Staging: comedi: remove comedi-specific wrappers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / comedi / drivers / s626.c
blobbebc12bf389118e276afc0c2bf405a5f1d0388c3
1 /*
2 comedi/drivers/s626.c
3 Sensoray s626 Comedi driver
5 COMEDI - Linux Control and Measurement Device Interface
6 Copyright (C) 2000 David A. Schleef <ds@schleef.org>
8 Based on Sensoray Model 626 Linux driver Version 0.2
9 Copyright (C) 2002-2004 Sensoray Co., Inc.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 Driver: s626
29 Description: Sensoray 626 driver
30 Devices: [Sensoray] 626 (s626)
31 Authors: Gianluca Palli <gpalli@deis.unibo.it>,
32 Updated: Fri, 15 Feb 2008 10:28:42 +0000
33 Status: experimental
35 Configuration options:
36 [0] - PCI bus of device (optional)
37 [1] - PCI slot of device (optional)
38 If bus/slot is not specified, the first supported
39 PCI device found will be used.
41 INSN_CONFIG instructions:
42 analog input:
43 none
45 analog output:
46 none
48 digital channel:
49 s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
50 supported configuration options:
51 INSN_CONFIG_DIO_QUERY
52 COMEDI_INPUT
53 COMEDI_OUTPUT
55 encoder:
56 Every channel must be configured before reading.
58 Example code
60 insn.insn=INSN_CONFIG; //configuration instruction
61 insn.n=1; //number of operation (must be 1)
62 insn.data=&initialvalue; //initial value loaded into encoder
63 //during configuration
64 insn.subdev=5; //encoder subdevice
65 insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
66 //to configure
68 comedi_do_insn(cf,&insn); //executing configuration
71 #include <linux/kernel.h>
72 #include <linux/types.h>
74 #include "../comedidev.h"
76 #include "comedi_pci.h"
78 #include "comedi_fc.h"
79 #include "s626.h"
81 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
82 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
83 MODULE_LICENSE("GPL");
85 struct s626_board {
86 const char *name;
87 int ai_chans;
88 int ai_bits;
89 int ao_chans;
90 int ao_bits;
91 int dio_chans;
92 int dio_banks;
93 int enc_chans;
96 static const struct s626_board s626_boards[] = {
98 .name = "s626",
99 .ai_chans = S626_ADC_CHANNELS,
100 .ai_bits = 14,
101 .ao_chans = S626_DAC_CHANNELS,
102 .ao_bits = 13,
103 .dio_chans = S626_DIO_CHANNELS,
104 .dio_banks = S626_DIO_BANKS,
105 .enc_chans = S626_ENCODER_CHANNELS,
109 #define thisboard ((const struct s626_board *)dev->board_ptr)
110 #define PCI_VENDOR_ID_S626 0x1131
111 #define PCI_DEVICE_ID_S626 0x7146
113 static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = {
114 {PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
119 MODULE_DEVICE_TABLE(pci, s626_pci_table);
121 static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it);
122 static int s626_detach(struct comedi_device *dev);
124 static struct comedi_driver driver_s626 = {
125 .driver_name = "s626",
126 .module = THIS_MODULE,
127 .attach = s626_attach,
128 .detach = s626_detach,
131 struct s626_private {
132 struct pci_dev *pdev;
133 void *base_addr;
134 int got_regions;
135 short allocatedBuf;
136 uint8_t ai_cmd_running; /* ai_cmd is running */
137 uint8_t ai_continous; /* continous aquisition */
138 int ai_sample_count; /* number of samples to aquire */
139 unsigned int ai_sample_timer;
140 /* time between samples in units of the timer */
141 int ai_convert_count; /* conversion counter */
142 unsigned int ai_convert_timer;
143 /* time between conversion in units of the timer */
144 uint16_t CounterIntEnabs;
145 /* Counter interrupt enable mask for MISC2 register. */
146 uint8_t AdcItems; /* Number of items in ADC poll list. */
147 struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */
148 struct bufferDMA ANABuf;
149 /* DMA buffer used to receive ADC data and hold DAC data. */
150 uint32_t *pDacWBuf;
151 /* Pointer to logical adrs of DMA buffer used to hold DAC data. */
152 uint16_t Dacpol; /* Image of DAC polarity register. */
153 uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */
154 uint16_t ChargeEnabled; /* Image of MISC2 Battery */
155 /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */
156 uint16_t WDInterval; /* Image of MISC2 watchdog interval control bits. */
157 uint32_t I2CAdrs;
158 /* I2C device address for onboard EEPROM (board rev dependent). */
159 /* short I2Cards; */
160 unsigned int ao_readback[S626_DAC_CHANNELS];
163 struct dio_private {
164 uint16_t RDDIn;
165 uint16_t WRDOut;
166 uint16_t RDEdgSel;
167 uint16_t WREdgSel;
168 uint16_t RDCapSel;
169 uint16_t WRCapSel;
170 uint16_t RDCapFlg;
171 uint16_t RDIntSel;
172 uint16_t WRIntSel;
175 static struct dio_private dio_private_A = {
176 .RDDIn = LP_RDDINA,
177 .WRDOut = LP_WRDOUTA,
178 .RDEdgSel = LP_RDEDGSELA,
179 .WREdgSel = LP_WREDGSELA,
180 .RDCapSel = LP_RDCAPSELA,
181 .WRCapSel = LP_WRCAPSELA,
182 .RDCapFlg = LP_RDCAPFLGA,
183 .RDIntSel = LP_RDINTSELA,
184 .WRIntSel = LP_WRINTSELA,
187 static struct dio_private dio_private_B = {
188 .RDDIn = LP_RDDINB,
189 .WRDOut = LP_WRDOUTB,
190 .RDEdgSel = LP_RDEDGSELB,
191 .WREdgSel = LP_WREDGSELB,
192 .RDCapSel = LP_RDCAPSELB,
193 .WRCapSel = LP_WRCAPSELB,
194 .RDCapFlg = LP_RDCAPFLGB,
195 .RDIntSel = LP_RDINTSELB,
196 .WRIntSel = LP_WRINTSELB,
199 static struct dio_private dio_private_C = {
200 .RDDIn = LP_RDDINC,
201 .WRDOut = LP_WRDOUTC,
202 .RDEdgSel = LP_RDEDGSELC,
203 .WREdgSel = LP_WREDGSELC,
204 .RDCapSel = LP_RDCAPSELC,
205 .WRCapSel = LP_WRCAPSELC,
206 .RDCapFlg = LP_RDCAPFLGC,
207 .RDIntSel = LP_RDINTSELC,
208 .WRIntSel = LP_WRINTSELC,
211 /* to group dio devices (48 bits mask and data are not allowed ???)
212 static struct dio_private *dio_private_word[]={
213 &dio_private_A,
214 &dio_private_B,
215 &dio_private_C,
219 #define devpriv ((struct s626_private *)dev->private)
220 #define diopriv ((struct dio_private *)s->private)
222 COMEDI_PCI_INITCLEANUP_NOMODULE(driver_s626, s626_pci_table);
224 /* ioctl routines */
225 static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
226 struct comedi_insn *insn, unsigned int *data);
227 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data); */
228 static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
229 struct comedi_insn *insn, unsigned int *data);
230 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s);
231 static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
232 struct comedi_cmd *cmd);
233 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s);
234 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
235 struct comedi_insn *insn, unsigned int *data);
236 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
237 struct comedi_insn *insn, unsigned int *data);
238 static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
239 struct comedi_insn *insn, unsigned int *data);
240 static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
241 struct comedi_insn *insn, unsigned int *data);
242 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan);
243 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int gruop,
244 unsigned int mask);
245 static int s626_dio_clear_irq(struct comedi_device *dev);
246 static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
247 struct comedi_insn *insn, unsigned int *data);
248 static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
249 struct comedi_insn *insn, unsigned int *data);
250 static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
251 struct comedi_insn *insn, unsigned int *data);
252 static int s626_ns_to_timer(int *nanosec, int round_mode);
253 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd);
254 static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
255 unsigned int trignum);
256 static irqreturn_t s626_irq_handler(int irq, void *d);
257 static unsigned int s626_ai_reg_to_uint(int data);
258 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data); */
260 /* end ioctl routines */
262 /* internal routines */
263 static void s626_dio_init(struct comedi_device *dev);
264 static void ResetADC(struct comedi_device *dev, uint8_t *ppl);
265 static void LoadTrimDACs(struct comedi_device *dev);
266 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
267 uint8_t DacData);
268 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr);
269 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val);
270 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata);
271 static void SendDAC(struct comedi_device *dev, uint32_t val);
272 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage);
273 static void DEBItransfer(struct comedi_device *dev);
274 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr);
275 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata);
276 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
277 uint16_t wdata);
278 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize);
280 /* COUNTER OBJECT ------------------------------------------------ */
281 struct enc_private {
282 /* Pointers to functions that differ for A and B counters: */
283 uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */
284 uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */
285 uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */
286 uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */
287 void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */
288 void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */
289 void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */
290 void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */
291 void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */
292 void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */
294 uint16_t MyCRA; /* Address of CRA register. */
295 uint16_t MyCRB; /* Address of CRB register. */
296 uint16_t MyLatchLsw; /* Address of Latch least-significant-word */
297 /* register. */
298 uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */
301 #define encpriv ((struct enc_private *)(dev->subdevices+5)->private)
303 /* counters routines */
304 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick);
305 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k);
306 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k);
307 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k);
308 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k);
309 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k);
310 static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
311 uint16_t DisableIntSrc);
312 static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
313 uint16_t DisableIntSrc);
314 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
315 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab);
316 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k);
317 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k);
318 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k,
319 uint16_t value);
320 /* static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ); */
321 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
322 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig);
323 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k);
324 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k);
325 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
326 uint16_t IntSource);
327 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
328 uint16_t IntSource);
329 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k);
330 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k);
331 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) ; */
332 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) ; */
333 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ); */
334 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) ; */
335 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
336 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ); */
337 /* static void SetIndexSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ); */
338 /* static uint16_t GetIndexSrc( struct comedi_device *dev,struct enc_private *k ); */
339 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k);
340 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k);
341 static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value);
