e1000e: convert driver to use extended descriptors
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ethernet / intel / e1000e / netdev.c
blob55c3cc1d6834c3f1f57af0004cddf3a4c30caeb5
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos_params.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
55 #include "e1000.h"
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "1.3.16" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
63 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
65 static const struct e1000_info *e1000_info_tbl[] = {
66 [board_82571] = &e1000_82571_info,
67 [board_82572] = &e1000_82572_info,
68 [board_82573] = &e1000_82573_info,
69 [board_82574] = &e1000_82574_info,
70 [board_82583] = &e1000_82583_info,
71 [board_80003es2lan] = &e1000_es2_info,
72 [board_ich8lan] = &e1000_ich8_info,
73 [board_ich9lan] = &e1000_ich9_info,
74 [board_ich10lan] = &e1000_ich10_info,
75 [board_pchlan] = &e1000_pch_info,
76 [board_pch2lan] = &e1000_pch2_info,
79 struct e1000_reg_info {
80 u32 ofs;
81 char *name;
84 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
90 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
96 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
98 /* General Registers */
99 {E1000_CTRL, "CTRL"},
100 {E1000_STATUS, "STATUS"},
101 {E1000_CTRL_EXT, "CTRL_EXT"},
103 /* Interrupt Registers */
104 {E1000_ICR, "ICR"},
106 /* Rx Registers */
107 {E1000_RCTL, "RCTL"},
108 {E1000_RDLEN, "RDLEN"},
109 {E1000_RDH, "RDH"},
110 {E1000_RDT, "RDT"},
111 {E1000_RDTR, "RDTR"},
112 {E1000_RXDCTL(0), "RXDCTL"},
113 {E1000_ERT, "ERT"},
114 {E1000_RDBAL, "RDBAL"},
115 {E1000_RDBAH, "RDBAH"},
116 {E1000_RDFH, "RDFH"},
117 {E1000_RDFT, "RDFT"},
118 {E1000_RDFHS, "RDFHS"},
119 {E1000_RDFTS, "RDFTS"},
120 {E1000_RDFPC, "RDFPC"},
122 /* Tx Registers */
123 {E1000_TCTL, "TCTL"},
124 {E1000_TDBAL, "TDBAL"},
125 {E1000_TDBAH, "TDBAH"},
126 {E1000_TDLEN, "TDLEN"},
127 {E1000_TDH, "TDH"},
128 {E1000_TDT, "TDT"},
129 {E1000_TIDV, "TIDV"},
130 {E1000_TXDCTL(0), "TXDCTL"},
131 {E1000_TADV, "TADV"},
132 {E1000_TARC(0), "TARC"},
133 {E1000_TDFH, "TDFH"},
134 {E1000_TDFT, "TDFT"},
135 {E1000_TDFHS, "TDFHS"},
136 {E1000_TDFTS, "TDFTS"},
137 {E1000_TDFPC, "TDFPC"},
139 /* List Terminator */
144 * e1000_regdump - register printout routine
146 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
148 int n = 0;
149 char rname[16];
150 u32 regs[8];
152 switch (reginfo->ofs) {
153 case E1000_RXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_RXDCTL(n));
156 break;
157 case E1000_TXDCTL(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TXDCTL(n));
160 break;
161 case E1000_TARC(0):
162 for (n = 0; n < 2; n++)
163 regs[n] = __er32(hw, E1000_TARC(n));
164 break;
165 default:
166 printk(KERN_INFO "%-15s %08x\n",
167 reginfo->name, __er32(hw, reginfo->ofs));
168 return;
171 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172 printk(KERN_INFO "%-15s ", rname);
173 for (n = 0; n < 2; n++)
174 printk(KERN_CONT "%08x ", regs[n]);
175 printk(KERN_CONT "\n");
179 * e1000e_dump - Print registers, Tx-ring and Rx-ring
181 static void e1000e_dump(struct e1000_adapter *adapter)
183 struct net_device *netdev = adapter->netdev;
184 struct e1000_hw *hw = &adapter->hw;
185 struct e1000_reg_info *reginfo;
186 struct e1000_ring *tx_ring = adapter->tx_ring;
187 struct e1000_tx_desc *tx_desc;
188 struct my_u0 {
189 u64 a;
190 u64 b;
191 } *u0;
192 struct e1000_buffer *buffer_info;
193 struct e1000_ring *rx_ring = adapter->rx_ring;
194 union e1000_rx_desc_packet_split *rx_desc_ps;
195 union e1000_rx_desc_extended *rx_desc;
196 struct my_u1 {
197 u64 a;
198 u64 b;
199 u64 c;
200 u64 d;
201 } *u1;
202 u32 staterr;
203 int i = 0;
205 if (!netif_msg_hw(adapter))
206 return;
208 /* Print netdevice Info */
209 if (netdev) {
210 dev_info(&adapter->pdev->dev, "Net device Info\n");
211 printk(KERN_INFO "Device Name state "
212 "trans_start last_rx\n");
213 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
214 netdev->name, netdev->state, netdev->trans_start,
215 netdev->last_rx);
218 /* Print Registers */
219 dev_info(&adapter->pdev->dev, "Register Dump\n");
220 printk(KERN_INFO " Register Name Value\n");
221 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
222 reginfo->name; reginfo++) {
223 e1000_regdump(hw, reginfo);
226 /* Print Tx Ring Summary */
227 if (!netdev || !netif_running(netdev))
228 goto exit;
230 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
231 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
232 " leng ntw timestamp\n");
233 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
235 0, tx_ring->next_to_use, tx_ring->next_to_clean,
236 (unsigned long long)buffer_info->dma,
237 buffer_info->length,
238 buffer_info->next_to_watch,
239 (unsigned long long)buffer_info->time_stamp);
241 /* Print Tx Ring */
242 if (!netif_msg_tx_done(adapter))
243 goto rx_ring_summary;
245 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 * Legacy Transmit Descriptor
250 * +--------------------------------------------------------------+
251 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
252 * +--------------------------------------------------------------+
253 * 8 | Special | CSS | Status | CMD | CSO | Length |
254 * +--------------------------------------------------------------+
255 * 63 48 47 36 35 32 31 24 23 16 15 0
257 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258 * 63 48 47 40 39 32 31 16 15 8 7 0
259 * +----------------------------------------------------------------+
260 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
261 * +----------------------------------------------------------------+
262 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
263 * +----------------------------------------------------------------+
264 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 * Extended Data Descriptor (DTYP=0x1)
267 * +----------------------------------------------------------------+
268 * 0 | Buffer Address [63:0] |
269 * +----------------------------------------------------------------+
270 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
271 * +----------------------------------------------------------------+
272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
275 " [bi->dma ] leng ntw timestamp bi->skb "
276 "<-- Legacy format\n");
277 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 " [bi->dma ] leng ntw timestamp bi->skb "
279 "<-- Ext Context format\n");
280 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
281 " [bi->dma ] leng ntw timestamp bi->skb "
282 "<-- Ext Data format\n");
283 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
284 tx_desc = E1000_TX_DESC(*tx_ring, i);
285 buffer_info = &tx_ring->buffer_info[i];
286 u0 = (struct my_u0 *)tx_desc;
287 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
288 "%04X %3X %016llX %p",
289 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
290 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
291 (unsigned long long)le64_to_cpu(u0->a),
292 (unsigned long long)le64_to_cpu(u0->b),
293 (unsigned long long)buffer_info->dma,
294 buffer_info->length, buffer_info->next_to_watch,
295 (unsigned long long)buffer_info->time_stamp,
296 buffer_info->skb);
297 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
298 printk(KERN_CONT " NTC/U\n");
299 else if (i == tx_ring->next_to_use)
300 printk(KERN_CONT " NTU\n");
301 else if (i == tx_ring->next_to_clean)
302 printk(KERN_CONT " NTC\n");
303 else
304 printk(KERN_CONT "\n");
306 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
307 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308 16, 1, phys_to_virt(buffer_info->dma),
309 buffer_info->length, true);
312 /* Print Rx Ring Summary */
313 rx_ring_summary:
314 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315 printk(KERN_INFO "Queue [NTU] [NTC]\n");
316 printk(KERN_INFO " %5d %5X %5X\n", 0,
317 rx_ring->next_to_use, rx_ring->next_to_clean);
319 /* Print Rx Ring */
320 if (!netif_msg_rx_status(adapter))
321 goto exit;
323 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324 switch (adapter->rx_ps_pages) {
325 case 1:
326 case 2:
327 case 3:
328 /* [Extended] Packet Split Receive Descriptor Format
330 * +-----------------------------------------------------+
331 * 0 | Buffer Address 0 [63:0] |
332 * +-----------------------------------------------------+
333 * 8 | Buffer Address 1 [63:0] |
334 * +-----------------------------------------------------+
335 * 16 | Buffer Address 2 [63:0] |
336 * +-----------------------------------------------------+
337 * 24 | Buffer Address 3 [63:0] |
338 * +-----------------------------------------------------+
340 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
341 "[buffer 1 63:0 ] "
342 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
343 "[bi->skb] <-- Ext Pkt Split format\n");
344 /* [Extended] Receive Descriptor (Write-Back) Format
346 * 63 48 47 32 31 13 12 8 7 4 3 0
347 * +------------------------------------------------------+
348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
349 * | Checksum | Ident | | Queue | | Type |
350 * +------------------------------------------------------+
351 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 * +------------------------------------------------------+
353 * 63 48 47 32 31 20 19 0
355 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
356 "[vl l0 ee es] "
357 "[ l3 l2 l1 hs] [reserved ] ---------------- "
358 "[bi->skb] <-- Ext Rx Write-Back format\n");
359 for (i = 0; i < rx_ring->count; i++) {
360 buffer_info = &rx_ring->buffer_info[i];
361 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
362 u1 = (struct my_u1 *)rx_desc_ps;
363 staterr =
364 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365 if (staterr & E1000_RXD_STAT_DD) {
366 /* Descriptor Done */
367 printk(KERN_INFO "RWB[0x%03X] %016llX "
368 "%016llX %016llX %016llX "
369 "---------------- %p", i,
370 (unsigned long long)le64_to_cpu(u1->a),
371 (unsigned long long)le64_to_cpu(u1->b),
372 (unsigned long long)le64_to_cpu(u1->c),
373 (unsigned long long)le64_to_cpu(u1->d),
374 buffer_info->skb);
375 } else {
376 printk(KERN_INFO "R [0x%03X] %016llX "
377 "%016llX %016llX %016llX %016llX %p", i,
378 (unsigned long long)le64_to_cpu(u1->a),
379 (unsigned long long)le64_to_cpu(u1->b),
380 (unsigned long long)le64_to_cpu(u1->c),
381 (unsigned long long)le64_to_cpu(u1->d),
382 (unsigned long long)buffer_info->dma,
383 buffer_info->skb);
385 if (netif_msg_pktdata(adapter))
386 print_hex_dump(KERN_INFO, "",
387 DUMP_PREFIX_ADDRESS, 16, 1,
388 phys_to_virt(buffer_info->dma),
389 adapter->rx_ps_bsize0, true);
392 if (i == rx_ring->next_to_use)
393 printk(KERN_CONT " NTU\n");
394 else if (i == rx_ring->next_to_clean)
395 printk(KERN_CONT " NTC\n");
396 else
397 printk(KERN_CONT "\n");
399 break;
400 default:
401 case 0:
402 /* Extended Receive Descriptor (Read) Format
404 * +-----------------------------------------------------+
405 * 0 | Buffer Address [63:0] |
406 * +-----------------------------------------------------+
407 * 8 | Reserved |
408 * +-----------------------------------------------------+
410 printk(KERN_INFO "R [desc] [buf addr 63:0 ] "
411 "[reserved 63:0 ] [bi->dma ] "
412 "[bi->skb] <-- Ext (Read) format\n");
413 /* Extended Receive Descriptor (Write-Back) Format
415 * 63 48 47 32 31 24 23 4 3 0
416 * +------------------------------------------------------+
417 * | RSS Hash | | | |
418 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
419 * | Packet | IP | | | Type |
420 * | Checksum | Ident | | | |
421 * +------------------------------------------------------+
422 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
423 * +------------------------------------------------------+
424 * 63 48 47 32 31 20 19 0
426 printk(KERN_INFO "RWB[desc] [cs ipid mrq] "
427 "[vt ln xe xs] "
428 "[bi->skb] <-- Ext (Write-Back) format\n");
430 for (i = 0; i < rx_ring->count; i++) {
431 buffer_info = &rx_ring->buffer_info[i];
432 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
433 u1 = (struct my_u1 *)rx_desc;
434 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
435 if (staterr & E1000_RXD_STAT_DD) {
436 /* Descriptor Done */
437 printk(KERN_INFO "RWB[0x%03X] %016llX "
438 "%016llX ---------------- %p", i,
439 (unsigned long long)le64_to_cpu(u1->a),
440 (unsigned long long)le64_to_cpu(u1->b),
441 buffer_info->skb);
442 } else {
443 printk(KERN_INFO "R [0x%03X] %016llX "
444 "%016llX %016llX %p", i,
445 (unsigned long long)le64_to_cpu(u1->a),
446 (unsigned long long)le64_to_cpu(u1->b),
447 (unsigned long long)buffer_info->dma,
448 buffer_info->skb);
450 if (netif_msg_pktdata(adapter))
451 print_hex_dump(KERN_INFO, "",
452 DUMP_PREFIX_ADDRESS, 16,
454 phys_to_virt
455 (buffer_info->dma),
456 adapter->rx_buffer_len,
457 true);
460 if (i == rx_ring->next_to_use)
461 printk(KERN_CONT " NTU\n");
462 else if (i == rx_ring->next_to_clean)
463 printk(KERN_CONT " NTC\n");
464 else
465 printk(KERN_CONT "\n");
469 exit:
470 return;
474 * e1000_desc_unused - calculate if we have unused descriptors
476 static int e1000_desc_unused(struct e1000_ring *ring)
478 if (ring->next_to_clean > ring->next_to_use)
479 return ring->next_to_clean - ring->next_to_use - 1;
481 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
485 * e1000_receive_skb - helper function to handle Rx indications
486 * @adapter: board private structure
487 * @status: descriptor status field as written by hardware
488 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
489 * @skb: pointer to sk_buff to be indicated to stack
491 static void e1000_receive_skb(struct e1000_adapter *adapter,
492 struct net_device *netdev, struct sk_buff *skb,
493 u8 status, __le16 vlan)
495 u16 tag = le16_to_cpu(vlan);
496 skb->protocol = eth_type_trans(skb, netdev);
498 if (status & E1000_RXD_STAT_VP)
499 __vlan_hwaccel_put_tag(skb, tag);
501 napi_gro_receive(&adapter->napi, skb);
505 * e1000_rx_checksum - Receive Checksum Offload
506 * @adapter: board private structure
507 * @status_err: receive descriptor status and error fields
508 * @csum: receive descriptor csum field
509 * @sk_buff: socket buffer with received data
511 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
512 u32 csum, struct sk_buff *skb)
514 u16 status = (u16)status_err;
515 u8 errors = (u8)(status_err >> 24);
517 skb_checksum_none_assert(skb);
519 /* Ignore Checksum bit is set */
520 if (status & E1000_RXD_STAT_IXSM)
521 return;
522 /* TCP/UDP checksum error bit is set */
523 if (errors & E1000_RXD_ERR_TCPE) {
524 /* let the stack verify checksum errors */
525 adapter->hw_csum_err++;
526 return;
529 /* TCP/UDP Checksum has not been calculated */
530 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
531 return;
533 /* It must be a TCP or UDP packet with a valid checksum */
534 if (status & E1000_RXD_STAT_TCPCS) {
535 /* TCP checksum is good */
536 skb->ip_summed = CHECKSUM_UNNECESSARY;
537 } else {
539 * IP fragment with UDP payload
540 * Hardware complements the payload checksum, so we undo it
541 * and then put the value in host order for further stack use.
543 __sum16 sum = (__force __sum16)htons(csum);
544 skb->csum = csum_unfold(~sum);
545 skb->ip_summed = CHECKSUM_COMPLETE;
547 adapter->hw_csum_good++;
551 * e1000_alloc_rx_buffers - Replace used receive buffers
552 * @adapter: address of board private structure
554 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
555 int cleaned_count, gfp_t gfp)
557 struct net_device *netdev = adapter->netdev;
558 struct pci_dev *pdev = adapter->pdev;
559 struct e1000_ring *rx_ring = adapter->rx_ring;
560 union e1000_rx_desc_extended *rx_desc;
561 struct e1000_buffer *buffer_info;
562 struct sk_buff *skb;
563 unsigned int i;
564 unsigned int bufsz = adapter->rx_buffer_len;
566 i = rx_ring->next_to_use;
567 buffer_info = &rx_ring->buffer_info[i];
569 while (cleaned_count--) {
570 skb = buffer_info->skb;
571 if (skb) {
572 skb_trim(skb, 0);
573 goto map_skb;
576 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
577 if (!skb) {
578 /* Better luck next round */
579 adapter->alloc_rx_buff_failed++;
580 break;
583 buffer_info->skb = skb;
584 map_skb:
585 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
586 adapter->rx_buffer_len,
587 DMA_FROM_DEVICE);
588 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
589 dev_err(&pdev->dev, "Rx DMA map failed\n");
590 adapter->rx_dma_failed++;
591 break;
594 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
595 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
597 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
599 * Force memory writes to complete before letting h/w
600 * know there are new descriptors to fetch. (Only
601 * applicable for weak-ordered memory model archs,
602 * such as IA-64).
604 wmb();
605 writel(i, adapter->hw.hw_addr + rx_ring->tail);
607 i++;
608 if (i == rx_ring->count)
609 i = 0;
610 buffer_info = &rx_ring->buffer_info[i];
613 rx_ring->next_to_use = i;
617 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
618 * @adapter: address of board private structure
620 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
621 int cleaned_count, gfp_t gfp)
623 struct net_device *netdev = adapter->netdev;
624 struct pci_dev *pdev = adapter->pdev;
625 union e1000_rx_desc_packet_split *rx_desc;
626 struct e1000_ring *rx_ring = adapter->rx_ring;
627 struct e1000_buffer *buffer_info;
628 struct e1000_ps_page *ps_page;
629 struct sk_buff *skb;
630 unsigned int i, j;
632 i = rx_ring->next_to_use;
633 buffer_info = &rx_ring->buffer_info[i];
635 while (cleaned_count--) {
636 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
638 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
639 ps_page = &buffer_info->ps_pages[j];
640 if (j >= adapter->rx_ps_pages) {
641 /* all unused desc entries get hw null ptr */
642 rx_desc->read.buffer_addr[j + 1] =
643 ~cpu_to_le64(0);
644 continue;
646 if (!ps_page->page) {
647 ps_page->page = alloc_page(gfp);
648 if (!ps_page->page) {
649 adapter->alloc_rx_buff_failed++;
650 goto no_buffers;
652 ps_page->dma = dma_map_page(&pdev->dev,
653 ps_page->page,
654 0, PAGE_SIZE,
655 DMA_FROM_DEVICE);
656 if (dma_mapping_error(&pdev->dev,
657 ps_page->dma)) {
658 dev_err(&adapter->pdev->dev,
659 "Rx DMA page map failed\n");
660 adapter->rx_dma_failed++;
661 goto no_buffers;
665 * Refresh the desc even if buffer_addrs
666 * didn't change because each write-back
667 * erases this info.
