[PATCH] hrtimer: create and use timespec_valid macro
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-timers.c
blob6b851a1bf4b07f4728a4e45ae898808979778f6a
1 /*
2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38 #include <linux/calc64.h>
40 #include <asm/uaccess.h>
41 #include <asm/semaphore.h>
42 #include <linux/list.h>
43 #include <linux/init.h>
44 #include <linux/compiler.h>
45 #include <linux/idr.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/module.h>
52 #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
54 static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2)
56 return (u64)mpy1 * mpy2;
59 * Management arrays for POSIX timers. Timers are kept in slab memory
60 * Timer ids are allocated by an external routine that keeps track of the
61 * id and the timer. The external interface is:
63 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
64 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
65 * related it to <ptr>
66 * void idr_remove(struct idr *idp, int id); to release <id>
67 * void idr_init(struct idr *idp); to initialize <idp>
68 * which we supply.
69 * The idr_get_new *may* call slab for more memory so it must not be
70 * called under a spin lock. Likewise idr_remore may release memory
71 * (but it may be ok to do this under a lock...).
72 * idr_find is just a memory look up and is quite fast. A -1 return
73 * indicates that the requested id does not exist.
77 * Lets keep our timers in a slab cache :-)
79 static kmem_cache_t *posix_timers_cache;
80 static struct idr posix_timers_id;
81 static DEFINE_SPINLOCK(idr_lock);
84 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
85 * SIGEV values. Here we put out an error if this assumption fails.
87 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
88 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
89 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
90 #endif
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
127 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
128 * fields are not modified by timer code.
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
142 static struct k_clock posix_clocks[MAX_CLOCKS];
144 * We only have one real clock that can be set so we need only one abs list,
145 * even if we should want to have several clocks with differing resolutions.
147 static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list),
148 .lock = SPIN_LOCK_UNLOCKED};
150 static void posix_timer_fn(unsigned long);
151 static u64 do_posix_clock_monotonic_gettime_parts(
152 struct timespec *tp, struct timespec *mo);
153 int do_posix_clock_monotonic_gettime(struct timespec *tp);
154 static int do_posix_clock_monotonic_get(const clockid_t, struct timespec *tp);
156 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
158 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
160 spin_unlock_irqrestore(&timr->it_lock, flags);
164 * Call the k_clock hook function if non-null, or the default function.
166 #define CLOCK_DISPATCH(clock, call, arglist) \
167 ((clock) < 0 ? posix_cpu_##call arglist : \
168 (posix_clocks[clock].call != NULL \
169 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
172 * Default clock hook functions when the struct k_clock passed
173 * to register_posix_clock leaves a function pointer null.
175 * The function common_CALL is the default implementation for
176 * the function pointer CALL in struct k_clock.
179 static inline int common_clock_getres(const clockid_t which_clock,
180 struct timespec *tp)
182 tp->tv_sec = 0;
183 tp->tv_nsec = posix_clocks[which_clock].res;
184 return 0;
187 static inline int common_clock_get(const clockid_t which_clock,
188 struct timespec *tp)
190 getnstimeofday(tp);
191 return 0;
194 static inline int common_clock_set(const clockid_t which_clock,
195 struct timespec *tp)
197 return do_sys_settimeofday(tp, NULL);
200 static inline int common_timer_create(struct k_itimer *new_timer)
202 INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry);
203 init_timer(&new_timer->it.real.timer);
204 new_timer->it.real.timer.data = (unsigned long) new_timer;
205 new_timer->it.real.timer.function = posix_timer_fn;
206 return 0;
210 * These ones are defined below.
212 static int common_nsleep(const clockid_t, int flags, struct timespec *t);
213 static void common_timer_get(struct k_itimer *, struct itimerspec *);
214 static int common_timer_set(struct k_itimer *, int,
215 struct itimerspec *, struct itimerspec *);
216 static int common_timer_del(struct k_itimer *timer);
219 * Return nonzero iff we know a priori this clockid_t value is bogus.
221 static inline int invalid_clockid(const clockid_t which_clock)
223 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
224 return 0;
225 if ((unsigned) which_clock >= MAX_CLOCKS)
226 return 1;
227 if (posix_clocks[which_clock].clock_getres != NULL)
228 return 0;
229 #ifndef CLOCK_DISPATCH_DIRECT
230 if (posix_clocks[which_clock].res != 0)
231 return 0;
232 #endif
233 return 1;
238 * Initialize everything, well, just everything in Posix clocks/timers ;)
240 static __init int init_posix_timers(void)
242 struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES,
243 .abs_struct = &abs_list
245 struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES,
246 .abs_struct = NULL,
247 .clock_get = do_posix_clock_monotonic_get,
248 .clock_set = do_posix_clock_nosettime
251 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
252 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
254 posix_timers_cache = kmem_cache_create("posix_timers_cache",
255 sizeof (struct k_itimer), 0, 0, NULL, NULL);
256 idr_init(&posix_timers_id);
257 return 0;
260 __initcall(init_posix_timers);
262 static void tstojiffie(struct timespec *tp, int res, u64 *jiff)
264 long sec = tp->tv_sec;
265 long nsec = tp->tv_nsec + res - 1;
267 if (nsec >= NSEC_PER_SEC) {
268 sec++;
269 nsec -= NSEC_PER_SEC;
273 * The scaling constants are defined in <linux/time.h>
274 * The difference between there and here is that we do the
275 * res rounding and compute a 64-bit result (well so does that
276 * but it then throws away the high bits).
