cfg80211: avoid sending spurious deauth to userspace
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / process.c
blobc930ac38e59f0274cf488d28c441aafe4b6c0c65
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/syscalls.h>
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #endif
54 #include <linux/kprobes.h>
55 #include <linux/kdebug.h>
57 extern unsigned long _get_SP(void);
59 #ifndef CONFIG_SMP
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 struct task_struct *last_task_used_vsx = NULL;
63 struct task_struct *last_task_used_spe = NULL;
64 #endif
67 * Make sure the floating-point register state in the
68 * the thread_struct is up to date for task tsk.
70 void flush_fp_to_thread(struct task_struct *tsk)
72 if (tsk->thread.regs) {
74 * We need to disable preemption here because if we didn't,
75 * another process could get scheduled after the regs->msr
76 * test but before we have finished saving the FP registers
77 * to the thread_struct. That process could take over the
78 * FPU, and then when we get scheduled again we would store
79 * bogus values for the remaining FP registers.
81 preempt_disable();
82 if (tsk->thread.regs->msr & MSR_FP) {
83 #ifdef CONFIG_SMP
85 * This should only ever be called for current or
86 * for a stopped child process. Since we save away
87 * the FP register state on context switch on SMP,
88 * there is something wrong if a stopped child appears
89 * to still have its FP state in the CPU registers.
91 BUG_ON(tsk != current);
92 #endif
93 giveup_fpu(tsk);
95 preempt_enable();
99 void enable_kernel_fp(void)
101 WARN_ON(preemptible());
103 #ifdef CONFIG_SMP
104 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
105 giveup_fpu(current);
106 else
107 giveup_fpu(NULL); /* just enables FP for kernel */
108 #else
109 giveup_fpu(last_task_used_math);
110 #endif /* CONFIG_SMP */
112 EXPORT_SYMBOL(enable_kernel_fp);
114 #ifdef CONFIG_ALTIVEC
115 void enable_kernel_altivec(void)
117 WARN_ON(preemptible());
119 #ifdef CONFIG_SMP
120 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
121 giveup_altivec(current);
122 else
123 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
124 #else
125 giveup_altivec(last_task_used_altivec);
126 #endif /* CONFIG_SMP */
128 EXPORT_SYMBOL(enable_kernel_altivec);
131 * Make sure the VMX/Altivec register state in the
132 * the thread_struct is up to date for task tsk.
134 void flush_altivec_to_thread(struct task_struct *tsk)
136 if (tsk->thread.regs) {
137 preempt_disable();
138 if (tsk->thread.regs->msr & MSR_VEC) {
139 #ifdef CONFIG_SMP
140 BUG_ON(tsk != current);
141 #endif
142 giveup_altivec(tsk);
144 preempt_enable();
147 #endif /* CONFIG_ALTIVEC */
149 #ifdef CONFIG_VSX
150 #if 0
151 /* not currently used, but some crazy RAID module might want to later */
152 void enable_kernel_vsx(void)
154 WARN_ON(preemptible());
156 #ifdef CONFIG_SMP
157 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
158 giveup_vsx(current);
159 else
160 giveup_vsx(NULL); /* just enable vsx for kernel - force */
161 #else
162 giveup_vsx(last_task_used_vsx);
163 #endif /* CONFIG_SMP */
165 EXPORT_SYMBOL(enable_kernel_vsx);
166 #endif
168 void giveup_vsx(struct task_struct *tsk)
170 giveup_fpu(tsk);
171 giveup_altivec(tsk);
172 __giveup_vsx(tsk);
175 void flush_vsx_to_thread(struct task_struct *tsk)
177 if (tsk->thread.regs) {
178 preempt_disable();
179 if (tsk->thread.regs->msr & MSR_VSX) {
180 #ifdef CONFIG_SMP
181 BUG_ON(tsk != current);
182 #endif
183 giveup_vsx(tsk);
185 preempt_enable();
188 #endif /* CONFIG_VSX */
190 #ifdef CONFIG_SPE
192 void enable_kernel_spe(void)
194 WARN_ON(preemptible());
196 #ifdef CONFIG_SMP
