4
;
260 /* This structure is in a DMA region where it can accessed by both
261 * the CPU and the DBRI
264 volatile s32 cmd
[DBRI_NO_CMDS
]; /* Place for commands */
265 volatile s32 intr
[DBRI_INT_BLK
]; /* Interrupt field */
266 struct dbri_mem desc
[DBRI_NO_DESCS
]; /* Xmit/receive descriptors */
269 #define dbri_dma_off(member, elem) \
270 ((u32)(unsigned long) \
271 (&(((struct dbri_dma *)0)->member[elem])))
273 enum in_or_out
{ PIPEinput
, PIPEoutput
};
276 u32 sdp
; /* SDP command word */
277 int nextpipe
; /* Next pipe in linked list */
278 int cycle
; /* Offset of timeslot (bits) */
279 int length
; /* Length of timeslot (bits) */
280 int first_desc
; /* Index of first descriptor */
281 int desc
; /* Index of active descriptor */
282 volatile __u32
*recv_fixed_ptr
; /* Ptr to receive fixed data */
286 int inuse
; /* Boolean flag */
287 int next
; /* Index of next desc, or -1 */
291 /* Per stream (playback or record) information */
292 struct dbri_streaminfo
{
293 struct snd_pcm_substream
*substream
;
294 u32 dvma_buffer
; /* Device view of Alsa DMA buffer */
295 int left
; /* # of bytes left in DMA buffer */
296 int size
; /* Size of DMA buffer */
297 size_t offset
; /* offset in user buffer */
298 int pipe
; /* Data pipe used */
299 int left_gain
; /* mixer elements */
303 /* This structure holds the information for both chips (DBRI & CS4215) */
305 struct snd_card
*card
; /* ALSA card */
307 int regs_size
, irq
; /* Needed for unload */
308 struct sbus_dev
*sdev
; /* SBUS device info */
311 volatile struct dbri_dma
*dma
; /* Pointer to our DMA block */
312 u32 dma_dvma
; /* DBRI visible DMA address */
314 void __iomem
*regs
; /* dbri HW regs */
315 int dbri_irqp
; /* intr queue pointer */
316 int wait_send
; /* sequence of command buffers send */
317 int wait_ackd
; /* sequence of command buffers acknowledged */
319 struct dbri_pipe pipes
[DBRI_NO_PIPES
]; /* DBRI's 32 data pipes */
320 struct dbri_desc descs
[DBRI_NO_DESCS
];
326 struct cs4215 mm
; /* mmcodec special info */
327 /* per stream (playback/record) info */
328 struct dbri_streaminfo stream_info
[DBRI_NO_STREAMS
];
330 struct snd_dbri
*next
;
333 #define DBRI_MAX_VOLUME 63 /* Output volume */
334 #define DBRI_MAX_GAIN 15 /* Input gain */
336 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
337 #define D_P (1<<15) /* Program command & queue pointer valid */
338 #define D_G (1<<14) /* Allow 4-Word SBus Burst */
339 #define D_S (1<<13) /* Allow 16-Word SBus Burst */
340 #define D_E (1<<12) /* Allow 8-Word SBus Burst */
341 #define D_X (1<<7) /* Sanity Timer Disable */
342 #define D_T (1<<6) /* Permit activation of the TE interface */
343 #define D_N (1<<5) /* Permit activation of the NT interface */
344 #define D_C (1<<4) /* Permit activation of the CHI interface */
345 #define D_F (1<<3) /* Force Sanity Timer Time-Out */
346 #define D_D (1<<2) /* Disable Master Mode */
347 #define D_H (1<<1) /* Halt for Analysis */
348 #define D_R (1<<0) /* Soft Reset */
350 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
351 #define D_LITTLE_END (1<<8) /* Byte Order */
352 #define D_BIG_END (0<<8) /* Byte Order */
353 #define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
354 #define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
355 #define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
356 #define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
357 #define D_IR (1<<0) /* Interrupt Indicator (readonly) */
359 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
360 #define D_ENPIO3 (1<<7) /* Enable Pin 3 */
361 #define D_ENPIO2 (1<<6) /* Enable Pin 2 */
362 #define D_ENPIO1 (1<<5) /* Enable Pin 1 */
363 #define D_ENPIO0 (1<<4) /* Enable Pin 0 */
364 #define D_ENPIO (0xf0) /* Enable all the pins */
365 #define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
366 #define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
367 #define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
368 #define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
370 /* DBRI Commands (Page 20) */
371 #define D_WAIT 0x0 /* Stop execution */
372 #define D_PAUSE 0x1 /* Flush long pipes */
373 #define D_JUMP 0x2 /* New command queue */
374 #define D_IIQ 0x3 /* Initialize Interrupt Queue */
375 #define D_REX 0x4 /* Report command execution via interrupt */
376 #define D_SDP 0x5 /* Setup Data Pipe */
377 #define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
378 #define D_DTS 0x7 /* Define Time Slot */
379 #define D_SSP 0x8 /* Set short Data Pipe */
380 #define D_CHI 0x9 /* Set CHI Global Mode */
381 #define D_NT 0xa /* NT Command */
382 #define D_TE 0xb /* TE Command */
383 #define D_CDEC 0xc /* Codec setup */
384 #define D_TEST 0xd /* No comment */
385 #define D_CDM 0xe /* CHI Data mode command */
387 /* Special bits for some commands */
388 #define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
390 /* Setup Data Pipe */
392 #define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
393 #define D_SDP_CHANGE (2<<18) /* Report any changes */
394 #define D_SDP_EVERY (3<<18) /* Report any changes */
395 #define D_SDP_EOL (1<<17) /* EOL interrupt enable */
396 #define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
399 #define D_SDP_MEM (0<<13) /* To/from memory */
400 #define D_SDP_HDLC (2<<13)
401 #define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
402 #define D_SDP_SER (4<<13) /* Serial to serial */
403 #define D_SDP_FIXED (6<<13) /* Short only */
404 #define D_SDP_MODE(v) ((v)&(7<<13))
406 #define D_SDP_TO_SER (1<<12) /* Direction */
407 #define D_SDP_FROM_SER (0<<12) /* Direction */
408 #define D_SDP_MSB (1<<11) /* Bit order within Byte */
409 #define D_SDP_LSB (0<<11) /* Bit order within Byte */
410 #define D_SDP_P (1<<10) /* Pointer Valid */
411 #define D_SDP_A (1<<8) /* Abort */
412 #define D_SDP_C (1<<7) /* Clear */
414 /* Define Time Slot */
415 #define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
416 #define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
417 #define D_DTS_INS (1<<15) /* Insert Time Slot */
418 #define D_DTS_DEL (0<<15) /* Delete Time Slot */
419 #define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
420 #define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
422 /* Time Slot defines */
423 #define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
424 #define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
425 #define D_TS_DI (1<<13) /* Data Invert */
426 #define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
427 #define D_TS_MONITOR (2<<10) /* Monitor pipe */
428 #define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
429 #define D_TS_ANCHOR (7<<10) /* Starting short pipes */
430 #define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
431 #define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
433 /* Concentration Highway Interface Modes */
434 #define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
435 #define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
436 #define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
437 #define D_CHI_OD (1<<13) /* Open Drain Enable */
438 #define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
439 #define D_CHI_FD (1<<11) /* Frame Drive */
440 #define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
442 /* NT: These are here for completeness */
443 #define D_NT_FBIT (1<<17) /* Frame Bit */
444 #define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
445 #define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
446 #define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
447 #define D_NT_ISNT (1<<13) /* Configfure interface as NT */
448 #define D_NT_FT (1<<12) /* Fixed Timing */
449 #define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
450 #define D_NT_IFA (1<<10) /* Inhibit Final Activation */
451 #define D_NT_ACT (1<<9) /* Activate Interface */
452 #define D_NT_MFE (1<<8) /* Multiframe Enable */
453 #define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
454 #define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
455 #define D_NT_FACT (1<<1) /* Force Activation */
456 #define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
459 #define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
460 #define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
461 #define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
464 #define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
465 #define D_TEST_SIZE(v) ((v)<<11) /* */
466 #define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
467 #define D_TEST_PROC 0x6 /* MicroProcessor test */
468 #define D_TEST_SER 0x7 /* Serial-Controller test */
469 #define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
470 #define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
471 #define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
472 #define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
473 #define D_TEST_DUMP 0xe /* ROM Dump */
476 #define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
477 #define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
478 #define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
479 #define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
480 #define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
481 #define D_CDM_REN (1<<0) /* Receive Highway Enable */
484 #define D_INTR_BRDY 1 /* Buffer Ready for processing */
485 #define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
486 #define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
487 #define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
488 #define D_INTR_EOL 5 /* End of List */
489 #define D_INTR_CMDI 6 /* Command has bean read */
490 #define D_INTR_XCMP 8 /* Transmission of frame complete */
491 #define D_INTR_SBRI 9 /* BRI status change info */
492 #define D_INTR_FXDT 10 /* Fixed data change */
493 #define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
494 #define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
495 #define D_INTR_DBYT 12 /* Dropped by frame slip */
496 #define D_INTR_RBYT 13 /* Repeated by frame slip */
497 #define D_INTR_LINT 14 /* Lost Interrupt */
498 #define D_INTR_UNDR 15 /* DMA underrun */
502 #define D_INTR_CHI 36
503 #define D_INTR_CMD 38
505 #define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
506 #define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
507 #define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
508 #define D_INTR_GETVAL(v) ((v) & 0xffff)
509 #define D_INTR_GETRVAL(v) ((v) & 0xfffff)
511 #define D_P_0 0 /* TE receive anchor */
512 #define D_P_1 1 /* TE transmit anchor */
513 #define D_P_2 2 /* NT transmit anchor */
514 #define D_P_3 3 /* NT receive anchor */
515 #define D_P_4 4 /* CHI send data */
516 #define D_P_5 5 /* CHI receive data */
517 #define D_P_6 6 /* */
518 #define D_P_7 7 /* */
519 #define D_P_8 8 /* */
520 #define D_P_9 9 /* */
521 #define D_P_10 10 /* */
522 #define D_P_11 11 /* */
523 #define D_P_12 12 /* */
524 #define D_P_13 13 /* */
525 #define D_P_14 14 /* */
526 #define D_P_15 15 /* */
527 #define D_P_16 16 /* CHI anchor pipe */
528 #define D_P_17 17 /* CHI send */
529 #define D_P_18 18 /* CHI receive */
530 #define D_P_19 19 /* CHI receive */
531 #define D_P_20 20 /* CHI receive */
532 #define D_P_21 21 /* */
533 #define D_P_22 22 /* */
534 #define D_P_23 23 /* */
535 #define D_P_24 24 /* */
536 #define D_P_25 25 /* */
537 #define D_P_26 26 /* */
538 #define D_P_27 27 /* */
539 #define D_P_28 28 /* */
540 #define D_P_29 29 /* */
541 #define D_P_30 30 /* */
542 #define D_P_31 31 /* */
544 /* Transmit descriptor defines */
545 #define DBRI_TD_F (1<<31) /* End of Frame */
546 #define DBRI_TD_D (1<<30) /* Do not append CRC */
547 #define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
548 #define DBRI_TD_B (1<<15) /* Final interrupt */
549 #define DBRI_TD_M (1<<14) /* Marker interrupt */
550 #define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
551 #define DBRI_TD_FCNT(v) (v) /* Flag Count */
552 #define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
553 #define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
554 #define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
555 #define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
556 /* Maximum buffer size per TD: almost 8Kb */
557 #define DBRI_TD_MAXCNT ((1 << 13) - 1)
559 /* Receive descriptor defines */
560 #define DBRI_RD_F (1<<31) /* End of Frame */
561 #define DBRI_RD_C (1<<30) /* Completed buffer */
562 #define DBRI_RD_B (1<<15) /* Final interrupt */
563 #define DBRI_RD_M (1<<14) /* Marker interrupt */
564 #define DBRI_RD_BCNT(v) (v) /* Buffer size */
565 #define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
566 #define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
567 #define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
568 #define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
569 #define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
570 #define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
572 /* stream_info[] access */
573 /* Translate the ALSA direction into the array index */
574 #define DBRI_STREAMNO(substream) \
575 (substream->stream == \
576 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
578 /* Return a pointer to dbri_streaminfo */
579 #define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
581 static struct snd_dbri
*dbri_list
; /* All DBRI devices */
584 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
585 * So we have to reverse the bits. Note: not all bit lengths are supported
587 static __u32
reverse_bytes(__u32 b
, int len
)
591 b
= ((b
& 0xffff0000) >> 16) | ((b
& 0x0000ffff) << 16);
593 b
= ((b
& 0xff00ff00) >> 8) | ((b
& 0x00ff00ff) << 8);
595 b
= ((b
& 0xf0f0f0f0) >> 4) | ((b
& 0x0f0f0f0f) << 4);
597 b
= ((b
& 0xcccccccc) >> 2) | ((b
& 0x33333333) << 2);
599 b
= ((b
& 0xaaaaaaaa) >> 1) | ((b
& 0x55555555) << 1);
604 printk(KERN_ERR
"DBRI reverse_bytes: unsupported length\n");
611 ****************************************************************************
612 ************** DBRI initialization and command synchronization *************
613 ****************************************************************************
615 Commands are sent to the DBRI by building a list of them in memory,
616 then writing the address of the first list item to DBRI register 8.