669 rx_desc->read.buffer_addr[j + 1] =
670 cpu_to_le64(ps_page->dma);
673 skb = __netdev_alloc_skb_ip_align(netdev,
674 adapter->rx_ps_bsize0,
675 gfp);
677 if (!skb) {
678 adapter->alloc_rx_buff_failed++;
679 break;
682 buffer_info->skb = skb;
683 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
684 adapter->rx_ps_bsize0,
685 DMA_FROM_DEVICE);
686 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
687 dev_err(&pdev->dev, "Rx DMA map failed\n");
688 adapter->rx_dma_failed++;
689 /* cleanup skb */
690 dev_kfree_skb_any(skb);
691 buffer_info->skb = NULL;
692 break;
695 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
697 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
699 * Force memory writes to complete before letting h/w
700 * know there are new descriptors to fetch. (Only
701 * applicable for weak-ordered memory model archs,
702 * such as IA-64).
704 wmb();
705 writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
708 i++;
709 if (i == rx_ring->count)
710 i = 0;
711 buffer_info = &rx_ring->buffer_info[i];
714 no_buffers:
715 rx_ring->next_to_use = i;
719 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
720 * @adapter: address of board private structure
721 * @cleaned_count: number of buffers to allocate this pass
724 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
725 int cleaned_count, gfp_t gfp)
727 struct net_device *netdev = adapter->netdev;
728 struct pci_dev *pdev = adapter->pdev;
729 union e1000_rx_desc_extended *rx_desc;
730 struct e1000_ring *rx_ring = adapter->rx_ring;
731 struct e1000_buffer *buffer_info;
732 struct sk_buff *skb;
733 unsigned int i;
734 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
736 i = rx_ring->next_to_use;
737 buffer_info = &rx_ring->buffer_info[i];
739 while (cleaned_count--) {
740 skb = buffer_info->skb;
741 if (skb) {
742 skb_trim(skb, 0);
743 goto check_page;
746 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
747 if (unlikely(!skb)) {
748 /* Better luck next round */
749 adapter->alloc_rx_buff_failed++;
750 break;
753 buffer_info->skb = skb;
754 check_page:
755 /* allocate a new page if necessary */
756 if (!buffer_info->page) {
757 buffer_info->page = alloc_page(gfp);
758 if (unlikely(!buffer_info->page)) {
759 adapter->alloc_rx_buff_failed++;
760 break;
764 if (!buffer_info->dma)
765 buffer_info->dma = dma_map_page(&pdev->dev,
766 buffer_info->page, 0,
767 PAGE_SIZE,
768 DMA_FROM_DEVICE);
770 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
771 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
773 if (unlikely(++i == rx_ring->count))
774 i = 0;
775 buffer_info = &rx_ring->buffer_info[i];
778 if (likely(rx_ring->next_to_use != i)) {
779 rx_ring->next_to_use = i;
780 if (unlikely(i-- == 0))
781 i = (rx_ring->count - 1);
783 /* Force memory writes to complete before letting h/w
784 * know there are new descriptors to fetch. (Only
785 * applicable for weak-ordered memory model archs,
786 * such as IA-64). */
787 wmb();
788 writel(i, adapter->hw.hw_addr + rx_ring->tail);
793 * e1000_clean_rx_irq - Send received data up the network stack; legacy
794 * @adapter: board private structure
796 * the return value indicates whether actual cleaning was done, there
797 * is no guarantee that everything was cleaned
799 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
800 int *work_done, int work_to_do)
802 struct net_device *netdev = adapter->netdev;
803 struct pci_dev *pdev = adapter->pdev;
804 struct e1000_hw *hw = &adapter->hw;
805 struct e1000_ring *rx_ring = adapter->rx_ring;
806 union e1000_rx_desc_extended *rx_desc, *next_rxd;
807 struct e1000_buffer *buffer_info, *next_buffer;
808 u32 length, staterr;
809 unsigned int i;
810 int cleaned_count = 0;
811 bool cleaned = 0;
812 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
814 i = rx_ring->next_to_clean;
815 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
816 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
817 buffer_info = &rx_ring->buffer_info[i];
819 while (staterr & E1000_RXD_STAT_DD) {
820 struct sk_buff *skb;
822 if (*work_done >= work_to_do)
823 break;
824 (*work_done)++;
825 rmb(); /* read descriptor and rx_buffer_info after status DD */
827 skb = buffer_info->skb;
828 buffer_info->skb = NULL;
830 prefetch(skb->data - NET_IP_ALIGN);
832 i++;
833 if (i == rx_ring->count)
834 i = 0;
835 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
836 prefetch(next_rxd);
838 next_buffer = &rx_ring->buffer_info[i];
840 cleaned = 1;
841 cleaned_count++;
842 dma_unmap_single(&pdev->dev,
843 buffer_info->dma,
844 adapter->rx_buffer_len,
845 DMA_FROM_DEVICE);
846 buffer_info->dma = 0;
848 length = le16_to_cpu(rx_desc->wb.upper.length);
851 * !EOP means multiple descriptors were used to store a single
852 * packet, if that's the case we need to toss it. In fact, we
853 * need to toss every packet with the EOP bit clear and the
854 * next frame that _does_ have the EOP bit set, as it is by
855 * definition only a frame fragment
857 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
858 adapter->flags2 |= FLAG2_IS_DISCARDING;
860 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
861 /* All receives must fit into a single buffer */
862 e_dbg("Receive packet consumed multiple buffers\n");
863 /* recycle */
864 buffer_info->skb = skb;
865 if (staterr & E1000_RXD_STAT_EOP)
866 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
867 goto next_desc;
870 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
871 /* recycle */
872 buffer_info->skb = skb;
873 goto next_desc;
876 /* adjust length to remove Ethernet CRC */
877 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
878 length -= 4;
880 total_rx_bytes += length;
881 total_rx_packets++;
884 * code added for copybreak, this should improve
885 * performance for small packets with large amounts
886 * of reassembly being done in the stack
888 if (length < copybreak) {
889 struct sk_buff *new_skb =
890 netdev_alloc_skb_ip_align(netdev, length);
891 if (new_skb) {
892 skb_copy_to_linear_data_offset(new_skb,
893 -NET_IP_ALIGN,
894 (skb->data -
895 NET_IP_ALIGN),
896 (length +
897 NET_IP_ALIGN));
898 /* save the skb in buffer_info as good */
899 buffer_info->skb = skb;
900 skb = new_skb;
902 /* else just continue with the old one */
904 /* end copybreak code */
905 skb_put(skb, length);
907 /* Receive Checksum Offload */
908 e1000_rx_checksum(adapter, staterr,
909 le16_to_cpu(rx_desc->wb.lower.hi_dword.
910 csum_ip.csum), skb);
912 e1000_receive_skb(adapter, netdev, skb, staterr,
913 rx_desc->wb.upper.vlan);
915 next_desc:
916 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
918 /* return some buffers to hardware, one at a time is too slow */
919 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
920 adapter->alloc_rx_buf(adapter, cleaned_count,
921 GFP_ATOMIC);
922 cleaned_count = 0;
925 /* use prefetched values */
926 rx_desc = next_rxd;
927 buffer_info = next_buffer;
929 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
931 rx_ring->next_to_clean = i;
933 cleaned_count = e1000_desc_unused(rx_ring);
934 if (cleaned_count)
935 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
937 adapter->total_rx_bytes += total_rx_bytes;
938 adapter->total_rx_packets += total_rx_packets;
939 return cleaned;
942 static void e1000_put_txbuf(struct e1000_adapter *adapter,
943 struct e1000_buffer *buffer_info)
945 if (buffer_info->dma) {
946 if (buffer_info->mapped_as_page)
947 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
948 buffer_info->length, DMA_TO_DEVICE);
949 else
950 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
951 buffer_info->length, DMA_TO_DEVICE);
952 buffer_info->dma = 0;
954 if (buffer_info->skb) {
955 dev_kfree_skb_any(buffer_info->skb);
956 buffer_info->skb = NULL;
958 buffer_info->time_stamp = 0;
961 static void e1000_print_hw_hang(struct work_struct *work)
963 struct e1000_adapter *adapter = container_of(work,
964 struct e1000_adapter,
965 print_hang_task);
966 struct e1000_ring *tx_ring = adapter->tx_ring;
967 unsigned int i = tx_ring->next_to_clean;
968 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
969 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
970 struct e1000_hw *hw = &adapter->hw;
971 u16 phy_status, phy_1000t_status, phy_ext_status;
972 u16 pci_status;
974 if (test_bit(__E1000_DOWN, &adapter->state))
975 return;
977 e1e_rphy(hw, PHY_STATUS, &phy_status);
978 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
979 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
981 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
983 /* detected Hardware unit hang */
984 e_err("Detected Hardware Unit Hang:\n"
985 " TDH <%x>\n"
986 " TDT <%x>\n"
987 " next_to_use <%x>\n"
988 " next_to_clean <%x>\n"
989 "buffer_info[next_to_clean]:\n"
990 " time_stamp <%lx>\n"
991 " next_to_watch <%x>\n"
992 " jiffies <%lx>\n"
993 " next_to_watch.status <%x>\n"
994 "MAC Status <%x>\n"
995 "PHY Status <%x>\n"
996 "PHY 1000BASE-T Status <%x>\n"
997 "PHY Extended Status <%x>\n"
998 "PCI Status <%x>\n",
999 readl(adapter->hw.hw_addr + tx_ring->head),
1000 readl(adapter->hw.hw_addr + tx_ring->tail),
1001 tx_ring->next_to_use,
1002 tx_ring->next_to_clean,
1003 tx_ring->buffer_info[eop].time_stamp,
1004 eop,
1005 jiffies,
1006 eop_desc->upper.fields.status,
1007 er32(STATUS),
1008 phy_status,
1009 phy_1000t_status,
1010 phy_ext_status,
1011 pci_status);
1015 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1016 * @adapter: board private structure
1018 * the return value indicates whether actual cleaning was done, there
1019 * is no guarantee that everything was cleaned
1021 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
1023 struct net_device *netdev = adapter->netdev;
1024 struct e1000_hw *hw = &adapter->hw;
1025 struct e1000_ring *tx_ring = adapter->tx_ring;
1026 struct e1000_tx_desc *tx_desc, *eop_desc;
1027 struct e1000_buffer *buffer_info;
1028 unsigned int i, eop;
1029 unsigned int count = 0;
1030 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1032 i = tx_ring->next_to_clean;
1033 eop = tx_ring->buffer_info[i].next_to_watch;
1034 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1036 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1037 (count < tx_ring->count)) {
1038 bool cleaned = false;
1039 rmb(); /* read buffer_info after eop_desc */
1040 for (; !cleaned; count++) {
1041 tx_desc = E1000_TX_DESC(*tx_ring, i);
1042 buffer_info = &tx_ring->buffer_info[i];
1043 cleaned = (i == eop);
1045 if (cleaned) {
1046 total_tx_packets += buffer_info->segs;
1047 total_tx_bytes += buffer_info->bytecount;
1050 e1000_put_txbuf(adapter, buffer_info);
1051 tx_desc->upper.data = 0;
1053 i++;
1054 if (i == tx_ring->count)
1055 i = 0;
1058 if (i == tx_ring->next_to_use)
1059 break;
1060 eop = tx_ring->buffer_info[i].next_to_watch;
1061 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1064 tx_ring->next_to_clean = i;
1066 #define TX_WAKE_THRESHOLD 32
1067 if (count && netif_carrier_ok(netdev) &&
1068 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1069 /* Make sure that anybody stopping the queue after this
1070 * sees the new next_to_clean.
1072 smp_mb();
1074 if (netif_queue_stopped(netdev) &&
1075 !(test_bit(__E1000_DOWN, &adapter->state))) {
1076 netif_wake_queue(netdev);
1077 ++adapter->restart_queue;
1081 if (adapter->detect_tx_hung) {
1083 * Detect a transmit hang in hardware, this serializes the
1084 * check with the clearing of time_stamp and movement of i
1086 adapter->detect_tx_hung = 0;
1087 if (tx_ring->buffer_info[i].time_stamp &&
1088 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1089 + (adapter->tx_timeout_factor * HZ)) &&
1090 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1091 schedule_work(&adapter->print_hang_task);
1092 netif_stop_queue(netdev);
1095 adapter->total_tx_bytes += total_tx_bytes;
1096 adapter->total_tx_packets += total_tx_packets;
1097 return count < tx_ring->count;
1101 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1102 * @adapter: board private structure
1104 * the return value indicates whether actual cleaning was done, there
1105 * is no guarantee that everything was cleaned
1107 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1108 int *work_done, int work_to_do)
1110 struct e1000_hw *hw = &adapter->hw;
1111 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1112 struct net_device *netdev = adapter->netdev;
1113 struct pci_dev *pdev = adapter->pdev;
1114 struct e1000_ring *rx_ring = adapter->rx_ring;
1115 struct e1000_buffer *buffer_info, *next_buffer;
1116 struct e1000_ps_page *ps_page;
1117 struct sk_buff *skb;
1118 unsigned int i, j;
1119 u32 length, staterr;
1120 int cleaned_count = 0;
1121 bool cleaned = 0;
1122 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1124 i = rx_ring->next_to_clean;
1125 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1126 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1127 buffer_info = &rx_ring->buffer_info[i];
1129 while (staterr & E1000_RXD_STAT_DD) {
1130 if (*work_done >= work_to_do)
1131 break;
1132 (*work_done)++;
1133 skb = buffer_info->skb;
1134 rmb(); /* read descriptor and rx_buffer_info after status DD */
1136 /* in the packet split case this is header only */
1137 prefetch(skb->data - NET_IP_ALIGN);
1139 i++;
1140 if (i == rx_ring->count)
1141 i = 0;
1142 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1143 prefetch(next_rxd);
1145 next_buffer = &rx_ring->buffer_info[i];
1147 cleaned = 1;
1148 cleaned_count++;
1149 dma_unmap_single(&pdev->dev, buffer_info->dma,
1150 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1151 buffer_info->dma = 0;
1153 /* see !EOP comment in other Rx routine */
1154 if (!(staterr & E1000_RXD_STAT_EOP))
1155 adapter->flags2 |= FLAG2_IS_DISCARDING;
1157 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1158 e_dbg("Packet Split buffers didn't pick up the full "
1159 "packet\n");
1160 dev_kfree_skb_irq(skb);
1161 if (staterr & E1000_RXD_STAT_EOP)
1162 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1163 goto next_desc;
1166 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1167 dev_kfree_skb_irq(skb);
1168 goto next_desc;
1171 length = le16_to_cpu(rx_desc->wb.middle.length0);
1173 if (!length) {
1174 e_dbg("Last part of the packet spanning multiple "
1175 "descriptors\n");
1176 dev_kfree_skb_irq(skb);
1177 goto next_desc;
1180 /* Good Receive */
1181 skb_put(skb, length);
1185 * this looks ugly, but it seems compiler issues make it
1186 * more efficient than reusing j
1188 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1191 * page alloc/put takes too long and effects small packet
1192 * throughput, so unsplit small packets and save the alloc/put
1193 * only valid in softirq (napi) context to call kmap_*
1195 if (l1 && (l1 <= copybreak) &&
1196 ((length + l1) <= adapter->rx_ps_bsize0)) {
1197 u8 *vaddr;
1199 ps_page = &buffer_info->ps_pages[0];
1202 * there is no documentation about how to call
1203 * kmap_atomic, so we can't hold the mapping
1204 * very long
1206 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1207 PAGE_SIZE, DMA_FROM_DEVICE);
1208 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1209 memcpy(skb_tail_pointer(skb), vaddr, l1);
1210 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1211 dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1212 PAGE_SIZE, DMA_FROM_DEVICE);
1214 /* remove the CRC */
1215 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1216 l1 -= 4;
1218 skb_put(skb, l1);
1219 goto copydone;
1220 } /* if */
1223 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1224 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1225 if (!length)
1226 break;
1228 ps_page = &buffer_info->ps_pages[j];
1229 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1230 DMA_FROM_DEVICE);
1231 ps_page->dma = 0;
1232 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1233 ps_page->page = NULL;
1234 skb->len += length;
1235 skb->data_len += length;
1236 skb->truesize += length;
1239 /* strip the ethernet crc, problem is we're using pages now so
1240 * this whole operation can get a little cpu intensive
1242 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1243 pskb_trim(skb, skb->len - 4);
1245 copydone:
1246 total_rx_bytes += skb->len;
1247 total_rx_packets++;
1249 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1250 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1252 if (rx_desc->wb.upper.header_status &
1253 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1254 adapter->rx_hdr_split++;
1256 e1000_receive_skb(adapter, netdev, skb,
1257 staterr, rx_desc->wb.middle.vlan);
1259 next_desc:
1260 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1261 buffer_info->skb = NULL;
1263 /* return some buffers to hardware, one at a time is too slow */
1264 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1265 adapter->alloc_rx_buf(adapter, cleaned_count,
1266 GFP_ATOMIC);
1267 cleaned_count = 0;
1270 /* use prefetched values */
1271 rx_desc = next_rxd;
1272 buffer_info = next_buffer;
1274 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1276 rx_ring->next_to_clean = i;
1278 cleaned_count = e1000_desc_unused(rx_ring);
1279 if (cleaned_count)
1280 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1282 adapter->total_rx_bytes += total_rx_bytes;
1283 adapter->total_rx_packets += total_rx_packets;
1284 return cleaned;
1288 * e1000_consume_page - helper function
1290 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1291 u16 length)
1293 bi->page = NULL;
1294 skb->len += length;
1295 skb->data_len += length;
1296 skb->truesize += length;
1300 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1301 * @adapter: board private structure
1303 * the return value indicates whether actual cleaning was done, there
1304 * is no guarantee that everything was cleaned
1307 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1308 int *work_done, int work_to_do)
1310 struct net_device *netdev = adapter->netdev;
1311 struct pci_dev *pdev = adapter->pdev;
1312 struct e1000_ring *rx_ring = adapter->rx_ring;
1313 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1314 struct e1000_buffer *buffer_info, *next_buffer;
1315 u32 length, staterr;
1316 unsigned int i;
1317 int cleaned_count = 0;
1318 bool cleaned = false;
1319 unsigned int total_rx_bytes=0, total_rx_packets=0;
1321 i = rx_ring->next_to_clean;
1322 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1323 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1324 buffer_info = &rx_ring->buffer_info[i];
1326 while (staterr & E1000_RXD_STAT_DD) {
1327 struct sk_buff *skb;
1329 if (*work_done >= work_to_do)
1330 break;
1331 (*work_done)++;
1332 rmb(); /* read descriptor and rx_buffer_info after status DD */
1334 skb = buffer_info->skb;
1335 buffer_info->skb = NULL;
1337 ++i;
1338 if (i == rx_ring->count)
1339 i = 0;
1340 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1341 prefetch(next_rxd);
1343 next_buffer = &rx_ring->buffer_info[i];
1345 cleaned = true;
1346 cleaned_count++;
1347 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1348 DMA_FROM_DEVICE);
1349 buffer_info->dma = 0;
1351 length = le16_to_cpu(rx_desc->wb.upper.length);
1353 /* errors is only valid for DD + EOP descriptors */
1354 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1355 (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
1356 /* recycle both page and skb */
1357 buffer_info->skb = skb;
1358 /* an error means any chain goes out the window too */
1359 if (rx_ring->rx_skb_top)
1360 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1361 rx_ring->rx_skb_top = NULL;
1362 goto next_desc;
1365 #define rxtop (rx_ring->rx_skb_top)
1366 if (!(staterr & E1000_RXD_STAT_EOP)) {
1367 /* this descriptor is only the beginning (or middle) */
1368 if (!rxtop) {
1369 /* this is the beginning of a chain */
1370 rxtop = skb;
1371 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1372 0, length);
1373 } else {
1374 /* this is the middle of a chain */
1375 skb_fill_page_desc(rxtop,
1376 skb_shinfo(rxtop)->nr_frags,
1377 buffer_info->page, 0, length);
1378 /* re-use the skb, only consumed the page */
1379 buffer_info->skb = skb;
1381 e1000_consume_page(buffer_info, rxtop, length);
1382 goto next_desc;
1383 } else {
1384 if (rxtop) {
1385 /* end of the chain */
1386 skb_fill_page_desc(rxtop,
1387 skb_shinfo(rxtop)->nr_frags,
1388 buffer_info->page, 0, length);
1389 /* re-use the current skb, we only consumed the
1390 * page */
1391 buffer_info->skb = skb;
1392 skb = rxtop;
1393 rxtop = NULL;
1394 e1000_consume_page(buffer_info, skb, length);
1395 } else {
1396 /* no chain, got EOP, this buf is the packet
1397 * copybreak to save the put_page/alloc_page */
1398 if (length <= copybreak &&
1399 skb_tailroom(skb) >= length) {
1400 u8 *vaddr;
1401 vaddr = kmap_atomic(buffer_info->page,
1402 KM_SKB_DATA_SOFTIRQ);
1403 memcpy(skb_tail_pointer(skb), vaddr,
1404 length);
1405 kunmap_atomic(vaddr,
1406 KM_SKB_DATA_SOFTIRQ);
1407 /* re-use the page, so don't erase
1408 * buffer_info->page */
1409 skb_put(skb, length);
1410 } else {
1411 skb_fill_page_desc(skb, 0,
1412 buffer_info->page, 0,
1413 length);
1414 e1000_consume_page(buffer_info, skb,
1415 length);
1420 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1421 e1000_rx_checksum(adapter, staterr,
1422 le16_to_cpu(rx_desc->wb.lower.hi_dword.