197 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
198 giveup_spe(current);
199 else
200 giveup_spe(NULL); /* just enable SPE for kernel - force */
201 #else
202 giveup_spe(last_task_used_spe);
203 #endif /* __SMP __ */
205 EXPORT_SYMBOL(enable_kernel_spe);
207 void flush_spe_to_thread(struct task_struct *tsk)
209 if (tsk->thread.regs) {
210 preempt_disable();
211 if (tsk->thread.regs->msr & MSR_SPE) {
212 #ifdef CONFIG_SMP
213 BUG_ON(tsk != current);
214 #endif
215 giveup_spe(tsk);
217 preempt_enable();
220 #endif /* CONFIG_SPE */
222 #ifndef CONFIG_SMP
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
227 void discard_lazy_cpu_state(void)
229 preempt_disable();
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_VSX
237 if (last_task_used_vsx == current)
238 last_task_used_vsx = NULL;
239 #endif /* CONFIG_VSX */
240 #ifdef CONFIG_SPE
241 if (last_task_used_spe == current)
242 last_task_used_spe = NULL;
243 #endif
244 preempt_enable();
246 #endif /* CONFIG_SMP */
248 void do_dabr(struct pt_regs *regs, unsigned long address,
249 unsigned long error_code)
251 siginfo_t info;
253 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
254 11, SIGSEGV) == NOTIFY_STOP)
255 return;
257 if (debugger_dabr_match(regs))
258 return;
260 /* Clear the DAC and struct entries. One shot trigger */
261 #if defined(CONFIG_BOOKE)
262 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
263 | DBCR0_IDM));
264 #endif
266 /* Clear the DABR */
267 set_dabr(0);
269 /* Deliver the signal to userspace */
270 info.si_signo = SIGTRAP;
271 info.si_errno = 0;
272 info.si_code = TRAP_HWBKPT;
273 info.si_addr = (void __user *)address;
274 force_sig_info(SIGTRAP, &info, current);
277 static DEFINE_PER_CPU(unsigned long, current_dabr);
279 int set_dabr(unsigned long dabr)
281 __get_cpu_var(current_dabr) = dabr;
283 if (ppc_md.set_dabr)
284 return ppc_md.set_dabr(dabr);
286 /* XXX should we have a CPU_FTR_HAS_DABR ? */
287 #if defined(CONFIG_BOOKE)
288 mtspr(SPRN_DAC1, dabr);
289 #elif defined(CONFIG_PPC_BOOK3S)
290 mtspr(SPRN_DABR, dabr);
291 #endif
294 return 0;
297 #ifdef CONFIG_PPC64
298 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
299 #endif
301 struct task_struct *__switch_to(struct task_struct *prev,
302 struct task_struct *new)
304 struct thread_struct *new_thread, *old_thread;
305 unsigned long flags;
306 struct task_struct *last;
308 #ifdef CONFIG_SMP
309 /* avoid complexity of lazy save/restore of fpu
310 * by just saving it every time we switch out if
311 * this task used the fpu during the last quantum.
313 * If it tries to use the fpu again, it'll trap and
314 * reload its fp regs. So we don't have to do a restore
315 * every switch, just a save.
316 * -- Cort
318 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
319 giveup_fpu(prev);
320 #ifdef CONFIG_ALTIVEC
322 * If the previous thread used altivec in the last quantum
323 * (thus changing altivec regs) then save them.
324 * We used to check the VRSAVE register but not all apps
325 * set it, so we don't rely on it now (and in fact we need
326 * to save & restore VSCR even if VRSAVE == 0). -- paulus
328 * On SMP we always save/restore altivec regs just to avoid the
329 * complexity of changing processors.
330 * -- Cort
332 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
333 giveup_altivec(prev);
334 #endif /* CONFIG_ALTIVEC */
335 #ifdef CONFIG_VSX
336 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
337 /* VMX and FPU registers are already save here */
338 __giveup_vsx(prev);
339 #endif /* CONFIG_VSX */
340 #ifdef CONFIG_SPE
342 * If the previous thread used spe in the last quantum
343 * (thus changing spe regs) then save them.