617 The list is terminated with a WAIT command, which generates a
618 CPU interrupt to signal completion.
620 Since the DBRI can run in parallel with the CPU, several means of
621 synchronization present themselves. The method implemented here is close
622 to the original scheme (Rudolf's), and uses 2 counters (wait_send and
623 wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
625 A more sophisticated scheme might involve a circular command buffer
626 or an array of command buffers. A routine could fill one with
627 commands and link it onto a list. When a interrupt signaled
628 completion of the current command buffer, look on the list for
631 Every time a routine wants to write commands to the DBRI, it must
632 first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
633 in return. dbri_cmdlock() will block if the previous commands have not
634 been completed yet. After this the commands can be written to the buffer,
635 and dbri_cmdsend() is called with the final pointer value to send them
640 static void dbri_process_interrupt_buffer(struct snd_dbri
* dbri
);
642 enum dbri_lock
{ NoGetLock
, GetLock
};
645 static volatile s32
*dbri_cmdlock(struct snd_dbri
* dbri
, enum dbri_lock get
)
647 int maxloops
= MAXLOOPS
;
650 if ((get
== GetLock
) && spin_is_locked(&dbri
->lock
)) {
651 printk(KERN_ERR
"DBRI: cmdlock called while in spinlock.");
655 /* Delay if previous commands are still being processed */
656 while ((--maxloops
) > 0 && (dbri
->wait_send
!= dbri
->wait_ackd
)) {
657 msleep_interruptible(1);
658 /* If dbri_cmdlock() got called from inside the
659 * interrupt handler, this will do the processing.
661 dbri_process_interrupt_buffer(dbri
);
664 printk(KERN_ERR
"DBRI: Chip never completed command buffer %d\n",
667 dprintk(D_CMD
, "Chip completed command buffer (%d)\n",
668 MAXLOOPS
- maxloops
- 1);
671 /*if (get == GetLock) spin_lock(&dbri->lock); */
672 return &dbri
->dma
->cmd
[0];
675 static void dbri_cmdsend(struct snd_dbri
* dbri
, volatile s32
* cmd
)
679 for (ptr
= &dbri
->dma
->cmd
[0]; ptr
< cmd
; ptr
++) {
680 dprintk(D_CMD
, "cmd: %lx:%08x\n", (unsigned long)ptr
, *ptr
);
683 if ((cmd
- &dbri
->dma
->cmd
[0]) >= DBRI_NO_CMDS
- 1) {
684 printk(KERN_ERR
"DBRI: Command buffer overflow! (bug in driver)\n");
685 /* Ignore the last part. */
686 cmd
= &dbri
->dma
->cmd
[DBRI_NO_CMDS
- 3];
690 dbri
->wait_send
&= 0xffff; /* restrict it to a 16 bit counter. */
691 *(cmd
++) = DBRI_CMD(D_PAUSE
, 0, 0);
692 *(cmd
++) = DBRI_CMD(D_WAIT
, 1, dbri
->wait_send
);
694 /* Set command pointer and signal it is valid. */
695 sbus_writel(dbri
->dma_dvma
, dbri
->regs
+ REG8
);
697 /*spin_unlock(&dbri->lock); */
700 /* Lock must be held when calling this */
701 static void dbri_reset(struct snd_dbri
* dbri
)
705 dprintk(D_GEN
, "reset 0:%x 2:%x 8:%x 9:%x\n",
706 sbus_readl(dbri
->regs
+ REG0
),
707 sbus_readl(dbri
->regs
+ REG2
),
708 sbus_readl(dbri
->regs
+ REG8
), sbus_readl(dbri
->regs
+ REG9
));
710 sbus_writel(D_R
, dbri
->regs
+ REG0
); /* Soft Reset */
711 for (i
= 0; (sbus_readl(dbri
->regs
+ REG0
) & D_R
) && i
< 64; i
++)
715 /* Lock must not be held before calling this */
716 static void dbri_initialize(struct snd_dbri
* dbri
)
723 spin_lock_irqsave(&dbri
->lock
, flags
);
727 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
728 dprintk(D_GEN
, "init: cmd: %p, int: %p\n",
729 &dbri
->dma
->cmd
[0], &dbri
->dma
->intr
[0]);
731 /* Initialize pipes */
732 for (n
= 0; n
< DBRI_NO_PIPES
; n
++)
733 dbri
->pipes
[n
].desc
= dbri
->pipes
[n
].first_desc
= -1;
735 /* A brute approach - DBRI falls back to working burst size by itself
736 * On SS20 D_S does not work, so do not try so high. */
737 tmp
= sbus_readl(dbri
->regs
+ REG0
);
740 sbus_writel(tmp
, dbri
->regs
+ REG0
);
743 * Initialize the interrupt ringbuffer.
745 dma_addr
= dbri
->dma_dvma
+ dbri_dma_off(intr
, 0);
746 dbri
->dma
->intr
[0] = dma_addr
;
749 * Set up the interrupt queue
751 *(cmd
++) = DBRI_CMD(D_IIQ
, 0, 0);
754 dbri_cmdsend(dbri
, cmd
);
755 spin_unlock_irqrestore(&dbri
->lock
, flags
);
759 ****************************************************************************
760 ************************** DBRI data pipe management ***********************
761 ****************************************************************************
763 While DBRI control functions use the command and interrupt buffers, the
764 main data path takes the form of data pipes, which can be short (command
765 and interrupt driven), or long (attached to DMA buffers). These functions
766 provide a rudimentary means of setting up and managing the DBRI's pipes,
767 but the calling functions have to make sure they respect the pipes' linked
768 list ordering, among other things. The transmit and receive functions
769 here interface closely with the transmit and receive interrupt code.
772 static int pipe_active(struct snd_dbri
* dbri
, int pipe
)
774 return ((pipe
>= 0) && (dbri
->pipes
[pipe
].desc
!= -1));
777 /* reset_pipe(dbri, pipe)
779 * Called on an in-use pipe to clear anything being transmitted or received
780 * Lock must be held before calling this.
782 static void reset_pipe(struct snd_dbri
* dbri
, int pipe
)
788 if (pipe
< 0 || pipe
> 31) {
789 printk(KERN_ERR
"DBRI: reset_pipe called with illegal pipe number\n");
793 sdp
= dbri
->pipes
[pipe
].sdp
;
795 printk(KERN_ERR
"DBRI: reset_pipe called on uninitialized pipe\n");
799 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
800 *(cmd
++) = DBRI_CMD(D_SDP
, 0, sdp
| D_SDP_C
| D_SDP_P
);
802 dbri_cmdsend(dbri
, cmd
);
804 desc
= dbri
->pipes
[pipe
].first_desc
;
806 dbri
->descs
[desc
].inuse
= 0;
807 desc
= dbri
->descs
[desc
].next
;
810 dbri
->pipes
[pipe
].desc
= -1;
811 dbri
->pipes
[pipe
].first_desc
= -1;
814 /* FIXME: direction as an argument? */
815 static void setup_pipe(struct snd_dbri
* dbri
, int pipe
, int sdp
)
817 if (pipe
< 0 || pipe
> 31) {
818 printk(KERN_ERR
"DBRI: setup_pipe called with illegal pipe number\n");
822 if ((sdp
& 0xf800) != sdp
) {
823 printk(KERN_ERR
"DBRI: setup_pipe called with strange SDP value\n");
827 /* If this is a fixed receive pipe, arrange for an interrupt
828 * every time its data changes
830 if (D_SDP_MODE(sdp
) == D_SDP_FIXED
&& !(sdp
& D_SDP_TO_SER
))
834 dbri
->pipes
[pipe
].sdp
= sdp
;
835 dbri
->pipes
[pipe
].desc
= -1;
836 dbri
->pipes
[pipe
].first_desc
= -1;
838 reset_pipe(dbri
, pipe
);
841 /* FIXME: direction not needed */
842 static void link_time_slot(struct snd_dbri
* dbri
, int pipe
,
843 enum in_or_out direction
, int basepipe
,
844 int length
, int cycle
)
851 if (pipe
< 0 || pipe
> 31 || basepipe
< 0 || basepipe
> 31) {
853 "DBRI: link_time_slot called with illegal pipe number\n");
857 if (dbri
->pipes
[pipe
].sdp
== 0 || dbri
->pipes
[basepipe
].sdp
== 0) {
858 printk(KERN_ERR
"DBRI: link_time_slot called on uninitialized pipe\n");
862 /* Deal with CHI special case:
863 * "If transmission on edges 0 or 1 is desired, then cycle n
864 * (where n = # of bit times per frame...) must be used."