278 *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) +
279 (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >>
280 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
284 * This function adjusts the timer as needed as a result of the clock
285 * being set. It should only be called for absolute timers, and then
286 * under the abs_list lock. It computes the time difference and sets
287 * the new jiffies value in the timer. It also updates the timers
288 * reference wall_to_monotonic value. It is complicated by the fact
289 * that tstojiffies() only handles positive times and it needs to work
290 * with both positive and negative times. Also, for negative offsets,
291 * we need to defeat the res round up.
293 * Return is true if there is a new time, else false.
295 static long add_clockset_delta(struct k_itimer *timr,
296 struct timespec *new_wall_to)
298 struct timespec delta;
299 int sign = 0;
300 u64 exp;
302 set_normalized_timespec(&delta,
303 new_wall_to->tv_sec -
304 timr->it.real.wall_to_prev.tv_sec,
305 new_wall_to->tv_nsec -
306 timr->it.real.wall_to_prev.tv_nsec);
307 if (likely(!(delta.tv_sec | delta.tv_nsec)))
308 return 0;
309 if (delta.tv_sec < 0) {
310 set_normalized_timespec(&delta,
311 -delta.tv_sec,
312 1 - delta.tv_nsec -
313 posix_clocks[timr->it_clock].res);
314 sign++;
316 tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp);
317 timr->it.real.wall_to_prev = *new_wall_to;
318 timr->it.real.timer.expires += (sign ? -exp : exp);
319 return 1;
322 static void remove_from_abslist(struct k_itimer *timr)
324 if (!list_empty(&timr->it.real.abs_timer_entry)) {
325 spin_lock(&abs_list.lock);
326 list_del_init(&timr->it.real.abs_timer_entry);
327 spin_unlock(&abs_list.lock);
331 static void schedule_next_timer(struct k_itimer *timr)
333 struct timespec new_wall_to;
334 struct now_struct now;
335 unsigned long seq;
338 * Set up the timer for the next interval (if there is one).
339 * Note: this code uses the abs_timer_lock to protect
340 * it.real.wall_to_prev and must hold it until exp is set, not exactly
341 * obvious...
343 * This function is used for CLOCK_REALTIME* and
344 * CLOCK_MONOTONIC* timers. If we ever want to handle other
345 * CLOCKs, the calling code (do_schedule_next_timer) would need
346 * to pull the "clock" info from the timer and dispatch the
347 * "other" CLOCKs "next timer" code (which, I suppose should
348 * also be added to the k_clock structure).
350 if (!timr->it.real.incr)
351 return;
353 do {
354 seq = read_seqbegin(&xtime_lock);
355 new_wall_to = wall_to_monotonic;
356 posix_get_now(&now);
357 } while (read_seqretry(&xtime_lock, seq));
359 if (!list_empty(&timr->it.real.abs_timer_entry)) {
360 spin_lock(&abs_list.lock);
361 add_clockset_delta(timr, &new_wall_to);
363 posix_bump_timer(timr, now);
365 spin_unlock(&abs_list.lock);
366 } else {
367 posix_bump_timer(timr, now);
369 timr->it_overrun_last = timr->it_overrun;
370 timr->it_overrun = -1;
371 ++timr->it_requeue_pending;
372 add_timer(&timr->it.real.timer);
376 * This function is exported for use by the signal deliver code. It is
377 * called just prior to the info block being released and passes that
378 * block to us. It's function is to update the overrun entry AND to
379 * restart the timer. It should only be called if the timer is to be
380 * restarted (i.e. we have flagged this in the sys_private entry of the
381 * info block).
383 * To protect aginst the timer going away while the interrupt is queued,
384 * we require that the it_requeue_pending flag be set.
386 void do_schedule_next_timer(struct siginfo *info)
388 struct k_itimer *timr;
389 unsigned long flags;
391 timr = lock_timer(info->si_tid, &flags);
393 if (!timr || timr->it_requeue_pending != info->si_sys_private)
394 goto exit;
396 if (timr->it_clock < 0) /* CPU clock */
397 posix_cpu_timer_schedule(timr);
398 else
399 schedule_next_timer(timr);
400 info->si_overrun = timr->it_overrun_last;
401 exit:
402 if (timr)
403 unlock_timer(timr, flags);
406 int posix_timer_event(struct k_itimer *timr,int si_private)
408 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
409 timr->sigq->info.si_sys_private = si_private;
411 * Send signal to the process that owns this timer.
413 * This code assumes that all the possible abs_lists share the
414 * same lock (there is only one list at this time). If this is
415 * not the case, the CLOCK info would need to be used to find
416 * the proper abs list lock.