345 * On SMP we always save/restore spe regs just to avoid the
346 * complexity of changing processors.
348 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
349 giveup_spe(prev);
350 #endif /* CONFIG_SPE */
352 #else /* CONFIG_SMP */
353 #ifdef CONFIG_ALTIVEC
354 /* Avoid the trap. On smp this this never happens since
355 * we don't set last_task_used_altivec -- Cort
357 if (new->thread.regs && last_task_used_altivec == new)
358 new->thread.regs->msr |= MSR_VEC;
359 #endif /* CONFIG_ALTIVEC */
360 #ifdef CONFIG_VSX
361 if (new->thread.regs && last_task_used_vsx == new)
362 new->thread.regs->msr |= MSR_VSX;
363 #endif /* CONFIG_VSX */
364 #ifdef CONFIG_SPE
365 /* Avoid the trap. On smp this this never happens since
366 * we don't set last_task_used_spe
368 if (new->thread.regs && last_task_used_spe == new)
369 new->thread.regs->msr |= MSR_SPE;
370 #endif /* CONFIG_SPE */
372 #endif /* CONFIG_SMP */
374 #if defined(CONFIG_BOOKE)
375 /* If new thread DAC (HW breakpoint) is the same then leave it */
376 if (new->thread.dabr)
377 set_dabr(new->thread.dabr);
378 #else
379 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
380 set_dabr(new->thread.dabr);
381 #endif
384 new_thread = &new->thread;
385 old_thread = &current->thread;
387 #ifdef CONFIG_PPC64
389 * Collect processor utilization data per process
391 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
392 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
393 long unsigned start_tb, current_tb;
394 start_tb = old_thread->start_tb;
395 cu->current_tb = current_tb = mfspr(SPRN_PURR);
396 old_thread->accum_tb += (current_tb - start_tb);
397 new_thread->start_tb = current_tb;
399 #endif
401 local_irq_save(flags);
403 account_system_vtime(current);
404 account_process_vtime(current);
405 calculate_steal_time();
408 * We can't take a PMU exception inside _switch() since there is a
409 * window where the kernel stack SLB and the kernel stack are out
410 * of sync. Hard disable here.
412 hard_irq_disable();
413 last = _switch(old_thread, new_thread);
415 local_irq_restore(flags);
417 return last;
420 static int instructions_to_print = 16;
422 static void show_instructions(struct pt_regs *regs)
424 int i;
425 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
426 sizeof(int));
428 printk("Instruction dump:");
430 for (i = 0; i < instructions_to_print; i++) {
431 int instr;
433 if (!(i % 8))
434 printk("\n");
436 #if !defined(CONFIG_BOOKE)
437 /* If executing with the IMMU off, adjust pc rather
438 * than print XXXXXXXX.
440 if (!(regs->msr & MSR_IR))
441 pc = (unsigned long)phys_to_virt(pc);
442 #endif
444 /* We use __get_user here *only* to avoid an OOPS on a
445 * bad address because the pc *should* only be a
446 * kernel address.