865 * - DBRI data sheet, page 11
867 if (basepipe
== 16 && direction
== PIPEoutput
&& cycle
== 0)
868 cycle
= dbri
->chi_bpf
;
870 if (basepipe
== pipe
) {
874 /* We're not initializing a new linked list (basepipe != pipe),
875 * so run through the linked list and find where this pipe
876 * should be sloted in, based on its cycle. CHI confuses
877 * things a bit, since it has a single anchor for both its
878 * transmit and receive lists.
880 if (basepipe
== 16) {
881 if (direction
== PIPEinput
) {
882 prevpipe
= dbri
->chi_in_pipe
;
884 prevpipe
= dbri
->chi_out_pipe
;
890 nextpipe
= dbri
->pipes
[prevpipe
].nextpipe
;
892 while (dbri
->pipes
[nextpipe
].cycle
< cycle
893 && dbri
->pipes
[nextpipe
].nextpipe
!= basepipe
) {
895 nextpipe
= dbri
->pipes
[nextpipe
].nextpipe
;
899 if (prevpipe
== 16) {
900 if (direction
== PIPEinput
) {
901 dbri
->chi_in_pipe
= pipe
;
903 dbri
->chi_out_pipe
= pipe
;
906 dbri
->pipes
[prevpipe
].nextpipe
= pipe
;
909 dbri
->pipes
[pipe
].nextpipe
= nextpipe
;
910 dbri
->pipes
[pipe
].cycle
= cycle
;
911 dbri
->pipes
[pipe
].length
= length
;
913 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
915 if (direction
== PIPEinput
) {
916 val
= D_DTS_VI
| D_DTS_INS
| D_DTS_PRVIN(prevpipe
) | pipe
;
917 *(cmd
++) = DBRI_CMD(D_DTS
, 0, val
);
919 D_TS_LEN(length
) | D_TS_CYCLE(cycle
) | D_TS_NEXT(nextpipe
);
922 val
= D_DTS_VO
| D_DTS_INS
| D_DTS_PRVOUT(prevpipe
) | pipe
;
923 *(cmd
++) = DBRI_CMD(D_DTS
, 0, val
);
926 D_TS_LEN(length
) | D_TS_CYCLE(cycle
) | D_TS_NEXT(nextpipe
);
929 dbri_cmdsend(dbri
, cmd
);
932 static void unlink_time_slot(struct snd_dbri
* dbri
, int pipe
,
933 enum in_or_out direction
, int prevpipe
,
939 if (pipe
< 0 || pipe
> 31 || prevpipe
< 0 || prevpipe
> 31) {
941 "DBRI: unlink_time_slot called with illegal pipe number\n");
945 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
947 if (direction
== PIPEinput
) {
948 val
= D_DTS_VI
| D_DTS_DEL
| D_DTS_PRVIN(prevpipe
) | pipe
;
949 *(cmd
++) = DBRI_CMD(D_DTS
, 0, val
);
950 *(cmd
++) = D_TS_NEXT(nextpipe
);
953 val
= D_DTS_VO
| D_DTS_DEL
| D_DTS_PRVOUT(prevpipe
) | pipe
;
954 *(cmd
++) = DBRI_CMD(D_DTS
, 0, val
);
956 *(cmd
++) = D_TS_NEXT(nextpipe
);
959 dbri_cmdsend(dbri
, cmd
);
962 /* xmit_fixed() / recv_fixed()
964 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
965 * expected to change much, and which we don't need to buffer.
966 * The DBRI only interrupts us when the data changes (receive pipes),
967 * or only changes the data when this function is called (transmit pipes).
968 * Only short pipes (numbers 16-31) can be used in fixed data mode.
970 * These function operate on a 32-bit field, no matter how large
971 * the actual time slot is. The interrupt handler takes care of bit
972 * ordering and alignment. An 8-bit time slot will always end up
973 * in the low-order 8 bits, filled either MSB-first or LSB-first,
974 * depending on the settings passed to setup_pipe()
976 static void xmit_fixed(struct snd_dbri
* dbri
, int pipe
, unsigned int data
)
980 if (pipe
< 16 || pipe
> 31) {
981 printk(KERN_ERR
"DBRI: xmit_fixed: Illegal pipe number\n");
985 if (D_SDP_MODE(dbri
->pipes
[pipe
].sdp
) == 0) {
986 printk(KERN_ERR
"DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe
);
990 if (D_SDP_MODE(dbri
->pipes
[pipe
].sdp
) != D_SDP_FIXED
) {
991 printk(KERN_ERR
"DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe
);
995 if (!(dbri
->pipes
[pipe
].sdp
& D_SDP_TO_SER
)) {
996 printk(KERN_ERR
"DBRI: xmit_fixed: Called on receive pipe %d\n", pipe
);
1000 /* DBRI short pipes always transmit LSB first */
1002 if (dbri
->pipes
[pipe
].sdp
& D_SDP_MSB
)
1003 data
= reverse_bytes(data
, dbri
->pipes
[pipe
].length
);
1005 cmd
= dbri_cmdlock(dbri
, GetLock
);
1007 *(cmd
++) = DBRI_CMD(D_SSP
, 0, pipe
);
1010 dbri_cmdsend(dbri
, cmd
);
1013 static void recv_fixed(struct snd_dbri
* dbri
, int pipe
, volatile __u32
* ptr
)
1015 if (pipe
< 16 || pipe
> 31) {
1016 printk(KERN_ERR
"DBRI: recv_fixed called with illegal pipe number\n");
1020 if (D_SDP_MODE(dbri
->pipes
[pipe
].sdp
) != D_SDP_FIXED
) {
1021 printk(KERN_ERR
"DBRI: recv_fixed called on non-fixed pipe %d\n", pipe
);
1025 if (dbri
->pipes
[pipe
].sdp
& D_SDP_TO_SER
) {
1026 printk(KERN_ERR
"DBRI: recv_fixed called on transmit pipe %d\n", pipe
);
1030 dbri
->pipes
[pipe
].recv_fixed_ptr
= ptr
;
1035 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1036 * with a DMA buffer.
1038 * Only pipe numbers 0-15 can be used in this mode.
1040 * This function takes a stream number pointing to a data buffer,
1041 * and work by building chains of descriptors which identify the
1042 * data buffers. Buffers too large for a single descriptor will
1043 * be spread across multiple descriptors.
1045 static int setup_descs(struct snd_dbri
* dbri
, int streamno
, unsigned int period
)
1047 struct dbri_streaminfo
*info
= &dbri
->stream_info
[streamno
];
1051 int first_desc
= -1;
1054 if (info
->pipe
< 0 || info
->pipe
> 15) {
1055 printk(KERN_ERR
"DBRI: setup_descs: Illegal pipe number\n");
1059 if (dbri
->pipes
[info
->pipe
].sdp
== 0) {
1060 printk(KERN_ERR
"DBRI: setup_descs: Uninitialized pipe %d\n",
1065 dvma_buffer
= info
->dvma_buffer
;
1068 if (streamno
== DBRI_PLAY
) {
1069 if (!(dbri
->pipes
[info
->pipe
].sdp
& D_SDP_TO_SER
)) {
1070 printk(KERN_ERR
"DBRI: setup_descs: Called on receive pipe %d\n",
1075 if (dbri
->pipes
[info
->pipe
].sdp
& D_SDP_TO_SER
) {
1077 "DBRI: setup_descs: Called on transmit pipe %d\n",
1081 /* Should be able to queue multiple buffers to receive on a pipe */
1082 if (pipe_active(dbri
, info
->pipe
)) {
1083 printk(KERN_ERR
"DBRI: recv_on_pipe: Called on active pipe %d\n",
1088 /* Make sure buffer size is multiple of four */
1095 for (; desc
< DBRI_NO_DESCS
; desc
++) {
1096 if (!dbri
->descs
[desc
].inuse
)
1099 if (desc
== DBRI_NO_DESCS
) {
1100 printk(KERN_ERR
"DBRI: setup_descs: No descriptors\n");
1104 if (len
> DBRI_TD_MAXCNT
) {
1105 mylen
= DBRI_TD_MAXCNT
; /* 8KB - 1 */
1109 if (mylen
> period
) {
1113 dbri
->descs
[desc
].inuse
= 1;
1114 dbri
->descs
[desc
].next
= -1;
1115 dbri
->dma
->desc
[desc
].ba
= dvma_buffer
;
1116 dbri
->dma
->desc
[desc
].nda
= 0;
1118 if (streamno
== DBRI_PLAY
) {
1119 dbri
->descs
[desc
].len
= mylen
;
1120 dbri
->dma
->desc
[desc
].word1
= DBRI_TD_CNT(mylen
);
1121 dbri
->dma
->desc
[desc
].word4
= 0;
1122 if (first_desc
!= -1)
1123 dbri
->dma
->desc
[desc
].word1
|= DBRI_TD_M
;
1125 dbri
->descs
[desc
].len
= 0;
1126 dbri
->dma
->desc
[desc
].word1
= 0;
1127 dbri
->dma
->desc
[desc
].word4
=
1128 DBRI_RD_B
| DBRI_RD_BCNT(mylen
);
1131 if (first_desc
== -1) {
1134 dbri
->descs
[last_desc
].next
= desc
;
1135 dbri
->dma
->desc
[last_desc
].nda
=
1136 dbri
->dma_dvma
+ dbri_dma_off(desc
, desc
);
1140 dvma_buffer
+= mylen
;
1144 if (first_desc
== -1 || last_desc
== -1) {
1145 printk(KERN_ERR
"DBRI: setup_descs: Not enough descriptors available\n");
1149 dbri
->dma
->desc
[last_desc
].word1
&= ~DBRI_TD_M
;
1150 if (streamno
== DBRI_PLAY
) {
1151 dbri
->dma
->desc
[last_desc
].word1
|=
1152 DBRI_TD_I
| DBRI_TD_F
| DBRI_TD_B
;
1154 dbri
->pipes
[info
->pipe
].first_desc
= first_desc
;
1155 dbri
->pipes
[info
->pipe
].desc
= first_desc
;
1157 for (desc
= first_desc
; desc
!= -1; desc
= dbri
->descs
[desc
].next
) {
1158 dprintk(D_DESC
, "DESC %d: %08x %08x %08x %08x\n",
1160 dbri
->dma
->desc
[desc
].word1
,
1161 dbri
->dma
->desc
[desc
].ba
,
1162 dbri
->dma
->desc
[desc
].nda
, dbri
->dma
->desc
[desc
].word4
);
1168 ****************************************************************************
1169 ************************** DBRI - CHI interface ****************************
1170 ****************************************************************************
1172 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1173 multiplexed serial interface which the DBRI can operate in either master
1174 (give clock/frame sync) or slave (take clock/frame sync) mode.