342 static void CountersInit(struct comedi_device *dev);
343 /* end internal routines */
345 /* Counter objects constructor. */
347 /* Counter overflow/index event flag masks for RDMISC2. */
348 #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4)))
349 #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
350 #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) }
352 /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */
353 /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */
355 /* struct enc_private; */
356 static struct enc_private enc_private_data[] = {
358 .GetEnable = GetEnable_A,
359 .GetIntSrc = GetIntSrc_A,
360 .GetLoadTrig = GetLoadTrig_A,
361 .GetMode = GetMode_A,
362 .PulseIndex = PulseIndex_A,
363 .SetEnable = SetEnable_A,
364 .SetIntSrc = SetIntSrc_A,
365 .SetLoadTrig = SetLoadTrig_A,
366 .SetMode = SetMode_A,
367 .ResetCapFlags = ResetCapFlags_A,
368 .MyCRA = LP_CR0A,
369 .MyCRB = LP_CR0B,
370 .MyLatchLsw = LP_CNTR0ALSW,
371 .MyEventBits = EVBITS(0),
374 .GetEnable = GetEnable_A,
375 .GetIntSrc = GetIntSrc_A,
376 .GetLoadTrig = GetLoadTrig_A,
377 .GetMode = GetMode_A,
378 .PulseIndex = PulseIndex_A,
379 .SetEnable = SetEnable_A,
380 .SetIntSrc = SetIntSrc_A,
381 .SetLoadTrig = SetLoadTrig_A,
382 .SetMode = SetMode_A,
383 .ResetCapFlags = ResetCapFlags_A,
384 .MyCRA = LP_CR1A,
385 .MyCRB = LP_CR1B,
386 .MyLatchLsw = LP_CNTR1ALSW,
387 .MyEventBits = EVBITS(1),
390 .GetEnable = GetEnable_A,
391 .GetIntSrc = GetIntSrc_A,
392 .GetLoadTrig = GetLoadTrig_A,
393 .GetMode = GetMode_A,
394 .PulseIndex = PulseIndex_A,
395 .SetEnable = SetEnable_A,
396 .SetIntSrc = SetIntSrc_A,
397 .SetLoadTrig = SetLoadTrig_A,
398 .SetMode = SetMode_A,
399 .ResetCapFlags = ResetCapFlags_A,
400 .MyCRA = LP_CR2A,
401 .MyCRB = LP_CR2B,
402 .MyLatchLsw = LP_CNTR2ALSW,
403 .MyEventBits = EVBITS(2),
406 .GetEnable = GetEnable_B,
407 .GetIntSrc = GetIntSrc_B,
408 .GetLoadTrig = GetLoadTrig_B,
409 .GetMode = GetMode_B,
410 .PulseIndex = PulseIndex_B,
411 .SetEnable = SetEnable_B,
412 .SetIntSrc = SetIntSrc_B,
413 .SetLoadTrig = SetLoadTrig_B,
414 .SetMode = SetMode_B,
415 .ResetCapFlags = ResetCapFlags_B,
416 .MyCRA = LP_CR0A,
417 .MyCRB = LP_CR0B,
418 .MyLatchLsw = LP_CNTR0BLSW,
419 .MyEventBits = EVBITS(3),
422 .GetEnable = GetEnable_B,
423 .GetIntSrc = GetIntSrc_B,
424 .GetLoadTrig = GetLoadTrig_B,
425 .GetMode = GetMode_B,
426 .PulseIndex = PulseIndex_B,
427 .SetEnable = SetEnable_B,
428 .SetIntSrc = SetIntSrc_B,
429 .SetLoadTrig = SetLoadTrig_B,
430 .SetMode = SetMode_B,
431 .ResetCapFlags = ResetCapFlags_B,
432 .MyCRA = LP_CR1A,
433 .MyCRB = LP_CR1B,
434 .MyLatchLsw = LP_CNTR1BLSW,
435 .MyEventBits = EVBITS(4),
438 .GetEnable = GetEnable_B,
439 .GetIntSrc = GetIntSrc_B,
440 .GetLoadTrig = GetLoadTrig_B,
441 .GetMode = GetMode_B,
442 .PulseIndex = PulseIndex_B,
443 .SetEnable = SetEnable_B,
444 .SetIntSrc = SetIntSrc_B,
445 .SetLoadTrig = SetLoadTrig_B,
446 .SetMode = SetMode_B,
447 .ResetCapFlags = ResetCapFlags_B,
448 .MyCRA = LP_CR2A,
449 .MyCRB = LP_CR2B,
450 .MyLatchLsw = LP_CNTR2BLSW,
451 .MyEventBits = EVBITS(5),
455 /* enab/disable a function or test status bit(s) that are accessed */
456 /* through Main Control Registers 1 or 2. */
457 #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS))
459 #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS))
461 #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0)
463 /* #define WR7146(REGARDS,CTRLWORD)
464 writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */
465 #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS))
467 /* #define RR7146(REGARDS)
468 readl((uint32_t)(devpriv->base_addr+(REGARDS))) */
469 #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS))
471 #define BUGFIX_STREG(REGADRS) (REGADRS - 4)
473 /* Write a time slot control record to TSL2. */
474 #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2))
475 #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL))
477 /* Code macros used for constructing I2C command bytes. */
478 #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24))
479 #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16))
480 #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8))
482 static const struct comedi_lrange s626_range_table = { 2, {
483 RANGE(-5, 5),
484 RANGE(-10, 10),
488 static int s626_attach(struct comedi_device *dev, struct comedi_devconfig *it)
490 /* uint8_t PollList; */
491 /* uint16_t AdcData; */
492 /* uint16_t StartVal; */
493 /* uint16_t index; */
494 /* unsigned int data[16]; */
495 int result;
496 int i;
497 int ret;
498 resource_size_t resourceStart;
499 dma_addr_t appdma;
500 struct comedi_subdevice *s;
501 struct pci_dev *pdev;
503 if (alloc_private(dev, sizeof(struct s626_private)) < 0)
504 return -ENOMEM;
506 for (pdev = pci_get_device(PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626,
507 NULL); pdev != NULL;
508 pdev = pci_get_device(PCI_VENDOR_ID_S626,
509 PCI_DEVICE_ID_S626, pdev)) {
510 if (it->options[0] || it->options[1]) {
511 if (pdev->bus->number == it->options[0] &&
512 PCI_SLOT(pdev->devfn) == it->options[1]) {
513 /* matches requested bus/slot */
514 break;
516 } else {
517 /* no bus/slot specified */
518 break;
521 devpriv->pdev = pdev;
523 if (pdev == NULL) {
524 printk("s626_attach: Board not present!!!\n");
525 return -ENODEV;
528 result = comedi_pci_enable(pdev, "s626");
529 if (result < 0) {
530 printk("s626_attach: comedi_pci_enable fails\n");
531 return -ENODEV;
533 devpriv->got_regions = 1;
535 resourceStart = pci_resource_start(devpriv->pdev, 0);
537 devpriv->base_addr = ioremap(resourceStart, SIZEOF_ADDRESS_SPACE);
538 if (devpriv->base_addr == NULL) {
539 printk("s626_attach: IOREMAP failed\n");
540 return -ENODEV;
543 if (devpriv->base_addr) {
544 /* disable master interrupt */
545 writel(0, devpriv->base_addr + P_IER);
547 /* soft reset */
548 writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1);
550 /* DMA FIXME DMA// */
551 DEBUG("s626_attach: DMA ALLOCATION\n");
553 /* adc buffer allocation */
554 devpriv->allocatedBuf = 0;
556 devpriv->ANABuf.LogicalBase =
557 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
559 if (devpriv->ANABuf.LogicalBase == NULL) {
560 printk("s626_attach: DMA Memory mapping error\n");
561 return -ENOMEM;
564 devpriv->ANABuf.PhysicalBase = appdma;
566 DEBUG("s626_attach: AllocDMAB ADC Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->ANABuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->ANABuf.PhysicalBase);
568 devpriv->allocatedBuf++;
570 devpriv->RPSBuf.LogicalBase =
571 pci_alloc_consistent(devpriv->pdev, DMABUF_SIZE, &appdma);
573 if (devpriv->RPSBuf.LogicalBase == NULL) {
574 printk("s626_attach: DMA Memory mapping error\n");
575 return -ENOMEM;
578 devpriv->RPSBuf.PhysicalBase = appdma;
580 DEBUG("s626_attach: AllocDMAB RPS Logical=%p, bsize=%d, Physical=0x%x\n", devpriv->RPSBuf.LogicalBase, DMABUF_SIZE, (uint32_t) devpriv->RPSBuf.PhysicalBase);
582 devpriv->allocatedBuf++;
586 dev->board_ptr = s626_boards;
587 dev->board_name = thisboard->name;
589 if (alloc_subdevices(dev, 6) < 0)
590 return -ENOMEM;
592 dev->iobase = (unsigned long)devpriv->base_addr;
593 dev->irq = devpriv->pdev->irq;
595 /* set up interrupt handler */
596 if (dev->irq == 0) {
597 printk(" unknown irq (bad)\n");
598 } else {
599 ret = request_irq(dev->irq, s626_irq_handler, IRQF_SHARED,
600 "s626", dev);
602 if (ret < 0) {
603 printk(" irq not available\n");
604 dev->irq = 0;
608 DEBUG("s626_attach: -- it opts %d,%d -- \n",
609 it->options[0], it->options[1]);
611 s = dev->subdevices + 0;
612 /* analog input subdevice */
613 dev->read_subdev = s;
614 /* we support single-ended (ground) and differential */
615 s->type = COMEDI_SUBD_AI;
616 s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ;
617 s->n_chan = thisboard->ai_chans;
618 s->maxdata = (0xffff >> 2);
619 s->range_table = &s626_range_table;
620 s->len_chanlist = thisboard->ai_chans; /* This is the maximum chanlist
621 length that the board can
622 handle */
623 s->insn_config = s626_ai_insn_config;
624 s->insn_read = s626_ai_insn_read;
625 s->do_cmd = s626_ai_cmd;
626 s->do_cmdtest = s626_ai_cmdtest;
627 s->cancel = s626_ai_cancel;
629 s = dev->subdevices + 1;
630 /* analog output subdevice */
631 s->type = COMEDI_SUBD_AO;
632 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
633 s->n_chan = thisboard->ao_chans;
634 s->maxdata = (0x3fff);
635 s->range_table = &range_bipolar10;
636 s->insn_write = s626_ao_winsn;
637 s->insn_read = s626_ao_rinsn;
639 s = dev->subdevices + 2;
640 /* digital I/O subdevice */
641 s->type = COMEDI_SUBD_DIO;
642 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
643 s->n_chan = S626_DIO_CHANNELS;
644 s->maxdata = 1;
645 s->io_bits = 0xffff;
646 s->private = &dio_private_A;
647 s->range_table = &range_digital;
648 s->insn_config = s626_dio_insn_config;
649 s->insn_bits = s626_dio_insn_bits;
651 s = dev->subdevices + 3;
652 /* digital I/O subdevice */
653 s->type = COMEDI_SUBD_DIO;
654 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
655 s->n_chan = 16;
656 s->maxdata = 1;
657 s->io_bits = 0xffff;
658 s->private = &dio_private_B;
659 s->range_table = &range_digital;
660 s->insn_config = s626_dio_insn_config;
661 s->insn_bits = s626_dio_insn_bits;
663 s = dev->subdevices + 4;
664 /* digital I/O subdevice */
665 s->type = COMEDI_SUBD_DIO;
666 s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
667 s->n_chan = 16;
668 s->maxdata = 1;
669 s->io_bits = 0xffff;
670 s->private = &dio_private_C;
671 s->range_table = &range_digital;
672 s->insn_config = s626_dio_insn_config;
673 s->insn_bits = s626_dio_insn_bits;
675 s = dev->subdevices + 5;
676 /* encoder (counter) subdevice */
677 s->type = COMEDI_SUBD_COUNTER;
678 s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
679 s->n_chan = thisboard->enc_chans;
680 s->private = enc_private_data;
681 s->insn_config = s626_enc_insn_config;
682 s->insn_read = s626_enc_insn_read;
683 s->insn_write = s626_enc_insn_write;
684 s->maxdata = 0xffffff;
685 s->range_table = &range_unknown;
687 /* stop ai_command */
688 devpriv->ai_cmd_running = 0;
690 if (devpriv->base_addr && (devpriv->allocatedBuf == 2)) {
691 dma_addr_t pPhysBuf;
692 uint16_t chan;
694 /* enab DEBI and audio pins, enable I2C interface. */
695 MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C);
696 /* Configure DEBI operating mode. */
697 WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 /* Local bus is 16 */
698 /* bits wide. */
699 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) /* Declare DEBI */
700 /* transfer timeout */
701 /* interval. */
702 | DEBI_SWAP /* Set up byte lane */
703 /* steering. */
704 | DEBI_CFG_INTEL); /* Intel-compatible */
705 /* local bus (DEBI */
706 /* never times out). */
707 DEBUG("s626_attach: %d debi init -- %d\n",
708 DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) |
709 DEBI_SWAP | DEBI_CFG_INTEL,
710 DEBI_CFG_INTEL | DEBI_CFG_TOQ | DEBI_CFG_INCQ |
711 DEBI_CFG_16Q);
713 /* DEBI INIT S626 WR7146( P_DEBICFG, DEBI_CFG_INTEL | DEBI_CFG_TOQ */
714 /* | DEBI_CFG_INCQ| DEBI_CFG_16Q); //end */
716 /* Paging is disabled. */
717 WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Disable MMU paging. */
719 /* Init GPIO so that ADC Start* is negated. */
720 WR7146(P_GPIO, GPIO_BASE | GPIO1_HI);
722 /* IsBoardRevA is a boolean that indicates whether the board is RevA.
724 * VERSION 2.01 CHANGE: REV A & B BOARDS NOW SUPPORTED BY DYNAMIC
725 * EEPROM ADDRESS SELECTION. Initialize the I2C interface, which
726 * is used to access the onboard serial EEPROM. The EEPROM's I2C
727 * DeviceAddress is hardwired to a value that is dependent on the
728 * 626 board revision. On all board revisions, the EEPROM stores
729 * TrimDAC calibration constants for analog I/O. On RevB and
730 * higher boards, the DeviceAddress is hardwired to 0 to enable
731 * the EEPROM to also store the PCI SubVendorID and SubDeviceID;
732 * this is the address at which the SAA7146 expects a
733 * configuration EEPROM to reside. On RevA boards, the EEPROM
734 * device address, which is hardwired to 4, prevents the SAA7146
735 * from retrieving PCI sub-IDs, so the SAA7146 uses its built-in
736 * default values, instead.