448 if (!__kernel_text_address(pc) ||
449 __get_user(instr, (unsigned int __user *)pc)) {
450 printk("XXXXXXXX ");
451 } else {
452 if (regs->nip == pc)
453 printk("<%08x> ", instr);
454 else
455 printk("%08x ", instr);
458 pc += sizeof(int);
461 printk("\n");
464 static struct regbit {
465 unsigned long bit;
466 const char *name;
467 } msr_bits[] = {
468 {MSR_EE, "EE"},
469 {MSR_PR, "PR"},
470 {MSR_FP, "FP"},
471 {MSR_VEC, "VEC"},
472 {MSR_VSX, "VSX"},
473 {MSR_ME, "ME"},
474 {MSR_CE, "CE"},
475 {MSR_DE, "DE"},
476 {MSR_IR, "IR"},
477 {MSR_DR, "DR"},
478 {0, NULL}
481 static void printbits(unsigned long val, struct regbit *bits)
483 const char *sep = "";
485 printk("<");
486 for (; bits->bit; ++bits)
487 if (val & bits->bit) {
488 printk("%s%s", sep, bits->name);
489 sep = ",";
491 printk(">");
494 #ifdef CONFIG_PPC64
495 #define REG "%016lx"
496 #define REGS_PER_LINE 4
497 #define LAST_VOLATILE 13
498 #else
499 #define REG "%08lx"
500 #define REGS_PER_LINE 8
501 #define LAST_VOLATILE 12
502 #endif
504 void show_regs(struct pt_regs * regs)
506 int i, trap;
508 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
509 regs->nip, regs->link, regs->ctr);
510 printk("REGS: %p TRAP: %04lx %s (%s)\n",
511 regs, regs->trap, print_tainted(), init_utsname()->release);
512 printk("MSR: "REG" ", regs->msr);
513 printbits(regs->msr, msr_bits);
514 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
515 trap = TRAP(regs);
516 if (trap == 0x300 || trap == 0x600)
517 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
518 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
519 #else
520 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
521 #endif
522 printk("TASK = %p[%d] '%s' THREAD: %p",
523 current, task_pid_nr(current), current->comm, task_thread_info(current));
525 #ifdef CONFIG_SMP
526 printk(" CPU: %d", raw_smp_processor_id());
527 #endif /* CONFIG_SMP */
529 for (i = 0; i < 32; i++) {
530 if ((i % REGS_PER_LINE) == 0)
531 printk("\nGPR%02d: ", i);
532 printk(REG " ", regs->gpr[i]);
533 if (i == LAST_VOLATILE && !FULL_REGS(regs))
534 break;
536 printk("\n");
537 #ifdef CONFIG_KALLSYMS
539 * Lookup NIP late so we have the best change of getting the
540 * above info out without failing
542 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
543 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
544 #endif
545 show_stack(current, (unsigned long *) regs->gpr[1]);
546 if (!user_mode(regs))
547 show_instructions(regs);
550 void exit_thread(void)
552 discard_lazy_cpu_state();
555 void flush_thread(void)
557 #ifdef CONFIG_PPC64
558 struct thread_info *t = current_thread_info();
560 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
561 clear_ti_thread_flag(t, TIF_ABI_PENDING);
562 if (test_ti_thread_flag(t, TIF_32BIT))
563 clear_ti_thread_flag(t, TIF_32BIT);
564 else
565 set_ti_thread_flag(t, TIF_32BIT);
567 #endif
569 discard_lazy_cpu_state();
571 if (current->thread.dabr) {
572 current->thread.dabr = 0;
573 set_dabr(0);
575 #if defined(CONFIG_BOOKE)
576 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
577 #endif
581 void
582 release_thread(struct task_struct *t)
587 * This gets called before we allocate a new thread and copy
588 * the current task into it.
590 void prepare_to_copy(struct task_struct *tsk)
592 flush_fp_to_thread(current);
593 flush_altivec_to_thread(current);
594 flush_vsx_to_thread(current);
595 flush_spe_to_thread(current);
599 * Copy a thread..
601 int copy_thread(unsigned long clone_flags, unsigned long usp,
602 unsigned long unused, struct task_struct *p,
603 struct pt_regs *regs)
605 struct pt_regs *childregs, *kregs;
606 extern void ret_from_fork(void);
607 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
609 CHECK_FULL_REGS(regs);
610 /* Copy registers */
611 sp -= sizeof(struct pt_regs);
612 childregs = (struct pt_regs *) sp;
613 *childregs = *regs;
614 if ((childregs->msr & MSR_PR) == 0) {
615 /* for kernel thread, set `current' and stackptr in new task */
616 childregs->gpr[1] = sp + sizeof(struct pt_regs);
617 #ifdef CONFIG_PPC32
618 childregs->gpr[2] = (unsigned long) p;
619 #else
620 clear_tsk_thread_flag(p, TIF_32BIT);
621 #endif
622 p->thread.regs = NULL; /* no user register state */
623 } else {
624 childregs->gpr[1] = usp;
625 p->thread.regs = childregs;
626 if (clone_flags & CLONE_SETTLS) {
627 #ifdef CONFIG_PPC64
628 if (!test_thread_flag(TIF_32BIT))
629 childregs->gpr[13] = childregs->gpr[6];
630 else
631 #endif
632 childregs->gpr[2] = childregs->gpr[6];
635 childregs->gpr[3] = 0; /* Result from fork() */
636 sp -= STACK_FRAME_OVERHEAD;
639 * The way this works is that at some point in the future
640 * some task will call _switch to switch to the new task.