1178 enum master_or_slave
{ CHImaster
, CHIslave
};
1180 static void reset_chi(struct snd_dbri
* dbri
, enum master_or_slave master_or_slave
,
1185 static int chi_initialized
= 0; /* FIXME: mutex? */
1187 if (!chi_initialized
) {
1189 cmd
= dbri_cmdlock(dbri
, GetLock
);
1191 /* Set CHI Anchor: Pipe 16 */
1193 val
= D_DTS_VI
| D_DTS_INS
| D_DTS_PRVIN(16) | D_PIPE(16);
1194 *(cmd
++) = DBRI_CMD(D_DTS
, 0, val
);
1195 *(cmd
++) = D_TS_ANCHOR
| D_TS_NEXT(16);
1198 val
= D_DTS_VO
| D_DTS_INS
| D_DTS_PRVOUT(16) | D_PIPE(16);
1199 *(cmd
++) = DBRI_CMD(D_DTS
, 0, val
);
1201 *(cmd
++) = D_TS_ANCHOR
| D_TS_NEXT(16);
1203 dbri
->pipes
[16].sdp
= 1;
1204 dbri
->pipes
[16].nextpipe
= 16;
1205 dbri
->chi_in_pipe
= 16;
1206 dbri
->chi_out_pipe
= 16;
1214 for (pipe
= dbri
->chi_in_pipe
;
1215 pipe
!= 16; pipe
= dbri
->pipes
[pipe
].nextpipe
) {
1216 unlink_time_slot(dbri
, pipe
, PIPEinput
,
1217 16, dbri
->pipes
[pipe
].nextpipe
);
1219 for (pipe
= dbri
->chi_out_pipe
;
1220 pipe
!= 16; pipe
= dbri
->pipes
[pipe
].nextpipe
) {
1221 unlink_time_slot(dbri
, pipe
, PIPEoutput
,
1222 16, dbri
->pipes
[pipe
].nextpipe
);
1225 dbri
->chi_in_pipe
= 16;
1226 dbri
->chi_out_pipe
= 16;
1228 cmd
= dbri_cmdlock(dbri
, GetLock
);
1231 if (master_or_slave
== CHIslave
) {
1232 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1234 * CHICM = 0 (slave mode, 8 kHz frame rate)
1235 * IR = give immediate CHI status interrupt
1236 * EN = give CHI status interrupt upon change
1238 *(cmd
++) = DBRI_CMD(D_CHI
, 0, D_CHI_CHICM(0));
1240 /* Setup DBRI for CHI Master - generate clock, FS
1242 * BPF = bits per 8 kHz frame
1243 * 12.288 MHz / CHICM_divisor = clock rate
1244 * FD = 1 - drive CHIFS on rising edge of CHICK
1246 int clockrate
= bits_per_frame
* 8;
1247 int divisor
= 12288 / clockrate
;
1249 if (divisor
> 255 || divisor
* clockrate
!= 12288)
1250 printk(KERN_ERR
"DBRI: illegal bits_per_frame in setup_chi\n");
1252 *(cmd
++) = DBRI_CMD(D_CHI
, 0, D_CHI_CHICM(divisor
) | D_CHI_FD
1253 | D_CHI_BPF(bits_per_frame
));
1256 dbri
->chi_bpf
= bits_per_frame
;
1260 * RCE = 0 - receive on falling edge of CHICK
1261 * XCE = 1 - transmit on rising edge of CHICK
1262 * XEN = 1 - enable transmitter
1263 * REN = 1 - enable receiver
1266 *(cmd
++) = DBRI_CMD(D_PAUSE
, 0, 0);
1267 *(cmd
++) = DBRI_CMD(D_CDM
, 0, D_CDM_XCE
| D_CDM_XEN
| D_CDM_REN
);
1269 dbri_cmdsend(dbri
, cmd
);
1273 ****************************************************************************
1274 *********************** CS4215 audio codec management **********************
1275 ****************************************************************************
1277 In the standard SPARC audio configuration, the CS4215 codec is attached
1278 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1281 static void cs4215_setup_pipes(struct snd_dbri
* dbri
)
1285 * Pipe 4: Send timeslots 1-4 (audio data)
1286 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1287 * Pipe 6: Receive timeslots 1-4 (audio data)
1288 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1289 * interrupt, and the rest of the data (slot 5 and 8) is
1290 * not relevant for us (only for doublechecking).
1293 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1294 * Pipe 18: Receive timeslot 1 (clb).
1295 * Pipe 19: Receive timeslot 7 (version).
1298 setup_pipe(dbri
, 4, D_SDP_MEM
| D_SDP_TO_SER
| D_SDP_MSB
);
1299 setup_pipe(dbri
, 20, D_SDP_FIXED
| D_SDP_TO_SER
| D_SDP_MSB
);
1300 setup_pipe(dbri
, 6, D_SDP_MEM
| D_SDP_FROM_SER
| D_SDP_MSB
);
1301 setup_pipe(dbri
, 21, D_SDP_FIXED
| D_SDP_FROM_SER
| D_SDP_MSB
);
1303 setup_pipe(dbri
, 17, D_SDP_FIXED
| D_SDP_TO_SER
| D_SDP_MSB
);
1304 setup_pipe(dbri
, 18, D_SDP_FIXED
| D_SDP_FROM_SER
| D_SDP_MSB
);
1305 setup_pipe(dbri
, 19, D_SDP_FIXED
| D_SDP_FROM_SER
| D_SDP_MSB
);
1308 static int cs4215_init_data(struct cs4215
*mm
)
1311 * No action, memory resetting only.
1313 * Data Time Slot 5-8
1314 * Speaker,Line and Headphone enable. Gain set to the half.
1317 mm
->data
[0] = CS4215_LO(0x20) | CS4215_HE
| CS4215_LE
;
1318 mm
->data
[1] = CS4215_RO(0x20) | CS4215_SE
;
1319 mm
->data
[2] = CS4215_LG(0x8) | CS4215_IS
| CS4215_PIO0
| CS4215_PIO1
;
1320 mm
->data
[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1323 * Control Time Slot 1-4
1324 * 0: Default I/O voltage scale
1325 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1326 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1329 mm
->ctrl
[0] = CS4215_RSRVD_1
| CS4215_MLB
;
1330 mm
->ctrl
[1] = CS4215_DFR_ULAW
| CS4215_FREQ
[0].csval
;
1331 mm
->ctrl
[2] = CS4215_XCLK
| CS4215_BSEL_128
| CS4215_FREQ
[0].xtal
;
1336 mm
->precision
= 8; /* For ULAW */
1342 static void cs4215_setdata(struct snd_dbri
* dbri
, int muted
)
1345 dbri
->mm
.data
[0] |= 63;
1346 dbri
->mm
.data
[1] |= 63;
1347 dbri
->mm
.data
[2] &= ~15;
1348 dbri
->mm
.data
[3] &= ~15;
1350 /* Start by setting the playback attenuation. */
1351 struct dbri_streaminfo
*info
= &dbri
->stream_info
[DBRI_PLAY
];
1352 int left_gain
= info
->left_gain
% 64;
1353 int right_gain
= info
->right_gain
% 64;
1355 dbri
->mm
.data
[0] &= ~0x3f; /* Reset the volume bits */
1356 dbri
->mm
.data
[1] &= ~0x3f;
1357 dbri
->mm
.data
[0] |= (DBRI_MAX_VOLUME
- left_gain
);
1358 dbri
->mm
.data
[1] |= (DBRI_MAX_VOLUME
- right_gain
);
1360 /* Now set the recording gain. */
1361 info
= &dbri
->stream_info
[DBRI_REC
];
1362 left_gain
= info
->left_gain
% 16;
1363 right_gain
= info
->right_gain
% 16;
1364 dbri
->mm
.data
[2] |= CS4215_LG(left_gain
);
1365 dbri
->mm
.data
[3] |= CS4215_RG(right_gain
);
1368 xmit_fixed(dbri
, 20, *(int *)dbri
->mm
.data
);
1372 * Set the CS4215 to data mode.
1374 static void cs4215_open(struct snd_dbri
* dbri
)
1379 dprintk(D_MM
, "cs4215_open: %d channels, %d bits\n",
1380 dbri
->mm
.channels
, dbri
->mm
.precision
);
1382 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1383 * to make sure this takes. This avoids clicking noises.
1386 cs4215_setdata(dbri
, 1);
1391 * Pipe 4: Send timeslots 1-4 (audio data)
1392 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1393 * Pipe 6: Receive timeslots 1-4 (audio data)
1394 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1395 * interrupt, and the rest of the data (slot 5 and 8) is
1396 * not relevant for us (only for doublechecking).
1398 * Just like in control mode, the time slots are all offset by eight
1399 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1400 * even if it's the CHI master. Don't ask me...
1402 tmp
= sbus_readl(dbri
->regs
+ REG0
);
1403 tmp
&= ~(D_C
); /* Disable CHI */
1404 sbus_writel(tmp
, dbri
->regs
+ REG0
);
1406 /* Switch CS4215 to data mode - set PIO3 to 1 */
1407 sbus_writel(D_ENPIO
| D_PIO1
| D_PIO3
|
1408 (dbri
->mm
.onboard
? D_PIO0
: D_PIO2
), dbri
->regs
+ REG2
);
1410 reset_chi(dbri
, CHIslave
, 128);
1412 /* Note: this next doesn't work for 8-bit stereo, because the two
1413 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1414 * (See CS4215 datasheet Fig 15)
1416 * DBRI non-contiguous mode would be required to make this work.