739 /* devpriv->I2Cards= IsBoardRevA ? 0xA8 : 0xA0; // Set I2C EEPROM */
740 /* DeviceType (0xA0) */
741 /* and DeviceAddress<<1. */
743 devpriv->I2CAdrs = 0xA0; /* I2C device address for onboard */
744 /* eeprom(revb) */
746 /* Issue an I2C ABORT command to halt any I2C operation in */
747 /* progress and reset BUSY flag. */
748 WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT);
749 /* Write I2C control: abort any I2C activity. */
750 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
751 /* Invoke command upload */
752 while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0)
754 /* and wait for upload to complete. */
756 /* Per SAA7146 data sheet, write to STATUS reg twice to
757 * reset all I2C error flags. */
758 for (i = 0; i < 2; i++) {
759 WR7146(P_I2CSTAT, I2C_CLKSEL);
760 /* Write I2C control: reset error flags. */
761 MC_ENABLE(P_MC2, MC2_UPLD_IIC); /* Invoke command upload */
762 while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
764 /* and wait for upload to complete. */
767 /* Init audio interface functional attributes: set DAC/ADC
768 * serial clock rates, invert DAC serial clock so that
769 * DAC data setup times are satisfied, enable DAC serial
770 * clock out.
773 WR7146(P_ACON2, ACON2_INIT);
775 /* Set up TSL1 slot list, which is used to control the
776 * accumulation of ADC data: RSD1 = shift data in on SD1.
777 * SIB_A1 = store data uint8_t at next available location in
778 * FB BUFFER1 register. */
779 WR7146(P_TSL1, RSD1 | SIB_A1);
780 /* Fetch ADC high data uint8_t. */
781 WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS);
782 /* Fetch ADC low data uint8_t; end of TSL1. */
784 /* enab TSL1 slot list so that it executes all the time. */
785 WR7146(P_ACON1, ACON1_ADCSTART);
787 /* Initialize RPS registers used for ADC. */
789 /* Physical start of RPS program. */
790 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
792 WR7146(P_RPSPAGE1, 0);
793 /* RPS program performs no explicit mem writes. */
794 WR7146(P_RPS1_TOUT, 0); /* Disable RPS timeouts. */
796 /* SAA7146 BUG WORKAROUND. Initialize SAA7146 ADC interface
797 * to a known state by invoking ADCs until FB BUFFER 1
798 * register shows that it is correctly receiving ADC data.
799 * This is necessary because the SAA7146 ADC interface does
800 * not start up in a defined state after a PCI reset.
803 /* PollList = EOPL; // Create a simple polling */
804 /* // list for analog input */
805 /* // channel 0. */
806 /* ResetADC( dev, &PollList ); */
808 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); //( &AdcData ); // */
809 /* //Get initial ADC */
810 /* //value. */
812 /* StartVal = data[0]; */
814 /* // VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. */
815 /* // Invoke ADCs until the new ADC value differs from the initial */
816 /* // value or a timeout occurs. The timeout protects against the */
817 /* // possibility that the driver is restarting and the ADC data is a */
818 /* // fixed value resulting from the applied ADC analog input being */
819 /* // unusually quiet or at the rail. */
821 /* for ( index = 0; index < 500; index++ ) */
822 /* { */
823 /* s626_ai_rinsn(dev,dev->subdevices,NULL,data); */
824 /* AdcData = data[0]; //ReadADC( &AdcData ); */
825 /* if ( AdcData != StartVal ) */
826 /* break; */
827 /* } */
829 /* end initADC */
831 /* init the DAC interface */
833 /* Init Audio2's output DMAC attributes: burst length = 1
834 * DWORD, threshold = 1 DWORD.
836 WR7146(P_PCI_BT_A, 0);
838 /* Init Audio2's output DMA physical addresses. The protection
839 * address is set to 1 DWORD past the base address so that a
840 * single DWORD will be transferred each time a DMA transfer is
841 * enabled. */
843 pPhysBuf =
844 devpriv->ANABuf.PhysicalBase +
845 (DAC_WDMABUF_OS * sizeof(uint32_t));
847 WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); /* Buffer base adrs. */
848 WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* Protection address. */
850 /* Cache Audio2's output DMA buffer logical address. This is
851 * where DAC data is buffered for A2 output DMA transfers. */
852 devpriv->pDacWBuf =
853 (uint32_t *) devpriv->ANABuf.LogicalBase +
854 DAC_WDMABUF_OS;
856 /* Audio2's output channels does not use paging. The protection
857 * violation handling bit is set so that the DMAC will
858 * automatically halt and its PCI address pointer will be reset
859 * when the protection address is reached. */
861 WR7146(P_PAGEA2_OUT, 8);
863 /* Initialize time slot list 2 (TSL2), which is used to control
864 * the clock generation for and serialization of data to be sent
865 * to the DAC devices. Slot 0 is a NOP that is used to trap TSL
866 * execution; this permits other slots to be safely modified
867 * without first turning off the TSL sequencer (which is
868 * apparently impossible to do). Also, SD3 (which is driven by a
869 * pull-up resistor) is shifted in and stored to the MSB of
870 * FB_BUFFER2 to be used as evidence that the slot sequence has
871 * not yet finished executing.
874 SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS);
875 /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2. */
877 /* Initialize slot 1, which is constant. Slot 1 causes a
878 * DWORD to be transferred from audio channel 2's output FIFO
879 * to the FIFO's output buffer so that it can be serialized
880 * and sent to the DAC during subsequent slots. All remaining
881 * slots are dynamically populated as required by the target
882 * DAC device.
884 SETVECT(1, LF_A2);
885 /* Slot 1: Fetch DWORD from Audio2's output FIFO. */
887 /* Start DAC's audio interface (TSL2) running. */
888 WR7146(P_ACON1, ACON1_DACSTART);
890 /* end init DAC interface */
892 /* Init Trim DACs to calibrated values. Do it twice because the
893 * SAA7146 audio channel does not always reset properly and
894 * sometimes causes the first few TrimDAC writes to malfunction.
897 LoadTrimDACs(dev);
898 LoadTrimDACs(dev); /* Insurance. */
900 /* Manually init all gate array hardware in case this is a soft
901 * reset (we have no way of determining whether this is a warm
902 * or cold start). This is necessary because the gate array will
903 * reset only in response to a PCI hard reset; there is no soft
904 * reset function. */
906 /* Init all DAC outputs to 0V and init all DAC setpoint and
907 * polarity images.
909 for (chan = 0; chan < S626_DAC_CHANNELS; chan++)
910 SetDAC(dev, chan, 0);
912 /* Init image of WRMISC2 Battery Charger Enabled control bit.
913 * This image is used when the state of the charger control bit,
914 * which has no direct hardware readback mechanism, is queried.
916 devpriv->ChargeEnabled = 0;
918 /* Init image of watchdog timer interval in WRMISC2. This image
919 * maintains the value of the control bits of MISC2 are
920 * continuously reset to zero as long as the WD timer is disabled.
922 devpriv->WDInterval = 0;
924 /* Init Counter Interrupt enab mask for RDMISC2. This mask is
925 * applied against MISC2 when testing to determine which timer
926 * events are requesting interrupt service.
928 devpriv->CounterIntEnabs = 0;
930 /* Init counters. */
931 CountersInit(dev);
933 /* Without modifying the state of the Battery Backup enab, disable
934 * the watchdog timer, set DIO channels 0-5 to operate in the
935 * standard DIO (vs. counter overflow) mode, disable the battery
936 * charger, and reset the watchdog interval selector to zero.
938 WriteMISC2(dev, (uint16_t) (DEBIread(dev,
939 LP_RDMISC2) & MISC2_BATT_ENABLE));
941 /* Initialize the digital I/O subsystem. */
942 s626_dio_init(dev);
944 /* enable interrupt test */
945 /* writel(IRQ_GPIO3 | IRQ_RPS1,devpriv->base_addr+P_IER); */
948 DEBUG("s626_attach: comedi%d s626 attached %04x\n", dev->minor,
949 (uint32_t) devpriv->base_addr);
951 return 1;
954 static unsigned int s626_ai_reg_to_uint(int data)
956 unsigned int tempdata;
958 tempdata = (data >> 18);
959 if (tempdata & 0x2000)
960 tempdata &= 0x1fff;
961 else
962 tempdata += (1 << 13);
964 return tempdata;
967 /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */
968 /* return 0; */
969 /* } */
971 static irqreturn_t s626_irq_handler(int irq, void *d)
973 struct comedi_device *dev = d;
974 struct comedi_subdevice *s;
975 struct comedi_cmd *cmd;
976 struct enc_private *k;
977 unsigned long flags;
978 int32_t *readaddr;
979 uint32_t irqtype, irqstatus;
980 int i = 0;
981 short tempdata;
982 uint8_t group;
983 uint16_t irqbit;
985 DEBUG("s626_irq_handler: interrupt request recieved!!!\n");
987 if (dev->attached == 0)
988 return IRQ_NONE;
989 /* lock to avoid race with comedi_poll */
990 spin_lock_irqsave(&dev->spinlock, flags);
992 /* save interrupt enable register state */
993 irqstatus = readl(devpriv->base_addr + P_IER);
995 /* read interrupt type */
996 irqtype = readl(devpriv->base_addr + P_ISR);
998 /* disable master interrupt */
999 writel(0, devpriv->base_addr + P_IER);
1001 /* clear interrupt */
1002 writel(irqtype, devpriv->base_addr + P_ISR);
1004 /* do somethings */
1005 DEBUG("s626_irq_handler: interrupt type %d\n", irqtype);
1007 switch (irqtype) {
1008 case IRQ_RPS1: /* end_of_scan occurs */
1010 DEBUG("s626_irq_handler: RPS1 irq detected\n");
1012 /* manage ai subdevice */
1013 s = dev->subdevices;
1014 cmd = &(s->async->cmd);
1016 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1017 * first uint16_t in the buffer because it contains junk data from
1018 * the final ADC of the previous poll list scan.