641 * That will pop off the stack frame created below and start
642 * the new task running at ret_from_fork. The new task will
643 * do some house keeping and then return from the fork or clone
644 * system call, using the stack frame created above.
646 sp -= sizeof(struct pt_regs);
647 kregs = (struct pt_regs *) sp;
648 sp -= STACK_FRAME_OVERHEAD;
649 p->thread.ksp = sp;
650 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
651 _ALIGN_UP(sizeof(struct thread_info), 16);
653 #ifdef CONFIG_PPC_STD_MMU_64
654 if (cpu_has_feature(CPU_FTR_SLB)) {
655 unsigned long sp_vsid;
656 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
658 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
659 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
660 << SLB_VSID_SHIFT_1T;
661 else
662 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
663 << SLB_VSID_SHIFT;
664 sp_vsid |= SLB_VSID_KERNEL | llp;
665 p->thread.ksp_vsid = sp_vsid;
667 #endif /* CONFIG_PPC_STD_MMU_64 */
670 * The PPC64 ABI makes use of a TOC to contain function
671 * pointers. The function (ret_from_except) is actually a pointer
672 * to the TOC entry. The first entry is a pointer to the actual
673 * function.
675 #ifdef CONFIG_PPC64
676 kregs->nip = *((unsigned long *)ret_from_fork);
677 #else
678 kregs->nip = (unsigned long)ret_from_fork;
679 #endif
681 return 0;
685 * Set up a thread for executing a new program
687 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
689 #ifdef CONFIG_PPC64
690 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
691 #endif
693 set_fs(USER_DS);
696 * If we exec out of a kernel thread then thread.regs will not be
697 * set. Do it now.
699 if (!current->thread.regs) {
700 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
701 current->thread.regs = regs - 1;
704 memset(regs->gpr, 0, sizeof(regs->gpr));
705 regs->ctr = 0;
706 regs->link = 0;
707 regs->xer = 0;
708 regs->ccr = 0;
709 regs->gpr[1] = sp;
712 * We have just cleared all the nonvolatile GPRs, so make
713 * FULL_REGS(regs) return true. This is necessary to allow
714 * ptrace to examine the thread immediately after exec.
716 regs->trap &= ~1UL;
718 #ifdef CONFIG_PPC32
719 regs->mq = 0;
720 regs->nip = start;
721 regs->msr = MSR_USER;
722 #else
723 if (!test_thread_flag(TIF_32BIT)) {
724 unsigned long entry, toc;
726 /* start is a relocated pointer to the function descriptor for
727 * the elf _start routine. The first entry in the function
728 * descriptor is the entry address of _start and the second
729 * entry is the TOC value we need to use.
731 __get_user(entry, (unsigned long __user *)start);
732 __get_user(toc, (unsigned long __user *)start+1);
734 /* Check whether the e_entry function descriptor entries
735 * need to be relocated before we can use them.