1418 data_width
= dbri
->mm
.channels
* dbri
->mm
.precision
;
1420 link_time_slot(dbri
, 20, PIPEoutput
, 16, 32, dbri
->mm
.offset
+ 32);
1421 link_time_slot(dbri
, 4, PIPEoutput
, 16, data_width
, dbri
->mm
.offset
);
1422 link_time_slot(dbri
, 6, PIPEinput
, 16, data_width
, dbri
->mm
.offset
);
1423 link_time_slot(dbri
, 21, PIPEinput
, 16, 16, dbri
->mm
.offset
+ 40);
1425 /* FIXME: enable CHI after _setdata? */
1426 tmp
= sbus_readl(dbri
->regs
+ REG0
);
1427 tmp
|= D_C
; /* Enable CHI */
1428 sbus_writel(tmp
, dbri
->regs
+ REG0
);
1430 cs4215_setdata(dbri
, 0);
1434 * Send the control information (i.e. audio format)
1436 static int cs4215_setctrl(struct snd_dbri
* dbri
)
1441 /* FIXME - let the CPU do something useful during these delays */
1443 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1444 * to make sure this takes. This avoids clicking noises.
1446 cs4215_setdata(dbri
, 1);
1450 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1451 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1453 val
= D_ENPIO
| D_PIO1
| (dbri
->mm
.onboard
? D_PIO0
: D_PIO2
);
1454 sbus_writel(val
, dbri
->regs
+ REG2
);
1455 dprintk(D_MM
, "cs4215_setctrl: reg2=0x%x\n", val
);
1458 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1459 * operate as CHI master, supplying clocking and frame synchronization.
1461 * In Data mode, however, the CS4215 must be CHI master to insure
1462 * that its data stream is synchronous with its codec.
1464 * The upshot of all this? We start by putting the DBRI into master
1465 * mode, program the CS4215 in Control mode, then switch the CS4215
1466 * into Data mode and put the DBRI into slave mode. Various timing
1467 * requirements must be observed along the way.
1469 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1470 * others?), the addressing of the CS4215's time slots is
1471 * offset by eight bits, so we add eight to all the "cycle"
1472 * values in the Define Time Slot (DTS) commands. This is
1473 * done in hardware by a TI 248 that delays the DBRI->4215
1474 * frame sync signal by eight clock cycles. Anybody know why?
1476 tmp
= sbus_readl(dbri
->regs
+ REG0
);
1477 tmp
&= ~D_C
; /* Disable CHI */
1478 sbus_writel(tmp
, dbri
->regs
+ REG0
);
1480 reset_chi(dbri
, CHImaster
, 128);
1484 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1485 * Pipe 18: Receive timeslot 1 (clb).
1486 * Pipe 19: Receive timeslot 7 (version).
1489 link_time_slot(dbri
, 17, PIPEoutput
, 16, 32, dbri
->mm
.offset
);
1490 link_time_slot(dbri
, 18, PIPEinput
, 16, 8, dbri
->mm
.offset
);
1491 link_time_slot(dbri
, 19, PIPEinput
, 16, 8, dbri
->mm
.offset
+ 48);
1493 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1494 dbri
->mm
.ctrl
[0] &= ~CS4215_CLB
;
1495 xmit_fixed(dbri
, 17, *(int *)dbri
->mm
.ctrl
);
1497 tmp
= sbus_readl(dbri
->regs
+ REG0
);
1498 tmp
|= D_C
; /* Enable CHI */
1499 sbus_writel(tmp
, dbri
->regs
+ REG0
);
1501 for (i
= 10; ((dbri
->mm
.status
& 0xe4) != 0x20); --i
) {
1502 msleep_interruptible(1);
1505 dprintk(D_MM
, "CS4215 didn't respond to CLB (0x%02x)\n",
1510 /* Disable changes to our copy of the version number, as we are about
1511 * to leave control mode.
1513 recv_fixed(dbri
, 19, NULL
);
1515 /* Terminate CS4215 control mode - data sheet says
1516 * "Set CLB=1 and send two more frames of valid control info"
1518 dbri
->mm
.ctrl
[0] |= CS4215_CLB
;
1519 xmit_fixed(dbri
, 17, *(int *)dbri
->mm
.ctrl
);
1521 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1524 cs4215_setdata(dbri
, 0);
1530 * Setup the codec with the sampling rate, audio format and number of
1532 * As part of the process we resend the settings for the data
1533 * timeslots as well.
1535 static int cs4215_prepare(struct snd_dbri
* dbri
, unsigned int rate
,
1536 snd_pcm_format_t format
, unsigned int channels
)
1541 /* Lookup index for this rate */
1542 for (freq_idx
= 0; CS4215_FREQ
[freq_idx
].freq
!= 0; freq_idx
++) {
1543 if (CS4215_FREQ
[freq_idx
].freq
== rate
)
1546 if (CS4215_FREQ
[freq_idx
].freq
!= rate
) {
1547 printk(KERN_WARNING
"DBRI: Unsupported rate %d Hz\n", rate
);
1552 case SNDRV_PCM_FORMAT_MU_LAW
:
1553 dbri
->mm
.ctrl
[1] = CS4215_DFR_ULAW
;
1554 dbri
->mm
.precision
= 8;
1556 case SNDRV_PCM_FORMAT_A_LAW
:
1557 dbri
->mm
.ctrl
[1] = CS4215_DFR_ALAW
;
1558 dbri
->mm
.precision
= 8;
1560 case SNDRV_PCM_FORMAT_U8
:
1561 dbri
->mm
.ctrl
[1] = CS4215_DFR_LINEAR8
;
1562 dbri
->mm
.precision
= 8;
1564 case SNDRV_PCM_FORMAT_S16_BE
:
1565 dbri
->mm
.ctrl
[1] = CS4215_DFR_LINEAR16
;
1566 dbri
->mm
.precision
= 16;
1569 printk(KERN_WARNING
"DBRI: Unsupported format %d\n", format
);
1573 /* Add rate parameters */
1574 dbri
->mm
.ctrl
[1] |= CS4215_FREQ
[freq_idx
].csval
;
1575 dbri
->mm
.ctrl
[2] = CS4215_XCLK
|
1576 CS4215_BSEL_128
| CS4215_FREQ
[freq_idx
].xtal
;
1578 dbri
->mm
.channels
= channels
;
1579 /* Stereo bit: 8 bit stereo not working yet. */
1580 if ((channels
> 1) && (dbri
->mm
.precision
== 16))
1581 dbri
->mm
.ctrl
[1] |= CS4215_DFR_STEREO
;
1583 ret
= cs4215_setctrl(dbri
);
1585 cs4215_open(dbri
); /* set codec to data mode */
1593 static int cs4215_init(struct snd_dbri
* dbri
)
1595 u32 reg2
= sbus_readl(dbri
->regs
+ REG2
);
1596 dprintk(D_MM
, "cs4215_init: reg2=0x%x\n", reg2
);
1598 /* Look for the cs4215 chips */
1599 if (reg2
& D_PIO2
) {
1600 dprintk(D_MM
, "Onboard CS4215 detected\n");
1601 dbri
->mm
.onboard
= 1;
1603 if (reg2
& D_PIO0
) {
1604 dprintk(D_MM
, "Speakerbox detected\n");
1605 dbri
->mm
.onboard
= 0;
1607 if (reg2
& D_PIO2
) {
1608 printk(KERN_INFO
"DBRI: Using speakerbox / "
1609 "ignoring onboard mmcodec.\n");
1610 sbus_writel(D_ENPIO2
, dbri
->regs
+ REG2
);
1614 if (!(reg2
& (D_PIO0
| D_PIO2
))) {
1615 printk(KERN_ERR
"DBRI: no mmcodec found.\n");
1619 cs4215_setup_pipes(dbri
);
1621 cs4215_init_data(&dbri
->mm
);
1623 /* Enable capture of the status & version timeslots. */
1624 recv_fixed(dbri
, 18, &dbri
->mm
.status
);
1625 recv_fixed(dbri
, 19, &dbri
->mm
.version
);
1627 dbri
->mm
.offset
= dbri
->mm
.onboard
? 0 : 8;
1628 if (cs4215_setctrl(dbri
) == -1 || dbri
->mm
.version
== 0xff) {
1629 dprintk(D_MM
, "CS4215 failed probe at offset %d\n",
1633 dprintk(D_MM
, "Found CS4215 at offset %d\n", dbri
->mm
.offset
);
1639 ****************************************************************************
1640 *************************** DBRI interrupt handler *************************
1641 ****************************************************************************
1643 The DBRI communicates with the CPU mainly via a circular interrupt
1644 buffer. When an interrupt is signaled, the CPU walks through the
1645 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1646 Complicated interrupts are handled by dedicated functions (which
1647 appear first in this file). Any pending interrupts can be serviced by
1648 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1649 interrupts are disabled. This function is used by dbri_cmdlock()
1650 to make sure we're synced up with the chip before each command sequence,
1651 even if we're running cli'ed.
1657 * Transmit the current TD's for recording/playing, if needed.
1658 * For playback, ALSA has filled the DMA memory with new data (we hope).
1660 static void xmit_descs(unsigned long data
)
1662 struct snd_dbri
*dbri
= (struct snd_dbri
*) data
;
1663 struct dbri_streaminfo
*info
;
1665 unsigned long flags
;
1669 return; /* Disabled */
1671 /* First check the recording stream for buffer overflow */
1672 info
= &dbri
->stream_info
[DBRI_REC
];
1673 spin_lock_irqsave(&dbri
->lock
, flags
);
1675 if ((info
->left
>= info
->size
) && (info
->pipe
>= 0)) {
1676 first_td
= dbri
->pipes
[info
->pipe
].first_desc
;
1678 dprintk(D_DESC
, "xmit_descs rec @ TD %d\n", first_td
);
1680 /* Stream could be closed by the time we run. */
1685 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
1686 *(cmd
++) = DBRI_CMD(D_SDP
, 0,
1687 dbri
->pipes
[info
->pipe
].sdp
1688 | D_SDP_P
| D_SDP_EVERY
| D_SDP_C
);
1689 *(cmd
++) = dbri
->dma_dvma
+ dbri_dma_off(desc
, first_td
);
1690 dbri_cmdsend(dbri
, cmd
);
1692 /* Reset our admin of the pipe & bytes read. */
1693 dbri
->pipes
[info
->pipe
].desc
= first_td
;
1698 spin_unlock_irqrestore(&dbri
->lock
, flags
);
1700 /* Now check the playback stream for buffer underflow */
1701 info
= &dbri
->stream_info
[DBRI_PLAY
];
1702 spin_lock_irqsave(&dbri
->lock
, flags
);
1704 if ((info
->left
<= 0) && (info
->pipe
>= 0)) {
1705 first_td
= dbri
->pipes
[info
->pipe
].first_desc
;
1707 dprintk(D_DESC
, "xmit_descs play @ TD %d\n", first_td
);
1709 /* Stream could be closed by the time we run. */
1711 spin_unlock_irqrestore(&dbri
->lock
, flags
);
1715 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
1716 *(cmd
++) = DBRI_CMD(D_SDP
, 0,
1717 dbri
->pipes
[info
->pipe
].sdp
1718 | D_SDP_P
| D_SDP_EVERY
| D_SDP_C
);
1719 *(cmd
++) = dbri
->dma_dvma
+ dbri_dma_off(desc
, first_td
);
1720 dbri_cmdsend(dbri
, cmd
);
1722 /* Reset our admin of the pipe & bytes written. */
1723 dbri
->pipes
[info
->pipe
].desc
= first_td
;
1724 info
->left
= info
->size
;
1726 spin_unlock_irqrestore(&dbri
->lock
, flags
);
1729 static DECLARE_TASKLET(xmit_descs_task
, xmit_descs
, 0);
1731 /* transmission_complete_intr()
1733 * Called by main interrupt handler when DBRI signals transmission complete
1734 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1736 * Walks through the pipe's list of transmit buffer descriptors and marks
1737 * them as available. Stops when the first descriptor is found without
1738 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1740 * The DMA buffers are not released, but re-used. Since the transmit buffer
1741 * descriptors are not clobbered, they can be re-submitted as is. This is
1742 * done by the xmit_descs() tasklet above since that could take longer.