1020 readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1;
1022 /* get the data and hand it over to comedi */
1023 for (i = 0; i < (s->async->cmd.chanlist_len); i++) {
1024 /* Convert ADC data to 16-bit integer values and copy to application */
1025 /* buffer. */
1026 tempdata = s626_ai_reg_to_uint((int)*readaddr);
1027 readaddr++;
1029 /* put data into read buffer */
1030 /* comedi_buf_put(s->async, tempdata); */
1031 if (cfc_write_to_buffer(s, tempdata) == 0)
1032 printk("s626_irq_handler: cfc_write_to_buffer error!\n");
1034 DEBUG("s626_irq_handler: ai channel %d acquired: %d\n",
1035 i, tempdata);
1038 /* end of scan occurs */
1039 s->async->events |= COMEDI_CB_EOS;
1041 if (!(devpriv->ai_continous))
1042 devpriv->ai_sample_count--;
1043 if (devpriv->ai_sample_count <= 0) {
1044 devpriv->ai_cmd_running = 0;
1046 /* Stop RPS program. */
1047 MC_DISABLE(P_MC1, MC1_ERPS1);
1049 /* send end of acquisition */
1050 s->async->events |= COMEDI_CB_EOA;
1052 /* disable master interrupt */
1053 irqstatus = 0;
1056 if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) {
1057 DEBUG("s626_irq_handler: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1059 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1061 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1063 /* tell comedi that data is there */
1064 DEBUG("s626_irq_handler: events %d\n", s->async->events);
1065 comedi_event(dev, s);
1066 break;
1067 case IRQ_GPIO3: /* check dio and conter interrupt */
1069 DEBUG("s626_irq_handler: GPIO3 irq detected\n");
1071 /* manage ai subdevice */
1072 s = dev->subdevices;
1073 cmd = &(s->async->cmd);
1075 /* s626_dio_clear_irq(dev); */
1077 for (group = 0; group < S626_DIO_BANKS; group++) {
1078 irqbit = 0;
1079 /* read interrupt type */
1080 irqbit = DEBIread(dev,
1081 ((struct dio_private *) (dev->subdevices + 2 +
1082 group)->private)->RDCapFlg);
1084 /* check if interrupt is generated from dio channels */
1085 if (irqbit) {
1086 s626_dio_reset_irq(dev, group, irqbit);
1087 DEBUG("s626_irq_handler: check interrupt on dio group %d %d\n", group, i);
1088 if (devpriv->ai_cmd_running) {
1089 /* check if interrupt is an ai acquisition start trigger */
1090 if ((irqbit >> (cmd->start_arg -
1091 (16 * group)))
1092 == 1
1093 && cmd->start_src == TRIG_EXT) {
1094 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->start_arg);
1096 /* Start executing the RPS program. */
1097 MC_ENABLE(P_MC1, MC1_ERPS1);
1099 DEBUG("s626_irq_handler: aquisition start triggered!!!\n");
1101 if (cmd->scan_begin_src ==
1102 TRIG_EXT) {
1103 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d\n", cmd->scan_begin_arg);
1105 s626_dio_set_irq(dev,
1106 cmd->
1107 scan_begin_arg);
1109 DEBUG("s626_irq_handler: External scan trigger is set!!!\n");
1112 if ((irqbit >> (cmd->scan_begin_arg -
1113 (16 * group)))
1114 == 1
1115 && cmd->scan_begin_src ==
1116 TRIG_EXT) {
1117 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->scan_begin_arg);
1119 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1120 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1122 DEBUG("s626_irq_handler: scan triggered!!! %d\n", devpriv->ai_sample_count);
1123 if (cmd->convert_src ==
1124 TRIG_EXT) {
1126 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1128 devpriv->
1129 ai_convert_count
1131 cmd->
1132 chanlist_len;
1134 s626_dio_set_irq(dev,
1135 cmd->
1136 convert_arg);
1138 DEBUG("s626_irq_handler: External convert trigger is set!!!\n");
1141 if (cmd->convert_src ==
1142 TRIG_TIMER) {
1143 k = &encpriv[5];
1144 devpriv->
1145 ai_convert_count
1147 cmd->
1148 chanlist_len;
1149 k->SetEnable(dev, k,
1150 CLKENAB_ALWAYS);
1153 if ((irqbit >> (cmd->convert_arg -
1154 (16 * group)))
1155 == 1
1156 && cmd->convert_src ==
1157 TRIG_EXT) {
1158 DEBUG("s626_irq_handler: Edge capture interrupt recieved from channel %d\n", cmd->convert_arg);
1160 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1161 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1163 DEBUG("s626_irq_handler: adc convert triggered!!!\n");
1165 devpriv->ai_convert_count--;
1167 if (devpriv->ai_convert_count >
1168 0) {
1170 DEBUG("s626_ai_cmd: enable interrupt on dio channel %d group %d\n", cmd->convert_arg - (16 * group), group);
1172 s626_dio_set_irq(dev,
1173 cmd->
1174 convert_arg);
1176 DEBUG("s626_irq_handler: External trigger is set!!!\n");
1180 break;
1184 /* read interrupt type */
1185 irqbit = DEBIread(dev, LP_RDMISC2);
1187 /* check interrupt on counters */
1188 DEBUG("s626_irq_handler: check counters interrupt %d\n",
1189 irqbit);
1191 if (irqbit & IRQ_COINT1A) {
1192 DEBUG("s626_irq_handler: interrupt on counter 1A overflow\n");
1193 k = &encpriv[0];
1195 /* clear interrupt capture flag */
1196 k->ResetCapFlags(dev, k);
1198 if (irqbit & IRQ_COINT2A) {
1199 DEBUG("s626_irq_handler: interrupt on counter 2A overflow\n");
1200 k = &encpriv[1];
1202 /* clear interrupt capture flag */
1203 k->ResetCapFlags(dev, k);
1205 if (irqbit & IRQ_COINT3A) {
1206 DEBUG("s626_irq_handler: interrupt on counter 3A overflow\n");
1207 k = &encpriv[2];
1209 /* clear interrupt capture flag */
1210 k->ResetCapFlags(dev, k);
1212 if (irqbit & IRQ_COINT1B) {
1213 DEBUG("s626_irq_handler: interrupt on counter 1B overflow\n");
1214 k = &encpriv[3];
1216 /* clear interrupt capture flag */
1217 k->ResetCapFlags(dev, k);
1219 if (irqbit & IRQ_COINT2B) {
1220 DEBUG("s626_irq_handler: interrupt on counter 2B overflow\n");
1221 k = &encpriv[4];
1223 /* clear interrupt capture flag */
1224 k->ResetCapFlags(dev, k);
1226 if (devpriv->ai_convert_count > 0) {
1227 devpriv->ai_convert_count--;
1228 if (devpriv->ai_convert_count == 0)
1229 k->SetEnable(dev, k, CLKENAB_INDEX);
1231 if (cmd->convert_src == TRIG_TIMER) {
1232 DEBUG("s626_irq_handler: conver timer trigger!!! %d\n", devpriv->ai_convert_count);
1234 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1235 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1239 if (irqbit & IRQ_COINT3B) {
1240 DEBUG("s626_irq_handler: interrupt on counter 3B overflow\n");
1241 k = &encpriv[5];
1243 /* clear interrupt capture flag */
1244 k->ResetCapFlags(dev, k);
1246 if (cmd->scan_begin_src == TRIG_TIMER) {
1247 DEBUG("s626_irq_handler: scan timer trigger!!!\n");
1249 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1250 MC_ENABLE(P_MC2, MC2_ADC_RPS);
1253 if (cmd->convert_src == TRIG_TIMER) {
1254 DEBUG("s626_irq_handler: convert timer trigger is set\n");
1255 k = &encpriv[4];
1256 devpriv->ai_convert_count = cmd->chanlist_len;
1257 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1262 /* enable interrupt */
1263 writel(irqstatus, devpriv->base_addr + P_IER);
1265 DEBUG("s626_irq_handler: exit interrupt service routine.\n");
1267 spin_unlock_irqrestore(&dev->spinlock, flags);
1268 return IRQ_HANDLED;
1271 static int s626_detach(struct comedi_device *dev)
1273 if (devpriv) {
1274 /* stop ai_command */
1275 devpriv->ai_cmd_running = 0;
1277 if (devpriv->base_addr) {
1278 /* interrupt mask */
1279 WR7146(P_IER, 0); /* Disable master interrupt. */
1280 WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */
1282 /* Disable the watchdog timer and battery charger. */
1283 WriteMISC2(dev, 0);
1285 /* Close all interfaces on 7146 device. */
1286 WR7146(P_MC1, MC1_SHUTDOWN);
1287 WR7146(P_ACON1, ACON1_BASE);
1289 CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE);
1290 CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE);
1293 if (dev->irq)
1294 free_irq(dev->irq, dev);
1296 if (devpriv->base_addr)
1297 iounmap(devpriv->base_addr);
1299 if (devpriv->pdev) {
1300 if (devpriv->got_regions)
1301 comedi_pci_disable(devpriv->pdev);
1302 pci_dev_put(devpriv->pdev);
1306 DEBUG("s626_detach: S626 detached!\n");
1308 return 0;
1312 * this functions build the RPS program for hardware driven acquistion
1314 void ResetADC(struct comedi_device *dev, uint8_t *ppl)
1316 register uint32_t *pRPS;
1317 uint32_t JmpAdrs;
1318 uint16_t i;
1319 uint16_t n;
1320 uint32_t LocalPPL;
1321 struct comedi_cmd *cmd = &(dev->subdevices->async->cmd);
1323 /* Stop RPS program in case it is currently running. */
1324 MC_DISABLE(P_MC1, MC1_ERPS1);
1326 /* Set starting logical address to write RPS commands. */
1327 pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase;
1329 /* Initialize RPS instruction pointer. */
1330 WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase);
1332 /* Construct RPS program in RPSBuf DMA buffer */
1334 if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) {
1335 DEBUG("ResetADC: scan_begin pause inserted\n");
1336 /* Wait for Start trigger. */
1337 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1338 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1341 /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary
1342 * because the first RPS DEBI Write following a non-RPS DEBI write
1343 * seems to always fail. If we don't do this dummy write, the ADC
1344 * gain might not be set to the value required for the first slot in
1345 * the poll list; the ADC gain would instead remain unchanged from
1346 * the previously programmed value.
1348 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1349 /* Write DEBI Write command and address to shadow RAM. */
1351 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1352 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1353 /* Write DEBI immediate data to shadow RAM: */
1355 *pRPS++ = GSEL_BIPOLAR5V;
1356 /* arbitrary immediate data value. */
1358 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1359 /* Reset "shadow RAM uploaded" flag. */
1360 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1361 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */
1363 /* Digitize all slots in the poll list. This is implemented as a
1364 * for loop to limit the slot count to 16 in case the application
1365 * forgot to set the EOPL flag in the final slot.
1367 for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) {
1368 /* Convert application's poll list item to private board class
1369 * format. Each app poll list item is an uint8_t with form
1370 * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1371 * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1373 LocalPPL =
1374 (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V :
1375 GSEL_BIPOLAR10V);
1377 /* Switch ADC analog gain. */
1378 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */
1379 /* and address to */
1380 /* shadow RAM. */
1381 *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL;
1382 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */
1383 /* immediate data to */
1384 /* shadow RAM. */
1385 *pRPS++ = LocalPPL;
1386 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */
1387 /* flag. */
1388 *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */
1389 *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */
1390 /* finish. */
1392 /* Select ADC analog input channel. */
1393 *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2);
1394 /* Write DEBI command and address to shadow RAM. */
1395 *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL;
1396 *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2);
1397 /* Write DEBI immediate data to shadow RAM. */
1398 *pRPS++ = LocalPPL;
1399 *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI;
1400 /* Reset "shadow RAM uploaded" flag. */
1402 *pRPS++ = RPS_UPLOAD | RPS_DEBI;
1403 /* Invoke shadow RAM upload. */
1405 *pRPS++ = RPS_PAUSE | RPS_DEBI;
1406 /* Wait for shadow upload to finish. */
1408 /* Delay at least 10 microseconds for analog input settling.
1409 * Instead of padding with NOPs, we use RPS_JUMP instructions
1410 * here; this allows us to produce a longer delay than is
1411 * possible with NOPs because each RPS_JUMP flushes the RPS'
1412 * instruction prefetch pipeline.
1414 JmpAdrs =
1415 (uint32_t) devpriv->RPSBuf.PhysicalBase +
1416 (uint32_t) ((unsigned long)pRPS -
1417 (unsigned long)devpriv->RPSBuf.LogicalBase);
1418 for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) {
1419 JmpAdrs += 8; /* Repeat to implement time delay: */
1420 *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */
1421 *pRPS++ = JmpAdrs;
1424 if (cmd != NULL && cmd->convert_src != TRIG_NOW) {
1425 DEBUG("ResetADC: convert pause inserted\n");
1426 /* Wait for Start trigger. */
1427 *pRPS++ = RPS_PAUSE | RPS_SIGADC;
1428 *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC;
1430 /* Start ADC by pulsing GPIO1. */
1431 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1432 *pRPS++ = GPIO_BASE | GPIO1_LO;
1433 *pRPS++ = RPS_NOP;
1434 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1435 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1436 *pRPS++ = GPIO_BASE | GPIO1_HI;
1438 /* Wait for ADC to complete (GPIO2 is asserted high when ADC not
1439 * busy) and for data from previous conversion to shift into FB
1440 * BUFFER 1 register.
1442 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1444 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1445 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2);
1446 *pRPS++ =
1447 (uint32_t) devpriv->ANABuf.PhysicalBase +
1448 (devpriv->AdcItems << 2);
1450 /* If this slot's EndOfPollList flag is set, all channels have */
1451 /* now been processed. */
1452 if (*ppl++ & EOPL) {
1453 devpriv->AdcItems++; /* Adjust poll list item count. */
1454 break; /* Exit poll list processing loop. */
1457 DEBUG("ResetADC: ADC items %d \n", devpriv->AdcItems);
1459 /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the
1460 * ADC to stabilize for 2 microseconds before starting the final
1461 * (dummy) conversion. This delay is necessary to allow sufficient
1462 * time between last conversion finished and the start of the dummy
1463 * conversion. Without this delay, the last conversion's data value
1464 * is sometimes set to the previous conversion's data value.
1466 for (n = 0; n < (2 * RPSCLK_PER_US); n++)
1467 *pRPS++ = RPS_NOP;
1469 /* Start a dummy conversion to cause the data from the last
1470 * conversion of interest to be shifted in.
1472 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */
1473 *pRPS++ = GPIO_BASE | GPIO1_LO;
1474 *pRPS++ = RPS_NOP;
1475 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1476 *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */
1477 *pRPS++ = GPIO_BASE | GPIO1_HI;
1479 /* Wait for the data from the last conversion of interest to arrive
1480 * in FB BUFFER 1 register.
1482 *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */
1484 /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1485 *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */
1486 *pRPS++ =
1487 (uint32_t) devpriv->ANABuf.PhysicalBase +
1488 (devpriv->AdcItems << 2);
1490 /* Indicate ADC scan loop is finished. */
1491 /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */
1493 /* invoke interrupt */
1494 if (devpriv->ai_cmd_running == 1) {
1495 DEBUG("ResetADC: insert irq in ADC RPS task\n");
1496 *pRPS++ = RPS_IRQ;
1498 /* Restart RPS program at its beginning. */
1499 *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */
1500 *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase;
1502 /* End of RPS program build */
1505 /* TO COMPLETE, IF NECESSARY */
1506 static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
1507 struct comedi_insn *insn, unsigned int *data)
1510 return -EINVAL;
1513 /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */
1514 /* { */
1515 /* register uint8_t i; */
1516 /* register int32_t *readaddr; */
1518 /* DEBUG("as626_ai_rinsn: ai_rinsn enter \n"); */
1520 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1521 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1523 /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */
1524 /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */
1526 /* Init ptr to DMA buffer that holds new ADC data. We skip the
1527 * first uint16_t in the buffer because it contains junk data from
1528 * the final ADC of the previous poll list scan.