1423 csum_ip.csum), skb);
1425 /* probably a little skewed due to removing CRC */
1426 total_rx_bytes += skb->len;
1427 total_rx_packets++;
1429 /* eth type trans needs skb->data to point to something */
1430 if (!pskb_may_pull(skb, ETH_HLEN)) {
1431 e_err("pskb_may_pull failed.\n");
1432 dev_kfree_skb_irq(skb);
1433 goto next_desc;
1436 e1000_receive_skb(adapter, netdev, skb, staterr,
1437 rx_desc->wb.upper.vlan);
1439 next_desc:
1440 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1442 /* return some buffers to hardware, one at a time is too slow */
1443 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1444 adapter->alloc_rx_buf(adapter, cleaned_count,
1445 GFP_ATOMIC);
1446 cleaned_count = 0;
1449 /* use prefetched values */
1450 rx_desc = next_rxd;
1451 buffer_info = next_buffer;
1453 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1455 rx_ring->next_to_clean = i;
1457 cleaned_count = e1000_desc_unused(rx_ring);
1458 if (cleaned_count)
1459 adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1461 adapter->total_rx_bytes += total_rx_bytes;
1462 adapter->total_rx_packets += total_rx_packets;
1463 return cleaned;
1467 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1468 * @adapter: board private structure
1470 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1472 struct e1000_ring *rx_ring = adapter->rx_ring;
1473 struct e1000_buffer *buffer_info;
1474 struct e1000_ps_page *ps_page;
1475 struct pci_dev *pdev = adapter->pdev;
1476 unsigned int i, j;
1478 /* Free all the Rx ring sk_buffs */
1479 for (i = 0; i < rx_ring->count; i++) {
1480 buffer_info = &rx_ring->buffer_info[i];
1481 if (buffer_info->dma) {
1482 if (adapter->clean_rx == e1000_clean_rx_irq)
1483 dma_unmap_single(&pdev->dev, buffer_info->dma,
1484 adapter->rx_buffer_len,
1485 DMA_FROM_DEVICE);
1486 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1487 dma_unmap_page(&pdev->dev, buffer_info->dma,
1488 PAGE_SIZE,
1489 DMA_FROM_DEVICE);
1490 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1491 dma_unmap_single(&pdev->dev, buffer_info->dma,
1492 adapter->rx_ps_bsize0,
1493 DMA_FROM_DEVICE);
1494 buffer_info->dma = 0;
1497 if (buffer_info->page) {
1498 put_page(buffer_info->page);
1499 buffer_info->page = NULL;
1502 if (buffer_info->skb) {
1503 dev_kfree_skb(buffer_info->skb);
1504 buffer_info->skb = NULL;
1507 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1508 ps_page = &buffer_info->ps_pages[j];
1509 if (!ps_page->page)
1510 break;
1511 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1512 DMA_FROM_DEVICE);
1513 ps_page->dma = 0;
1514 put_page(ps_page->page);
1515 ps_page->page = NULL;
1519 /* there also may be some cached data from a chained receive */
1520 if (rx_ring->rx_skb_top) {
1521 dev_kfree_skb(rx_ring->rx_skb_top);
1522 rx_ring->rx_skb_top = NULL;
1525 /* Zero out the descriptor ring */
1526 memset(rx_ring->desc, 0, rx_ring->size);
1528 rx_ring->next_to_clean = 0;
1529 rx_ring->next_to_use = 0;
1530 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1532 writel(0, adapter->hw.hw_addr + rx_ring->head);
1533 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1536 static void e1000e_downshift_workaround(struct work_struct *work)
1538 struct e1000_adapter *adapter = container_of(work,
1539 struct e1000_adapter, downshift_task);
1541 if (test_bit(__E1000_DOWN, &adapter->state))
1542 return;
1544 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1548 * e1000_intr_msi - Interrupt Handler
1549 * @irq: interrupt number
1550 * @data: pointer to a network interface device structure
1552 static irqreturn_t e1000_intr_msi(int irq, void *data)
1554 struct net_device *netdev = data;
1555 struct e1000_adapter *adapter = netdev_priv(netdev);
1556 struct e1000_hw *hw = &adapter->hw;
1557 u32 icr = er32(ICR);
1560 * read ICR disables interrupts using IAM
1563 if (icr & E1000_ICR_LSC) {
1564 hw->mac.get_link_status = 1;
1566 * ICH8 workaround-- Call gig speed drop workaround on cable
1567 * disconnect (LSC) before accessing any PHY registers
1569 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1570 (!(er32(STATUS) & E1000_STATUS_LU)))
1571 schedule_work(&adapter->downshift_task);
1574 * 80003ES2LAN workaround-- For packet buffer work-around on
1575 * link down event; disable receives here in the ISR and reset
1576 * adapter in watchdog
1578 if (netif_carrier_ok(netdev) &&
1579 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1580 /* disable receives */
1581 u32 rctl = er32(RCTL);
1582 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1583 adapter->flags |= FLAG_RX_RESTART_NOW;
1585 /* guard against interrupt when we're going down */
1586 if (!test_bit(__E1000_DOWN, &adapter->state))
1587 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1590 if (napi_schedule_prep(&adapter->napi)) {
1591 adapter->total_tx_bytes = 0;
1592 adapter->total_tx_packets = 0;
1593 adapter->total_rx_bytes = 0;
1594 adapter->total_rx_packets = 0;
1595 __napi_schedule(&adapter->napi);
1598 return IRQ_HANDLED;
1602 * e1000_intr - Interrupt Handler
1603 * @irq: interrupt number
1604 * @data: pointer to a network interface device structure
1606 static irqreturn_t e1000_intr(int irq, void *data)
1608 struct net_device *netdev = data;
1609 struct e1000_adapter *adapter = netdev_priv(netdev);
1610 struct e1000_hw *hw = &adapter->hw;
1611 u32 rctl, icr = er32(ICR);
1613 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1614 return IRQ_NONE; /* Not our interrupt */
1617 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1618 * not set, then the adapter didn't send an interrupt
1620 if (!(icr & E1000_ICR_INT_ASSERTED))
1621 return IRQ_NONE;
1624 * Interrupt Auto-Mask...upon reading ICR,
1625 * interrupts are masked. No need for the
1626 * IMC write
1629 if (icr & E1000_ICR_LSC) {
1630 hw->mac.get_link_status = 1;
1632 * ICH8 workaround-- Call gig speed drop workaround on cable
1633 * disconnect (LSC) before accessing any PHY registers
1635 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1636 (!(er32(STATUS) & E1000_STATUS_LU)))
1637 schedule_work(&adapter->downshift_task);
1640 * 80003ES2LAN workaround--
1641 * For packet buffer work-around on link down event;
1642 * disable receives here in the ISR and
1643 * reset adapter in watchdog
1645 if (netif_carrier_ok(netdev) &&
1646 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1647 /* disable receives */
1648 rctl = er32(RCTL);
1649 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1650 adapter->flags |= FLAG_RX_RESTART_NOW;
1652 /* guard against interrupt when we're going down */
1653 if (!test_bit(__E1000_DOWN, &adapter->state))
1654 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1657 if (napi_schedule_prep(&adapter->napi)) {
1658 adapter->total_tx_bytes = 0;
1659 adapter->total_tx_packets = 0;
1660 adapter->total_rx_bytes = 0;
1661 adapter->total_rx_packets = 0;
1662 __napi_schedule(&adapter->napi);
1665 return IRQ_HANDLED;
1668 static irqreturn_t e1000_msix_other(int irq, void *data)
1670 struct net_device *netdev = data;
1671 struct e1000_adapter *adapter = netdev_priv(netdev);
1672 struct e1000_hw *hw = &adapter->hw;
1673 u32 icr = er32(ICR);
1675 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1676 if (!test_bit(__E1000_DOWN, &adapter->state))
1677 ew32(IMS, E1000_IMS_OTHER);
1678 return IRQ_NONE;
1681 if (icr & adapter->eiac_mask)
1682 ew32(ICS, (icr & adapter->eiac_mask));
1684 if (icr & E1000_ICR_OTHER) {
1685 if (!(icr & E1000_ICR_LSC))
1686 goto no_link_interrupt;
1687 hw->mac.get_link_status = 1;
1688 /* guard against interrupt when we're going down */
1689 if (!test_bit(__E1000_DOWN, &adapter->state))
1690 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693 no_link_interrupt:
1694 if (!test_bit(__E1000_DOWN, &adapter->state))
1695 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1697 return IRQ_HANDLED;
1701 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1703 struct net_device *netdev = data;
1704 struct e1000_adapter *adapter = netdev_priv(netdev);
1705 struct e1000_hw *hw = &adapter->hw;
1706 struct e1000_ring *tx_ring = adapter->tx_ring;
1709 adapter->total_tx_bytes = 0;
1710 adapter->total_tx_packets = 0;
1712 if (!e1000_clean_tx_irq(adapter))
1713 /* Ring was not completely cleaned, so fire another interrupt */
1714 ew32(ICS, tx_ring->ims_val);
1716 return IRQ_HANDLED;
1719 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1721 struct net_device *netdev = data;
1722 struct e1000_adapter *adapter = netdev_priv(netdev);
1724 /* Write the ITR value calculated at the end of the
1725 * previous interrupt.
1727 if (adapter->rx_ring->set_itr) {
1728 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1729 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1730 adapter->rx_ring->set_itr = 0;
1733 if (napi_schedule_prep(&adapter->napi)) {
1734 adapter->total_rx_bytes = 0;
1735 adapter->total_rx_packets = 0;
1736 __napi_schedule(&adapter->napi);
1738 return IRQ_HANDLED;
1742 * e1000_configure_msix - Configure MSI-X hardware
1744 * e1000_configure_msix sets up the hardware to properly
1745 * generate MSI-X interrupts.
1747 static void e1000_configure_msix(struct e1000_adapter *adapter)
1749 struct e1000_hw *hw = &adapter->hw;
1750 struct e1000_ring *rx_ring = adapter->rx_ring;
1751 struct e1000_ring *tx_ring = adapter->tx_ring;
1752 int vector = 0;
1753 u32 ctrl_ext, ivar = 0;
1755 adapter->eiac_mask = 0;
1757 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1758 if (hw->mac.type == e1000_82574) {
1759 u32 rfctl = er32(RFCTL);
1760 rfctl |= E1000_RFCTL_ACK_DIS;
1761 ew32(RFCTL, rfctl);
1764 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1765 /* Configure Rx vector */
1766 rx_ring->ims_val = E1000_IMS_RXQ0;
1767 adapter->eiac_mask |= rx_ring->ims_val;
1768 if (rx_ring->itr_val)
1769 writel(1000000000 / (rx_ring->itr_val * 256),
1770 hw->hw_addr + rx_ring->itr_register);
1771 else
1772 writel(1, hw->hw_addr + rx_ring->itr_register);
1773 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1775 /* Configure Tx vector */
1776 tx_ring->ims_val = E1000_IMS_TXQ0;
1777 vector++;
1778 if (tx_ring->itr_val)
1779 writel(1000000000 / (tx_ring->itr_val * 256),
1780 hw->hw_addr + tx_ring->itr_register);
1781 else
1782 writel(1, hw->hw_addr + tx_ring->itr_register);
1783 adapter->eiac_mask |= tx_ring->ims_val;
1784 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1786 /* set vector for Other Causes, e.g. link changes */
1787 vector++;
1788 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1789 if (rx_ring->itr_val)
1790 writel(1000000000 / (rx_ring->itr_val * 256),
1791 hw->hw_addr + E1000_EITR_82574(vector));
1792 else
1793 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1795 /* Cause Tx interrupts on every write back */
1796 ivar |= (1 << 31);
1798 ew32(IVAR, ivar);
1800 /* enable MSI-X PBA support */
1801 ctrl_ext = er32(CTRL_EXT);
1802 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1804 /* Auto-Mask Other interrupts upon ICR read */
1805 #define E1000_EIAC_MASK_82574 0x01F00000
1806 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1807 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1808 ew32(CTRL_EXT, ctrl_ext);
1809 e1e_flush();
1812 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1814 if (adapter->msix_entries) {
1815 pci_disable_msix(adapter->pdev);
1816 kfree(adapter->msix_entries);
1817 adapter->msix_entries = NULL;
1818 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1819 pci_disable_msi(adapter->pdev);
1820 adapter->flags &= ~FLAG_MSI_ENABLED;
1825 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1827 * Attempt to configure interrupts using the best available
1828 * capabilities of the hardware and kernel.
1830 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1832 int err;
1833 int i;
1835 switch (adapter->int_mode) {
1836 case E1000E_INT_MODE_MSIX:
1837 if (adapter->flags & FLAG_HAS_MSIX) {
1838 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1839 adapter->msix_entries = kcalloc(adapter->num_vectors,
1840 sizeof(struct msix_entry),
1841 GFP_KERNEL);
1842 if (adapter->msix_entries) {
1843 for (i = 0; i < adapter->num_vectors; i++)
1844 adapter->msix_entries[i].entry = i;
1846 err = pci_enable_msix(adapter->pdev,
1847 adapter->msix_entries,
1848 adapter->num_vectors);
1849 if (err == 0)
1850 return;
1852 /* MSI-X failed, so fall through and try MSI */
1853 e_err("Failed to initialize MSI-X interrupts. "
1854 "Falling back to MSI interrupts.\n");
1855 e1000e_reset_interrupt_capability(adapter);
1857 adapter->int_mode = E1000E_INT_MODE_MSI;
1858 /* Fall through */
1859 case E1000E_INT_MODE_MSI:
1860 if (!pci_enable_msi(adapter->pdev)) {
1861 adapter->flags |= FLAG_MSI_ENABLED;
1862 } else {
1863 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1864 e_err("Failed to initialize MSI interrupts. Falling "
1865 "back to legacy interrupts.\n");
1867 /* Fall through */
1868 case E1000E_INT_MODE_LEGACY:
1869 /* Don't do anything; this is the system default */
1870 break;
1873 /* store the number of vectors being used */
1874 adapter->num_vectors = 1;
1878 * e1000_request_msix - Initialize MSI-X interrupts
1880 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1881 * kernel.
1883 static int e1000_request_msix(struct e1000_adapter *adapter)
1885 struct net_device *netdev = adapter->netdev;
1886 int err = 0, vector = 0;
1888 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1889 snprintf(adapter->rx_ring->name,
1890 sizeof(adapter->rx_ring->name) - 1,
1891 "%s-rx-0", netdev->name);
1892 else
1893 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1894 err = request_irq(adapter->msix_entries[vector].vector,
1895 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1896 netdev);
1897 if (err)
1898 goto out;
1899 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1900 adapter->rx_ring->itr_val = adapter->itr;
1901 vector++;
1903 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1904 snprintf(adapter->tx_ring->name,
1905 sizeof(adapter->tx_ring->name) - 1,
1906 "%s-tx-0", netdev->name);
1907 else
1908 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1909 err = request_irq(adapter->msix_entries[vector].vector,
1910 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1911 netdev);
1912 if (err)
1913 goto out;
1914 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1915 adapter->tx_ring->itr_val = adapter->itr;
1916 vector++;
1918 err = request_irq(adapter->msix_entries[vector].vector,
1919 e1000_msix_other, 0, netdev->name, netdev);
1920 if (err)
1921 goto out;
1923 e1000_configure_msix(adapter);
1924 return 0;
1925 out:
1926 return err;
1930 * e1000_request_irq - initialize interrupts
1932 * Attempts to configure interrupts using the best available
1933 * capabilities of the hardware and kernel.