737 if (load_addr != 0) {
738 entry += load_addr;
739 toc += load_addr;
741 regs->nip = entry;
742 regs->gpr[2] = toc;
743 regs->msr = MSR_USER64;
744 } else {
745 regs->nip = start;
746 regs->gpr[2] = 0;
747 regs->msr = MSR_USER32;
749 #endif
751 discard_lazy_cpu_state();
752 #ifdef CONFIG_VSX
753 current->thread.used_vsr = 0;
754 #endif
755 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
756 current->thread.fpscr.val = 0;
757 #ifdef CONFIG_ALTIVEC
758 memset(current->thread.vr, 0, sizeof(current->thread.vr));
759 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
760 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
761 current->thread.vrsave = 0;
762 current->thread.used_vr = 0;
763 #endif /* CONFIG_ALTIVEC */
764 #ifdef CONFIG_SPE
765 memset(current->thread.evr, 0, sizeof(current->thread.evr));
766 current->thread.acc = 0;
767 current->thread.spefscr = 0;
768 current->thread.used_spe = 0;
769 #endif /* CONFIG_SPE */
772 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
773 | PR_FP_EXC_RES | PR_FP_EXC_INV)
775 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
777 struct pt_regs *regs = tsk->thread.regs;
779 /* This is a bit hairy. If we are an SPE enabled processor
780 * (have embedded fp) we store the IEEE exception enable flags in
781 * fpexc_mode. fpexc_mode is also used for setting FP exception
782 * mode (asyn, precise, disabled) for 'Classic' FP. */
783 if (val & PR_FP_EXC_SW_ENABLE) {
784 #ifdef CONFIG_SPE
785 if (cpu_has_feature(CPU_FTR_SPE)) {
786 tsk->thread.fpexc_mode = val &
787 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
788 return 0;
789 } else {
790 return -EINVAL;
792 #else
793 return -EINVAL;
794 #endif
797 /* on a CONFIG_SPE this does not hurt us. The bits that
798 * __pack_fe01 use do not overlap with bits used for
799 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
800 * on CONFIG_SPE implementations are reserved so writing to
801 * them does not change anything */
802 if (val > PR_FP_EXC_PRECISE)
803 return -EINVAL;
804 tsk->thread.fpexc_mode = __pack_fe01(val);
805 if (regs != NULL && (regs->msr & MSR_FP) != 0)
806 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
807 | tsk->thread.fpexc_mode;
808 return 0;
811 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
813 unsigned int val;
815 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
816 #ifdef CONFIG_SPE
817 if (cpu_has_feature(CPU_FTR_SPE))
818 val = tsk->thread.fpexc_mode;
819 else
820 return -EINVAL;
821 #else
822 return -EINVAL;
823 #endif
824 else
825 val = __unpack_fe01(tsk->thread.fpexc_mode);
826 return put_user(val, (unsigned int __user *) adr);
829 int set_endian(struct task_struct *tsk, unsigned int val)
831 struct pt_regs *regs = tsk->thread.regs;
833 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
834 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
835 return -EINVAL;
837 if (regs == NULL)
838 return -EINVAL;
840 if (val == PR_ENDIAN_BIG)
841 regs->msr &= ~MSR_LE;
842 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
843 regs->msr |= MSR_LE;
844 else
845 return -EINVAL;
847 return 0;
850 int get_endian(struct task_struct *tsk, unsigned long adr)
852 struct pt_regs *regs = tsk->thread.regs;
853 unsigned int val;
855 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
856 !cpu_has_feature(CPU_FTR_REAL_LE))
857 return -EINVAL;
859 if (regs == NULL)
860 return -EINVAL;
862 if (regs->msr & MSR_LE) {
863 if (cpu_has_feature(CPU_FTR_REAL_LE))
864 val = PR_ENDIAN_LITTLE;
865 else
866 val = PR_ENDIAN_PPC_LITTLE;
867 } else
868 val = PR_ENDIAN_BIG;
870 return put_user(val, (unsigned int __user *)adr);
873 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
875 tsk->thread.align_ctl = val;
876 return 0;
879 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
881 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
884 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
886 int sys_clone(unsigned long clone_flags, unsigned long usp,
887 int __user *parent_tidp, void __user *child_threadptr,
888 int __user *child_tidp, int p6,
889 struct pt_regs *regs)
891 CHECK_FULL_REGS(regs);
892 if (usp == 0)
893 usp = regs->gpr[1]; /* stack pointer for child */
894 #ifdef CONFIG_PPC64
895 if (test_thread_flag(TIF_32BIT)) {
896 parent_tidp = TRUNC_PTR(parent_tidp);
897 child_tidp = TRUNC_PTR(child_tidp);