1530 /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */
1532 /* Convert ADC data to 16-bit integer values and copy to application buffer. */
1533 /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */
1534 /* *data = s626_ai_reg_to_uint( *readaddr++ ); */
1535 /* DEBUG("s626_ai_rinsn: data %d \n",*data); */
1536 /* data++; */
1537 /* } */
1539 /* DEBUG("s626_ai_rinsn: ai_rinsn escape \n"); */
1540 /* return i; */
1541 /* } */
1543 static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
1544 struct comedi_insn *insn, unsigned int *data)
1546 uint16_t chan = CR_CHAN(insn->chanspec);
1547 uint16_t range = CR_RANGE(insn->chanspec);
1548 uint16_t AdcSpec = 0;
1549 uint32_t GpioImage;
1550 int n;
1552 /* interrupt call test */
1553 /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */
1554 /* Writing a logical 1 into any of the RPS_PSR bits causes the
1555 * corresponding interrupt to be generated if enabled
1558 DEBUG("s626_ai_insn_read: entering\n");
1560 /* Convert application's ADC specification into form
1561 * appropriate for register programming.
1563 if (range == 0)
1564 AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V);
1565 else
1566 AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V);
1568 /* Switch ADC analog gain. */
1569 DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */
1571 /* Select ADC analog input channel. */
1572 DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */
1574 for (n = 0; n < insn->n; n++) {
1576 /* Delay 10 microseconds for analog input settling. */
1577 udelay(10);
1579 /* Start ADC by pulsing GPIO1 low. */
1580 GpioImage = RR7146(P_GPIO);
1581 /* Assert ADC Start command */
1582 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1583 /* and stretch it out. */
1584 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1585 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1586 /* Negate ADC Start command. */
1587 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1589 /* Wait for ADC to complete (GPIO2 is asserted high when */
1590 /* ADC not busy) and for data from previous conversion to */
1591 /* shift into FB BUFFER 1 register. */
1593 /* Wait for ADC done. */
1594 while (!(RR7146(P_PSR) & PSR_GPIO2))
1597 /* Fetch ADC data. */
1598 if (n != 0)
1599 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1601 /* Allow the ADC to stabilize for 4 microseconds before
1602 * starting the next (final) conversion. This delay is
1603 * necessary to allow sufficient time between last
1604 * conversion finished and the start of the next
1605 * conversion. Without this delay, the last conversion's
1606 * data value is sometimes set to the previous
1607 * conversion's data value.
1609 udelay(4);
1612 /* Start a dummy conversion to cause the data from the
1613 * previous conversion to be shifted in. */
1614 GpioImage = RR7146(P_GPIO);
1616 /* Assert ADC Start command */
1617 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1618 /* and stretch it out. */
1619 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1620 WR7146(P_GPIO, GpioImage & ~GPIO1_HI);
1621 /* Negate ADC Start command. */
1622 WR7146(P_GPIO, GpioImage | GPIO1_HI);
1624 /* Wait for the data to arrive in FB BUFFER 1 register. */
1626 /* Wait for ADC done. */
1627 while (!(RR7146(P_PSR) & PSR_GPIO2))
1630 /* Fetch ADC data from audio interface's input shift register. */
1632 /* Fetch ADC data. */
1633 if (n != 0)
1634 data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1));
1636 DEBUG("s626_ai_insn_read: samples %d, data %d\n", n, data[n - 1]);
1638 return n;
1641 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1644 int n;
1646 for (n = 0; n < cmd->chanlist_len; n++) {
1647 if (CR_RANGE((cmd->chanlist)[n]) == 0)
1648 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V);
1649 else
1650 ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V);
1652 ppl[n - 1] |= EOPL;
1654 return n;
1657 static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s,
1658 unsigned int trignum)
1660 if (trignum != 0)
1661 return -EINVAL;
1663 DEBUG("s626_ai_inttrig: trigger adc start...");
1665 /* Start executing the RPS program. */
1666 MC_ENABLE(P_MC1, MC1_ERPS1);
1668 s->async->inttrig = NULL;
1670 DEBUG(" done\n");
1672 return 1;
1675 /* TO COMPLETE */
1676 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1679 uint8_t ppl[16];
1680 struct comedi_cmd *cmd = &s->async->cmd;
1681 struct enc_private *k;
1682 int tick;
1684 DEBUG("s626_ai_cmd: entering command function\n");
1686 if (devpriv->ai_cmd_running) {
1687 printk("s626_ai_cmd: Another ai_cmd is running %d\n",
1688 dev->minor);
1689 return -EBUSY;
1691 /* disable interrupt */
1692 writel(0, devpriv->base_addr + P_IER);
1694 /* clear interrupt request */
1695 writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR);
1697 /* clear any pending interrupt */
1698 s626_dio_clear_irq(dev);
1699 /* s626_enc_clear_irq(dev); */
1701 /* reset ai_cmd_running flag */
1702 devpriv->ai_cmd_running = 0;
1704 /* test if cmd is valid */
1705 if (cmd == NULL) {
1706 DEBUG("s626_ai_cmd: NULL command\n");
1707 return -EINVAL;
1708 } else {
1709 DEBUG("s626_ai_cmd: command recieved!!!\n");
1712 if (dev->irq == 0) {
1713 comedi_error(dev,
1714 "s626_ai_cmd: cannot run command without an irq");
1715 return -EIO;
1718 s626_ai_load_polllist(ppl, cmd);
1719 devpriv->ai_cmd_running = 1;
1720 devpriv->ai_convert_count = 0;
1722 switch (cmd->scan_begin_src) {
1723 case TRIG_FOLLOW:
1724 break;
1725 case TRIG_TIMER:
1726 /* set a conter to generate adc trigger at scan_begin_arg interval */
1727 k = &encpriv[5];
1728 tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1729 cmd->flags & TRIG_ROUND_MASK);
1731 /* load timer value and enable interrupt */
1732 s626_timer_load(dev, k, tick);
1733 k->SetEnable(dev, k, CLKENAB_ALWAYS);
1735 DEBUG("s626_ai_cmd: scan trigger timer is set with value %d\n",
1736 tick);
1738 break;
1739 case TRIG_EXT:
1740 /* set the digital line and interrupt for scan trigger */
1741 if (cmd->start_src != TRIG_EXT)
1742 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1744 DEBUG("s626_ai_cmd: External scan trigger is set!!!\n");
1746 break;
1749 switch (cmd->convert_src) {
1750 case TRIG_NOW:
1751 break;
1752 case TRIG_TIMER:
1753 /* set a conter to generate adc trigger at convert_arg interval */
1754 k = &encpriv[4];
1755 tick = s626_ns_to_timer((int *)&cmd->convert_arg,
1756 cmd->flags & TRIG_ROUND_MASK);
1758 /* load timer value and enable interrupt */
1759 s626_timer_load(dev, k, tick);
1760 k->SetEnable(dev, k, CLKENAB_INDEX);
1762 DEBUG("s626_ai_cmd: convert trigger timer is set with value %d\n", tick);
1763 break;
1764 case TRIG_EXT:
1765 /* set the digital line and interrupt for convert trigger */
1766 if (cmd->scan_begin_src != TRIG_EXT
1767 && cmd->start_src == TRIG_EXT)
1768 s626_dio_set_irq(dev, cmd->convert_arg);
1770 DEBUG("s626_ai_cmd: External convert trigger is set!!!\n");
1772 break;
1775 switch (cmd->stop_src) {
1776 case TRIG_COUNT:
1777 /* data arrives as one packet */
1778 devpriv->ai_sample_count = cmd->stop_arg;
1779 devpriv->ai_continous = 0;
1780 break;
1781 case TRIG_NONE:
1782 /* continous aquisition */
1783 devpriv->ai_continous = 1;
1784 devpriv->ai_sample_count = 0;
1785 break;
1788 ResetADC(dev, ppl);
1790 switch (cmd->start_src) {
1791 case TRIG_NOW:
1792 /* Trigger ADC scan loop start by setting RPS Signal 0. */
1793 /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */
1795 /* Start executing the RPS program. */
1796 MC_ENABLE(P_MC1, MC1_ERPS1);
1798 DEBUG("s626_ai_cmd: ADC triggered\n");
1799 s->async->inttrig = NULL;
1800 break;
1801 case TRIG_EXT:
1802 /* configure DIO channel for acquisition trigger */
1803 s626_dio_set_irq(dev, cmd->start_arg);
1805 DEBUG("s626_ai_cmd: External start trigger is set!!!\n");
1807 s->async->inttrig = NULL;
1808 break;
1809 case TRIG_INT:
1810 s->async->inttrig = s626_ai_inttrig;
1811 break;
1814 /* enable interrupt */
1815 writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER);
1817 DEBUG("s626_ai_cmd: command function terminated\n");
1819 return 0;
1822 static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s,
1823 struct comedi_cmd *cmd)
1825 int err = 0;
1826 int tmp;
1828 /* cmdtest tests a particular command to see if it is valid. Using
1829 * the cmdtest ioctl, a user can create a valid cmd and then have it
1830 * executes by the cmd ioctl.
1832 * cmdtest returns 1,2,3,4 or 0, depending on which tests the
1833 * command passes. */
1835 /* step 1: make sure trigger sources are trivially valid */
1837 tmp = cmd->start_src;
1838 cmd->start_src &= TRIG_NOW | TRIG_INT | TRIG_EXT;
1839 if (!cmd->start_src || tmp != cmd->start_src)
1840 err++;
1842 tmp = cmd->scan_begin_src;
1843 cmd->scan_begin_src &= TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW;
1844 if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
1845 err++;
1847 tmp = cmd->convert_src;
1848 cmd->convert_src &= TRIG_TIMER | TRIG_EXT | TRIG_NOW;
1849 if (!cmd->convert_src || tmp != cmd->convert_src)
1850 err++;
1852 tmp = cmd->scan_end_src;
1853 cmd->scan_end_src &= TRIG_COUNT;
1854 if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
1855 err++;
1857 tmp = cmd->stop_src;
1858 cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
1859 if (!cmd->stop_src || tmp != cmd->stop_src)
1860 err++;
1862 if (err)
1863 return 1;
1865 /* step 2: make sure trigger sources are unique and mutually
1866 compatible */
1868 /* note that mutual compatiblity is not an issue here */
1869 if (cmd->scan_begin_src != TRIG_TIMER &&
1870 cmd->scan_begin_src != TRIG_EXT
1871 && cmd->scan_begin_src != TRIG_FOLLOW)
1872 err++;
1873 if (cmd->convert_src != TRIG_TIMER &&
1874 cmd->convert_src != TRIG_EXT && cmd->convert_src != TRIG_NOW)
1875 err++;
1876 if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
1877 err++;
1879 if (err)
1880 return 2;
1882 /* step 3: make sure arguments are trivially compatible */
1884 if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) {
1885 cmd->start_arg = 0;
1886 err++;
1889 if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) {
1890 cmd->start_arg = 39;
1891 err++;
1894 if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) {
1895 cmd->scan_begin_arg = 39;
1896 err++;
1899 if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) {
1900 cmd->convert_arg = 39;
1901 err++;
1903 #define MAX_SPEED 200000 /* in nanoseconds */
1904 #define MIN_SPEED 2000000000 /* in nanoseconds */
1906 if (cmd->scan_begin_src == TRIG_TIMER) {
1907 if (cmd->scan_begin_arg < MAX_SPEED) {
1908 cmd->scan_begin_arg = MAX_SPEED;
1909 err++;
1911 if (cmd->scan_begin_arg > MIN_SPEED) {
1912 cmd->scan_begin_arg = MIN_SPEED;
1913 err++;
1915 } else {
1916 /* external trigger */
1917 /* should be level/edge, hi/lo specification here */
1918 /* should specify multiple external triggers */
1919 /* if(cmd->scan_begin_arg>9){ */
1920 /* cmd->scan_begin_arg=9; */
1921 /* err++; */
1922 /* } */
1924 if (cmd->convert_src == TRIG_TIMER) {
1925 if (cmd->convert_arg < MAX_SPEED) {
1926 cmd->convert_arg = MAX_SPEED;
1927 err++;
1929 if (cmd->convert_arg > MIN_SPEED) {
1930 cmd->convert_arg = MIN_SPEED;
1931 err++;
1933 } else {
1934 /* external trigger */
1935 /* see above */
1936 /* if(cmd->convert_arg>9){ */
1937 /* cmd->convert_arg=9; */
1938 /* err++; */
1939 /* } */
1942 if (cmd->scan_end_arg != cmd->chanlist_len) {
1943 cmd->scan_end_arg = cmd->chanlist_len;
1944 err++;
1946 if (cmd->stop_src == TRIG_COUNT) {
1947 if (cmd->stop_arg > 0x00ffffff) {
1948 cmd->stop_arg = 0x00ffffff;
1949 err++;
1951 } else {
1952 /* TRIG_NONE */
1953 if (cmd->stop_arg != 0) {
1954 cmd->stop_arg = 0;
1955 err++;
1959 if (err)
1960 return 3;
1962 /* step 4: fix up any arguments */
1964 if (cmd->scan_begin_src == TRIG_TIMER) {
1965 tmp = cmd->scan_begin_arg;
1966 s626_ns_to_timer((int *)&cmd->scan_begin_arg,
1967 cmd->flags & TRIG_ROUND_MASK);
1968 if (tmp != cmd->scan_begin_arg)
1969 err++;
1971 if (cmd->convert_src == TRIG_TIMER) {
1972 tmp = cmd->convert_arg;
1973 s626_ns_to_timer((int *)&cmd->convert_arg,
1974 cmd->flags & TRIG_ROUND_MASK);
1975 if (tmp != cmd->convert_arg)
1976 err++;
1977 if (cmd->scan_begin_src == TRIG_TIMER &&
1978 cmd->scan_begin_arg <
1979 cmd->convert_arg * cmd->scan_end_arg) {
1980 cmd->scan_begin_arg =
1981 cmd->convert_arg * cmd->scan_end_arg;
1982 err++;
1986 if (err)
1987 return 4;
1989 return 0;
1992 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1994 /* Stop RPS program in case it is currently running. */
1995 MC_DISABLE(P_MC1, MC1_ERPS1);
1997 /* disable master interrupt */
1998 writel(0, devpriv->base_addr + P_IER);
2000 devpriv->ai_cmd_running = 0;
2002 return 0;
2005 /* This function doesn't require a particular form, this is just what
2006 * happens to be used in some of the drivers. It should convert ns
2007 * nanoseconds to a counter value suitable for programming the device.