419 timr->sigq->info.si_signo = timr->it_sigev_signo;
420 timr->sigq->info.si_errno = 0;
421 timr->sigq->info.si_code = SI_TIMER;
422 timr->sigq->info.si_tid = timr->it_id;
423 timr->sigq->info.si_value = timr->it_sigev_value;
425 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
426 struct task_struct *leader;
427 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
428 timr->it_process);
430 if (likely(ret >= 0))
431 return ret;
433 timr->it_sigev_notify = SIGEV_SIGNAL;
434 leader = timr->it_process->group_leader;
435 put_task_struct(timr->it_process);
436 timr->it_process = leader;
439 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
440 timr->it_process);
442 EXPORT_SYMBOL_GPL(posix_timer_event);
445 * This function gets called when a POSIX.1b interval timer expires. It
446 * is used as a callback from the kernel internal timer. The
447 * run_timer_list code ALWAYS calls with interrupts on.
449 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
451 static void posix_timer_fn(unsigned long __data)
453 struct k_itimer *timr = (struct k_itimer *) __data;
454 unsigned long flags;
455 unsigned long seq;
456 struct timespec delta, new_wall_to;
457 u64 exp = 0;
458 int do_notify = 1;
460 spin_lock_irqsave(&timr->it_lock, flags);
461 if (!list_empty(&timr->it.real.abs_timer_entry)) {
462 spin_lock(&abs_list.lock);
463 do {
464 seq = read_seqbegin(&xtime_lock);
465 new_wall_to = wall_to_monotonic;
466 } while (read_seqretry(&xtime_lock, seq));
467 set_normalized_timespec(&delta,
468 new_wall_to.tv_sec -
469 timr->it.real.wall_to_prev.tv_sec,
470 new_wall_to.tv_nsec -
471 timr->it.real.wall_to_prev.tv_nsec);
472 if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) {
473 /* do nothing, timer is on time */
474 } else if (delta.tv_sec < 0) {
475 /* do nothing, timer is already late */
476 } else {
477 /* timer is early due to a clock set */
478 tstojiffie(&delta,
479 posix_clocks[timr->it_clock].res,
480 &exp);
481 timr->it.real.wall_to_prev = new_wall_to;
482 timr->it.real.timer.expires += exp;
483 add_timer(&timr->it.real.timer);
484 do_notify = 0;
486 spin_unlock(&abs_list.lock);
489 if (do_notify) {
490 int si_private=0;
492 if (timr->it.real.incr)
493 si_private = ++timr->it_requeue_pending;
494 else {
495 remove_from_abslist(timr);
498 if (posix_timer_event(timr, si_private))
500 * signal was not sent because of sig_ignor
501 * we will not get a call back to restart it AND
502 * it should be restarted.
504 schedule_next_timer(timr);
506 unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */
510 static inline struct task_struct * good_sigevent(sigevent_t * event)
512 struct task_struct *rtn = current->group_leader;
514 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
515 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
516 rtn->tgid != current->tgid ||
517 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
518 return NULL;
520 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
521 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
522 return NULL;
524 return rtn;
527 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
529 if ((unsigned) clock_id >= MAX_CLOCKS) {
530 printk("POSIX clock register failed for clock_id %d\n",
531 clock_id);
532 return;
535 posix_clocks[clock_id] = *new_clock;
537 EXPORT_SYMBOL_GPL(register_posix_clock);
539 static struct k_itimer * alloc_posix_timer(void)
541 struct k_itimer *tmr;
542 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
543 if (!tmr)
544 return tmr;
545 memset(tmr, 0, sizeof (struct k_itimer));
546 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
547 kmem_cache_free(posix_timers_cache, tmr);
548 tmr = NULL;
550 return tmr;
553 #define IT_ID_SET 1
554 #define IT_ID_NOT_SET 0
555 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
557 if (it_id_set) {
558 unsigned long flags;
559 spin_lock_irqsave(&idr_lock, flags);
560 idr_remove(&posix_timers_id, tmr->it_id);
561 spin_unlock_irqrestore(&idr_lock, flags);
563 sigqueue_free(tmr->sigq);
564 if (unlikely(tmr->it_process) &&
565 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
566 put_task_struct(tmr->it_process);
567 kmem_cache_free(posix_timers_cache, tmr);
570 /* Create a POSIX.1b interval timer. */
572 asmlinkage long
573 sys_timer_create(const clockid_t which_clock,
574 struct sigevent __user *timer_event_spec,
575 timer_t __user * created_timer_id)
577 int error = 0;
578 struct k_itimer *new_timer = NULL;
579 int new_timer_id;
580 struct task_struct *process = NULL;
581 unsigned long flags;
582 sigevent_t event;
583 int it_id_set = IT_ID_NOT_SET;
585 if (invalid_clockid(which_clock))
586 return -EINVAL;
588 new_timer = alloc_posix_timer();
589 if (unlikely(!new_timer))
590 return -EAGAIN;
592 spin_lock_init(&new_timer->it_lock);
593 retry:
594 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
595 error = -EAGAIN;
596 goto out;
598 spin_lock_irq(&idr_lock);
599 error = idr_get_new(&posix_timers_id,
600 (void *) new_timer,
601 &new_timer_id);
602 spin_unlock_irq(&idr_lock);
603 if (error == -EAGAIN)
604 goto retry;
605 else if (error) {
607 * Wierd looking, but we return EAGAIN if the IDR is
608 * full (proper POSIX return value for this)
610 error = -EAGAIN;
611 goto out;
614 it_id_set = IT_ID_SET;
615 new_timer->it_id = (timer_t) new_timer_id;
616 new_timer->it_clock = which_clock;
617 new_timer->it_overrun = -1;
618 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
619 if (error)
620 goto out;
623 * return the timer_id now. The next step is hard to
624 * back out if there is an error.