1745 static void transmission_complete_intr(struct snd_dbri
* dbri
, int pipe
)
1747 struct dbri_streaminfo
*info
;
1751 info
= &dbri
->stream_info
[DBRI_PLAY
];
1753 td
= dbri
->pipes
[pipe
].desc
;
1755 if (td
>= DBRI_NO_DESCS
) {
1756 printk(KERN_ERR
"DBRI: invalid td on pipe %d\n", pipe
);
1760 status
= DBRI_TD_STATUS(dbri
->dma
->desc
[td
].word4
);
1761 if (!(status
& DBRI_TD_TBC
)) {
1765 dprintk(D_INT
, "TD %d, status 0x%02x\n", td
, status
);
1767 dbri
->dma
->desc
[td
].word4
= 0; /* Reset it for next time. */
1768 info
->offset
+= dbri
->descs
[td
].len
;
1769 info
->left
-= dbri
->descs
[td
].len
;
1771 /* On the last TD, transmit them all again. */
1772 if (dbri
->descs
[td
].next
== -1) {
1773 if (info
->left
> 0) {
1775 "%d bytes left after last transfer.\n",
1779 tasklet_schedule(&xmit_descs_task
);
1782 td
= dbri
->descs
[td
].next
;
1783 dbri
->pipes
[pipe
].desc
= td
;
1787 if (spin_is_locked(&dbri
->lock
)) {
1788 spin_unlock(&dbri
->lock
);
1789 snd_pcm_period_elapsed(info
->substream
);
1790 spin_lock(&dbri
->lock
);
1792 snd_pcm_period_elapsed(info
->substream
);
1795 static void reception_complete_intr(struct snd_dbri
* dbri
, int pipe
)
1797 struct dbri_streaminfo
*info
;
1798 int rd
= dbri
->pipes
[pipe
].desc
;
1801 if (rd
< 0 || rd
>= DBRI_NO_DESCS
) {
1802 printk(KERN_ERR
"DBRI: invalid rd on pipe %d\n", pipe
);
1806 dbri
->descs
[rd
].inuse
= 0;
1807 dbri
->pipes
[pipe
].desc
= dbri
->descs
[rd
].next
;
1808 status
= dbri
->dma
->desc
[rd
].word1
;
1809 dbri
->dma
->desc
[rd
].word1
= 0; /* Reset it for next time. */
1811 info
= &dbri
->stream_info
[DBRI_REC
];
1812 info
->offset
+= DBRI_RD_CNT(status
);
1813 info
->left
+= DBRI_RD_CNT(status
);
1815 /* FIXME: Check status */
1817 dprintk(D_INT
, "Recv RD %d, status 0x%02x, len %d\n",
1818 rd
, DBRI_RD_STATUS(status
), DBRI_RD_CNT(status
));
1820 /* On the last TD, transmit them all again. */
1821 if (dbri
->descs
[rd
].next
== -1) {
1822 if (info
->left
> info
->size
) {
1824 "%d bytes recorded in %d size buffer.\n",
1825 info
->left
, info
->size
);
1827 tasklet_schedule(&xmit_descs_task
);
1831 if (spin_is_locked(&dbri
->lock
)) {
1832 spin_unlock(&dbri
->lock
);
1833 snd_pcm_period_elapsed(info
->substream
);
1834 spin_lock(&dbri
->lock
);
1836 snd_pcm_period_elapsed(info
->substream
);
1839 static void dbri_process_one_interrupt(struct snd_dbri
* dbri
, int x
)
1841 int val
= D_INTR_GETVAL(x
);
1842 int channel
= D_INTR_GETCHAN(x
);
1843 int command
= D_INTR_GETCMD(x
);
1844 int code
= D_INTR_GETCODE(x
);
1846 int rval
= D_INTR_GETRVAL(x
);
1849 if (channel
== D_INTR_CMD
) {
1850 dprintk(D_CMD
, "INTR: Command: %-5s Value:%d\n",
1851 cmds
[command
], val
);
1853 dprintk(D_INT
, "INTR: Chan:%d Code:%d Val:%#x\n",
1854 channel
, code
, rval
);
1857 if (channel
== D_INTR_CMD
&& command
== D_WAIT
) {
1858 dbri
->wait_ackd
= val
;
1859 if (dbri
->wait_send
!= val
) {
1860 printk(KERN_ERR
"Processing wait command %d when %d was send.\n",
1861 val
, dbri
->wait_send
);
1868 reception_complete_intr(dbri
, channel
);
1872 transmission_complete_intr(dbri
, channel
);
1875 /* UNDR - Transmission underrun
1876 * resend SDP command with clear pipe bit (C) set
1882 int td
= dbri
->pipes
[pipe
].desc
;
1884 dbri
->dma
->desc
[td
].word4
= 0;
1885 cmd
= dbri_cmdlock(dbri
, NoGetLock
);
1886 *(cmd
++) = DBRI_CMD(D_SDP
, 0,
1887 dbri
->pipes
[pipe
].sdp
1888 | D_SDP_P
| D_SDP_C
| D_SDP_2SAME
);
1889 *(cmd
++) = dbri
->dma_dvma
+ dbri_dma_off(desc
, td
);
1890 dbri_cmdsend(dbri
, cmd
);
1894 /* FXDT - Fixed data change */
1895 if (dbri
->pipes
[channel
].sdp
& D_SDP_MSB
)
1896 val
= reverse_bytes(val
, dbri
->pipes
[channel
].length
);
1898 if (dbri
->pipes
[channel
].recv_fixed_ptr
)
1899 *(dbri
->pipes
[channel
].recv_fixed_ptr
) = val
;
1902 if (channel
!= D_INTR_CMD
)
1904 "DBRI: Ignored Interrupt: %d (0x%x)\n", code
, x
);
1908 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1909 * buffer until it finds a zero word (indicating nothing more to do
1910 * right now). Non-zero words require processing and are handed off
1911 * to dbri_process_one_interrupt AFTER advancing the pointer. This
1912 * order is important since we might recurse back into this function
1913 * and need to make sure the pointer has been advanced first.
1915 static void dbri_process_interrupt_buffer(struct snd_dbri
* dbri
)
1919 while ((x
= dbri
->dma
->intr
[dbri
->dbri_irqp
]) != 0) {
1920 dbri
->dma
->intr
[dbri
->dbri_irqp
] = 0;
1922 if (dbri
->dbri_irqp
== DBRI_INT_BLK
)
1923 dbri
->dbri_irqp
= 1;
1925 dbri_process_one_interrupt(dbri
, x
);
1929 static irqreturn_t
snd_dbri_interrupt(int irq
, void *dev_id
,
1930 struct pt_regs
*regs
)
1932 struct snd_dbri
*dbri
= dev_id
;
1933 static int errcnt
= 0;
1938 spin_lock(&dbri
->lock
);
1941 * Read it, so the interrupt goes away.
1943 x
= sbus_readl(dbri
->regs
+ REG1
);
1945 if (x
& (D_MRR
| D_MLE
| D_LBG
| D_MBE
)) {
1950 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1954 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1958 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x
);
1961 "DBRI: Burst Error on SBus reg1=0x%x\n", x
);
1963 /* Some of these SBus errors cause the chip's SBus circuitry
1964 * to be disabled, so just re-enable and try to keep going.
1966 * The only one I've seen is MRR, which will be triggered
1967 * if you let a transmit pipe underrun, then try to CDP it.
1969 * If these things persist, we reset the chip.
1971 if ((++errcnt
) % 10 == 0) {
1972 dprintk(D_INT
, "Interrupt errors exceeded.\n");
1975 tmp
= sbus_readl(dbri
->regs
+ REG0
);
1977 sbus_writel(tmp
, dbri
->regs
+ REG0
);
1981 dbri_process_interrupt_buffer(dbri
);
1983 /* FIXME: Write 0 into regs to ACK interrupt */
1985 spin_unlock(&dbri
->lock
);
1990 /****************************************************************************
1992 ****************************************************************************/
1993 static struct snd_pcm_hardware snd_dbri_pcm_hw
= {
1994 .info
= (SNDRV_PCM_INFO_MMAP
|
1995 SNDRV_PCM_INFO_INTERLEAVED
|
1996 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
1997 SNDRV_PCM_INFO_MMAP_VALID
),
1998 .formats
= SNDRV_PCM_FMTBIT_MU_LAW
|
1999 SNDRV_PCM_FMTBIT_A_LAW
|
2000 SNDRV_PCM_FMTBIT_U8
|
2001 SNDRV_PCM_FMTBIT_S16_BE
,
2002 .rates
= SNDRV_PCM_RATE_8000_48000
,
2007 .buffer_bytes_max
= (64 * 1024),
2008 .period_bytes_min
= 1,
2009 .period_bytes_max
= DBRI_TD_MAXCNT
,
2011 .periods_max
= 1024,
2014 static int snd_dbri_open(struct snd_pcm_substream
*substream
)
2016 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2017 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2018 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2019 unsigned long flags
;
2021 dprintk(D_USR
, "open audio output.\n");
2022 runtime
->hw
= snd_dbri_pcm_hw
;
2024 spin_lock_irqsave(&dbri
->lock
, flags
);
2025 info
->substream
= substream
;
2028 info
->dvma_buffer
= 0;
2030 spin_unlock_irqrestore(&dbri
->lock
, flags
);
2037 static int snd_dbri_close(struct snd_pcm_substream
*substream
)
2039 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2040 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2042 dprintk(D_USR
, "close audio output.\n");
2043 info
->substream
= NULL
;
2050 static int snd_dbri_hw_params(struct snd_pcm_substream
*substream
,
2051 struct snd_pcm_hw_params
*hw_params
)
2053 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2054 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2055 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2059 /* set sampling rate, audio format and number of channels */
2060 ret
= cs4215_prepare(dbri
, params_rate(hw_params
),
2061 params_format(hw_params
),
2062 params_channels(hw_params
));
2066 if ((ret
= snd_pcm_lib_malloc_pages(substream
,
2067 params_buffer_bytes(hw_params
))) < 0) {
2068 printk(KERN_ERR
"malloc_pages failed with %d\n", ret
);
2072 /* hw_params can get called multiple times. Only map the DMA once.