2008 * Also, it should adjust ns so that it cooresponds to the actual time
2009 * that the device will use. */
2010 static int s626_ns_to_timer(int *nanosec, int round_mode)
2012 int divider, base;
2014 base = 500; /* 2MHz internal clock */
2016 switch (round_mode) {
2017 case TRIG_ROUND_NEAREST:
2018 default:
2019 divider = (*nanosec + base / 2) / base;
2020 break;
2021 case TRIG_ROUND_DOWN:
2022 divider = (*nanosec) / base;
2023 break;
2024 case TRIG_ROUND_UP:
2025 divider = (*nanosec + base - 1) / base;
2026 break;
2029 *nanosec = base * divider;
2030 return divider - 1;
2033 static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s,
2034 struct comedi_insn *insn, unsigned int *data)
2037 int i;
2038 uint16_t chan = CR_CHAN(insn->chanspec);
2039 int16_t dacdata;
2041 for (i = 0; i < insn->n; i++) {
2042 dacdata = (int16_t) data[i];
2043 devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i];
2044 dacdata -= (0x1fff);
2046 SetDAC(dev, chan, dacdata);
2049 return i;
2052 static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s,
2053 struct comedi_insn *insn, unsigned int *data)
2055 int i;
2057 for (i = 0; i < insn->n; i++)
2058 data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)];
2060 return i;
2063 /* *************** DIGITAL I/O FUNCTIONS ***************
2064 * All DIO functions address a group of DIO channels by means of
2065 * "group" argument. group may be 0, 1 or 2, which correspond to DIO
2066 * ports A, B and C, respectively.
2069 static void s626_dio_init(struct comedi_device *dev)
2071 uint16_t group;
2072 struct comedi_subdevice *s;
2074 /* Prepare to treat writes to WRCapSel as capture disables. */
2075 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2077 /* For each group of sixteen channels ... */
2078 for (group = 0; group < S626_DIO_BANKS; group++) {
2079 s = dev->subdevices + 2 + group;
2080 DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */
2081 DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */
2082 /* captures. */
2083 DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */
2084 /* default edge */
2085 /* polarity. */
2086 DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */
2087 /* to inactive state. */
2089 DEBUG("s626_dio_init: DIO initialized \n");
2092 /* DIO devices are slightly special. Although it is possible to
2093 * implement the insn_read/insn_write interface, it is much more
2094 * useful to applications if you implement the insn_bits interface.
2095 * This allows packed reading/writing of the DIO channels. The comedi
2096 * core can convert between insn_bits and insn_read/write */
2098 static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s,
2099 struct comedi_insn *insn, unsigned int *data)
2102 /* Length of data must be 2 (mask and new data, see below) */
2103 if (insn->n == 0)
2104 return 0;
2106 if (insn->n != 2) {
2107 printk("comedi%d: s626: s626_dio_insn_bits(): Invalid instruction length\n", dev->minor);
2108 return -EINVAL;
2112 * The insn data consists of a mask in data[0] and the new data in
2113 * data[1]. The mask defines which bits we are concerning about.
2114 * The new data must be anded with the mask. Each channel
2115 * corresponds to a bit.
2117 if (data[0]) {
2118 /* Check if requested ports are configured for output */
2119 if ((s->io_bits & data[0]) != data[0])
2120 return -EIO;
2122 s->state &= ~data[0];
2123 s->state |= data[0] & data[1];
2125 /* Write out the new digital output lines */
2127 DEBIwrite(dev, diopriv->WRDOut, s->state);
2129 data[1] = DEBIread(dev, diopriv->RDDIn);
2131 return 2;
2134 static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2135 struct comedi_insn *insn, unsigned int *data)
2138 switch (data[0]) {
2139 case INSN_CONFIG_DIO_QUERY:
2140 data[1] =
2141 (s->io_bits & (1 << CR_CHAN(insn->
2142 chanspec))) ? COMEDI_OUTPUT :
2143 COMEDI_INPUT;
2144 return insn->n;
2145 break;
2146 case COMEDI_INPUT:
2147 s->io_bits &= ~(1 << CR_CHAN(insn->chanspec));
2148 break;
2149 case COMEDI_OUTPUT:
2150 s->io_bits |= 1 << CR_CHAN(insn->chanspec);
2151 break;
2152 default:
2153 return -EINVAL;
2154 break;
2156 DEBIwrite(dev, diopriv->WRDOut, s->io_bits);
2158 return 1;
2161 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
2163 unsigned int group;
2164 unsigned int bitmask;
2165 unsigned int status;
2167 /* select dio bank */
2168 group = chan / 16;
2169 bitmask = 1 << (chan - (16 * group));
2170 DEBUG("s626_dio_set_irq: enable interrupt on dio channel %d group %d\n",
2171 chan - (16 * group), group);
2173 /* set channel to capture positive edge */
2174 status = DEBIread(dev,
2175 ((struct dio_private *) (dev->subdevices + 2 +
2176 group)->private)->RDEdgSel);
2177 DEBIwrite(dev,
2178 ((struct dio_private *) (dev->subdevices + 2 +
2179 group)->private)->WREdgSel, bitmask | status);
2181 /* enable interrupt on selected channel */
2182 status = DEBIread(dev,
2183 ((struct dio_private *) (dev->subdevices + 2 +
2184 group)->private)->RDIntSel);
2185 DEBIwrite(dev,
2186 ((struct dio_private *) (dev->subdevices + 2 +
2187 group)->private)->WRIntSel, bitmask | status);
2189 /* enable edge capture write command */
2190 DEBIwrite(dev, LP_MISC1, MISC1_EDCAP);
2192 /* enable edge capture on selected channel */
2193 status = DEBIread(dev,
2194 ((struct dio_private *) (dev->subdevices + 2 +
2195 group)->private)->RDCapSel);
2196 DEBIwrite(dev,
2197 ((struct dio_private *) (dev->subdevices + 2 +
2198 group)->private)->WRCapSel, bitmask | status);
2200 return 0;
2203 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
2204 unsigned int mask)
2206 DEBUG("s626_dio_reset_irq: disable interrupt on dio channel %d group %d\n", mask, group);
2208 /* disable edge capture write command */
2209 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2211 /* enable edge capture on selected channel */
2212 DEBIwrite(dev,
2213 ((struct dio_private *) (dev->subdevices + 2 +
2214 group)->private)->WRCapSel, mask);
2216 return 0;
2219 static int s626_dio_clear_irq(struct comedi_device *dev)
2221 unsigned int group;
2223 /* disable edge capture write command */
2224 DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP);
2226 for (group = 0; group < S626_DIO_BANKS; group++) {
2227 /* clear pending events and interrupt */
2228 DEBIwrite(dev,
2229 ((struct dio_private *) (dev->subdevices + 2 +
2230 group)->private)->WRCapSel, 0xffff);
2233 return 0;
2236 /* Now this function initializes the value of the counter (data[0])
2237 and set the subdevice. To complete with trigger and interrupt
2238 configuration */
2239 static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s,
2240 struct comedi_insn *insn, unsigned int *data)
2242 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2243 /* index. */
2244 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2245 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */
2246 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2247 /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */
2248 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2249 (CLKENAB_INDEX << BF_CLKENAB);
2250 /* uint16_t DisableIntSrc=TRUE; */
2251 /* uint32_t Preloadvalue; //Counter initial value */
2252 uint16_t valueSrclatch = LATCHSRC_AB_READ;
2253 uint16_t enab = CLKENAB_ALWAYS;
2254 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2256 DEBUG("s626_enc_insn_config: encoder config\n");
2258 /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2260 k->SetMode(dev, k, Setup, TRUE);
2261 Preload(dev, k, *(insn->data));
2262 k->PulseIndex(dev, k);
2263 SetLatchSource(dev, k, valueSrclatch);
2264 k->SetEnable(dev, k, (uint16_t) (enab != 0));
2266 return insn->n;
2269 static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s,
2270 struct comedi_insn *insn, unsigned int *data)
2273 int n;
2274 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2276 DEBUG("s626_enc_insn_read: encoder read channel %d \n",
2277 CR_CHAN(insn->chanspec));
2279 for (n = 0; n < insn->n; n++)
2280 data[n] = ReadLatch(dev, k);
2282 DEBUG("s626_enc_insn_read: encoder sample %d\n", data[n]);
2284 return n;
2287 static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s,
2288 struct comedi_insn *insn, unsigned int *data)
2291 struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)];
2293 DEBUG("s626_enc_insn_write: encoder write channel %d \n",
2294 CR_CHAN(insn->chanspec));
2296 /* Set the preload register */
2297 Preload(dev, k, data[0]);
2299 /* Software index pulse forces the preload register to load */
2300 /* into the counter */
2301 k->SetLoadTrig(dev, k, 0);
2302 k->PulseIndex(dev, k);
2303 k->SetLoadTrig(dev, k, 2);
2305 DEBUG("s626_enc_insn_write: End encoder write\n");
2307 return 1;
2310 static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick)
2312 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
2313 /* index. */
2314 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
2315 (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */
2316 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
2317 (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */
2318 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
2319 (CLKENAB_INDEX << BF_CLKENAB);
2320 uint16_t valueSrclatch = LATCHSRC_A_INDXA;
2321 /* uint16_t enab=CLKENAB_ALWAYS; */
2323 k->SetMode(dev, k, Setup, FALSE);
2325 /* Set the preload register */
2326 Preload(dev, k, tick);
2328 /* Software index pulse forces the preload register to load */
2329 /* into the counter */
2330 k->SetLoadTrig(dev, k, 0);
2331 k->PulseIndex(dev, k);
2333 /* set reload on counter overflow */
2334 k->SetLoadTrig(dev, k, 1);
2336 /* set interrupt on overflow */
2337 k->SetIntSrc(dev, k, INTSRC_OVER);
2339 SetLatchSource(dev, k, valueSrclatch);
2340 /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */
2343 /* *********** DAC FUNCTIONS *********** */
2345 /* Slot 0 base settings. */
2346 #define VECT0 (XSD2 | RSD3 | SIB_A2)
2347 /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */
2349 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
2350 static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
2352 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
2353 static uint8_t trimadrs[] =
2354 { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 };
2356 static void LoadTrimDACs(struct comedi_device *dev)
2358 register uint8_t i;
2360 /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
2361 for (i = 0; i < ARRAY_SIZE(trimchan); i++)
2362 WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i]));
2365 static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan,
2366 uint8_t DacData)
2368 uint32_t chan;
2370 /* Save the new setpoint in case the application needs to read it back later. */
2371 devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData;
2373 /* Map logical channel number to physical channel number. */
2374 chan = (uint32_t) trimchan[LogicalChan];
2376 /* Set up TSL2 records for TrimDac write operation. All slots shift
2377 * 0xFF in from pulled-up SD3 so that the end of the slot sequence
2378 * can be detected.