626 if (copy_to_user(created_timer_id,
627 &new_timer_id, sizeof (new_timer_id))) {
628 error = -EFAULT;
629 goto out;
631 if (timer_event_spec) {
632 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
633 error = -EFAULT;
634 goto out;
636 new_timer->it_sigev_notify = event.sigev_notify;
637 new_timer->it_sigev_signo = event.sigev_signo;
638 new_timer->it_sigev_value = event.sigev_value;
640 read_lock(&tasklist_lock);
641 if ((process = good_sigevent(&event))) {
643 * We may be setting up this process for another
644 * thread. It may be exiting. To catch this
645 * case the we check the PF_EXITING flag. If
646 * the flag is not set, the siglock will catch
647 * him before it is too late (in exit_itimers).
649 * The exec case is a bit more invloved but easy
650 * to code. If the process is in our thread
651 * group (and it must be or we would not allow
652 * it here) and is doing an exec, it will cause
653 * us to be killed. In this case it will wait
654 * for us to die which means we can finish this
655 * linkage with our last gasp. I.e. no code :)
657 spin_lock_irqsave(&process->sighand->siglock, flags);
658 if (!(process->flags & PF_EXITING)) {
659 new_timer->it_process = process;
660 list_add(&new_timer->list,
661 &process->signal->posix_timers);
662 spin_unlock_irqrestore(&process->sighand->siglock, flags);
663 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
664 get_task_struct(process);
665 } else {
666 spin_unlock_irqrestore(&process->sighand->siglock, flags);
667 process = NULL;
670 read_unlock(&tasklist_lock);
671 if (!process) {
672 error = -EINVAL;
673 goto out;
675 } else {
676 new_timer->it_sigev_notify = SIGEV_SIGNAL;
677 new_timer->it_sigev_signo = SIGALRM;
678 new_timer->it_sigev_value.sival_int = new_timer->it_id;
679 process = current->group_leader;
680 spin_lock_irqsave(&process->sighand->siglock, flags);
681 new_timer->it_process = process;
682 list_add(&new_timer->list, &process->signal->posix_timers);
683 spin_unlock_irqrestore(&process->sighand->siglock, flags);
687 * In the case of the timer belonging to another task, after
688 * the task is unlocked, the timer is owned by the other task
689 * and may cease to exist at any time. Don't use or modify
690 * new_timer after the unlock call.
693 out:
694 if (error)
695 release_posix_timer(new_timer, it_id_set);
697 return error;
701 * good_timespec
703 * This function checks the elements of a timespec structure.
705 * Arguments:
706 * ts : Pointer to the timespec structure to check
708 * Return value:
709 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
710 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
711 * this function returns 0. Otherwise it returns 1.
713 static int good_timespec(const struct timespec *ts)
715 if ((!ts) || !timespec_valid(ts))
716 return 0;
717 return 1;
721 * Locking issues: We need to protect the result of the id look up until
722 * we get the timer locked down so it is not deleted under us. The
723 * removal is done under the idr spinlock so we use that here to bridge
724 * the find to the timer lock. To avoid a dead lock, the timer id MUST
725 * be release with out holding the timer lock.
727 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
729 struct k_itimer *timr;
731 * Watch out here. We do a irqsave on the idr_lock and pass the
732 * flags part over to the timer lock. Must not let interrupts in
733 * while we are moving the lock.
736 spin_lock_irqsave(&idr_lock, *flags);
737 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
738 if (timr) {
739 spin_lock(&timr->it_lock);
740 spin_unlock(&idr_lock);
742 if ((timr->it_id != timer_id) || !(timr->it_process) ||
743 timr->it_process->tgid != current->tgid) {
744 unlock_timer(timr, *flags);
745 timr = NULL;
747 } else
748 spin_unlock_irqrestore(&idr_lock, *flags);
750 return timr;
754 * Get the time remaining on a POSIX.1b interval timer. This function
755 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
756 * mess with irq.
758 * We have a couple of messes to clean up here. First there is the case
759 * of a timer that has a requeue pending. These timers should appear to
760 * be in the timer list with an expiry as if we were to requeue them
761 * now.
763 * The second issue is the SIGEV_NONE timer which may be active but is
764 * not really ever put in the timer list (to save system resources).
765 * This timer may be expired, and if so, we will do it here. Otherwise
766 * it is the same as a requeue pending timer WRT to what we should
767 * report.