899 #endif
900 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
903 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
904 unsigned long p4, unsigned long p5, unsigned long p6,
905 struct pt_regs *regs)
907 CHECK_FULL_REGS(regs);
908 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
911 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
912 unsigned long p4, unsigned long p5, unsigned long p6,
913 struct pt_regs *regs)
915 CHECK_FULL_REGS(regs);
916 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
917 regs, 0, NULL, NULL);
920 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
921 unsigned long a3, unsigned long a4, unsigned long a5,
922 struct pt_regs *regs)
924 int error;
925 char *filename;
927 filename = getname((char __user *) a0);
928 error = PTR_ERR(filename);
929 if (IS_ERR(filename))
930 goto out;
931 flush_fp_to_thread(current);
932 flush_altivec_to_thread(current);
933 flush_spe_to_thread(current);
934 error = do_execve(filename, (char __user * __user *) a1,
935 (char __user * __user *) a2, regs);
936 putname(filename);
937 out:
938 return error;
941 #ifdef CONFIG_IRQSTACKS
942 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
943 unsigned long nbytes)
945 unsigned long stack_page;
946 unsigned long cpu = task_cpu(p);
949 * Avoid crashing if the stack has overflowed and corrupted
950 * task_cpu(p), which is in the thread_info struct.
952 if (cpu < NR_CPUS && cpu_possible(cpu)) {
953 stack_page = (unsigned long) hardirq_ctx[cpu];
954 if (sp >= stack_page + sizeof(struct thread_struct)
955 && sp <= stack_page + THREAD_SIZE - nbytes)
956 return 1;
958 stack_page = (unsigned long) softirq_ctx[cpu];
959 if (sp >= stack_page + sizeof(struct thread_struct)
960 && sp <= stack_page + THREAD_SIZE - nbytes)
961 return 1;
963 return 0;
966 #else
967 #define valid_irq_stack(sp, p, nb) 0
968 #endif /* CONFIG_IRQSTACKS */
970 int validate_sp(unsigned long sp, struct task_struct *p,
971 unsigned long nbytes)
973 unsigned long stack_page = (unsigned long)task_stack_page(p);
975 if (sp >= stack_page + sizeof(struct thread_struct)
976 && sp <= stack_page + THREAD_SIZE - nbytes)
977 return 1;
979 return valid_irq_stack(sp, p, nbytes);
982 EXPORT_SYMBOL(validate_sp);
984 unsigned long get_wchan(struct task_struct *p)
986 unsigned long ip, sp;
987 int count = 0;
989 if (!p || p == current || p->state == TASK_RUNNING)
990 return 0;
992 sp = p->thread.ksp;
993 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
994 return 0;
996 do {
997 sp = *(unsigned long *)sp;
998 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
999 return 0;
1000 if (count > 0) {
1001 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1002 if (!in_sched_functions(ip))
1003 return ip;
1005 } while (count++ < 16);
1006 return 0;
1009 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1011 void show_stack(struct task_struct *tsk, unsigned long *stack)
1013 unsigned long sp, ip, lr, newsp;
1014 int count = 0;
1015 int firstframe = 1;
1016 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1017 int curr_frame = current->curr_ret_stack;
1018 extern void return_to_handler(void);
1019 unsigned long rth = (unsigned long)return_to_handler;
1020 unsigned long mrth = -1;
1021 #ifdef CONFIG_PPC64
1022 extern void mod_return_to_handler(void);
1023 rth = *(unsigned long *)rth;
1024 mrth = (unsigned long)mod_return_to_handler;
1025 mrth = *(unsigned long *)mrth;
1026 #endif
1027 #endif
1029 sp = (unsigned long) stack;
1030 if (tsk == NULL)
1031 tsk = current;
1032 if (sp == 0) {
1033 if (tsk == current)
1034 asm("mr %0,1" : "=r" (sp));
1035 else
1036 sp = tsk->thread.ksp;
1039 lr = 0;
1040 printk("Call Trace:\n");
1041 do {
1042 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1043 return;
1045 stack = (unsigned long *) sp;
1046 newsp = stack[0];
1047 ip = stack[STACK_FRAME_LR_SAVE];
1048 if (!firstframe || ip != lr) {
1049 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1050 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1051 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1052 printk(" (%pS)",
1053 (void *)current->ret_stack[curr_frame].ret);
1054 curr_frame--;
1056 #endif
1057 if (firstframe)
1058 printk(" (unreliable)");
1059 printk("\n");
1061 firstframe = 0;
1064 * See if this is an exception frame.