2381 SETVECT(2, XSD2 | XFIFO_1 | WS3);
2382 /* Slot 2: Send high uint8_t to target TrimDac. */
2383 SETVECT(3, XSD2 | XFIFO_0 | WS3);
2384 /* Slot 3: Send low uint8_t to target TrimDac. */
2385 SETVECT(4, XSD2 | XFIFO_3 | WS1);
2386 /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */
2387 SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS);
2388 /* Slot 5: Send NOP low uint8_t to DAC0. */
2390 /* Construct and transmit target DAC's serial packet:
2391 * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the
2392 * DAC channel's address, and D<7:0> is the DAC setpoint. Append a
2393 * WORD value (that writes a channel 0 NOP command to a non-existent
2394 * main DAC channel) that serves to keep the clock running after the
2395 * packet has been sent to the target DAC.
2398 /* Address the DAC channel within the trimdac device. */
2399 SendDAC(dev, ((uint32_t) chan << 8)
2400 | (uint32_t) DacData); /* Include DAC setpoint data. */
2403 /* ************** EEPROM ACCESS FUNCTIONS ************** */
2404 /* Read uint8_t from EEPROM. */
2406 static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr)
2408 uint8_t rtnval;
2410 /* Send EEPROM target address. */
2411 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW)
2412 /* Byte2 = I2C command: write to I2C EEPROM device. */
2413 | I2C_B1(I2C_ATTRSTOP, addr)
2414 /* Byte1 = EEPROM internal target address. */
2415 | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
2416 /* Abort function and declare error if handshake failed. */
2417 DEBUG("I2Cread: error handshake I2Cread a\n");
2418 return 0;
2420 /* Execute EEPROM read. */
2421 if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) /* Byte2 = I2C */
2422 /* command: read */
2423 /* from I2C EEPROM */
2424 /* device. */
2425 | I2C_B1(I2C_ATTRSTOP, 0) /* Byte1 receives */
2426 /* uint8_t from */
2427 /* EEPROM. */
2428 | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */
2430 /* Abort function and declare error if handshake failed. */
2431 DEBUG("I2Cread: error handshake I2Cread b\n");
2432 return 0;
2434 /* Return copy of EEPROM value. */
2435 rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16);
2436 return rtnval;
2439 static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val)
2441 /* Write I2C command to I2C Transfer Control shadow register. */
2442 WR7146(P_I2CCTRL, val);
2444 /* Upload I2C shadow registers into working registers and wait for */
2445 /* upload confirmation. */
2447 MC_ENABLE(P_MC2, MC2_UPLD_IIC);
2448 while (!MC_TEST(P_MC2, MC2_UPLD_IIC))
2451 /* Wait until I2C bus transfer is finished or an error occurs. */
2452 while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY)
2455 /* Return non-zero if I2C error occured. */
2456 return RR7146(P_I2CCTRL) & I2C_ERR;
2460 /* Private helper function: Write setpoint to an application DAC channel. */
2462 static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata)
2464 register uint16_t signmask;
2465 register uint32_t WSImage;
2467 /* Adjust DAC data polarity and set up Polarity Control Register */
2468 /* image. */
2469 signmask = 1 << chan;
2470 if (dacdata < 0) {
2471 dacdata = -dacdata;
2472 devpriv->Dacpol |= signmask;
2473 } else
2474 devpriv->Dacpol &= ~signmask;
2476 /* Limit DAC setpoint value to valid range. */
2477 if ((uint16_t) dacdata > 0x1FFF)
2478 dacdata = 0x1FFF;
2480 /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2
2481 * and V3 transmit the setpoint to the target DAC. V4 and V5 send
2482 * data to a non-existent TrimDac channel just to keep the clock
2483 * running after sending data to the target DAC. This is necessary
2484 * to eliminate the clock glitch that would otherwise occur at the
2485 * end of the target DAC's serial data stream. When the sequence
2486 * restarts at V0 (after executing V5), the gate array automatically
2487 * disables gating for the DAC clock and all DAC chip selects.
2490 WSImage = (chan & 2) ? WS1 : WS2;
2491 /* Choose DAC chip select to be asserted. */
2492 SETVECT(2, XSD2 | XFIFO_1 | WSImage);
2493 /* Slot 2: Transmit high data byte to target DAC. */
2494 SETVECT(3, XSD2 | XFIFO_0 | WSImage);
2495 /* Slot 3: Transmit low data byte to target DAC. */
2496 SETVECT(4, XSD2 | XFIFO_3 | WS3);
2497 /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
2498 SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS);
2499 /* Slot 5: running after writing target DAC's low data byte. */
2501 /* Construct and transmit target DAC's serial packet:
2502 * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>,
2503 * and D<12:0> is the DAC setpoint. Append a WORD value (that writes
2504 * to a non-existent TrimDac channel) that serves to keep the clock
2505 * running after the packet has been sent to the target DAC.
2507 SendDAC(dev, 0x0F000000
2508 /* Continue clock after target DAC data (write to non-existent trimdac). */
2509 | 0x00004000
2510 /* Address the two main dual-DAC devices (TSL's chip select enables
2511 * target device). */
2512 | ((uint32_t) (chan & 1) << 15)
2513 /* Address the DAC channel within the device. */
2514 | (uint32_t) dacdata); /* Include DAC setpoint data. */
2518 /* Private helper function: Transmit serial data to DAC via Audio
2519 * channel 2. Assumes: (1) TSL2 slot records initialized, and (2)
2520 * Dacpol contains valid target image.
2523 static void SendDAC(struct comedi_device *dev, uint32_t val)
2526 /* START THE SERIAL CLOCK RUNNING ------------- */
2528 /* Assert DAC polarity control and enable gating of DAC serial clock
2529 * and audio bit stream signals. At this point in time we must be
2530 * assured of being in time slot 0. If we are not in slot 0, the
2531 * serial clock and audio stream signals will be disabled; this is
2532 * because the following DEBIwrite statement (which enables signals
2533 * to be passed through the gate array) would execute before the
2534 * trailing edge of WS1/WS3 (which turns off the signals), thus
2535 * causing the signals to be inactive during the DAC write.
2537 DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol);
2539 /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
2541 /* Copy DAC setpoint value to DAC's output DMA buffer. */
2543 /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */
2544 *devpriv->pDacWBuf = val;
2546 /* enab the output DMA transfer. This will cause the DMAC to copy
2547 * the DAC's data value to A2's output FIFO. The DMA transfer will
2548 * then immediately terminate because the protection address is
2549 * reached upon transfer of the first DWORD value.
2551 MC_ENABLE(P_MC1, MC1_A2OUT);
2553 /* While the DMA transfer is executing ... */
2555 /* Reset Audio2 output FIFO's underflow flag (along with any other
2556 * FIFO underflow/overflow flags). When set, this flag will
2557 * indicate that we have emerged from slot 0.
2559 WR7146(P_ISR, ISR_AFOU);
2561 /* Wait for the DMA transfer to finish so that there will be data
2562 * available in the FIFO when time slot 1 tries to transfer a DWORD
2563 * from the FIFO to the output buffer register. We test for DMA
2564 * Done by polling the DMAC enable flag; this flag is automatically
2565 * cleared when the transfer has finished.
2567 while ((RR7146(P_MC1) & MC1_A2OUT) != 0)
2570 /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
2572 /* FIFO data is now available, so we enable execution of time slots
2573 * 1 and higher by clearing the EOS flag in slot 0. Note that SD3
2574 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
2575 * detection.
2577 SETVECT(0, XSD2 | RSD3 | SIB_A2);
2579 /* Wait for slot 1 to execute to ensure that the Packet will be
2580 * transmitted. This is detected by polling the Audio2 output FIFO
2581 * underflow flag, which will be set when slot 1 execution has
2582 * finished transferring the DAC's data DWORD from the output FIFO
2583 * to the output buffer register.
2585 while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0)
2588 /* Set up to trap execution at slot 0 when the TSL sequencer cycles
2589 * back to slot 0 after executing the EOS in slot 5. Also,
2590 * simultaneously shift out and in the 0x00 that is ALWAYS the value
2591 * stored in the last byte to be shifted out of the FIFO's DWORD
2592 * buffer register.
2594 SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS);
2596 /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
2598 /* Wait for the TSL to finish executing all time slots before
2599 * exiting this function. We must do this so that the next DAC
2600 * write doesn't start, thereby enabling clock/chip select signals:
2602 * 1. Before the TSL sequence cycles back to slot 0, which disables
2603 * the clock/cs signal gating and traps slot // list execution.
2604 * we have not yet finished slot 5 then the clock/cs signals are
2605 * still gated and we have not finished transmitting the stream.
2607 * 2. While slots 2-5 are executing due to a late slot 0 trap. In
2608 * this case, the slot sequence is currently repeating, but with
2609 * clock/cs signals disabled. We must wait for slot 0 to trap
2610 * execution before setting up the next DAC setpoint DMA transfer
2611 * and enabling the clock/cs signals. To detect the end of slot 5,
2612 * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If
2613 * the TSL has not yet finished executing slot 5 ...
2615 if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) {
2616 /* The trap was set on time and we are still executing somewhere
2617 * in slots 2-5, so we now wait for slot 0 to execute and trap
2618 * TSL execution. This is detected when FB_BUFFER2 MSB changes
2619 * from 0xFF to 0x00, which slot 0 causes to happen by shifting
2620 * out/in on SD2 the 0x00 that is always referenced by slot 5.
2622 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0)
2625 /* Either (1) we were too late setting the slot 0 trap; the TSL
2626 * sequencer restarted slot 0 before we could set the EOS trap flag,
2627 * or (2) we were not late and execution is now trapped at slot 0.
2628 * In either case, we must now change slot 0 so that it will store
2629 * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
2630 * In order to do this, we reprogram slot 0 so that it will shift in
2631 * SD3, which is driven only by a pull-up resistor.
2633 SETVECT(0, RSD3 | SIB_A2 | EOS);
2635 /* Wait for slot 0 to execute, at which time the TSL is setup for
2636 * the next DAC write. This is detected when FB_BUFFER2 MSB changes
2637 * from 0x00 to 0xFF.
2639 while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0)
2643 static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage)
2645 DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */
2646 /* MISC2 register. */
2647 DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */
2648 DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */
2651 /* Initialize the DEBI interface for all transfers. */
2653 static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr)
2655 uint16_t retval;
2657 /* Set up DEBI control register value in shadow RAM. */
2658 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2660 /* Execute the DEBI transfer. */
2661 DEBItransfer(dev);
2663 /* Fetch target register value. */
2664 retval = (uint16_t) RR7146(P_DEBIAD);
2666 /* Return register value. */
2667 return retval;
2670 /* Execute a DEBI transfer. This must be called from within a */
2671 /* critical section. */
2672 static void DEBItransfer(struct comedi_device *dev)
2674 /* Initiate upload of shadow RAM to DEBI control register. */
2675 MC_ENABLE(P_MC2, MC2_UPLD_DEBI);
2677 /* Wait for completion of upload from shadow RAM to DEBI control */
2678 /* register. */
2679 while (!MC_TEST(P_MC2, MC2_UPLD_DEBI))
2682 /* Wait until DEBI transfer is done. */
2683 while (RR7146(P_PSR) & PSR_DEBI_S)
2687 /* Write a value to a gate array register. */
2688 static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata)
2691 /* Set up DEBI control register value in shadow RAM. */
2692 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2693 WR7146(P_DEBIAD, wdata);
2695 /* Execute the DEBI transfer. */
2696 DEBItransfer(dev);
2699 /* Replace the specified bits in a gate array register. Imports: mask
2700 * specifies bits that are to be preserved, wdata is new value to be
2701 * or'd with the masked original.
2703 static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask,
2704 uint16_t wdata)
2707 /* Copy target gate array register into P_DEBIAD register. */
2708 WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr);
2709 /* Set up DEBI control reg value in shadow RAM. */
2710 DEBItransfer(dev); /* Execute the DEBI Read transfer. */
2712 /* Write back the modified image. */
2713 WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr);
2714 /* Set up DEBI control reg value in shadow RAM. */
2716 WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask));
2717 /* Modify the register image. */
2718 DEBItransfer(dev); /* Execute the DEBI Write transfer. */
2721 static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize)
2723 void *vbptr;
2724 dma_addr_t vpptr;
2726 DEBUG("CloseDMAB: Entering S626DRV_CloseDMAB():\n");
2727 if (pdma == NULL)
2728 return;
2729 /* find the matching allocation from the board struct */
2731 vbptr = pdma->LogicalBase;
2732 vpptr = pdma->PhysicalBase;
2733 if (vbptr) {
2734 pci_free_consistent(devpriv->pdev, bsize, vbptr, vpptr);
2735 pdma->LogicalBase = 0;
2736 pdma->PhysicalBase = 0;
2738 DEBUG("CloseDMAB(): Logical=%p, bsize=%d, Physical=0x%x\n",
2739 vbptr, bsize, (uint32_t) vpptr);
2743 /* ****** COUNTER FUNCTIONS ******* */
2744 /* All counter functions address a specific counter by means of the
2745 * "Counter" argument, which is a logical counter number. The Counter
2746 * argument may have any of the following legal values: 0=0A, 1=1A,
2747 * 2=2A, 3=0B, 4=1B, 5=2B.