769 static void
770 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
772 unsigned long expires;
773 struct now_struct now;
776 expires = timr->it.real.timer.expires;
777 while ((volatile long) (timr->it.real.timer.expires) != expires);
779 posix_get_now(&now);
781 if (expires &&
782 ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) &&
783 !timr->it.real.incr &&
784 posix_time_before(&timr->it.real.timer, &now))
785 timr->it.real.timer.expires = expires = 0;
786 if (expires) {
787 if (timr->it_requeue_pending & REQUEUE_PENDING ||
788 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
789 posix_bump_timer(timr, now);
790 expires = timr->it.real.timer.expires;
792 else
793 if (!timer_pending(&timr->it.real.timer))
794 expires = 0;
795 if (expires)
796 expires -= now.jiffies;
798 jiffies_to_timespec(expires, &cur_setting->it_value);
799 jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval);
801 if (cur_setting->it_value.tv_sec < 0) {
802 cur_setting->it_value.tv_nsec = 1;
803 cur_setting->it_value.tv_sec = 0;
807 /* Get the time remaining on a POSIX.1b interval timer. */
808 asmlinkage long
809 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
811 struct k_itimer *timr;
812 struct itimerspec cur_setting;
813 unsigned long flags;
815 timr = lock_timer(timer_id, &flags);
816 if (!timr)
817 return -EINVAL;
819 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
821 unlock_timer(timr, flags);
823 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
824 return -EFAULT;
826 return 0;
829 * Get the number of overruns of a POSIX.1b interval timer. This is to
830 * be the overrun of the timer last delivered. At the same time we are
831 * accumulating overruns on the next timer. The overrun is frozen when
832 * the signal is delivered, either at the notify time (if the info block
833 * is not queued) or at the actual delivery time (as we are informed by
834 * the call back to do_schedule_next_timer(). So all we need to do is
835 * to pick up the frozen overrun.
838 asmlinkage long
839 sys_timer_getoverrun(timer_t timer_id)
841 struct k_itimer *timr;
842 int overrun;
843 long flags;
845 timr = lock_timer(timer_id, &flags);
846 if (!timr)
847 return -EINVAL;
849 overrun = timr->it_overrun_last;
850 unlock_timer(timr, flags);
852 return overrun;
855 * Adjust for absolute time
857 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
858 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
859 * what ever clock he is using.
861 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
862 * time to it to get the proper time for the timer.
864 static int adjust_abs_time(struct k_clock *clock, struct timespec *tp,
865 int abs, u64 *exp, struct timespec *wall_to)
867 struct timespec now;
868 struct timespec oc = *tp;
869 u64 jiffies_64_f;
870 int rtn =0;
872 if (abs) {
874 * The mask pick up the 4 basic clocks
876 if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) {
877 jiffies_64_f = do_posix_clock_monotonic_gettime_parts(
878 &now, wall_to);
880 * If we are doing a MONOTONIC clock
882 if((clock - &posix_clocks[0]) & CLOCKS_MONO){
883 now.tv_sec += wall_to->tv_sec;
884 now.tv_nsec += wall_to->tv_nsec;
886 } else {
888 * Not one of the basic clocks
890 clock->clock_get(clock - posix_clocks, &now);
891 jiffies_64_f = get_jiffies_64();
894 * Take away now to get delta and normalize
896 set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec,
897 oc.tv_nsec - now.tv_nsec);
898 }else{
899 jiffies_64_f = get_jiffies_64();
902 * Check if the requested time is prior to now (if so set now)
904 if (oc.tv_sec < 0)
905 oc.tv_sec = oc.tv_nsec = 0;
907 if (oc.tv_sec | oc.tv_nsec)
908 set_normalized_timespec(&oc, oc.tv_sec,
909 oc.tv_nsec + clock->res);
910 tstojiffie(&oc, clock->res, exp);
913 * Check if the requested time is more than the timer code
914 * can handle (if so we error out but return the value too).
916 if (*exp > ((u64)MAX_JIFFY_OFFSET))
918 * This is a considered response, not exactly in
919 * line with the standard (in fact it is silent on
920 * possible overflows). We assume such a large
921 * value is ALMOST always a programming error and
922 * try not to compound it by setting a really dumb
923 * value.
925 rtn = -EINVAL;
927 * return the actual jiffies expire time, full 64 bits
929 *exp += jiffies_64_f;
930 return rtn;
933 /* Set a POSIX.1b interval timer. */
934 /* timr->it_lock is taken. */
935 static inline int
936 common_timer_set(struct k_itimer *timr, int flags,
937 struct itimerspec *new_setting, struct itimerspec *old_setting)
939 struct k_clock *clock = &posix_clocks[timr->it_clock];
940 u64 expire_64;
942 if (old_setting)
943 common_timer_get(timr, old_setting);
945 /* disable the timer */
946 timr->it.real.incr = 0;
948 * careful here. If smp we could be in the "fire" routine which will
949 * be spinning as we hold the lock. But this is ONLY an SMP issue.
951 if (try_to_del_timer_sync(&timr->it.real.timer) < 0) {
952 #ifdef CONFIG_SMP
954 * It can only be active if on an other cpu. Since
955 * we have cleared the interval stuff above, it should
956 * clear once we release the spin lock. Of course once
957 * we do that anything could happen, including the
958 * complete melt down of the timer. So return with
959 * a "retry" exit status.
961 return TIMER_RETRY;
962 #endif
965 remove_from_abslist(timr);
967 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
968 ~REQUEUE_PENDING;
969 timr->it_overrun_last = 0;
970 timr->it_overrun = -1;
972 *switch off the timer when it_value is zero
974 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) {
975 timr->it.real.timer.expires = 0;
976 return 0;
979 if (adjust_abs_time(clock,
980 &new_setting->it_value, flags & TIMER_ABSTIME,
981 &expire_64, &(timr->it.real.wall_to_prev))) {
982 return -EINVAL;
984 timr->it.real.timer.expires = (unsigned long)expire_64;
985 tstojiffie(&new_setting->it_interval, clock->res, &expire_64);
986 timr->it.real.incr = (unsigned long)expire_64;
989 * We do not even queue SIGEV_NONE timers! But we do put them
990 * in the abs list so we can do that right.