1935 static int e1000_request_irq(struct e1000_adapter *adapter)
1937 struct net_device *netdev = adapter->netdev;
1938 int err;
1940 if (adapter->msix_entries) {
1941 err = e1000_request_msix(adapter);
1942 if (!err)
1943 return err;
1944 /* fall back to MSI */
1945 e1000e_reset_interrupt_capability(adapter);
1946 adapter->int_mode = E1000E_INT_MODE_MSI;
1947 e1000e_set_interrupt_capability(adapter);
1949 if (adapter->flags & FLAG_MSI_ENABLED) {
1950 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1951 netdev->name, netdev);
1952 if (!err)
1953 return err;
1955 /* fall back to legacy interrupt */
1956 e1000e_reset_interrupt_capability(adapter);
1957 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1960 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1961 netdev->name, netdev);
1962 if (err)
1963 e_err("Unable to allocate interrupt, Error: %d\n", err);
1965 return err;
1968 static void e1000_free_irq(struct e1000_adapter *adapter)
1970 struct net_device *netdev = adapter->netdev;
1972 if (adapter->msix_entries) {
1973 int vector = 0;
1975 free_irq(adapter->msix_entries[vector].vector, netdev);
1976 vector++;
1978 free_irq(adapter->msix_entries[vector].vector, netdev);
1979 vector++;
1981 /* Other Causes interrupt vector */
1982 free_irq(adapter->msix_entries[vector].vector, netdev);
1983 return;
1986 free_irq(adapter->pdev->irq, netdev);
1990 * e1000_irq_disable - Mask off interrupt generation on the NIC
1992 static void e1000_irq_disable(struct e1000_adapter *adapter)
1994 struct e1000_hw *hw = &adapter->hw;
1996 ew32(IMC, ~0);
1997 if (adapter->msix_entries)
1998 ew32(EIAC_82574, 0);
1999 e1e_flush();
2001 if (adapter->msix_entries) {
2002 int i;
2003 for (i = 0; i < adapter->num_vectors; i++)
2004 synchronize_irq(adapter->msix_entries[i].vector);
2005 } else {
2006 synchronize_irq(adapter->pdev->irq);
2011 * e1000_irq_enable - Enable default interrupt generation settings
2013 static void e1000_irq_enable(struct e1000_adapter *adapter)
2015 struct e1000_hw *hw = &adapter->hw;
2017 if (adapter->msix_entries) {
2018 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2019 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2020 } else {
2021 ew32(IMS, IMS_ENABLE_MASK);
2023 e1e_flush();
2027 * e1000e_get_hw_control - get control of the h/w from f/w
2028 * @adapter: address of board private structure
2030 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2031 * For ASF and Pass Through versions of f/w this means that
2032 * the driver is loaded. For AMT version (only with 82573)
2033 * of the f/w this means that the network i/f is open.
2035 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2037 struct e1000_hw *hw = &adapter->hw;
2038 u32 ctrl_ext;
2039 u32 swsm;
2041 /* Let firmware know the driver has taken over */
2042 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2043 swsm = er32(SWSM);
2044 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2045 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2046 ctrl_ext = er32(CTRL_EXT);
2047 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2052 * e1000e_release_hw_control - release control of the h/w to f/w
2053 * @adapter: address of board private structure
2055 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2056 * For ASF and Pass Through versions of f/w this means that the
2057 * driver is no longer loaded. For AMT version (only with 82573) i
2058 * of the f/w this means that the network i/f is closed.
2061 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2063 struct e1000_hw *hw = &adapter->hw;
2064 u32 ctrl_ext;
2065 u32 swsm;
2067 /* Let firmware taken over control of h/w */
2068 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2069 swsm = er32(SWSM);
2070 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2071 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2072 ctrl_ext = er32(CTRL_EXT);
2073 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2078 * @e1000_alloc_ring - allocate memory for a ring structure
2080 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2081 struct e1000_ring *ring)
2083 struct pci_dev *pdev = adapter->pdev;
2085 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2086 GFP_KERNEL);
2087 if (!ring->desc)
2088 return -ENOMEM;
2090 return 0;
2094 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2095 * @adapter: board private structure
2097 * Return 0 on success, negative on failure
2099 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2101 struct e1000_ring *tx_ring = adapter->tx_ring;
2102 int err = -ENOMEM, size;
2104 size = sizeof(struct e1000_buffer) * tx_ring->count;
2105 tx_ring->buffer_info = vzalloc(size);
2106 if (!tx_ring->buffer_info)
2107 goto err;
2109 /* round up to nearest 4K */
2110 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2111 tx_ring->size = ALIGN(tx_ring->size, 4096);
2113 err = e1000_alloc_ring_dma(adapter, tx_ring);
2114 if (err)
2115 goto err;
2117 tx_ring->next_to_use = 0;
2118 tx_ring->next_to_clean = 0;
2120 return 0;
2121 err:
2122 vfree(tx_ring->buffer_info);
2123 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2124 return err;
2128 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2129 * @adapter: board private structure
2131 * Returns 0 on success, negative on failure
2133 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2135 struct e1000_ring *rx_ring = adapter->rx_ring;
2136 struct e1000_buffer *buffer_info;
2137 int i, size, desc_len, err = -ENOMEM;
2139 size = sizeof(struct e1000_buffer) * rx_ring->count;
2140 rx_ring->buffer_info = vzalloc(size);
2141 if (!rx_ring->buffer_info)
2142 goto err;
2144 for (i = 0; i < rx_ring->count; i++) {
2145 buffer_info = &rx_ring->buffer_info[i];
2146 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2147 sizeof(struct e1000_ps_page),
2148 GFP_KERNEL);
2149 if (!buffer_info->ps_pages)
2150 goto err_pages;
2153 desc_len = sizeof(union e1000_rx_desc_packet_split);
2155 /* Round up to nearest 4K */
2156 rx_ring->size = rx_ring->count * desc_len;
2157 rx_ring->size = ALIGN(rx_ring->size, 4096);
2159 err = e1000_alloc_ring_dma(adapter, rx_ring);
2160 if (err)
2161 goto err_pages;
2163 rx_ring->next_to_clean = 0;
2164 rx_ring->next_to_use = 0;
2165 rx_ring->rx_skb_top = NULL;
2167 return 0;
2169 err_pages:
2170 for (i = 0; i < rx_ring->count; i++) {
2171 buffer_info = &rx_ring->buffer_info[i];
2172 kfree(buffer_info->ps_pages);
2174 err:
2175 vfree(rx_ring->buffer_info);
2176 e_err("Unable to allocate memory for the receive descriptor ring\n");
2177 return err;
2181 * e1000_clean_tx_ring - Free Tx Buffers
2182 * @adapter: board private structure
2184 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2186 struct e1000_ring *tx_ring = adapter->tx_ring;
2187 struct e1000_buffer *buffer_info;
2188 unsigned long size;
2189 unsigned int i;
2191 for (i = 0; i < tx_ring->count; i++) {
2192 buffer_info = &tx_ring->buffer_info[i];
2193 e1000_put_txbuf(adapter, buffer_info);
2196 size = sizeof(struct e1000_buffer) * tx_ring->count;
2197 memset(tx_ring->buffer_info, 0, size);
2199 memset(tx_ring->desc, 0, tx_ring->size);
2201 tx_ring->next_to_use = 0;
2202 tx_ring->next_to_clean = 0;
2204 writel(0, adapter->hw.hw_addr + tx_ring->head);
2205 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2209 * e1000e_free_tx_resources - Free Tx Resources per Queue
2210 * @adapter: board private structure
2212 * Free all transmit software resources
2214 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2216 struct pci_dev *pdev = adapter->pdev;
2217 struct e1000_ring *tx_ring = adapter->tx_ring;
2219 e1000_clean_tx_ring(adapter);
2221 vfree(tx_ring->buffer_info);
2222 tx_ring->buffer_info = NULL;
2224 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2225 tx_ring->dma);
2226 tx_ring->desc = NULL;
2230 * e1000e_free_rx_resources - Free Rx Resources
2231 * @adapter: board private structure
2233 * Free all receive software resources
2236 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2238 struct pci_dev *pdev = adapter->pdev;
2239 struct e1000_ring *rx_ring = adapter->rx_ring;
2240 int i;
2242 e1000_clean_rx_ring(adapter);
2244 for (i = 0; i < rx_ring->count; i++)
2245 kfree(rx_ring->buffer_info[i].ps_pages);
2247 vfree(rx_ring->buffer_info);
2248 rx_ring->buffer_info = NULL;
2250 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2251 rx_ring->dma);
2252 rx_ring->desc = NULL;
2256 * e1000_update_itr - update the dynamic ITR value based on statistics
2257 * @adapter: pointer to adapter
2258 * @itr_setting: current adapter->itr
2259 * @packets: the number of packets during this measurement interval
2260 * @bytes: the number of bytes during this measurement interval
2262 * Stores a new ITR value based on packets and byte
2263 * counts during the last interrupt. The advantage of per interrupt
2264 * computation is faster updates and more accurate ITR for the current
2265 * traffic pattern. Constants in this function were computed
2266 * based on theoretical maximum wire speed and thresholds were set based
2267 * on testing data as well as attempting to minimize response time
2268 * while increasing bulk throughput. This functionality is controlled
2269 * by the InterruptThrottleRate module parameter.
2271 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2272 u16 itr_setting, int packets,
2273 int bytes)
2275 unsigned int retval = itr_setting;
2277 if (packets == 0)
2278 goto update_itr_done;
2280 switch (itr_setting) {
2281 case lowest_latency:
2282 /* handle TSO and jumbo frames */
2283 if (bytes/packets > 8000)
2284 retval = bulk_latency;
2285 else if ((packets < 5) && (bytes > 512))
2286 retval = low_latency;
2287 break;
2288 case low_latency: /* 50 usec aka 20000 ints/s */
2289 if (bytes > 10000) {
2290 /* this if handles the TSO accounting */
2291 if (bytes/packets > 8000)
2292 retval = bulk_latency;
2293 else if ((packets < 10) || ((bytes/packets) > 1200))
2294 retval = bulk_latency;
2295 else if ((packets > 35))
2296 retval = lowest_latency;
2297 } else if (bytes/packets > 2000) {
2298 retval = bulk_latency;
2299 } else if (packets <= 2 && bytes < 512) {
2300 retval = lowest_latency;
2302 break;
2303 case bulk_latency: /* 250 usec aka 4000 ints/s */
2304 if (bytes > 25000) {
2305 if (packets > 35)
2306 retval = low_latency;
2307 } else if (bytes < 6000) {
2308 retval = low_latency;
2310 break;
2313 update_itr_done:
2314 return retval;
2317 static void e1000_set_itr(struct e1000_adapter *adapter)
2319 struct e1000_hw *hw = &adapter->hw;
2320 u16 current_itr;
2321 u32 new_itr = adapter->itr;
2323 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2324 if (adapter->link_speed != SPEED_1000) {
2325 current_itr = 0;
2326 new_itr = 4000;
2327 goto set_itr_now;
2330 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2331 new_itr = 0;
2332 goto set_itr_now;
2335 adapter->tx_itr = e1000_update_itr(adapter,
2336 adapter->tx_itr,
2337 adapter->total_tx_packets,
2338 adapter->total_tx_bytes);
2339 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2340 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2341 adapter->tx_itr = low_latency;
2343 adapter->rx_itr = e1000_update_itr(adapter,
2344 adapter->rx_itr,
2345 adapter->total_rx_packets,
2346 adapter->total_rx_bytes);
2347 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2348 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2349 adapter->rx_itr = low_latency;
2351 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2353 switch (current_itr) {
2354 /* counts and packets in update_itr are dependent on these numbers */
2355 case lowest_latency:
2356 new_itr = 70000;
2357 break;
2358 case low_latency:
2359 new_itr = 20000; /* aka hwitr = ~200 */
2360 break;
2361 case bulk_latency:
2362 new_itr = 4000;
2363 break;
2364 default:
2365 break;
2368 set_itr_now:
2369 if (new_itr != adapter->itr) {
2371 * this attempts to bias the interrupt rate towards Bulk
2372 * by adding intermediate steps when interrupt rate is
2373 * increasing
2375 new_itr = new_itr > adapter->itr ?
2376 min(adapter->itr + (new_itr >> 2), new_itr) :
2377 new_itr;
2378 adapter->itr = new_itr;
2379 adapter->rx_ring->itr_val = new_itr;
2380 if (adapter->msix_entries)
2381 adapter->rx_ring->set_itr = 1;
2382 else
2383 if (new_itr)
2384 ew32(ITR, 1000000000 / (new_itr * 256));
2385 else
2386 ew32(ITR, 0);
2391 * e1000_alloc_queues - Allocate memory for all rings
2392 * @adapter: board private structure to initialize
2394 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2396 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2397 if (!adapter->tx_ring)
2398 goto err;
2400 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2401 if (!adapter->rx_ring)
2402 goto err;
2404 return 0;
2405 err:
2406 e_err("Unable to allocate memory for queues\n");
2407 kfree(adapter->rx_ring);
2408 kfree(adapter->tx_ring);
2409 return -ENOMEM;
2413 * e1000_clean - NAPI Rx polling callback
2414 * @napi: struct associated with this polling callback
2415 * @budget: amount of packets driver is allowed to process this poll
2417 static int e1000_clean(struct napi_struct *napi, int budget)
2419 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2420 struct e1000_hw *hw = &adapter->hw;
2421 struct net_device *poll_dev = adapter->netdev;
2422 int tx_cleaned = 1, work_done = 0;
2424 adapter = netdev_priv(poll_dev);
2426 if (adapter->msix_entries &&
2427 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2428 goto clean_rx;
2430 tx_cleaned = e1000_clean_tx_irq(adapter);
2432 clean_rx:
2433 adapter->clean_rx(adapter, &work_done, budget);
2435 if (!tx_cleaned)
2436 work_done = budget;
2438 /* If budget not fully consumed, exit the polling mode */
2439 if (work_done < budget) {
2440 if (adapter->itr_setting & 3)
2441 e1000_set_itr(adapter);
2442 napi_complete(napi);
2443 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2444 if (adapter->msix_entries)
2445 ew32(IMS, adapter->rx_ring->ims_val);
2446 else
2447 e1000_irq_enable(adapter);
2451 return work_done;
2454 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2456 struct e1000_adapter *adapter = netdev_priv(netdev);
2457 struct e1000_hw *hw = &adapter->hw;
2458 u32 vfta, index;
2460 /* don't update vlan cookie if already programmed */
2461 if ((adapter->hw.mng_cookie.status &
2462 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2463 (vid == adapter->mng_vlan_id))
2464 return;
2466 /* add VID to filter table */
2467 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2468 index = (vid >> 5) & 0x7F;
2469 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2470 vfta |= (1 << (vid & 0x1F));
2471 hw->mac.ops.write_vfta(hw, index, vfta);
2474 set_bit(vid, adapter->active_vlans);
2477 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2479 struct e1000_adapter *adapter = netdev_priv(netdev);
2480 struct e1000_hw *hw = &adapter->hw;
2481 u32 vfta, index;
2483 if ((adapter->hw.mng_cookie.status &
2484 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2485 (vid == adapter->mng_vlan_id)) {
2486 /* release control to f/w */
2487 e1000e_release_hw_control(adapter);
2488 return;
2491 /* remove VID from filter table */
2492 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2493 index = (vid >> 5) & 0x7F;
2494 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2495 vfta &= ~(1 << (vid & 0x1F));
2496 hw->mac.ops.write_vfta(hw, index, vfta);
2499 clear_bit(vid, adapter->active_vlans);
2503 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2504 * @adapter: board private structure to initialize
2506 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2508 struct net_device *netdev = adapter->netdev;
2509 struct e1000_hw *hw = &adapter->hw;
2510 u32 rctl;
2512 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2513 /* disable VLAN receive filtering */
2514 rctl = er32(RCTL);
2515 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2516 ew32(RCTL, rctl);
2518 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2519 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2520 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2526 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2527 * @adapter: board private structure to initialize
2529 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2531 struct e1000_hw *hw = &adapter->hw;
2532 u32 rctl;
2534 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2535 /* enable VLAN receive filtering */
2536 rctl = er32(RCTL);
2537 rctl |= E1000_RCTL_VFE;
2538 rctl &= ~E1000_RCTL_CFIEN;
2539 ew32(RCTL, rctl);
2544 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2545 * @adapter: board private structure to initialize
2547 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2549 struct e1000_hw *hw = &adapter->hw;
2550 u32 ctrl;
2552 /* disable VLAN tag insert/strip */
2553 ctrl = er32(CTRL);
2554 ctrl &= ~E1000_CTRL_VME;
2555 ew32(CTRL, ctrl);
2559 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2560 * @adapter: board private structure to initialize
2562 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2564 struct e1000_hw *hw = &adapter->hw;
2565 u32 ctrl;
2567 /* enable VLAN tag insert/strip */
2568 ctrl = er32(CTRL);
2569 ctrl |= E1000_CTRL_VME;
2570 ew32(CTRL, ctrl);
2573 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2575 struct net_device *netdev = adapter->netdev;
2576 u16 vid = adapter->hw.mng_cookie.vlan_id;
2577 u16 old_vid = adapter->mng_vlan_id;
2579 if (adapter->hw.mng_cookie.status &
2580 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2581 e1000_vlan_rx_add_vid(netdev, vid);
2582 adapter->mng_vlan_id = vid;
2585 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2586 e1000_vlan_rx_kill_vid(netdev, old_vid);
2589 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2591 u16 vid;
2593 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2595 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2596 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2599 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2601 struct e1000_hw *hw = &adapter->hw;
2602 u32 manc, manc2h, mdef, i, j;
2604 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2605 return;
2607 manc = er32(MANC);
2610 * enable receiving management packets to the host. this will probably
2611 * generate destination unreachable messages from the host OS, but
2612 * the packets will be handled on SMBUS
2614 manc |= E1000_MANC_EN_MNG2HOST;
2615 manc2h = er32(MANC2H);
2617 switch (hw->mac.type) {
2618 default:
2619 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2620 break;
2621 case e1000_82574:
2622 case e1000_82583:
2624 * Check if IPMI pass-through decision filter already exists;
2625 * if so, enable it.
2627 for (i = 0, j = 0; i < 8; i++) {
2628 mdef = er32(MDEF(i));
2630 /* Ignore filters with anything other than IPMI ports */
2631 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2632 continue;
2634 /* Enable this decision filter in MANC2H */
2635 if (mdef)
2636 manc2h |= (1 << i);
2638 j |= mdef;
2641 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2642 break;
2644 /* Create new decision filter in an empty filter */
2645 for (i = 0, j = 0; i < 8; i++)
2646 if (er32(MDEF(i)) == 0) {
2647 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2648 E1000_MDEF_PORT_664));
2649 manc2h |= (1 << 1);
2650 j++;
2651 break;
2654 if (!j)
2655 e_warn("Unable to create IPMI pass-through filter\n");
2656 break;
2659 ew32(MANC2H, manc2h);
2660 ew32(MANC, manc);
2664 * e1000_configure_tx - Configure Transmit Unit after Reset
2665 * @adapter: board private structure
2667 * Configure the Tx unit of the MAC after a reset.