2750 /* Forward declarations for functions that are common to both A and B counters: */
2752 /* ****** PRIVATE COUNTER FUNCTIONS ****** */
2754 /* Read a counter's output latch. */
2756 static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k)
2758 register uint32_t value;
2759 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch enter\n"); */
2761 /* Latch counts and fetch LSW of latched counts value. */
2762 value = (uint32_t) DEBIread(dev, k->MyLatchLsw);
2764 /* Fetch MSW of latched counts and combine with LSW. */
2765 value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16);
2767 /* DEBUG FIXME DEBUG("ReadLatch: Read Latch exit\n"); */
2769 /* Return latched counts. */
2770 return value;
2773 /* Reset a counter's index and overflow event capture flags. */
2775 static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k)
2777 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2778 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
2781 static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k)
2783 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
2784 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B);
2787 /* Return counter setup in a format (COUNTER_SETUP) that is consistent */
2788 /* for both A and B counters. */
2790 static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k)
2792 register uint16_t cra;
2793 register uint16_t crb;
2794 register uint16_t setup;
2796 /* Fetch CRA and CRB register images. */
2797 cra = DEBIread(dev, k->MyCRA);
2798 crb = DEBIread(dev, k->MyCRB);
2800 /* Populate the standardized counter setup bit fields. Note: */
2801 /* IndexSrc is restricted to ENC_X or IndxPol. */
2802 setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */
2803 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */
2804 | ((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */
2805 | ((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */
2806 | ((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */
2807 | ((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */
2809 /* Adjust mode-dependent parameters. */
2810 if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */
2811 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2812 | ((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */
2813 | (MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */
2815 else /* If Counter mode (ClkSrcA<1> == 0): */
2816 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */
2817 | ((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */
2818 | (((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */
2819 (MULT_X1 << STDBIT_CLKMULT) :
2820 ((cra >> (CRABIT_CLKMULT_A -
2821 STDBIT_CLKMULT)) &
2822 STDMSK_CLKMULT)));
2824 /* Return adjusted counter setup. */
2825 return setup;
2828 static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k)
2830 register uint16_t cra;
2831 register uint16_t crb;
2832 register uint16_t setup;
2834 /* Fetch CRA and CRB register images. */
2835 cra = DEBIread(dev, k->MyCRA);
2836 crb = DEBIread(dev, k->MyCRB);
2838 /* Populate the standardized counter setup bit fields. Note: */
2839 /* IndexSrc is restricted to ENC_X or IndxPol. */
2840 setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */
2841 | ((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */
2842 | ((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */
2843 | ((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */
2844 | ((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */
2845 | ((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */
2847 /* Adjust mode-dependent parameters. */
2848 if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */
2849 setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */
2850 | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2851 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2853 else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */
2854 setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2855 | (MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */
2856 | ((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */
2858 else /* If Counter mode (ClkSrcB<1> == 0): */
2859 setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */
2860 | ((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */
2861 | ((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */
2863 /* Return adjusted counter setup. */
2864 return setup;
2868 * Set the operating mode for the specified counter. The setup
2869 * parameter is treated as a COUNTER_SETUP data type. The following
2870 * parameters are programmable (all other parms are ignored): ClkMult,
2871 * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
2874 static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2875 uint16_t DisableIntSrc)
2877 register uint16_t cra;
2878 register uint16_t crb;
2879 register uint16_t setup = Setup; /* Cache the Standard Setup. */
2881 /* Initialize CRA and CRB images. */
2882 cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */
2883 | ((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */
2885 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */
2886 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */
2888 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2889 if (!DisableIntSrc)
2890 cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2891 CRABIT_INTSRC_A));
2893 /* Populate all mode-dependent attributes of CRA & CRB images. */
2894 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2895 case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */
2896 /* (Extender valid only for B counters). */
2898 case CLKSRC_TIMER: /* Timer Mode: */
2899 cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */
2900 | ((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */
2901 | (1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */
2902 | (MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */
2903 break;
2905 default: /* Counter Mode: */
2906 cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */
2907 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */
2908 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */
2909 (MULT_X1 << CRABIT_CLKMULT_A) :
2910 ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A -
2911 STDBIT_CLKMULT))));
2914 /* Force positive index polarity if IndxSrc is software-driven only, */
2915 /* otherwise pass it through. */
2916 if (~setup & STDMSK_INDXSRC)
2917 cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A -
2918 STDBIT_INDXPOL));
2920 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2921 /* enable mask to indicate the counter interrupt is disabled. */
2922 if (DisableIntSrc)
2923 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2925 /* While retaining CounterB and LatchSrc configurations, program the */
2926 /* new counter operating mode. */
2927 DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra);
2928 DEBIreplace(dev, k->MyCRB,
2929 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb);
2932 static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup,
2933 uint16_t DisableIntSrc)
2935 register uint16_t cra;
2936 register uint16_t crb;
2937 register uint16_t setup = Setup; /* Cache the Standard Setup. */
2939 /* Initialize CRA and CRB images. */
2940 cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */
2942 crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */
2943 | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */
2944 | ((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */
2946 /* Force IntSrc to Disabled if DisableIntSrc is asserted. */
2947 if (!DisableIntSrc)
2948 crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC -
2949 CRBBIT_INTSRC_B));
2951 /* Populate all mode-dependent attributes of CRA & CRB images. */
2952 switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) {
2953 case CLKSRC_TIMER: /* Timer Mode: */
2954 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */
2955 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */
2956 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */
2957 | (MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */
2958 break;
2960 case CLKSRC_EXTENDER: /* Extender Mode: */
2961 cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */
2962 | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */
2963 crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */
2964 | (MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */
2965 break;
2967 default: /* Counter Mode: */
2968 cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */
2969 crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */
2970 | (((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */
2971 (MULT_X1 << CRBBIT_CLKMULT_B) :
2972 ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B -
2973 STDBIT_CLKMULT))));
2976 /* Force positive index polarity if IndxSrc is software-driven only, */
2977 /* otherwise pass it through. */
2978 if (~setup & STDMSK_INDXSRC)
2979 crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL -
2980 CRBBIT_INDXPOL_B));
2982 /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */
2983 /* enable mask to indicate the counter interrupt is disabled. */
2984 if (DisableIntSrc)
2985 devpriv->CounterIntEnabs &= ~k->MyEventBits[3];
2987 /* While retaining CounterA and LatchSrc configurations, program the */
2988 /* new counter operating mode. */
2989 DEBIreplace(dev, k->MyCRA,
2990 (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra);
2991 DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb);
2994 /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */
2996 static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
2998 DEBUG("SetEnable_A: SetEnable_A enter 3541\n");
2999 DEBIreplace(dev, k->MyCRB,
3000 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)),
3001 (uint16_t) (enab << CRBBIT_CLKENAB_A));
3004 static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab)
3006 DEBIreplace(dev, k->MyCRB,
3007 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)),
3008 (uint16_t) (enab << CRBBIT_CLKENAB_B));
3011 static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k)
3013 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1;
3016 static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k)
3018 return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1;
3021 /* Return/set a counter pair's latch trigger source. 0: On read
3022 * access, 1: A index latches A, 2: B index latches B, 3: A overflow
3023 * latches B.
3026 static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, uint16_t value)
3028 DEBUG("SetLatchSource: SetLatchSource enter 3550 \n");
3029 DEBIreplace(dev, k->MyCRB,
3030 (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)),
3031 (uint16_t) (value << CRBBIT_LATCHSRC));
3033 DEBUG("SetLatchSource: SetLatchSource exit \n");
3037 * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k )
3039 * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3;
3044 * Return/set the event that will trigger transfer of the preload
3045 * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow,
3046 * 2=OverflowA (B counters only), 3=disabled.
3049 static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3051 DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A),
3052 (uint16_t) (Trig << CRABIT_LOADSRC_A));
3055 static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig)
3057 DEBIreplace(dev, k->MyCRB,
3058 (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)),
3059 (uint16_t) (Trig << CRBBIT_LOADSRC_B));
3062 static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k)
3064 return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3;
3067 static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k)
3069 return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3;
3072 /* Return/set counter interrupt source and clear any captured
3073 * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly,
3074 * 2=IndexOnly, 3=IndexAndOverflow.
3077 static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k,
3078 uint16_t IntSource)
3080 /* Reset any pending counter overflow or index captures. */
3081 DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL),
3082 CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A);
3084 /* Program counter interrupt source. */
3085 DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A,
3086 (uint16_t) (IntSource << CRABIT_INTSRC_A));
3088 /* Update MISC2 interrupt enable mask. */
3089 devpriv->CounterIntEnabs =
3090 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3091 MyEventBits[IntSource];
3094 static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k,
3095 uint16_t IntSource)
3097 uint16_t crb;
3099 /* Cache writeable CRB register image. */
3100 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL;
3102 /* Reset any pending counter overflow or index captures. */
3103 DEBIwrite(dev, k->MyCRB,
3104 (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B));
3106 /* Program counter interrupt source. */
3107 DEBIwrite(dev, k->MyCRB,
3108 (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource <<
3109 CRBBIT_INTSRC_B)));
3111 /* Update MISC2 interrupt enable mask. */
3112 devpriv->CounterIntEnabs =
3113 (devpriv->CounterIntEnabs & ~k->MyEventBits[3]) | k->
3114 MyEventBits[IntSource];
3117 static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k)
3119 return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3;
3122 static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k)
3124 return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3;
3127 /* Return/set the clock multiplier. */
3129 /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3130 /* { */
3131 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */
3132 /* } */
3134 /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */
3135 /* { */
3136 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */
3137 /* } */
3139 /* Return/set the clock polarity. */
3141 /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3142 /* { */
3143 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */
3144 /* } */
3146 /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */
3147 /* { */
3148 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */
3149 /* } */
3151 /* Return/set the clock source. */
3153 /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */
3154 /* { */
3155 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */
3156 /* } */
3158 /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */
3159 /* { */
3160 /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */
3161 /* } */
3163 /* Return/set the index polarity. */
3165 /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3166 /* { */
3167 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */
3168 /* } */
3170 /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */
3171 /* { */
3172 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */
3173 /* } */
3175 /* Return/set the index source. */
3177 /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */
3178 /* { */
3179 /* DEBUG("SetIndexSrc: set index src enter 3700\n"); */
3180 /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */
3181 /* } */
3183 /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */
3184 /* { */
3185 /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */
3186 /* } */
3188 /* Generate an index pulse. */
3190 static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k)
3192 register uint16_t cra;
3194 DEBUG("PulseIndex_A: pulse index enter\n");
3196 cra = DEBIread(dev, k->MyCRA); /* Pulse index. */
3197 DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A));
3198 DEBUG("PulseIndex_A: pulse index step1\n");
3199 DEBIwrite(dev, k->MyCRA, cra);
3202 static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k)
3204 register uint16_t crb;
3206 crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */
3207 DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B));
3208 DEBIwrite(dev, k->MyCRB, crb);
3211 /* Write value into counter preload register. */
3213 static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value)
3215 DEBUG("Preload: preload enter\n");
3216 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); /* Write value to preload register. */
3217 DEBUG("Preload: preload step 1\n");
3218 DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2),
3219 (uint16_t) (value >> 16));
3222 static void CountersInit(struct comedi_device *dev)
3224 int chan;
3225 struct enc_private *k;
3226 uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */
3227 /* index. */
3228 (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */
3229 (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */
3230 (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */
3231 (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */
3232 (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */
3233 (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */
3235 /* Disable all counter interrupts and clear any captured counter events. */
3236 for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
3237 k = &encpriv[chan];
3238 k->SetMode(dev, k, Setup, TRUE);
3239 k->SetIntSrc(dev, k, 0);
3240 k->ResetCapFlags(dev, k);
3241 k->SetEnable(dev, k, CLKENAB_ALWAYS);
3243 DEBUG("CountersInit: counters initialized \n");