992 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE))
993 add_timer(&timr->it.real.timer);
995 if (flags & TIMER_ABSTIME && clock->abs_struct) {
996 spin_lock(&clock->abs_struct->lock);
997 list_add_tail(&(timr->it.real.abs_timer_entry),
998 &(clock->abs_struct->list));
999 spin_unlock(&clock->abs_struct->lock);
1001 return 0;
1004 /* Set a POSIX.1b interval timer */
1005 asmlinkage long
1006 sys_timer_settime(timer_t timer_id, int flags,
1007 const struct itimerspec __user *new_setting,
1008 struct itimerspec __user *old_setting)
1010 struct k_itimer *timr;
1011 struct itimerspec new_spec, old_spec;
1012 int error = 0;
1013 long flag;
1014 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
1016 if (!new_setting)
1017 return -EINVAL;
1019 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
1020 return -EFAULT;
1022 if ((!good_timespec(&new_spec.it_interval)) ||
1023 (!good_timespec(&new_spec.it_value)))
1024 return -EINVAL;
1025 retry:
1026 timr = lock_timer(timer_id, &flag);
1027 if (!timr)
1028 return -EINVAL;
1030 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
1031 (timr, flags, &new_spec, rtn));
1033 unlock_timer(timr, flag);
1034 if (error == TIMER_RETRY) {
1035 rtn = NULL; // We already got the old time...
1036 goto retry;
1039 if (old_setting && !error && copy_to_user(old_setting,
1040 &old_spec, sizeof (old_spec)))
1041 error = -EFAULT;
1043 return error;
1046 static inline int common_timer_del(struct k_itimer *timer)
1048 timer->it.real.incr = 0;
1050 if (try_to_del_timer_sync(&timer->it.real.timer) < 0) {
1051 #ifdef CONFIG_SMP
1053 * It can only be active if on an other cpu. Since
1054 * we have cleared the interval stuff above, it should
1055 * clear once we release the spin lock. Of course once
1056 * we do that anything could happen, including the
1057 * complete melt down of the timer. So return with
1058 * a "retry" exit status.
1060 return TIMER_RETRY;
1061 #endif
1064 remove_from_abslist(timer);
1066 return 0;
1069 static inline int timer_delete_hook(struct k_itimer *timer)
1071 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
1074 /* Delete a POSIX.1b interval timer. */
1075 asmlinkage long
1076 sys_timer_delete(timer_t timer_id)
1078 struct k_itimer *timer;
1079 long flags;
1081 #ifdef CONFIG_SMP
1082 int error;
1083 retry_delete:
1084 #endif
1085 timer = lock_timer(timer_id, &flags);
1086 if (!timer)
1087 return -EINVAL;
1089 #ifdef CONFIG_SMP
1090 error = timer_delete_hook(timer);
1092 if (error == TIMER_RETRY) {
1093 unlock_timer(timer, flags);
1094 goto retry_delete;
1096 #else
1097 timer_delete_hook(timer);
1098 #endif
1099 spin_lock(&current->sighand->siglock);
1100 list_del(&timer->list);
1101 spin_unlock(&current->sighand->siglock);
1103 * This keeps any tasks waiting on the spin lock from thinking
1104 * they got something (see the lock code above).
1106 if (timer->it_process) {
1107 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1108 put_task_struct(timer->it_process);
1109 timer->it_process = NULL;
1111 unlock_timer(timer, flags);
1112 release_posix_timer(timer, IT_ID_SET);
1113 return 0;
1116 * return timer owned by the process, used by exit_itimers
1118 static inline void itimer_delete(struct k_itimer *timer)
1120 unsigned long flags;
1122 #ifdef CONFIG_SMP
1123 int error;
1124 retry_delete:
1125 #endif
1126 spin_lock_irqsave(&timer->it_lock, flags);
1128 #ifdef CONFIG_SMP
1129 error = timer_delete_hook(timer);
1131 if (error == TIMER_RETRY) {
1132 unlock_timer(timer, flags);
1133 goto retry_delete;
1135 #else
1136 timer_delete_hook(timer);
1137 #endif
1138 list_del(&timer->list);
1140 * This keeps any tasks waiting on the spin lock from thinking
1141 * they got something (see the lock code above).
1143 if (timer->it_process) {
1144 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
1145 put_task_struct(timer->it_process);
1146 timer->it_process = NULL;
1148 unlock_timer(timer, flags);
1149 release_posix_timer(timer, IT_ID_SET);
1153 * This is called by do_exit or de_thread, only when there are no more
1154 * references to the shared signal_struct.
1156 void exit_itimers(struct signal_struct *sig)
1158 struct k_itimer *tmr;
1160 while (!list_empty(&sig->posix_timers)) {
1161 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1162 itimer_delete(tmr);
1167 * And now for the "clock" calls
1169 * These functions are called both from timer functions (with the timer
1170 * spin_lock_irq() held and from clock calls with no locking. They must
1171 * use the save flags versions of locks.
1175 * We do ticks here to avoid the irq lock ( they take sooo long).
1176 * The seqlock is great here. Since we a reader, we don't really care
1177 * if we are interrupted since we don't take lock that will stall us or
1178 * any other cpu. Voila, no irq lock is needed.