2669 static void e1000_configure_tx(struct e1000_adapter *adapter)
2671 struct e1000_hw *hw = &adapter->hw;
2672 struct e1000_ring *tx_ring = adapter->tx_ring;
2673 u64 tdba;
2674 u32 tdlen, tctl, tipg, tarc;
2675 u32 ipgr1, ipgr2;
2677 /* Setup the HW Tx Head and Tail descriptor pointers */
2678 tdba = tx_ring->dma;
2679 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2680 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2681 ew32(TDBAH, (tdba >> 32));
2682 ew32(TDLEN, tdlen);
2683 ew32(TDH, 0);
2684 ew32(TDT, 0);
2685 tx_ring->head = E1000_TDH;
2686 tx_ring->tail = E1000_TDT;
2688 /* Set the default values for the Tx Inter Packet Gap timer */
2689 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2690 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2691 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2693 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2694 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2696 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2697 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2698 ew32(TIPG, tipg);
2700 /* Set the Tx Interrupt Delay register */
2701 ew32(TIDV, adapter->tx_int_delay);
2702 /* Tx irq moderation */
2703 ew32(TADV, adapter->tx_abs_int_delay);
2705 if (adapter->flags2 & FLAG2_DMA_BURST) {
2706 u32 txdctl = er32(TXDCTL(0));
2707 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2708 E1000_TXDCTL_WTHRESH);
2710 * set up some performance related parameters to encourage the
2711 * hardware to use the bus more efficiently in bursts, depends
2712 * on the tx_int_delay to be enabled,
2713 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2714 * hthresh = 1 ==> prefetch when one or more available
2715 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2716 * BEWARE: this seems to work but should be considered first if
2717 * there are Tx hangs or other Tx related bugs
2719 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2720 ew32(TXDCTL(0), txdctl);
2721 /* erratum work around: set txdctl the same for both queues */
2722 ew32(TXDCTL(1), txdctl);
2725 /* Program the Transmit Control Register */
2726 tctl = er32(TCTL);
2727 tctl &= ~E1000_TCTL_CT;
2728 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2729 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2731 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2732 tarc = er32(TARC(0));
2734 * set the speed mode bit, we'll clear it if we're not at
2735 * gigabit link later
2737 #define SPEED_MODE_BIT (1 << 21)
2738 tarc |= SPEED_MODE_BIT;
2739 ew32(TARC(0), tarc);
2742 /* errata: program both queues to unweighted RR */
2743 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2744 tarc = er32(TARC(0));
2745 tarc |= 1;
2746 ew32(TARC(0), tarc);
2747 tarc = er32(TARC(1));
2748 tarc |= 1;
2749 ew32(TARC(1), tarc);
2752 /* Setup Transmit Descriptor Settings for eop descriptor */
2753 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2755 /* only set IDE if we are delaying interrupts using the timers */
2756 if (adapter->tx_int_delay)
2757 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2759 /* enable Report Status bit */
2760 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2762 ew32(TCTL, tctl);
2764 e1000e_config_collision_dist(hw);
2768 * e1000_setup_rctl - configure the receive control registers
2769 * @adapter: Board private structure
2771 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2772 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2773 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2775 struct e1000_hw *hw = &adapter->hw;
2776 u32 rctl, rfctl;
2777 u32 pages = 0;
2779 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2780 if (hw->mac.type == e1000_pch2lan) {
2781 s32 ret_val;
2783 if (adapter->netdev->mtu > ETH_DATA_LEN)
2784 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2785 else
2786 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2788 if (ret_val)
2789 e_dbg("failed to enable jumbo frame workaround mode\n");
2792 /* Program MC offset vector base */
2793 rctl = er32(RCTL);
2794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2795 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2796 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2797 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2799 /* Do not Store bad packets */
2800 rctl &= ~E1000_RCTL_SBP;
2802 /* Enable Long Packet receive */
2803 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2804 rctl &= ~E1000_RCTL_LPE;
2805 else
2806 rctl |= E1000_RCTL_LPE;
2808 /* Some systems expect that the CRC is included in SMBUS traffic. The
2809 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2810 * host memory when this is enabled
2812 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2813 rctl |= E1000_RCTL_SECRC;
2815 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2816 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2817 u16 phy_data;
2819 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2820 phy_data &= 0xfff8;
2821 phy_data |= (1 << 2);
2822 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2824 e1e_rphy(hw, 22, &phy_data);
2825 phy_data &= 0x0fff;
2826 phy_data |= (1 << 14);
2827 e1e_wphy(hw, 0x10, 0x2823);
2828 e1e_wphy(hw, 0x11, 0x0003);
2829 e1e_wphy(hw, 22, phy_data);
2832 /* Setup buffer sizes */
2833 rctl &= ~E1000_RCTL_SZ_4096;
2834 rctl |= E1000_RCTL_BSEX;
2835 switch (adapter->rx_buffer_len) {
2836 case 2048:
2837 default:
2838 rctl |= E1000_RCTL_SZ_2048;
2839 rctl &= ~E1000_RCTL_BSEX;
2840 break;
2841 case 4096:
2842 rctl |= E1000_RCTL_SZ_4096;
2843 break;
2844 case 8192:
2845 rctl |= E1000_RCTL_SZ_8192;
2846 break;
2847 case 16384:
2848 rctl |= E1000_RCTL_SZ_16384;
2849 break;
2852 /* Enable Extended Status in all Receive Descriptors */
2853 rfctl = er32(RFCTL);
2854 rfctl |= E1000_RFCTL_EXTEN;
2857 * 82571 and greater support packet-split where the protocol
2858 * header is placed in skb->data and the packet data is
2859 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2860 * In the case of a non-split, skb->data is linearly filled,
2861 * followed by the page buffers. Therefore, skb->data is
2862 * sized to hold the largest protocol header.
2864 * allocations using alloc_page take too long for regular MTU
2865 * so only enable packet split for jumbo frames
2867 * Using pages when the page size is greater than 16k wastes
2868 * a lot of memory, since we allocate 3 pages at all times
2869 * per packet.
2871 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2872 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2873 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2874 adapter->rx_ps_pages = pages;
2875 else
2876 adapter->rx_ps_pages = 0;
2878 if (adapter->rx_ps_pages) {
2879 u32 psrctl = 0;
2882 * disable packet split support for IPv6 extension headers,
2883 * because some malformed IPv6 headers can hang the Rx
2885 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2886 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2888 /* Enable Packet split descriptors */
2889 rctl |= E1000_RCTL_DTYP_PS;
2891 psrctl |= adapter->rx_ps_bsize0 >>
2892 E1000_PSRCTL_BSIZE0_SHIFT;
2894 switch (adapter->rx_ps_pages) {
2895 case 3:
2896 psrctl |= PAGE_SIZE <<
2897 E1000_PSRCTL_BSIZE3_SHIFT;
2898 case 2:
2899 psrctl |= PAGE_SIZE <<
2900 E1000_PSRCTL_BSIZE2_SHIFT;
2901 case 1:
2902 psrctl |= PAGE_SIZE >>
2903 E1000_PSRCTL_BSIZE1_SHIFT;
2904 break;
2907 ew32(PSRCTL, psrctl);
2910 ew32(RFCTL, rfctl);
2911 ew32(RCTL, rctl);
2912 /* just started the receive unit, no need to restart */
2913 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2917 * e1000_configure_rx - Configure Receive Unit after Reset
2918 * @adapter: board private structure
2920 * Configure the Rx unit of the MAC after a reset.
2922 static void e1000_configure_rx(struct e1000_adapter *adapter)
2924 struct e1000_hw *hw = &adapter->hw;
2925 struct e1000_ring *rx_ring = adapter->rx_ring;
2926 u64 rdba;
2927 u32 rdlen, rctl, rxcsum, ctrl_ext;
2929 if (adapter->rx_ps_pages) {
2930 /* this is a 32 byte descriptor */
2931 rdlen = rx_ring->count *
2932 sizeof(union e1000_rx_desc_packet_split);
2933 adapter->clean_rx = e1000_clean_rx_irq_ps;
2934 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2935 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2936 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
2937 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2938 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2939 } else {
2940 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
2941 adapter->clean_rx = e1000_clean_rx_irq;
2942 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2945 /* disable receives while setting up the descriptors */
2946 rctl = er32(RCTL);
2947 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2948 e1e_flush();
2949 usleep_range(10000, 20000);
2951 if (adapter->flags2 & FLAG2_DMA_BURST) {
2953 * set the writeback threshold (only takes effect if the RDTR
2954 * is set). set GRAN=1 and write back up to 0x4 worth, and
2955 * enable prefetching of 0x20 Rx descriptors
2956 * granularity = 01
2957 * wthresh = 04,
2958 * hthresh = 04,
2959 * pthresh = 0x20
2961 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2962 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2965 * override the delay timers for enabling bursting, only if
2966 * the value was not set by the user via module options
2968 if (adapter->rx_int_delay == DEFAULT_RDTR)
2969 adapter->rx_int_delay = BURST_RDTR;
2970 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2971 adapter->rx_abs_int_delay = BURST_RADV;
2974 /* set the Receive Delay Timer Register */
2975 ew32(RDTR, adapter->rx_int_delay);
2977 /* irq moderation */
2978 ew32(RADV, adapter->rx_abs_int_delay);
2979 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2980 ew32(ITR, 1000000000 / (adapter->itr * 256));
2982 ctrl_ext = er32(CTRL_EXT);
2983 /* Auto-Mask interrupts upon ICR access */
2984 ctrl_ext |= E1000_CTRL_EXT_IAME;
2985 ew32(IAM, 0xffffffff);
2986 ew32(CTRL_EXT, ctrl_ext);
2987 e1e_flush();
2990 * Setup the HW Rx Head and Tail Descriptor Pointers and
2991 * the Base and Length of the Rx Descriptor Ring
2993 rdba = rx_ring->dma;
2994 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2995 ew32(RDBAH, (rdba >> 32));
2996 ew32(RDLEN, rdlen);
2997 ew32(RDH, 0);
2998 ew32(RDT, 0);
2999 rx_ring->head = E1000_RDH;
3000 rx_ring->tail = E1000_RDT;
3002 /* Enable Receive Checksum Offload for TCP and UDP */
3003 rxcsum = er32(RXCSUM);
3004 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
3005 rxcsum |= E1000_RXCSUM_TUOFL;
3008 * IPv4 payload checksum for UDP fragments must be
3009 * used in conjunction with packet-split.
3011 if (adapter->rx_ps_pages)
3012 rxcsum |= E1000_RXCSUM_IPPCSE;
3013 } else {
3014 rxcsum &= ~E1000_RXCSUM_TUOFL;
3015 /* no need to clear IPPCSE as it defaults to 0 */
3017 ew32(RXCSUM, rxcsum);
3020 * Enable early receives on supported devices, only takes effect when
3021 * packet size is equal or larger than the specified value (in 8 byte
3022 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
3024 if ((adapter->flags & FLAG_HAS_ERT) ||
3025 (adapter->hw.mac.type == e1000_pch2lan)) {
3026 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3027 u32 rxdctl = er32(RXDCTL(0));
3028 ew32(RXDCTL(0), rxdctl | 0x3);
3029 if (adapter->flags & FLAG_HAS_ERT)
3030 ew32(ERT, E1000_ERT_2048 | (1 << 13));
3032 * With jumbo frames and early-receive enabled,
3033 * excessive C-state transition latencies result in
3034 * dropped transactions.
3036 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3037 } else {
3038 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3039 PM_QOS_DEFAULT_VALUE);
3043 /* Enable Receives */
3044 ew32(RCTL, rctl);
3048 * e1000_update_mc_addr_list - Update Multicast addresses
3049 * @hw: pointer to the HW structure
3050 * @mc_addr_list: array of multicast addresses to program
3051 * @mc_addr_count: number of multicast addresses to program
3053 * Updates the Multicast Table Array.
3054 * The caller must have a packed mc_addr_list of multicast addresses.
3056 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3057 u32 mc_addr_count)
3059 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3063 * e1000_set_multi - Multicast and Promiscuous mode set
3064 * @netdev: network interface device structure
3066 * The set_multi entry point is called whenever the multicast address
3067 * list or the network interface flags are updated. This routine is
3068 * responsible for configuring the hardware for proper multicast,
3069 * promiscuous mode, and all-multi behavior.
3071 static void e1000_set_multi(struct net_device *netdev)
3073 struct e1000_adapter *adapter = netdev_priv(netdev);
3074 struct e1000_hw *hw = &adapter->hw;
3075 struct netdev_hw_addr *ha;
3076 u8 *mta_list;
3077 u32 rctl;
3079 /* Check for Promiscuous and All Multicast modes */
3081 rctl = er32(RCTL);
3083 if (netdev->flags & IFF_PROMISC) {
3084 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3085 rctl &= ~E1000_RCTL_VFE;
3086 /* Do not hardware filter VLANs in promisc mode */
3087 e1000e_vlan_filter_disable(adapter);
3088 } else {
3089 if (netdev->flags & IFF_ALLMULTI) {
3090 rctl |= E1000_RCTL_MPE;
3091 rctl &= ~E1000_RCTL_UPE;
3092 } else {
3093 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3095 e1000e_vlan_filter_enable(adapter);
3098 ew32(RCTL, rctl);
3100 if (!netdev_mc_empty(netdev)) {
3101 int i = 0;
3103 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3104 if (!mta_list)
3105 return;
3107 /* prepare a packed array of only addresses. */
3108 netdev_for_each_mc_addr(ha, netdev)
3109 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3111 e1000_update_mc_addr_list(hw, mta_list, i);
3112 kfree(mta_list);
3113 } else {
3115 * if we're called from probe, we might not have
3116 * anything to do here, so clear out the list
3118 e1000_update_mc_addr_list(hw, NULL, 0);
3121 if (netdev->features & NETIF_F_HW_VLAN_RX)
3122 e1000e_vlan_strip_enable(adapter);
3123 else
3124 e1000e_vlan_strip_disable(adapter);
3128 * e1000_configure - configure the hardware for Rx and Tx
3129 * @adapter: private board structure
3131 static void e1000_configure(struct e1000_adapter *adapter)
3133 e1000_set_multi(adapter->netdev);
3135 e1000_restore_vlan(adapter);
3136 e1000_init_manageability_pt(adapter);
3138 e1000_configure_tx(adapter);
3139 e1000_setup_rctl(adapter);
3140 e1000_configure_rx(adapter);
3141 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
3142 GFP_KERNEL);
3146 * e1000e_power_up_phy - restore link in case the phy was powered down
3147 * @adapter: address of board private structure
3149 * The phy may be powered down to save power and turn off link when the
3150 * driver is unloaded and wake on lan is not enabled (among others)
3151 * *** this routine MUST be followed by a call to e1000e_reset ***
3153 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3155 if (adapter->hw.phy.ops.power_up)
3156 adapter->hw.phy.ops.power_up(&adapter->hw);
3158 adapter->hw.mac.ops.setup_link(&adapter->hw);
3162 * e1000_power_down_phy - Power down the PHY
3164 * Power down the PHY so no link is implied when interface is down.
3165 * The PHY cannot be powered down if management or WoL is active.
3167 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3169 /* WoL is enabled */
3170 if (adapter->wol)
3171 return;
3173 if (adapter->hw.phy.ops.power_down)
3174 adapter->hw.phy.ops.power_down(&adapter->hw);
3178 * e1000e_reset - bring the hardware into a known good state
3180 * This function boots the hardware and enables some settings that
3181 * require a configuration cycle of the hardware - those cannot be
3182 * set/changed during runtime. After reset the device needs to be
3183 * properly configured for Rx, Tx etc.
3185 void e1000e_reset(struct e1000_adapter *adapter)
3187 struct e1000_mac_info *mac = &adapter->hw.mac;
3188 struct e1000_fc_info *fc = &adapter->hw.fc;
3189 struct e1000_hw *hw = &adapter->hw;
3190 u32 tx_space, min_tx_space, min_rx_space;
3191 u32 pba = adapter->pba;
3192 u16 hwm;
3194 /* reset Packet Buffer Allocation to default */
3195 ew32(PBA, pba);
3197 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3199 * To maintain wire speed transmits, the Tx FIFO should be
3200 * large enough to accommodate two full transmit packets,
3201 * rounded up to the next 1KB and expressed in KB. Likewise,
3202 * the Rx FIFO should be large enough to accommodate at least
3203 * one full receive packet and is similarly rounded up and
3204 * expressed in KB.
3206 pba = er32(PBA);
3207 /* upper 16 bits has Tx packet buffer allocation size in KB */
3208 tx_space = pba >> 16;
3209 /* lower 16 bits has Rx packet buffer allocation size in KB */
3210 pba &= 0xffff;
3212 * the Tx fifo also stores 16 bytes of information about the Tx
3213 * but don't include ethernet FCS because hardware appends it
3215 min_tx_space = (adapter->max_frame_size +
3216 sizeof(struct e1000_tx_desc) -
3217 ETH_FCS_LEN) * 2;
3218 min_tx_space = ALIGN(min_tx_space, 1024);
3219 min_tx_space >>= 10;
3220 /* software strips receive CRC, so leave room for it */
3221 min_rx_space = adapter->max_frame_size;
3222 min_rx_space = ALIGN(min_rx_space, 1024);
3223 min_rx_space >>= 10;
3226 * If current Tx allocation is less than the min Tx FIFO size,
3227 * and the min Tx FIFO size is less than the current Rx FIFO
3228 * allocation, take space away from current Rx allocation
3230 if ((tx_space < min_tx_space) &&
3231 ((min_tx_space - tx_space) < pba)) {
3232 pba -= min_tx_space - tx_space;
3235 * if short on Rx space, Rx wins and must trump Tx
3236 * adjustment or use Early Receive if available
3238 if ((pba < min_rx_space) &&
3239 (!(adapter->flags & FLAG_HAS_ERT)))
3240 /* ERT enabled in e1000_configure_rx */
3241 pba = min_rx_space;
3244 ew32(PBA, pba);
3248 * flow control settings
3250 * The high water mark must be low enough to fit one full frame
3251 * (or the size used for early receive) above it in the Rx FIFO.
3252 * Set it to the lower of:
3253 * - 90% of the Rx FIFO size, and
3254 * - the full Rx FIFO size minus the early receive size (for parts
3255 * with ERT support assuming ERT set to E1000_ERT_2048), or
3256 * - the full Rx FIFO size minus one full frame
3258 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3259 fc->pause_time = 0xFFFF;
3260 else
3261 fc->pause_time = E1000_FC_PAUSE_TIME;
3262 fc->send_xon = 1;
3263 fc->current_mode = fc->requested_mode;
3265 switch (hw->mac.type) {
3266 default:
3267 if ((adapter->flags & FLAG_HAS_ERT) &&
3268 (adapter->netdev->mtu > ETH_DATA_LEN))
3269 hwm = min(((pba << 10) * 9 / 10),
3270 ((pba << 10) - (E1000_ERT_2048 << 3)));
3271 else
3272 hwm = min(((pba << 10) * 9 / 10),
3273 ((pba << 10) - adapter->max_frame_size));
3275 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3276 fc->low_water = fc->high_water - 8;
3277 break;
3278 case e1000_pchlan:
3280 * Workaround PCH LOM adapter hangs with certain network
3281 * loads. If hangs persist, try disabling Tx flow control.