2074 if (info
->dvma_buffer
== 0) {
2075 if (DBRI_STREAMNO(substream
) == DBRI_PLAY
)
2076 direction
= SBUS_DMA_TODEVICE
;
2078 direction
= SBUS_DMA_FROMDEVICE
;
2080 info
->dvma_buffer
= sbus_map_single(dbri
->sdev
,
2082 params_buffer_bytes(hw_params
),
2086 direction
= params_buffer_bytes(hw_params
);
2087 dprintk(D_USR
, "hw_params: %d bytes, dvma=%x\n",
2088 direction
, info
->dvma_buffer
);
2092 static int snd_dbri_hw_free(struct snd_pcm_substream
*substream
)
2094 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2095 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2097 dprintk(D_USR
, "hw_free.\n");
2099 /* hw_free can get called multiple times. Only unmap the DMA once.
2101 if (info
->dvma_buffer
) {
2102 if (DBRI_STREAMNO(substream
) == DBRI_PLAY
)
2103 direction
= SBUS_DMA_TODEVICE
;
2105 direction
= SBUS_DMA_FROMDEVICE
;
2107 sbus_unmap_single(dbri
->sdev
, info
->dvma_buffer
,
2108 substream
->runtime
->buffer_size
, direction
);
2109 info
->dvma_buffer
= 0;
2113 return snd_pcm_lib_free_pages(substream
);
2116 static int snd_dbri_prepare(struct snd_pcm_substream
*substream
)
2118 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2119 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2120 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
2123 info
->size
= snd_pcm_lib_buffer_bytes(substream
);
2124 if (DBRI_STREAMNO(substream
) == DBRI_PLAY
)
2125 info
->pipe
= 4; /* Send pipe */
2127 info
->pipe
= 6; /* Receive pipe */
2128 info
->left
= info
->size
; /* To trigger submittal */
2131 spin_lock_irq(&dbri
->lock
);
2133 /* Setup the all the transmit/receive desciptors to cover the
2136 ret
= setup_descs(dbri
, DBRI_STREAMNO(substream
),
2137 snd_pcm_lib_period_bytes(substream
));
2139 runtime
->stop_threshold
= DBRI_TD_MAXCNT
/ runtime
->channels
;
2141 spin_unlock_irq(&dbri
->lock
);
2143 dprintk(D_USR
, "prepare audio output. %d bytes\n", info
->size
);
2147 static int snd_dbri_trigger(struct snd_pcm_substream
*substream
, int cmd
)
2149 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2150 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2154 case SNDRV_PCM_TRIGGER_START
:
2155 dprintk(D_USR
, "start audio, period is %d bytes\n",
2156 (int)snd_pcm_lib_period_bytes(substream
));
2157 /* Enable & schedule the tasklet that re-submits the TDs. */
2158 xmit_descs_task
.data
= (unsigned long)dbri
;
2159 tasklet_schedule(&xmit_descs_task
);
2161 case SNDRV_PCM_TRIGGER_STOP
:
2162 dprintk(D_USR
, "stop audio.\n");
2163 /* Make the tasklet bail out immediately. */
2164 xmit_descs_task
.data
= 0;
2165 reset_pipe(dbri
, info
->pipe
);
2174 static snd_pcm_uframes_t
snd_dbri_pointer(struct snd_pcm_substream
*substream
)
2176 struct snd_dbri
*dbri
= snd_pcm_substream_chip(substream
);
2177 struct dbri_streaminfo
*info
= DBRI_STREAM(dbri
, substream
);
2178 snd_pcm_uframes_t ret
;
2180 ret
= bytes_to_frames(substream
->runtime
, info
->offset
)
2181 % substream
->runtime
->buffer_size
;
2182 dprintk(D_USR
, "I/O pointer: %ld frames, %d bytes left.\n",
2187 static struct snd_pcm_ops snd_dbri_ops
= {
2188 .open
= snd_dbri_open
,
2189 .close
= snd_dbri_close
,
2190 .ioctl
= snd_pcm_lib_ioctl
,
2191 .hw_params
= snd_dbri_hw_params
,
2192 .hw_free
= snd_dbri_hw_free
,
2193 .prepare
= snd_dbri_prepare
,
2194 .trigger
= snd_dbri_trigger
,
2195 .pointer
= snd_dbri_pointer
,
2198 static int __devinit
snd_dbri_pcm(struct snd_dbri
* dbri
)
2200 struct snd_pcm
*pcm
;
2203 if ((err
= snd_pcm_new(dbri
->card
,
2204 /* ID */ "sun_dbri",
2206 /* playback count */ 1,
2207 /* capture count */ 1, &pcm
)) < 0)
2209 snd_assert(pcm
!= NULL
, return -EINVAL
);
2211 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &snd_dbri_ops
);
2212 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &snd_dbri_ops
);
2214 pcm
->private_data
= dbri
;
2215 pcm
->info_flags
= 0;
2216 strcpy(pcm
->name
, dbri
->card
->shortname
);
2218 if ((err
= snd_pcm_lib_preallocate_pages_for_all(pcm
,
2219 SNDRV_DMA_TYPE_CONTINUOUS
,
2220 snd_dma_continuous_data(GFP_KERNEL
),
2221 64 * 1024, 64 * 1024)) < 0) {
2228 /*****************************************************************************
2230 *****************************************************************************/
2232 static int snd_cs4215_info_volume(struct snd_kcontrol
*kcontrol
,
2233 struct snd_ctl_elem_info
*uinfo
)
2235 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
2237 uinfo
->value
.integer
.min
= 0;
2238 if (kcontrol
->private_value
== DBRI_PLAY
) {
2239 uinfo
->value
.integer
.max
= DBRI_MAX_VOLUME
;
2241 uinfo
->value
.integer
.max
= DBRI_MAX_GAIN
;
2246 static int snd_cs4215_get_volume(struct snd_kcontrol
*kcontrol
,
2247 struct snd_ctl_elem_value
*ucontrol
)
2249 struct snd_dbri
*dbri
= snd_kcontrol_chip(kcontrol
);
2250 struct dbri_streaminfo
*info
;
2251 snd_assert(dbri
!= NULL
, return -EINVAL
);
2252 info
= &dbri
->stream_info
[kcontrol
->private_value
];
2253 snd_assert(info
!= NULL
, return -EINVAL
);
2255 ucontrol
->value
.integer
.value
[0] = info
->left_gain
;
2256 ucontrol
->value
.integer
.value
[1] = info
->right_gain
;
2260 static int snd_cs4215_put_volume(struct snd_kcontrol
*kcontrol
,
2261 struct snd_ctl_elem_value
*ucontrol
)
2263 struct snd_dbri
*dbri
= snd_kcontrol_chip(kcontrol
);
2264 struct dbri_streaminfo
*info
= &dbri
->stream_info
[kcontrol
->private_value
];
2265 unsigned long flags
;
2268 if (info
->left_gain
!= ucontrol
->value
.integer
.value
[0]) {
2269 info
->left_gain
= ucontrol
->value
.integer
.value
[0];
2272 if (info
->right_gain
!= ucontrol
->value
.integer
.value
[1]) {
2273 info
->right_gain
= ucontrol
->value
.integer
.value
[1];
2277 /* First mute outputs, and wait 1/8000 sec (125 us)
2278 * to make sure this takes. This avoids clicking noises.
2280 spin_lock_irqsave(&dbri
->lock
, flags
);
2282 cs4215_setdata(dbri
, 1);
2284 cs4215_setdata(dbri
, 0);
2286 spin_unlock_irqrestore(&dbri
->lock
, flags
);
2291 static int snd_cs4215_info_single(struct snd_kcontrol
*kcontrol
,
2292 struct snd_ctl_elem_info
*uinfo
)
2294 int mask
= (kcontrol
->private_value
>> 16) & 0xff;
2296 uinfo
->type
= (mask
== 1) ?
2297 SNDRV_CTL_ELEM_TYPE_BOOLEAN
: SNDRV_CTL_ELEM_TYPE_INTEGER
;
2299 uinfo
->value
.integer
.min
= 0;
2300 uinfo
->value
.integer
.max
= mask
;
2304 static int snd_cs4215_get_single(struct snd_kcontrol
*kcontrol
,
2305 struct snd_ctl_elem_value
*ucontrol
)
2307 struct snd_dbri
*dbri
= snd_kcontrol_chip(kcontrol
);
2308 int elem
= kcontrol
->private_value
& 0xff;
2309 int shift
= (kcontrol
->private_value
>> 8) & 0xff;
2310 int mask
= (kcontrol
->private_value
>> 16) & 0xff;
2311 int invert
= (kcontrol
->private_value
>> 24) & 1;
2312 snd_assert(dbri
!= NULL
, return -EINVAL
);
2315 ucontrol
->value
.integer
.value
[0] =
2316 (dbri
->mm
.data
[elem
] >> shift
) & mask
;
2318 ucontrol
->value
.integer
.value
[0] =
2319 (dbri
->mm
.ctrl
[elem
- 4] >> shift
) & mask
;
2323 ucontrol
->value
.integer
.value
[0] =
2324 mask
- ucontrol
->value
.integer
.value
[0];
2329 static int snd_cs4215_put_single(struct snd_kcontrol
*kcontrol
,
2330 struct snd_ctl_elem_value
*ucontrol
)
2332 struct snd_dbri
*dbri
= snd_kcontrol_chip(kcontrol
);
2333 unsigned long flags
;
2334 int elem
= kcontrol
->private_value
& 0xff;
2335 int shift
= (kcontrol
->private_value
>> 8) & 0xff;
2336 int mask
= (kcontrol
->private_value
>> 16) & 0xff;
2337 int invert
= (kcontrol
->private_value
>> 24) & 1;
2340 snd_assert(dbri
!= NULL
, return -EINVAL
);
2342 val
= (ucontrol
->value
.integer
.value
[0] & mask
);
2348 dbri
->mm
.data
[elem
] = (dbri
->mm
.data
[elem
] &
2349 ~(mask
<< shift
)) | val
;
2350 changed
= (val
!= dbri
->mm
.data
[elem
]);
2352 dbri
->mm
.ctrl
[elem
- 4] = (dbri
->mm
.ctrl
[elem
- 4] &
2353 ~(mask
<< shift
)) | val
;
2354 changed
= (val
!= dbri
->mm
.ctrl
[elem
- 4]);
2357 dprintk(D_GEN
, "put_single: mask=0x%x, changed=%d, "
2358 "mixer-value=%ld, mm-value=0x%x\n",
2359 mask
, changed
, ucontrol
->value
.integer
.value
[0],
2360 dbri
->mm
.data
[elem
& 3]);
2363 /* First mute outputs, and wait 1/8000 sec (125 us)
2364 * to make sure this takes. This avoids clicking noises.