1182 static u64 do_posix_clock_monotonic_gettime_parts(
1183 struct timespec *tp, struct timespec *mo)
1185 u64 jiff;
1186 unsigned int seq;
1188 do {
1189 seq = read_seqbegin(&xtime_lock);
1190 getnstimeofday(tp);
1191 *mo = wall_to_monotonic;
1192 jiff = jiffies_64;
1194 } while(read_seqretry(&xtime_lock, seq));
1196 return jiff;
1199 static int do_posix_clock_monotonic_get(const clockid_t clock,
1200 struct timespec *tp)
1202 struct timespec wall_to_mono;
1204 do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono);
1206 set_normalized_timespec(tp, tp->tv_sec + wall_to_mono.tv_sec,
1207 tp->tv_nsec + wall_to_mono.tv_nsec);
1209 return 0;
1212 int do_posix_clock_monotonic_gettime(struct timespec *tp)
1214 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp);
1217 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1219 return -EINVAL;
1221 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
1223 int do_posix_clock_notimer_create(struct k_itimer *timer)
1225 return -EINVAL;
1227 EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
1229 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
1230 struct timespec *t)
1232 #ifndef ENOTSUP
1233 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
1234 #else /* parisc does define it separately. */
1235 return -ENOTSUP;
1236 #endif
1238 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
1240 asmlinkage long sys_clock_settime(const clockid_t which_clock,
1241 const struct timespec __user *tp)
1243 struct timespec new_tp;
1245 if (invalid_clockid(which_clock))
1246 return -EINVAL;
1247 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1248 return -EFAULT;
1250 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
1253 asmlinkage long
1254 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1256 struct timespec kernel_tp;
1257 int error;
1259 if (invalid_clockid(which_clock))
1260 return -EINVAL;
1261 error = CLOCK_DISPATCH(which_clock, clock_get,
1262 (which_clock, &kernel_tp));
1263 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1264 error = -EFAULT;
1266 return error;
1270 asmlinkage long
1271 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1273 struct timespec rtn_tp;
1274 int error;
1276 if (invalid_clockid(which_clock))
1277 return -EINVAL;
1279 error = CLOCK_DISPATCH(which_clock, clock_getres,
1280 (which_clock, &rtn_tp));
1282 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
1283 error = -EFAULT;
1286 return error;
1290 * The standard says that an absolute nanosleep call MUST wake up at
1291 * the requested time in spite of clock settings. Here is what we do:
1292 * For each nanosleep call that needs it (only absolute and not on
1293 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1294 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1295 * When ever the clock is set we just wake up all those tasks. The rest
1296 * is done by the while loop in clock_nanosleep().
1298 * On locking, clock_was_set() is called from update_wall_clock which
1299 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1300 * called from the timer bh code. Thus we need the irq save locks.
1302 * Also, on the call from update_wall_clock, that is done as part of a
1303 * softirq thing. We don't want to delay the system that much (possibly
1304 * long list of timers to fix), so we defer that work to keventd.
1307 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue);
1308 static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL);
1310 static DECLARE_MUTEX(clock_was_set_lock);
1312 void clock_was_set(void)
1314 struct k_itimer *timr;
1315 struct timespec new_wall_to;
1316 LIST_HEAD(cws_list);
1317 unsigned long seq;
1320 if (unlikely(in_interrupt())) {
1321 schedule_work(&clock_was_set_work);
1322 return;
1324 wake_up_all(&nanosleep_abs_wqueue);
1327 * Check if there exist TIMER_ABSTIME timers to correct.
1329 * Notes on locking: This code is run in task context with irq
1330 * on. We CAN be interrupted! All other usage of the abs list
1331 * lock is under the timer lock which holds the irq lock as
1332 * well. We REALLY don't want to scan the whole list with the
1333 * interrupt system off, AND we would like a sequence lock on
1334 * this code as well. Since we assume that the clock will not
1335 * be set often, it seems ok to take and release the irq lock
1336 * for each timer. In fact add_timer will do this, so this is
1337 * not an issue. So we know when we are done, we will move the
1338 * whole list to a new location. Then as we process each entry,
1339 * we will move it to the actual list again. This way, when our
1340 * copy is empty, we are done. We are not all that concerned
1341 * about preemption so we will use a semaphore lock to protect
1342 * aginst reentry. This way we will not stall another
1343 * processor. It is possible that this may delay some timers
1344 * that should have expired, given the new clock, but even this
1345 * will be minimal as we will always update to the current time,
1346 * even if it was set by a task that is waiting for entry to
1347 * this code. Timers that expire too early will be caught by
1348 * the expire code and restarted.
1350 * Absolute timers that repeat are left in the abs list while
1351 * waiting for the task to pick up the signal. This means we
1352 * may find timers that are not in the "add_timer" list, but are
1353 * in the abs list. We do the same thing for these, save
1354 * putting them back in the "add_timer" list. (Note, these are
1355 * left in the abs list mainly to indicate that they are
1356 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1357 * for which we have no other flag.)