3283 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284 fc->high_water = 0x3500;
3285 fc->low_water = 0x1500;
3286 } else {
3287 fc->high_water = 0x5000;
3288 fc->low_water = 0x3000;
3290 fc->refresh_time = 0x1000;
3291 break;
3292 case e1000_pch2lan:
3293 fc->high_water = 0x05C20;
3294 fc->low_water = 0x05048;
3295 fc->pause_time = 0x0650;
3296 fc->refresh_time = 0x0400;
3297 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3298 pba = 14;
3299 ew32(PBA, pba);
3301 break;
3305 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3306 * fit in receive buffer and early-receive not supported.
3308 if (adapter->itr_setting & 0x3) {
3309 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3310 !(adapter->flags & FLAG_HAS_ERT)) {
3311 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3312 dev_info(&adapter->pdev->dev,
3313 "Interrupt Throttle Rate turned off\n");
3314 adapter->flags2 |= FLAG2_DISABLE_AIM;
3315 ew32(ITR, 0);
3317 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3318 dev_info(&adapter->pdev->dev,
3319 "Interrupt Throttle Rate turned on\n");
3320 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3321 adapter->itr = 20000;
3322 ew32(ITR, 1000000000 / (adapter->itr * 256));
3326 /* Allow time for pending master requests to run */
3327 mac->ops.reset_hw(hw);
3330 * For parts with AMT enabled, let the firmware know
3331 * that the network interface is in control
3333 if (adapter->flags & FLAG_HAS_AMT)
3334 e1000e_get_hw_control(adapter);
3336 ew32(WUC, 0);
3338 if (mac->ops.init_hw(hw))
3339 e_err("Hardware Error\n");
3341 e1000_update_mng_vlan(adapter);
3343 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3344 ew32(VET, ETH_P_8021Q);
3346 e1000e_reset_adaptive(hw);
3348 if (!netif_running(adapter->netdev) &&
3349 !test_bit(__E1000_TESTING, &adapter->state)) {
3350 e1000_power_down_phy(adapter);
3351 return;
3354 e1000_get_phy_info(hw);
3356 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3357 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3358 u16 phy_data = 0;
3360 * speed up time to link by disabling smart power down, ignore
3361 * the return value of this function because there is nothing
3362 * different we would do if it failed
3364 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3365 phy_data &= ~IGP02E1000_PM_SPD;
3366 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3370 int e1000e_up(struct e1000_adapter *adapter)
3372 struct e1000_hw *hw = &adapter->hw;
3374 /* hardware has been reset, we need to reload some things */
3375 e1000_configure(adapter);
3377 clear_bit(__E1000_DOWN, &adapter->state);
3379 napi_enable(&adapter->napi);
3380 if (adapter->msix_entries)
3381 e1000_configure_msix(adapter);
3382 e1000_irq_enable(adapter);
3384 netif_start_queue(adapter->netdev);
3386 /* fire a link change interrupt to start the watchdog */
3387 if (adapter->msix_entries)
3388 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3389 else
3390 ew32(ICS, E1000_ICS_LSC);
3392 return 0;
3395 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3397 struct e1000_hw *hw = &adapter->hw;
3399 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3400 return;
3402 /* flush pending descriptor writebacks to memory */
3403 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3404 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3406 /* execute the writes immediately */
3407 e1e_flush();
3410 static void e1000e_update_stats(struct e1000_adapter *adapter);
3412 void e1000e_down(struct e1000_adapter *adapter)
3414 struct net_device *netdev = adapter->netdev;
3415 struct e1000_hw *hw = &adapter->hw;
3416 u32 tctl, rctl;
3419 * signal that we're down so the interrupt handler does not
3420 * reschedule our watchdog timer
3422 set_bit(__E1000_DOWN, &adapter->state);
3424 /* disable receives in the hardware */
3425 rctl = er32(RCTL);
3426 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3427 /* flush and sleep below */
3429 netif_stop_queue(netdev);
3431 /* disable transmits in the hardware */
3432 tctl = er32(TCTL);
3433 tctl &= ~E1000_TCTL_EN;
3434 ew32(TCTL, tctl);
3435 /* flush both disables and wait for them to finish */
3436 e1e_flush();
3437 usleep_range(10000, 20000);
3439 napi_disable(&adapter->napi);
3440 e1000_irq_disable(adapter);
3442 del_timer_sync(&adapter->watchdog_timer);
3443 del_timer_sync(&adapter->phy_info_timer);
3445 netif_carrier_off(netdev);
3447 spin_lock(&adapter->stats64_lock);
3448 e1000e_update_stats(adapter);
3449 spin_unlock(&adapter->stats64_lock);
3451 e1000e_flush_descriptors(adapter);
3452 e1000_clean_tx_ring(adapter);
3453 e1000_clean_rx_ring(adapter);
3455 adapter->link_speed = 0;
3456 adapter->link_duplex = 0;
3458 if (!pci_channel_offline(adapter->pdev))
3459 e1000e_reset(adapter);
3462 * TODO: for power management, we could drop the link and
3463 * pci_disable_device here.
3467 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3469 might_sleep();
3470 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3471 usleep_range(1000, 2000);
3472 e1000e_down(adapter);
3473 e1000e_up(adapter);
3474 clear_bit(__E1000_RESETTING, &adapter->state);
3478 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3479 * @adapter: board private structure to initialize
3481 * e1000_sw_init initializes the Adapter private data structure.
3482 * Fields are initialized based on PCI device information and
3483 * OS network device settings (MTU size).
3485 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3487 struct net_device *netdev = adapter->netdev;
3489 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3490 adapter->rx_ps_bsize0 = 128;
3491 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3492 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3494 spin_lock_init(&adapter->stats64_lock);
3496 e1000e_set_interrupt_capability(adapter);
3498 if (e1000_alloc_queues(adapter))
3499 return -ENOMEM;
3501 /* Explicitly disable IRQ since the NIC can be in any state. */
3502 e1000_irq_disable(adapter);
3504 set_bit(__E1000_DOWN, &adapter->state);
3505 return 0;
3509 * e1000_intr_msi_test - Interrupt Handler
3510 * @irq: interrupt number
3511 * @data: pointer to a network interface device structure
3513 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3515 struct net_device *netdev = data;
3516 struct e1000_adapter *adapter = netdev_priv(netdev);
3517 struct e1000_hw *hw = &adapter->hw;
3518 u32 icr = er32(ICR);
3520 e_dbg("icr is %08X\n", icr);
3521 if (icr & E1000_ICR_RXSEQ) {
3522 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3523 wmb();
3526 return IRQ_HANDLED;
3530 * e1000_test_msi_interrupt - Returns 0 for successful test
3531 * @adapter: board private struct
3533 * code flow taken from tg3.c
3535 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3537 struct net_device *netdev = adapter->netdev;
3538 struct e1000_hw *hw = &adapter->hw;
3539 int err;
3541 /* poll_enable hasn't been called yet, so don't need disable */
3542 /* clear any pending events */
3543 er32(ICR);
3545 /* free the real vector and request a test handler */
3546 e1000_free_irq(adapter);
3547 e1000e_reset_interrupt_capability(adapter);
3549 /* Assume that the test fails, if it succeeds then the test
3550 * MSI irq handler will unset this flag */
3551 adapter->flags |= FLAG_MSI_TEST_FAILED;
3553 err = pci_enable_msi(adapter->pdev);
3554 if (err)
3555 goto msi_test_failed;
3557 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3558 netdev->name, netdev);
3559 if (err) {
3560 pci_disable_msi(adapter->pdev);
3561 goto msi_test_failed;
3564 wmb();
3566 e1000_irq_enable(adapter);
3568 /* fire an unusual interrupt on the test handler */
3569 ew32(ICS, E1000_ICS_RXSEQ);
3570 e1e_flush();
3571 msleep(50);
3573 e1000_irq_disable(adapter);
3575 rmb();
3577 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3578 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3579 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3580 } else
3581 e_dbg("MSI interrupt test succeeded!\n");
3583 free_irq(adapter->pdev->irq, netdev);
3584 pci_disable_msi(adapter->pdev);
3586 msi_test_failed:
3587 e1000e_set_interrupt_capability(adapter);
3588 return e1000_request_irq(adapter);
3592 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3593 * @adapter: board private struct
3595 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3597 static int e1000_test_msi(struct e1000_adapter *adapter)
3599 int err;
3600 u16 pci_cmd;
3602 if (!(adapter->flags & FLAG_MSI_ENABLED))
3603 return 0;
3605 /* disable SERR in case the MSI write causes a master abort */
3606 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3607 if (pci_cmd & PCI_COMMAND_SERR)
3608 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3609 pci_cmd & ~PCI_COMMAND_SERR);
3611 err = e1000_test_msi_interrupt(adapter);
3613 /* re-enable SERR */
3614 if (pci_cmd & PCI_COMMAND_SERR) {
3615 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3616 pci_cmd |= PCI_COMMAND_SERR;
3617 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3620 return err;
3624 * e1000_open - Called when a network interface is made active
3625 * @netdev: network interface device structure
3627 * Returns 0 on success, negative value on failure
3629 * The open entry point is called when a network interface is made
3630 * active by the system (IFF_UP). At this point all resources needed
3631 * for transmit and receive operations are allocated, the interrupt
3632 * handler is registered with the OS, the watchdog timer is started,
3633 * and the stack is notified that the interface is ready.
3635 static int e1000_open(struct net_device *netdev)
3637 struct e1000_adapter *adapter = netdev_priv(netdev);
3638 struct e1000_hw *hw = &adapter->hw;
3639 struct pci_dev *pdev = adapter->pdev;
3640 int err;
3642 /* disallow open during test */
3643 if (test_bit(__E1000_TESTING, &adapter->state))
3644 return -EBUSY;
3646 pm_runtime_get_sync(&pdev->dev);
3648 netif_carrier_off(netdev);
3650 /* allocate transmit descriptors */
3651 err = e1000e_setup_tx_resources(adapter);
3652 if (err)
3653 goto err_setup_tx;
3655 /* allocate receive descriptors */
3656 err = e1000e_setup_rx_resources(adapter);
3657 if (err)
3658 goto err_setup_rx;
3661 * If AMT is enabled, let the firmware know that the network
3662 * interface is now open and reset the part to a known state.
3664 if (adapter->flags & FLAG_HAS_AMT) {
3665 e1000e_get_hw_control(adapter);
3666 e1000e_reset(adapter);
3669 e1000e_power_up_phy(adapter);
3671 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3672 if ((adapter->hw.mng_cookie.status &
3673 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3674 e1000_update_mng_vlan(adapter);
3676 /* DMA latency requirement to workaround early-receive/jumbo issue */
3677 if ((adapter->flags & FLAG_HAS_ERT) ||
3678 (adapter->hw.mac.type == e1000_pch2lan))
3679 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3680 PM_QOS_CPU_DMA_LATENCY,
3681 PM_QOS_DEFAULT_VALUE);
3684 * before we allocate an interrupt, we must be ready to handle it.
3685 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3686 * as soon as we call pci_request_irq, so we have to setup our
3687 * clean_rx handler before we do so.
3689 e1000_configure(adapter);
3691 err = e1000_request_irq(adapter);
3692 if (err)
3693 goto err_req_irq;
3696 * Work around PCIe errata with MSI interrupts causing some chipsets to
3697 * ignore e1000e MSI messages, which means we need to test our MSI
3698 * interrupt now
3700 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3701 err = e1000_test_msi(adapter);
3702 if (err) {
3703 e_err("Interrupt allocation failed\n");
3704 goto err_req_irq;
3708 /* From here on the code is the same as e1000e_up() */
3709 clear_bit(__E1000_DOWN, &adapter->state);
3711 napi_enable(&adapter->napi);
3713 e1000_irq_enable(adapter);
3715 netif_start_queue(netdev);
3717 adapter->idle_check = true;
3718 pm_runtime_put(&pdev->dev);
3720 /* fire a link status change interrupt to start the watchdog */
3721 if (adapter->msix_entries)
3722 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3723 else
3724 ew32(ICS, E1000_ICS_LSC);
3726 return 0;
3728 err_req_irq:
3729 e1000e_release_hw_control(adapter);
3730 e1000_power_down_phy(adapter);
3731 e1000e_free_rx_resources(adapter);
3732 err_setup_rx:
3733 e1000e_free_tx_resources(adapter);
3734 err_setup_tx:
3735 e1000e_reset(adapter);
3736 pm_runtime_put_sync(&pdev->dev);
3738 return err;
3742 * e1000_close - Disables a network interface
3743 * @netdev: network interface device structure
3745 * Returns 0, this is not allowed to fail
3747 * The close entry point is called when an interface is de-activated
3748 * by the OS. The hardware is still under the drivers control, but
3749 * needs to be disabled. A global MAC reset is issued to stop the
3750 * hardware, and all transmit and receive resources are freed.
3752 static int e1000_close(struct net_device *netdev)
3754 struct e1000_adapter *adapter = netdev_priv(netdev);
3755 struct pci_dev *pdev = adapter->pdev;
3757 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3759 pm_runtime_get_sync(&pdev->dev);
3761 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3762 e1000e_down(adapter);
3763 e1000_free_irq(adapter);
3765 e1000_power_down_phy(adapter);
3767 e1000e_free_tx_resources(adapter);
3768 e1000e_free_rx_resources(adapter);
3771 * kill manageability vlan ID if supported, but not if a vlan with
3772 * the same ID is registered on the host OS (let 8021q kill it)
3774 if (adapter->hw.mng_cookie.status &
3775 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3776 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3779 * If AMT is enabled, let the firmware know that the network
3780 * interface is now closed
3782 if ((adapter->flags & FLAG_HAS_AMT) &&
3783 !test_bit(__E1000_TESTING, &adapter->state))
3784 e1000e_release_hw_control(adapter);
3786 if ((adapter->flags & FLAG_HAS_ERT) ||
3787 (adapter->hw.mac.type == e1000_pch2lan))
3788 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3790 pm_runtime_put_sync(&pdev->dev);
3792 return 0;
3795 * e1000_set_mac - Change the Ethernet Address of the NIC
3796 * @netdev: network interface device structure
3797 * @p: pointer to an address structure
3799 * Returns 0 on success, negative on failure
3801 static int e1000_set_mac(struct net_device *netdev, void *p)
3803 struct e1000_adapter *adapter = netdev_priv(netdev);
3804 struct sockaddr *addr = p;
3806 if (!is_valid_ether_addr(addr->sa_data))
3807 return -EADDRNOTAVAIL;
3809 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3810 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3812 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3814 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3815 /* activate the work around */
3816 e1000e_set_laa_state_82571(&adapter->hw, 1);
3819 * Hold a copy of the LAA in RAR[14] This is done so that
3820 * between the time RAR[0] gets clobbered and the time it
3821 * gets fixed (in e1000_watchdog), the actual LAA is in one
3822 * of the RARs and no incoming packets directed to this port
3823 * are dropped. Eventually the LAA will be in RAR[0] and
3824 * RAR[14]
3826 e1000e_rar_set(&adapter->hw,
3827 adapter->hw.mac.addr,
3828 adapter->hw.mac.rar_entry_count - 1);
3831 return 0;
3835 * e1000e_update_phy_task - work thread to update phy
3836 * @work: pointer to our work struct
3838 * this worker thread exists because we must acquire a
3839 * semaphore to read the phy, which we could msleep while
3840 * waiting for it, and we can't msleep in a timer.
3842 static void e1000e_update_phy_task(struct work_struct *work)
3844 struct e1000_adapter *adapter = container_of(work,
3845 struct e1000_adapter, update_phy_task);
3847 if (test_bit(__E1000_DOWN, &adapter->state))
3848 return;
3850 e1000_get_phy_info(&adapter->hw);
3854 * Need to wait a few seconds after link up to get diagnostic information from
3855 * the phy
3857 static void e1000_update_phy_info(unsigned long data)
3859 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3861 if (test_bit(__E1000_DOWN, &adapter->state))
3862 return;
3864 schedule_work(&adapter->update_phy_task);
3868 * e1000e_update_phy_stats - Update the PHY statistics counters
3869 * @adapter: board private structure
3871 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3873 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3875 struct e1000_hw *hw = &adapter->hw;
3876 s32 ret_val;
3877 u16 phy_data;
3879 ret_val = hw->phy.ops.acquire(hw);
3880 if (ret_val)
3881 return;
3884 * A page set is expensive so check if already on desired page.
3885 * If not, set to the page with the PHY status registers.
3887 hw->phy.addr = 1;
3888 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3889 &phy_data);
3890 if (ret_val)
3891 goto release;
3892 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
3893 ret_val = hw->phy.ops.set_page(hw,
3894 HV_STATS_PAGE << IGP_PAGE_SHIFT);
3895 if (ret_val)
3896 goto release;
3899 /* Single Collision Count */
3900 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3901 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3902 if (!ret_val)
3903 adapter->stats.scc += phy_data;
3905 /* Excessive Collision Count */
3906 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3907 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3908 if (!ret_val)
3909 adapter->stats.ecol += phy_data;
3911 /* Multiple Collision Count */
3912 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3913 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3914 if (!ret_val)
3915 adapter->stats.mcc += phy_data;
3917 /* Late Collision Count */
3918 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3919 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3920 if (!ret_val)
3921 adapter->stats.latecol += phy_data;
3923 /* Collision Count - also used for adaptive IFS */
3924 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3925 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3926 if (!ret_val)
3927 hw->mac.collision_delta = phy_data;
3929 /* Defer Count */
3930 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
3931 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
3932 if (!ret_val)
3933 adapter->stats.dc += phy_data;
3935 /* Transmit with no CRS */
3936 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
3937 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
3938 if (!ret_val)
3939 adapter->stats.tncrs += phy_data;
3941 release:
3942 hw->phy.ops.release(hw);
3946 * e1000e_update_stats - Update the board statistics counters
3947 * @adapter: board private structure
3949 static void e1000e_update_stats(struct e1000_adapter *adapter)
3951 struct net_device *netdev = adapter->netdev;
3952 struct e1000_hw *hw = &adapter->hw;
3953 struct pci_dev *pdev = adapter->pdev;
3956 * Prevent stats update while adapter is being reset, or if the pci
3957 * connection is down.