2366 spin_lock_irqsave(&dbri
->lock
, flags
);
2368 cs4215_setdata(dbri
, 1);
2370 cs4215_setdata(dbri
, 0);
2372 spin_unlock_irqrestore(&dbri
->lock
, flags
);
2377 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2378 timeslots. Shift is the bit offset in the timeslot, mask defines the
2379 number of bits. invert is a boolean for use with attenuation.
2381 #define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2382 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2383 .info = snd_cs4215_info_single, \
2384 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2385 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2387 static struct snd_kcontrol_new dbri_controls
[] __devinitdata
= {
2389 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
2390 .name
= "Playback Volume",
2391 .info
= snd_cs4215_info_volume
,
2392 .get
= snd_cs4215_get_volume
,
2393 .put
= snd_cs4215_put_volume
,
2394 .private_value
= DBRI_PLAY
,
2396 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2397 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2398 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2400 .iface
= SNDRV_CTL_ELEM_IFACE_MIXER
,
2401 .name
= "Capture Volume",
2402 .info
= snd_cs4215_info_volume
,
2403 .get
= snd_cs4215_get_volume
,
2404 .put
= snd_cs4215_put_volume
,
2405 .private_value
= DBRI_REC
,
2407 /* FIXME: mic/line switch */
2408 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2409 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2410 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2411 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2414 #define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
2416 static int __init
snd_dbri_mixer(struct snd_dbri
* dbri
)
2418 struct snd_card
*card
;
2421 snd_assert(dbri
!= NULL
&& dbri
->card
!= NULL
, return -EINVAL
);
2424 strcpy(card
->mixername
, card
->shortname
);
2426 for (idx
= 0; idx
< NUM_CS4215_CONTROLS
; idx
++) {
2427 if ((err
= snd_ctl_add(card
,
2428 snd_ctl_new1(&dbri_controls
[idx
], dbri
))) < 0)
2432 for (idx
= DBRI_REC
; idx
< DBRI_NO_STREAMS
; idx
++) {
2433 dbri
->stream_info
[idx
].left_gain
= 0;
2434 dbri
->stream_info
[idx
].right_gain
= 0;
2440 /****************************************************************************
2442 ****************************************************************************/
2443 static void dbri_regs_read(struct snd_info_entry
* entry
, struct snd_info_buffer
*buffer
)
2445 struct snd_dbri
*dbri
= entry
->private_data
;
2447 snd_iprintf(buffer
, "REG0: 0x%x\n", sbus_readl(dbri
->regs
+ REG0
));
2448 snd_iprintf(buffer
, "REG2: 0x%x\n", sbus_readl(dbri
->regs
+ REG2
));
2449 snd_iprintf(buffer
, "REG8: 0x%x\n", sbus_readl(dbri
->regs
+ REG8
));
2450 snd_iprintf(buffer
, "REG9: 0x%x\n", sbus_readl(dbri
->regs
+ REG9
));
2454 static void dbri_debug_read(struct snd_info_entry
* entry
,
2455 struct snd_info_buffer
*buffer
)
2457 struct snd_dbri
*dbri
= entry
->private_data
;
2459 snd_iprintf(buffer
, "debug=%d\n", dbri_debug
);
2461 for (pipe
= 0; pipe
< 32; pipe
++) {
2462 if (pipe_active(dbri
, pipe
)) {
2463 struct dbri_pipe
*pptr
= &dbri
->pipes
[pipe
];
2465 "Pipe %d: %s SDP=0x%x desc=%d, "
2466 "len=%d @ %d next %d\n",
2468 ((pptr
->sdp
& D_SDP_TO_SER
) ? "output" : "input"),
2469 pptr
->sdp
, pptr
->desc
,
2470 pptr
->length
, pptr
->cycle
, pptr
->nextpipe
);
2476 void snd_dbri_proc(struct snd_dbri
* dbri
)
2478 struct snd_info_entry
*entry
;
2480 if (! snd_card_proc_new(dbri
->card
, "regs", &entry
))
2481 snd_info_set_text_ops(entry
, dbri
, dbri_regs_read
);
2484 if (! snd_card_proc_new(dbri
->card
, "debug", &entry
)) {
2485 snd_info_set_text_ops(entry
, dbri
, dbri_debug_read
);
2486 entry
->mode
= S_IFREG
| S_IRUGO
; /* Readable only. */
2492 ****************************************************************************
2493 **************************** Initialization ********************************
2494 ****************************************************************************
2496 static void snd_dbri_free(struct snd_dbri
* dbri
);
2498 static int __init
snd_dbri_create(struct snd_card
*card
,
2499 struct sbus_dev
*sdev
,
2500 struct linux_prom_irqs
*irq
, int dev
)
2502 struct snd_dbri
*dbri
= card
->private_data
;
2505 spin_lock_init(&dbri
->lock
);
2508 dbri
->irq
= irq
->pri
;
2510 dbri
->dma
= sbus_alloc_consistent(sdev
, sizeof(struct dbri_dma
),
2512 memset((void *)dbri
->dma
, 0, sizeof(struct dbri_dma
));
2514 dprintk(D_GEN
, "DMA Cmd Block 0x%p (0x%08x)\n",
2515 dbri
->dma
, dbri
->dma_dvma
);
2517 /* Map the registers into memory. */
2518 dbri
->regs_size
= sdev
->reg_addrs
[0].reg_size
;
2519 dbri
->regs
= sbus_ioremap(&sdev
->resource
[0], 0,
2520 dbri
->regs_size
, "DBRI Registers");
2522 printk(KERN_ERR
"DBRI: could not allocate registers\n");
2523 sbus_free_consistent(sdev
, sizeof(struct dbri_dma
),
2524 (void *)dbri
->dma
, dbri
->dma_dvma
);
2528 err
= request_irq(dbri
->irq
, snd_dbri_interrupt
, IRQF_SHARED
,
2529 "DBRI audio", dbri
);
2531 printk(KERN_ERR
"DBRI: Can't get irq %d\n", dbri
->irq
);
2532 sbus_iounmap(dbri
->regs
, dbri
->regs_size
);
2533 sbus_free_consistent(sdev
, sizeof(struct dbri_dma
),
2534 (void *)dbri
->dma
, dbri
->dma_dvma
);
2538 /* Do low level initialization of the DBRI and CS4215 chips */
2539 dbri_initialize(dbri
);
2540 err
= cs4215_init(dbri
);
2542 snd_dbri_free(dbri
);
2546 dbri
->next
= dbri_list
;
2552 static void snd_dbri_free(struct snd_dbri
* dbri
)
2554 dprintk(D_GEN
, "snd_dbri_free\n");
2558 free_irq(dbri
->irq
, dbri
);
2561 sbus_iounmap(dbri
->regs
, dbri
->regs_size
);
2564 sbus_free_consistent(dbri
->sdev
, sizeof(struct dbri_dma
),
2565 (void *)dbri
->dma
, dbri
->dma_dvma
);
2568 static int __init
dbri_attach(int prom_node
, struct sbus_dev
*sdev
)
2570 struct snd_dbri
*dbri
;
2571 struct linux_prom_irqs irq
;
2572 struct resource
*rp
;
2573 struct snd_card
*card
;
2577 if (sdev
->prom_name
[9] < 'e') {
2578 printk(KERN_ERR
"DBRI: unsupported chip version %c found.\n",
2579 sdev
->prom_name
[9]);
2583 if (dev
>= SNDRV_CARDS
)
2590 err
= prom_getproperty(prom_node
, "intr", (char *)&irq
, sizeof(irq
));
2592 printk(KERN_ERR
"DBRI-%d: Firmware node lacks IRQ property.\n", dev
);
2596 card
= snd_card_new(index
[dev
], id
[dev
], THIS_MODULE
,
2597 sizeof(struct snd_dbri
));
2601 strcpy(card
->driver
, "DBRI");
2602 strcpy(card
->shortname
, "Sun DBRI");
2603 rp
= &sdev
->resource
[0];
2604 sprintf(card
->longname
, "%s at 0x%02lx:0x%016Lx, irq %d",
2606 rp
->flags
& 0xffL
, (unsigned long long)rp
->start
, irq
.pri
);
2608 if ((err
= snd_dbri_create(card
, sdev
, &irq
, dev
)) < 0) {
2609 snd_card_free(card
);
2613 dbri
= card
->private_data
;
2614 if ((err
= snd_dbri_pcm(dbri
)) < 0)
2617 if ((err
= snd_dbri_mixer(dbri
)) < 0)
2620 /* /proc file handling */
2621 snd_dbri_proc(dbri
);
2623 if ((err
= snd_card_register(card
)) < 0)
2626 printk(KERN_INFO
"audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2628 dbri
->irq
, sdev
->prom_name
[9], dbri
->mm
.version
);
2634 snd_dbri_free(dbri
);
2635 snd_card_free(card
);
2639 /* Probe for the dbri chip and then attach the driver. */
2640 static int __init
dbri_init(void)
2642 struct sbus_bus
*sbus
;
2643 struct sbus_dev
*sdev
;
2646 /* Probe each SBUS for the DBRI chip(s). */
2647 for_all_sbusdev(sdev
, sbus
) {
2649 * The version is coded in the last character
2651 if (!strncmp(sdev
->prom_name
, "SUNW,DBRI", 9)) {
2652 dprintk(D_GEN
, "DBRI: Found %s in SBUS slot %d\n",
2653 sdev
->prom_name
, sdev
->slot
);
2655 if (dbri_attach(sdev
->prom_node
, sdev
) == 0)
2660 return (found
> 0) ? 0 : -EIO
;
2663 static void __exit
dbri_exit(void)
2665 struct snd_dbri
*this = dbri_list
;
2667 while (this != NULL
) {
2668 struct snd_dbri
*next
= this->next
;
2669 struct snd_card
*card
= this->card
;
2671 snd_dbri_free(this);
2672 snd_card_free(card
);
2678 module_init(dbri_init
);
2679 module_exit(dbri_exit
);