1361 down(&clock_was_set_lock);
1362 spin_lock_irq(&abs_list.lock);
1363 list_splice_init(&abs_list.list, &cws_list);
1364 spin_unlock_irq(&abs_list.lock);
1365 do {
1366 do {
1367 seq = read_seqbegin(&xtime_lock);
1368 new_wall_to = wall_to_monotonic;
1369 } while (read_seqretry(&xtime_lock, seq));
1371 spin_lock_irq(&abs_list.lock);
1372 if (list_empty(&cws_list)) {
1373 spin_unlock_irq(&abs_list.lock);
1374 break;
1376 timr = list_entry(cws_list.next, struct k_itimer,
1377 it.real.abs_timer_entry);
1379 list_del_init(&timr->it.real.abs_timer_entry);
1380 if (add_clockset_delta(timr, &new_wall_to) &&
1381 del_timer(&timr->it.real.timer)) /* timer run yet? */
1382 add_timer(&timr->it.real.timer);
1383 list_add(&timr->it.real.abs_timer_entry, &abs_list.list);
1384 spin_unlock_irq(&abs_list.lock);
1385 } while (1);
1387 up(&clock_was_set_lock);
1390 long clock_nanosleep_restart(struct restart_block *restart_block);
1392 asmlinkage long
1393 sys_clock_nanosleep(const clockid_t which_clock, int flags,
1394 const struct timespec __user *rqtp,
1395 struct timespec __user *rmtp)
1397 struct timespec t;
1398 struct restart_block *restart_block =
1399 &(current_thread_info()->restart_block);
1400 int ret;
1402 if (invalid_clockid(which_clock))
1403 return -EINVAL;
1405 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1406 return -EFAULT;
1408 if (!timespec_valid(&t))
1409 return -EINVAL;
1412 * Do this here as nsleep function does not have the real address.
1414 restart_block->arg1 = (unsigned long)rmtp;
1416 ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t));
1418 if ((ret == -ERESTART_RESTARTBLOCK) && rmtp &&
1419 copy_to_user(rmtp, &t, sizeof (t)))
1420 return -EFAULT;
1421 return ret;
1425 static int common_nsleep(const clockid_t which_clock,
1426 int flags, struct timespec *tsave)
1428 struct timespec t, dum;
1429 DECLARE_WAITQUEUE(abs_wqueue, current);
1430 u64 rq_time = (u64)0;
1431 s64 left;
1432 int abs;
1433 struct restart_block *restart_block =
1434 &current_thread_info()->restart_block;
1436 abs_wqueue.flags = 0;
1437 abs = flags & TIMER_ABSTIME;
1439 if (restart_block->fn == clock_nanosleep_restart) {
1441 * Interrupted by a non-delivered signal, pick up remaining
1442 * time and continue. Remaining time is in arg2 & 3.
1444 restart_block->fn = do_no_restart_syscall;
1446 rq_time = restart_block->arg3;
1447 rq_time = (rq_time << 32) + restart_block->arg2;
1448 if (!rq_time)
1449 return -EINTR;
1450 left = rq_time - get_jiffies_64();
1451 if (left <= (s64)0)
1452 return 0; /* Already passed */
1455 if (abs && (posix_clocks[which_clock].clock_get !=
1456 posix_clocks[CLOCK_MONOTONIC].clock_get))
1457 add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue);
1459 do {
1460 t = *tsave;
1461 if (abs || !rq_time) {
1462 adjust_abs_time(&posix_clocks[which_clock], &t, abs,
1463 &rq_time, &dum);
1466 left = rq_time - get_jiffies_64();
1467 if (left >= (s64)MAX_JIFFY_OFFSET)
1468 left = (s64)MAX_JIFFY_OFFSET;
1469 if (left < (s64)0)
1470 break;
1472 schedule_timeout_interruptible(left);
1474 left = rq_time - get_jiffies_64();
1475 } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING));
1477 if (abs_wqueue.task_list.next)
1478 finish_wait(&nanosleep_abs_wqueue, &abs_wqueue);
1480 if (left > (s64)0) {
1483 * Always restart abs calls from scratch to pick up any
1484 * clock shifting that happened while we are away.
1486 if (abs)
1487 return -ERESTARTNOHAND;
1489 left *= TICK_NSEC;
1490 tsave->tv_sec = div_long_long_rem(left,
1491 NSEC_PER_SEC,
1492 &tsave->tv_nsec);
1494 * Restart works by saving the time remaing in
1495 * arg2 & 3 (it is 64-bits of jiffies). The other
1496 * info we need is the clock_id (saved in arg0).
1497 * The sys_call interface needs the users
1498 * timespec return address which _it_ saves in arg1.
1499 * Since we have cast the nanosleep call to a clock_nanosleep
1500 * both can be restarted with the same code.
1502 restart_block->fn = clock_nanosleep_restart;
1503 restart_block->arg0 = which_clock;
1505 * Caller sets arg1
1507 restart_block->arg2 = rq_time & 0xffffffffLL;
1508 restart_block->arg3 = rq_time >> 32;
1510 return -ERESTART_RESTARTBLOCK;
1513 return 0;
1516 * This will restart clock_nanosleep.
1518 long
1519 clock_nanosleep_restart(struct restart_block *restart_block)
1521 struct timespec t;
1522 int ret = common_nsleep(restart_block->arg0, 0, &t);
1524 if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 &&
1525 copy_to_user((struct timespec __user *)(restart_block->arg1), &t,
1526 sizeof (t)))
1527 return -EFAULT;
1528 return ret;