3959 if (adapter->link_speed == 0)
3960 return;
3961 if (pci_channel_offline(pdev))
3962 return;
3964 adapter->stats.crcerrs += er32(CRCERRS);
3965 adapter->stats.gprc += er32(GPRC);
3966 adapter->stats.gorc += er32(GORCL);
3967 er32(GORCH); /* Clear gorc */
3968 adapter->stats.bprc += er32(BPRC);
3969 adapter->stats.mprc += er32(MPRC);
3970 adapter->stats.roc += er32(ROC);
3972 adapter->stats.mpc += er32(MPC);
3974 /* Half-duplex statistics */
3975 if (adapter->link_duplex == HALF_DUPLEX) {
3976 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3977 e1000e_update_phy_stats(adapter);
3978 } else {
3979 adapter->stats.scc += er32(SCC);
3980 adapter->stats.ecol += er32(ECOL);
3981 adapter->stats.mcc += er32(MCC);
3982 adapter->stats.latecol += er32(LATECOL);
3983 adapter->stats.dc += er32(DC);
3985 hw->mac.collision_delta = er32(COLC);
3987 if ((hw->mac.type != e1000_82574) &&
3988 (hw->mac.type != e1000_82583))
3989 adapter->stats.tncrs += er32(TNCRS);
3991 adapter->stats.colc += hw->mac.collision_delta;
3994 adapter->stats.xonrxc += er32(XONRXC);
3995 adapter->stats.xontxc += er32(XONTXC);
3996 adapter->stats.xoffrxc += er32(XOFFRXC);
3997 adapter->stats.xofftxc += er32(XOFFTXC);
3998 adapter->stats.gptc += er32(GPTC);
3999 adapter->stats.gotc += er32(GOTCL);
4000 er32(GOTCH); /* Clear gotc */
4001 adapter->stats.rnbc += er32(RNBC);
4002 adapter->stats.ruc += er32(RUC);
4004 adapter->stats.mptc += er32(MPTC);
4005 adapter->stats.bptc += er32(BPTC);
4007 /* used for adaptive IFS */
4009 hw->mac.tx_packet_delta = er32(TPT);
4010 adapter->stats.tpt += hw->mac.tx_packet_delta;
4012 adapter->stats.algnerrc += er32(ALGNERRC);
4013 adapter->stats.rxerrc += er32(RXERRC);
4014 adapter->stats.cexterr += er32(CEXTERR);
4015 adapter->stats.tsctc += er32(TSCTC);
4016 adapter->stats.tsctfc += er32(TSCTFC);
4018 /* Fill out the OS statistics structure */
4019 netdev->stats.multicast = adapter->stats.mprc;
4020 netdev->stats.collisions = adapter->stats.colc;
4022 /* Rx Errors */
4025 * RLEC on some newer hardware can be incorrect so build
4026 * our own version based on RUC and ROC
4028 netdev->stats.rx_errors = adapter->stats.rxerrc +
4029 adapter->stats.crcerrs + adapter->stats.algnerrc +
4030 adapter->stats.ruc + adapter->stats.roc +
4031 adapter->stats.cexterr;
4032 netdev->stats.rx_length_errors = adapter->stats.ruc +
4033 adapter->stats.roc;
4034 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4035 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4036 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4038 /* Tx Errors */
4039 netdev->stats.tx_errors = adapter->stats.ecol +
4040 adapter->stats.latecol;
4041 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4042 netdev->stats.tx_window_errors = adapter->stats.latecol;
4043 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4045 /* Tx Dropped needs to be maintained elsewhere */
4047 /* Management Stats */
4048 adapter->stats.mgptc += er32(MGTPTC);
4049 adapter->stats.mgprc += er32(MGTPRC);
4050 adapter->stats.mgpdc += er32(MGTPDC);
4054 * e1000_phy_read_status - Update the PHY register status snapshot
4055 * @adapter: board private structure
4057 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4059 struct e1000_hw *hw = &adapter->hw;
4060 struct e1000_phy_regs *phy = &adapter->phy_regs;
4062 if ((er32(STATUS) & E1000_STATUS_LU) &&
4063 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4064 int ret_val;
4066 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4067 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4068 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4069 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4070 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4071 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4072 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4073 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4074 if (ret_val)
4075 e_warn("Error reading PHY register\n");
4076 } else {
4078 * Do not read PHY registers if link is not up
4079 * Set values to typical power-on defaults
4081 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4082 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4083 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4084 BMSR_ERCAP);
4085 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4086 ADVERTISE_ALL | ADVERTISE_CSMA);
4087 phy->lpa = 0;
4088 phy->expansion = EXPANSION_ENABLENPAGE;
4089 phy->ctrl1000 = ADVERTISE_1000FULL;
4090 phy->stat1000 = 0;
4091 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4095 static void e1000_print_link_info(struct e1000_adapter *adapter)
4097 struct e1000_hw *hw = &adapter->hw;
4098 u32 ctrl = er32(CTRL);
4100 /* Link status message must follow this format for user tools */
4101 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4102 "Flow Control: %s\n",
4103 adapter->netdev->name,
4104 adapter->link_speed,
4105 (adapter->link_duplex == FULL_DUPLEX) ?
4106 "Full Duplex" : "Half Duplex",
4107 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4108 "Rx/Tx" :
4109 ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
4110 ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4113 static bool e1000e_has_link(struct e1000_adapter *adapter)
4115 struct e1000_hw *hw = &adapter->hw;
4116 bool link_active = 0;
4117 s32 ret_val = 0;
4120 * get_link_status is set on LSC (link status) interrupt or
4121 * Rx sequence error interrupt. get_link_status will stay
4122 * false until the check_for_link establishes link
4123 * for copper adapters ONLY
4125 switch (hw->phy.media_type) {
4126 case e1000_media_type_copper:
4127 if (hw->mac.get_link_status) {
4128 ret_val = hw->mac.ops.check_for_link(hw);
4129 link_active = !hw->mac.get_link_status;
4130 } else {
4131 link_active = 1;
4133 break;
4134 case e1000_media_type_fiber:
4135 ret_val = hw->mac.ops.check_for_link(hw);
4136 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4137 break;
4138 case e1000_media_type_internal_serdes:
4139 ret_val = hw->mac.ops.check_for_link(hw);
4140 link_active = adapter->hw.mac.serdes_has_link;
4141 break;
4142 default:
4143 case e1000_media_type_unknown:
4144 break;
4147 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4148 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4149 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4150 e_info("Gigabit has been disabled, downgrading speed\n");
4153 return link_active;
4156 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4158 /* make sure the receive unit is started */
4159 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4160 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4161 struct e1000_hw *hw = &adapter->hw;
4162 u32 rctl = er32(RCTL);
4163 ew32(RCTL, rctl | E1000_RCTL_EN);
4164 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4168 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4170 struct e1000_hw *hw = &adapter->hw;
4173 * With 82574 controllers, PHY needs to be checked periodically
4174 * for hung state and reset, if two calls return true
4176 if (e1000_check_phy_82574(hw))
4177 adapter->phy_hang_count++;
4178 else
4179 adapter->phy_hang_count = 0;
4181 if (adapter->phy_hang_count > 1) {
4182 adapter->phy_hang_count = 0;
4183 schedule_work(&adapter->reset_task);
4188 * e1000_watchdog - Timer Call-back
4189 * @data: pointer to adapter cast into an unsigned long
4191 static void e1000_watchdog(unsigned long data)
4193 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4195 /* Do the rest outside of interrupt context */
4196 schedule_work(&adapter->watchdog_task);
4198 /* TODO: make this use queue_delayed_work() */
4201 static void e1000_watchdog_task(struct work_struct *work)
4203 struct e1000_adapter *adapter = container_of(work,
4204 struct e1000_adapter, watchdog_task);
4205 struct net_device *netdev = adapter->netdev;
4206 struct e1000_mac_info *mac = &adapter->hw.mac;
4207 struct e1000_phy_info *phy = &adapter->hw.phy;
4208 struct e1000_ring *tx_ring = adapter->tx_ring;
4209 struct e1000_hw *hw = &adapter->hw;
4210 u32 link, tctl;
4212 if (test_bit(__E1000_DOWN, &adapter->state))
4213 return;
4215 link = e1000e_has_link(adapter);
4216 if ((netif_carrier_ok(netdev)) && link) {
4217 /* Cancel scheduled suspend requests. */
4218 pm_runtime_resume(netdev->dev.parent);
4220 e1000e_enable_receives(adapter);
4221 goto link_up;
4224 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4225 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4226 e1000_update_mng_vlan(adapter);
4228 if (link) {
4229 if (!netif_carrier_ok(netdev)) {
4230 bool txb2b = 1;
4232 /* Cancel scheduled suspend requests. */
4233 pm_runtime_resume(netdev->dev.parent);
4235 /* update snapshot of PHY registers on LSC */
4236 e1000_phy_read_status(adapter);
4237 mac->ops.get_link_up_info(&adapter->hw,
4238 &adapter->link_speed,
4239 &adapter->link_duplex);
4240 e1000_print_link_info(adapter);
4242 * On supported PHYs, check for duplex mismatch only
4243 * if link has autonegotiated at 10/100 half
4245 if ((hw->phy.type == e1000_phy_igp_3 ||
4246 hw->phy.type == e1000_phy_bm) &&
4247 (hw->mac.autoneg == true) &&
4248 (adapter->link_speed == SPEED_10 ||
4249 adapter->link_speed == SPEED_100) &&
4250 (adapter->link_duplex == HALF_DUPLEX)) {
4251 u16 autoneg_exp;
4253 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4255 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4256 e_info("Autonegotiated half duplex but"
4257 " link partner cannot autoneg. "
4258 " Try forcing full duplex if "
4259 "link gets many collisions.\n");
4262 /* adjust timeout factor according to speed/duplex */
4263 adapter->tx_timeout_factor = 1;
4264 switch (adapter->link_speed) {
4265 case SPEED_10:
4266 txb2b = 0;
4267 adapter->tx_timeout_factor = 16;
4268 break;
4269 case SPEED_100:
4270 txb2b = 0;
4271 adapter->tx_timeout_factor = 10;
4272 break;
4276 * workaround: re-program speed mode bit after
4277 * link-up event
4279 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4280 !txb2b) {
4281 u32 tarc0;
4282 tarc0 = er32(TARC(0));
4283 tarc0 &= ~SPEED_MODE_BIT;
4284 ew32(TARC(0), tarc0);
4288 * disable TSO for pcie and 10/100 speeds, to avoid
4289 * some hardware issues
4291 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4292 switch (adapter->link_speed) {
4293 case SPEED_10:
4294 case SPEED_100:
4295 e_info("10/100 speed: disabling TSO\n");
4296 netdev->features &= ~NETIF_F_TSO;
4297 netdev->features &= ~NETIF_F_TSO6;
4298 break;
4299 case SPEED_1000:
4300 netdev->features |= NETIF_F_TSO;
4301 netdev->features |= NETIF_F_TSO6;
4302 break;
4303 default:
4304 /* oops */
4305 break;
4310 * enable transmits in the hardware, need to do this
4311 * after setting TARC(0)
4313 tctl = er32(TCTL);
4314 tctl |= E1000_TCTL_EN;
4315 ew32(TCTL, tctl);
4318 * Perform any post-link-up configuration before
4319 * reporting link up.
4321 if (phy->ops.cfg_on_link_up)
4322 phy->ops.cfg_on_link_up(hw);
4324 netif_carrier_on(netdev);
4326 if (!test_bit(__E1000_DOWN, &adapter->state))
4327 mod_timer(&adapter->phy_info_timer,
4328 round_jiffies(jiffies + 2 * HZ));
4330 } else {
4331 if (netif_carrier_ok(netdev)) {
4332 adapter->link_speed = 0;
4333 adapter->link_duplex = 0;
4334 /* Link status message must follow this format */
4335 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4336 adapter->netdev->name);
4337 netif_carrier_off(netdev);
4338 if (!test_bit(__E1000_DOWN, &adapter->state))
4339 mod_timer(&adapter->phy_info_timer,
4340 round_jiffies(jiffies + 2 * HZ));
4342 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4343 schedule_work(&adapter->reset_task);
4344 else
4345 pm_schedule_suspend(netdev->dev.parent,
4346 LINK_TIMEOUT);
4350 link_up:
4351 spin_lock(&adapter->stats64_lock);
4352 e1000e_update_stats(adapter);
4354 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4355 adapter->tpt_old = adapter->stats.tpt;
4356 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4357 adapter->colc_old = adapter->stats.colc;
4359 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4360 adapter->gorc_old = adapter->stats.gorc;
4361 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4362 adapter->gotc_old = adapter->stats.gotc;
4363 spin_unlock(&adapter->stats64_lock);
4365 e1000e_update_adaptive(&adapter->hw);
4367 if (!netif_carrier_ok(netdev) &&
4368 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4370 * We've lost link, so the controller stops DMA,
4371 * but we've got queued Tx work that's never going
4372 * to get done, so reset controller to flush Tx.
4373 * (Do the reset outside of interrupt context).
4375 schedule_work(&adapter->reset_task);
4376 /* return immediately since reset is imminent */
4377 return;
4380 /* Simple mode for Interrupt Throttle Rate (ITR) */
4381 if (adapter->itr_setting == 4) {
4383 * Symmetric Tx/Rx gets a reduced ITR=2000;
4384 * Total asymmetrical Tx or Rx gets ITR=8000;
4385 * everyone else is between 2000-8000.
4387 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4388 u32 dif = (adapter->gotc > adapter->gorc ?
4389 adapter->gotc - adapter->gorc :
4390 adapter->gorc - adapter->gotc) / 10000;
4391 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4393 ew32(ITR, 1000000000 / (itr * 256));
4396 /* Cause software interrupt to ensure Rx ring is cleaned */
4397 if (adapter->msix_entries)
4398 ew32(ICS, adapter->rx_ring->ims_val);
4399 else
4400 ew32(ICS, E1000_ICS_RXDMT0);
4402 /* flush pending descriptors to memory before detecting Tx hang */
4403 e1000e_flush_descriptors(adapter);
4405 /* Force detection of hung controller every watchdog period */
4406 adapter->detect_tx_hung = 1;
4409 * With 82571 controllers, LAA may be overwritten due to controller
4410 * reset from the other port. Set the appropriate LAA in RAR[0]
4412 if (e1000e_get_laa_state_82571(hw))
4413 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4415 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4416 e1000e_check_82574_phy_workaround(adapter);
4418 /* Reset the timer */
4419 if (!test_bit(__E1000_DOWN, &adapter->state))
4420 mod_timer(&adapter->watchdog_timer,
4421 round_jiffies(jiffies + 2 * HZ));
4424 #define E1000_TX_FLAGS_CSUM 0x00000001
4425 #define E1000_TX_FLAGS_VLAN 0x00000002
4426 #define E1000_TX_FLAGS_TSO 0x00000004
4427 #define E1000_TX_FLAGS_IPV4 0x00000008
4428 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4429 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4431 static int e1000_tso(struct e1000_adapter *adapter,
4432 struct sk_buff *skb)
4434 struct e1000_ring *tx_ring = adapter->tx_ring;
4435 struct e1000_context_desc *context_desc;
4436 struct e1000_buffer *buffer_info;
4437 unsigned int i;
4438 u32 cmd_length = 0;
4439 u16 ipcse = 0, tucse, mss;
4440 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4442 if (!skb_is_gso(skb))
4443 return 0;
4445 if (skb_header_cloned(skb)) {
4446 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4448 if (err)
4449 return err;
4452 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4453 mss = skb_shinfo(skb)->gso_size;
4454 if (skb->protocol == htons(ETH_P_IP)) {
4455 struct iphdr *iph = ip_hdr(skb);
4456 iph->tot_len = 0;
4457 iph->check = 0;
4458 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4459 0, IPPROTO_TCP, 0);
4460 cmd_length = E1000_TXD_CMD_IP;
4461 ipcse = skb_transport_offset(skb) - 1;
4462 } else if (skb_is_gso_v6(skb)) {
4463 ipv6_hdr(skb)->payload_len = 0;
4464 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4465 &ipv6_hdr(skb)->daddr,
4466 0, IPPROTO_TCP, 0);
4467 ipcse = 0;
4469 ipcss = skb_network_offset(skb);
4470 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4471 tucss = skb_transport_offset(skb);
4472 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4473 tucse = 0;
4475 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4476 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4478 i = tx_ring->next_to_use;
4479 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4480 buffer_info = &tx_ring->buffer_info[i];
4482 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4483 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4484 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4485 context_desc->upper_setup.tcp_fields.tucss = tucss;
4486 context_desc->upper_setup.tcp_fields.tucso = tucso;
4487 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4488 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4489 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4490 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4492 buffer_info->time_stamp = jiffies;
4493 buffer_info->next_to_watch = i;
4495 i++;
4496 if (i == tx_ring->count)
4497 i = 0;
4498 tx_ring->next_to_use = i;
4500 return 1;
4503 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4505 struct e1000_ring *tx_ring = adapter->tx_ring;
4506 struct e1000_context_desc *context_desc;
4507 struct e1000_buffer *buffer_info;
4508 unsigned int i;
4509 u8 css;
4510 u32 cmd_len = E1000_TXD_CMD_DEXT;
4511 __be16 protocol;
4513 if (skb->ip_summed != CHECKSUM_PARTIAL)
4514 return 0;
4516 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4517 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4518 else
4519 protocol = skb->protocol;
4521 switch (protocol) {
4522 case cpu_to_be16(ETH_P_IP):
4523 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4524 cmd_len |= E1000_TXD_CMD_TCP;
4525 break;
4526 case cpu_to_be16(ETH_P_IPV6):
4527 /* XXX not handling all IPV6 headers */
4528 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4529 cmd_len |= E1000_TXD_CMD_TCP;
4530 break;
4531 default:
4532 if (unlikely(net_ratelimit()))
4533 e_warn("checksum_partial proto=%x!\n",
4534 be16_to_cpu(protocol));
4535 break;
4538 css = skb_checksum_start_offset(skb);
4540 i = tx_ring->next_to_use;
4541 buffer_info = &tx_ring->buffer_info[i];
4542 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4544 context_desc->lower_setup.ip_config = 0;
4545 context_desc->upper_setup.tcp_fields.tucss = css;
4546 context_desc->upper_setup.tcp_fields.tucso =
4547 css + skb->csum_offset;
4548 context_desc->upper_setup.tcp_fields.tucse = 0;
4549 context_desc->tcp_seg_setup.data = 0;
4550 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4552 buffer_info->time_stamp = jiffies;
4553 buffer_info->next_to_watch = i;
4555 i++;
4556 if (i == tx_ring->count)
4557 i = 0;
4558 tx_ring->next_to_use = i;
4560 return 1;
4563 #define E1000_MAX_PER_TXD 8192
4564 #define E1000_MAX_TXD_PWR 12
4566 static int e1000_tx_map(struct e1000_adapter *adapter,
4567 struct sk_buff *skb, unsigned int first,
4568 unsigned int max_per_txd, unsigned int nr_frags,
4569 unsigned int mss)
4571 struct e1000_ring *tx_ring = adapter->tx_ring;
4572 struct pci_dev *pdev = adapter->pdev;
4573 struct e1000_buffer *buffer_info;
4574 unsigned int len = skb_headlen(skb);
4575 unsigned int offset = 0, size, count = 0, i;
4576 unsigned int f, bytecount, segs;
4578 i = tx_ring->next_to_use;
4580 while (len) {
4581 buffer_info = &tx_ring->buffer_info[i];
4582 size = min(len, max_per_txd);
4584 buffer_info->length = size;
4585 buffer_info->time_stamp = jiffies;
4586 buffer_info->next_to_watch = i;
4587 buffer_info->dma = dma_map_single(&pdev->dev,
4588 skb->data + offset,
4589 size, DMA_TO_DEVICE);
4590 buffer_info->mapped_as_page = false;
4591 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4592 goto dma_error;
4594 len -= size;
4595 offset += size;
4596 count++;
4598 if (len) {
4599 i++;
4600 if (i == tx_ring->count)
4601 i = 0;
4605 for (f = 0; f < nr_frags; f++) {
4606 struct skb_frag_struct *frag;
4608 frag = &skb_shinfo(skb)->frags[f];
4609 len = frag->size;
4610 offset = frag->page_offset;
4612 while (len) {
4613 i++;
4614 if (i == tx_ring->count)
4615 i = 0;
4617 buffer_info = &tx_ring->buffer_info[i];
4618 size = min(len, max_per_txd);
4620 buffer_info->length = size;
4621 buffer_info->time_stamp = jiffies;
4622 buffer_info->next_to_watch = i;
4623 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4624 offset, size,
4625 DMA_TO_DEVICE);
4626 buffer_info->mapped_as_page = true;
4627 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4628 goto dma_error;
4630 len -= size;
4631 offset += size;
4632 count++;
4636 segs = skb_shinfo(skb)->gso_segs ? : 1;
4637 /* multiply data chunks by size of headers */
4638 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4640 tx_ring->buffer_info[i].skb = skb;
4641 tx_ring->buffer_info[i].segs = segs;
4642 tx_ring->buffer_info[i].bytecount = bytecount;
4643 tx_ring->buffer_info[first].next_to_watch = i;
4645 return count;
4647 dma_error:
4648 dev_err(&pdev->dev, "Tx DMA map failed\n");
4649 buffer_info->dma = 0;
4650 if (count)
4651 count--;
4653 while (count--) {
4654 if (i == 0)
4655 i += tx_ring->count;
4656 i--;
4657 buffer_info = &tx_ring->buffer_info[i];
4658 e1000_put_txbuf(adapter, buffer_info);
4661 return 0;
4664 static void e1000_tx_queue(struct e1000_adapter *adapter,
4665 int tx_flags, int count)
4667 struct e1000_ring *tx_ring = adapter->tx_ring;
4668 struct e1000_tx_desc *tx_desc = NULL;
4669 struct e1000_buffer *buffer_info;
4670 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4671 unsigned int i;
4673 if (tx_flags & E1000_TX_FLAGS_TSO) {
4674 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4675 E1000_TXD_CMD_TSE;
4676 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4678 if (tx_flags & E1000_TX_FLAGS_IPV4)
4679 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4682 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4683 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4684 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4687 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4688 txd_lower |= E1000_TXD_CMD_VLE;
4689 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4692 i = tx_ring->next_to_use;
4694 do {
4695 buffer_info = &tx_ring->buffer_info[i];
4696 tx_desc = E1000_TX_DESC(*tx_ring, i);
4697 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4698 tx_desc->lower.data =
4699 cpu_to_le32(txd_lower | buffer_info->length);
4700 tx_desc->upper.data = cpu_to_le32(txd_upper);
4702 i++;
4703 if (i == tx_ring->count)
4704 i = 0;
4705 } while (--count > 0);
4707 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4710 * Force memory writes to complete before letting h/w
4711 * know there are new descriptors to fetch. (Only
4712 * applicable for weak-ordered memory model archs,
4713 * such as IA-64).