1065 * We look for the "regshere" marker in the current frame.
1067 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1068 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1069 struct pt_regs *regs = (struct pt_regs *)
1070 (sp + STACK_FRAME_OVERHEAD);
1071 lr = regs->link;
1072 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1073 regs->trap, (void *)regs->nip, (void *)lr);
1074 firstframe = 1;
1077 sp = newsp;
1078 } while (count++ < kstack_depth_to_print);
1081 void dump_stack(void)
1083 show_stack(current, NULL);
1085 EXPORT_SYMBOL(dump_stack);
1087 #ifdef CONFIG_PPC64
1088 void ppc64_runlatch_on(void)
1090 unsigned long ctrl;
1092 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1093 HMT_medium();
1095 ctrl = mfspr(SPRN_CTRLF);
1096 ctrl |= CTRL_RUNLATCH;
1097 mtspr(SPRN_CTRLT, ctrl);
1099 set_thread_flag(TIF_RUNLATCH);
1103 void ppc64_runlatch_off(void)
1105 unsigned long ctrl;
1107 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1108 HMT_medium();
1110 clear_thread_flag(TIF_RUNLATCH);
1112 ctrl = mfspr(SPRN_CTRLF);
1113 ctrl &= ~CTRL_RUNLATCH;
1114 mtspr(SPRN_CTRLT, ctrl);
1117 #endif
1119 #if THREAD_SHIFT < PAGE_SHIFT
1121 static struct kmem_cache *thread_info_cache;
1123 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1125 struct thread_info *ti;
1127 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1128 if (unlikely(ti == NULL))
1129 return NULL;
1130 #ifdef CONFIG_DEBUG_STACK_USAGE
1131 memset(ti, 0, THREAD_SIZE);
1132 #endif
1133 return ti;
1136 void free_thread_info(struct thread_info *ti)
1138 kmem_cache_free(thread_info_cache, ti);
1141 void thread_info_cache_init(void)
1143 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1144 THREAD_SIZE, 0, NULL);
1145 BUG_ON(thread_info_cache == NULL);
1148 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1150 unsigned long arch_align_stack(unsigned long sp)
1152 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1153 sp -= get_random_int() & ~PAGE_MASK;
1154 return sp & ~0xf;
1157 static inline unsigned long brk_rnd(void)
1159 unsigned long rnd = 0;
1161 /* 8MB for 32bit, 1GB for 64bit */
1162 if (is_32bit_task())
1163 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1164 else
1165 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1167 return rnd << PAGE_SHIFT;
1170 unsigned long arch_randomize_brk(struct mm_struct *mm)
1172 unsigned long base = mm->brk;
1173 unsigned long ret;
1175 #ifdef CONFIG_PPC_STD_MMU_64
1177 * If we are using 1TB segments and we are allowed to randomise
1178 * the heap, we can put it above 1TB so it is backed by a 1TB
1179 * segment. Otherwise the heap will be in the bottom 1TB
1180 * which always uses 256MB segments and this may result in a
1181 * performance penalty.
1183 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1184 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1185 #endif
1187 ret = PAGE_ALIGN(base + brk_rnd());
1189 if (ret < mm->brk)
1190 return mm->brk;
1192 return ret;
1195 unsigned long randomize_et_dyn(unsigned long base)
1197 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1199 if (ret < base)
1200 return base;
1202 return ret;