4715 wmb();
4717 tx_ring->next_to_use = i;
4718 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4720 * we need this if more than one processor can write to our tail
4721 * at a time, it synchronizes IO on IA64/Altix systems
4723 mmiowb();
4726 #define MINIMUM_DHCP_PACKET_SIZE 282
4727 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4728 struct sk_buff *skb)
4730 struct e1000_hw *hw = &adapter->hw;
4731 u16 length, offset;
4733 if (vlan_tx_tag_present(skb)) {
4734 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4735 (adapter->hw.mng_cookie.status &
4736 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4737 return 0;
4740 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4741 return 0;
4743 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4744 return 0;
4747 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4748 struct udphdr *udp;
4750 if (ip->protocol != IPPROTO_UDP)
4751 return 0;
4753 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4754 if (ntohs(udp->dest) != 67)
4755 return 0;
4757 offset = (u8 *)udp + 8 - skb->data;
4758 length = skb->len - offset;
4759 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4762 return 0;
4765 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4767 struct e1000_adapter *adapter = netdev_priv(netdev);
4769 netif_stop_queue(netdev);
4771 * Herbert's original patch had:
4772 * smp_mb__after_netif_stop_queue();
4773 * but since that doesn't exist yet, just open code it.
4775 smp_mb();
4778 * We need to check again in a case another CPU has just
4779 * made room available.
4781 if (e1000_desc_unused(adapter->tx_ring) < size)
4782 return -EBUSY;
4784 /* A reprieve! */
4785 netif_start_queue(netdev);
4786 ++adapter->restart_queue;
4787 return 0;
4790 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4792 struct e1000_adapter *adapter = netdev_priv(netdev);
4794 if (e1000_desc_unused(adapter->tx_ring) >= size)
4795 return 0;
4796 return __e1000_maybe_stop_tx(netdev, size);
4799 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4800 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4801 struct net_device *netdev)
4803 struct e1000_adapter *adapter = netdev_priv(netdev);
4804 struct e1000_ring *tx_ring = adapter->tx_ring;
4805 unsigned int first;
4806 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4807 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4808 unsigned int tx_flags = 0;
4809 unsigned int len = skb_headlen(skb);
4810 unsigned int nr_frags;
4811 unsigned int mss;
4812 int count = 0;
4813 int tso;
4814 unsigned int f;
4816 if (test_bit(__E1000_DOWN, &adapter->state)) {
4817 dev_kfree_skb_any(skb);
4818 return NETDEV_TX_OK;
4821 if (skb->len <= 0) {
4822 dev_kfree_skb_any(skb);
4823 return NETDEV_TX_OK;
4826 mss = skb_shinfo(skb)->gso_size;
4828 * The controller does a simple calculation to
4829 * make sure there is enough room in the FIFO before
4830 * initiating the DMA for each buffer. The calc is:
4831 * 4 = ceil(buffer len/mss). To make sure we don't
4832 * overrun the FIFO, adjust the max buffer len if mss
4833 * drops.
4835 if (mss) {
4836 u8 hdr_len;
4837 max_per_txd = min(mss << 2, max_per_txd);
4838 max_txd_pwr = fls(max_per_txd) - 1;
4841 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4842 * points to just header, pull a few bytes of payload from
4843 * frags into skb->data
4845 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4847 * we do this workaround for ES2LAN, but it is un-necessary,
4848 * avoiding it could save a lot of cycles
4850 if (skb->data_len && (hdr_len == len)) {
4851 unsigned int pull_size;
4853 pull_size = min((unsigned int)4, skb->data_len);
4854 if (!__pskb_pull_tail(skb, pull_size)) {
4855 e_err("__pskb_pull_tail failed.\n");
4856 dev_kfree_skb_any(skb);
4857 return NETDEV_TX_OK;
4859 len = skb_headlen(skb);
4863 /* reserve a descriptor for the offload context */
4864 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4865 count++;
4866 count++;
4868 count += TXD_USE_COUNT(len, max_txd_pwr);
4870 nr_frags = skb_shinfo(skb)->nr_frags;
4871 for (f = 0; f < nr_frags; f++)
4872 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4873 max_txd_pwr);
4875 if (adapter->hw.mac.tx_pkt_filtering)
4876 e1000_transfer_dhcp_info(adapter, skb);
4879 * need: count + 2 desc gap to keep tail from touching
4880 * head, otherwise try next time
4882 if (e1000_maybe_stop_tx(netdev, count + 2))
4883 return NETDEV_TX_BUSY;
4885 if (vlan_tx_tag_present(skb)) {
4886 tx_flags |= E1000_TX_FLAGS_VLAN;
4887 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4890 first = tx_ring->next_to_use;
4892 tso = e1000_tso(adapter, skb);
4893 if (tso < 0) {
4894 dev_kfree_skb_any(skb);
4895 return NETDEV_TX_OK;
4898 if (tso)
4899 tx_flags |= E1000_TX_FLAGS_TSO;
4900 else if (e1000_tx_csum(adapter, skb))
4901 tx_flags |= E1000_TX_FLAGS_CSUM;
4904 * Old method was to assume IPv4 packet by default if TSO was enabled.
4905 * 82571 hardware supports TSO capabilities for IPv6 as well...
4906 * no longer assume, we must.
4908 if (skb->protocol == htons(ETH_P_IP))
4909 tx_flags |= E1000_TX_FLAGS_IPV4;
4911 /* if count is 0 then mapping error has occurred */
4912 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4913 if (count) {
4914 e1000_tx_queue(adapter, tx_flags, count);
4915 /* Make sure there is space in the ring for the next send. */
4916 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4918 } else {
4919 dev_kfree_skb_any(skb);
4920 tx_ring->buffer_info[first].time_stamp = 0;
4921 tx_ring->next_to_use = first;
4924 return NETDEV_TX_OK;
4928 * e1000_tx_timeout - Respond to a Tx Hang
4929 * @netdev: network interface device structure
4931 static void e1000_tx_timeout(struct net_device *netdev)
4933 struct e1000_adapter *adapter = netdev_priv(netdev);
4935 /* Do the reset outside of interrupt context */
4936 adapter->tx_timeout_count++;
4937 schedule_work(&adapter->reset_task);
4940 static void e1000_reset_task(struct work_struct *work)
4942 struct e1000_adapter *adapter;
4943 adapter = container_of(work, struct e1000_adapter, reset_task);
4945 /* don't run the task if already down */
4946 if (test_bit(__E1000_DOWN, &adapter->state))
4947 return;
4949 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4950 (adapter->flags & FLAG_RX_RESTART_NOW))) {
4951 e1000e_dump(adapter);
4952 e_err("Reset adapter\n");
4954 e1000e_reinit_locked(adapter);
4958 * e1000_get_stats64 - Get System Network Statistics
4959 * @netdev: network interface device structure
4960 * @stats: rtnl_link_stats64 pointer
4962 * Returns the address of the device statistics structure.
4964 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
4965 struct rtnl_link_stats64 *stats)
4967 struct e1000_adapter *adapter = netdev_priv(netdev);
4969 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4970 spin_lock(&adapter->stats64_lock);
4971 e1000e_update_stats(adapter);
4972 /* Fill out the OS statistics structure */
4973 stats->rx_bytes = adapter->stats.gorc;
4974 stats->rx_packets = adapter->stats.gprc;
4975 stats->tx_bytes = adapter->stats.gotc;
4976 stats->tx_packets = adapter->stats.gptc;
4977 stats->multicast = adapter->stats.mprc;
4978 stats->collisions = adapter->stats.colc;
4980 /* Rx Errors */
4983 * RLEC on some newer hardware can be incorrect so build
4984 * our own version based on RUC and ROC
4986 stats->rx_errors = adapter->stats.rxerrc +
4987 adapter->stats.crcerrs + adapter->stats.algnerrc +
4988 adapter->stats.ruc + adapter->stats.roc +
4989 adapter->stats.cexterr;
4990 stats->rx_length_errors = adapter->stats.ruc +
4991 adapter->stats.roc;
4992 stats->rx_crc_errors = adapter->stats.crcerrs;
4993 stats->rx_frame_errors = adapter->stats.algnerrc;
4994 stats->rx_missed_errors = adapter->stats.mpc;
4996 /* Tx Errors */
4997 stats->tx_errors = adapter->stats.ecol +
4998 adapter->stats.latecol;
4999 stats->tx_aborted_errors = adapter->stats.ecol;
5000 stats->tx_window_errors = adapter->stats.latecol;
5001 stats->tx_carrier_errors = adapter->stats.tncrs;
5003 /* Tx Dropped needs to be maintained elsewhere */
5005 spin_unlock(&adapter->stats64_lock);
5006 return stats;
5010 * e1000_change_mtu - Change the Maximum Transfer Unit
5011 * @netdev: network interface device structure
5012 * @new_mtu: new value for maximum frame size
5014 * Returns 0 on success, negative on failure
5016 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5018 struct e1000_adapter *adapter = netdev_priv(netdev);
5019 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5021 /* Jumbo frame support */
5022 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5023 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5024 e_err("Jumbo Frames not supported.\n");
5025 return -EINVAL;
5028 /* Supported frame sizes */
5029 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5030 (max_frame > adapter->max_hw_frame_size)) {
5031 e_err("Unsupported MTU setting\n");
5032 return -EINVAL;
5035 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5036 if ((adapter->hw.mac.type == e1000_pch2lan) &&
5037 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5038 (new_mtu > ETH_DATA_LEN)) {
5039 e_err("Jumbo Frames not supported on 82579 when CRC "
5040 "stripping is disabled.\n");
5041 return -EINVAL;
5044 /* 82573 Errata 17 */
5045 if (((adapter->hw.mac.type == e1000_82573) ||
5046 (adapter->hw.mac.type == e1000_82574)) &&
5047 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5048 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5049 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5052 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5053 usleep_range(1000, 2000);
5054 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5055 adapter->max_frame_size = max_frame;
5056 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5057 netdev->mtu = new_mtu;
5058 if (netif_running(netdev))
5059 e1000e_down(adapter);
5062 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5063 * means we reserve 2 more, this pushes us to allocate from the next
5064 * larger slab size.
5065 * i.e. RXBUFFER_2048 --> size-4096 slab
5066 * However with the new *_jumbo_rx* routines, jumbo receives will use
5067 * fragmented skbs
5070 if (max_frame <= 2048)
5071 adapter->rx_buffer_len = 2048;
5072 else
5073 adapter->rx_buffer_len = 4096;
5075 /* adjust allocation if LPE protects us, and we aren't using SBP */
5076 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5077 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5078 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5079 + ETH_FCS_LEN;
5081 if (netif_running(netdev))
5082 e1000e_up(adapter);
5083 else
5084 e1000e_reset(adapter);
5086 clear_bit(__E1000_RESETTING, &adapter->state);
5088 return 0;
5091 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5092 int cmd)
5094 struct e1000_adapter *adapter = netdev_priv(netdev);
5095 struct mii_ioctl_data *data = if_mii(ifr);
5097 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5098 return -EOPNOTSUPP;
5100 switch (cmd) {
5101 case SIOCGMIIPHY:
5102 data->phy_id = adapter->hw.phy.addr;
5103 break;
5104 case SIOCGMIIREG:
5105 e1000_phy_read_status(adapter);
5107 switch (data->reg_num & 0x1F) {
5108 case MII_BMCR:
5109 data->val_out = adapter->phy_regs.bmcr;
5110 break;
5111 case MII_BMSR:
5112 data->val_out = adapter->phy_regs.bmsr;
5113 break;
5114 case MII_PHYSID1:
5115 data->val_out = (adapter->hw.phy.id >> 16);
5116 break;
5117 case MII_PHYSID2:
5118 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5119 break;
5120 case MII_ADVERTISE:
5121 data->val_out = adapter->phy_regs.advertise;
5122 break;
5123 case MII_LPA:
5124 data->val_out = adapter->phy_regs.lpa;
5125 break;
5126 case MII_EXPANSION:
5127 data->val_out = adapter->phy_regs.expansion;
5128 break;
5129 case MII_CTRL1000:
5130 data->val_out = adapter->phy_regs.ctrl1000;
5131 break;
5132 case MII_STAT1000:
5133 data->val_out = adapter->phy_regs.stat1000;
5134 break;
5135 case MII_ESTATUS:
5136 data->val_out = adapter->phy_regs.estatus;
5137 break;
5138 default:
5139 return -EIO;
5141 break;
5142 case SIOCSMIIREG:
5143 default:
5144 return -EOPNOTSUPP;
5146 return 0;
5149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5151 switch (cmd) {
5152 case SIOCGMIIPHY:
5153 case SIOCGMIIREG:
5154 case SIOCSMIIREG:
5155 return e1000_mii_ioctl(netdev, ifr, cmd);
5156 default:
5157 return -EOPNOTSUPP;
5161 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5163 struct e1000_hw *hw = &adapter->hw;
5164 u32 i, mac_reg;
5165 u16 phy_reg, wuc_enable;
5166 int retval = 0;
5168 /* copy MAC RARs to PHY RARs */
5169 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5171 retval = hw->phy.ops.acquire(hw);
5172 if (retval) {
5173 e_err("Could not acquire PHY\n");
5174 return retval;
5177 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5178 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5179 if (retval)
5180 goto out;
5182 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5183 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5184 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5185 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5186 (u16)(mac_reg & 0xFFFF));
5187 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5188 (u16)((mac_reg >> 16) & 0xFFFF));
5191 /* configure PHY Rx Control register */
5192 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5193 mac_reg = er32(RCTL);
5194 if (mac_reg & E1000_RCTL_UPE)
5195 phy_reg |= BM_RCTL_UPE;
5196 if (mac_reg & E1000_RCTL_MPE)
5197 phy_reg |= BM_RCTL_MPE;
5198 phy_reg &= ~(BM_RCTL_MO_MASK);
5199 if (mac_reg & E1000_RCTL_MO_3)
5200 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5201 << BM_RCTL_MO_SHIFT);
5202 if (mac_reg & E1000_RCTL_BAM)
5203 phy_reg |= BM_RCTL_BAM;
5204 if (mac_reg & E1000_RCTL_PMCF)
5205 phy_reg |= BM_RCTL_PMCF;
5206 mac_reg = er32(CTRL);
5207 if (mac_reg & E1000_CTRL_RFCE)
5208 phy_reg |= BM_RCTL_RFCE;
5209 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5211 /* enable PHY wakeup in MAC register */
5212 ew32(WUFC, wufc);
5213 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5215 /* configure and enable PHY wakeup in PHY registers */
5216 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5217 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5219 /* activate PHY wakeup */
5220 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5221 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5222 if (retval)
5223 e_err("Could not set PHY Host Wakeup bit\n");
5224 out:
5225 hw->phy.ops.release(hw);
5227 return retval;
5230 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5231 bool runtime)
5233 struct net_device *netdev = pci_get_drvdata(pdev);
5234 struct e1000_adapter *adapter = netdev_priv(netdev);
5235 struct e1000_hw *hw = &adapter->hw;
5236 u32 ctrl, ctrl_ext, rctl, status;
5237 /* Runtime suspend should only enable wakeup for link changes */
5238 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5239 int retval = 0;
5241 netif_device_detach(netdev);
5243 if (netif_running(netdev)) {
5244 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5245 e1000e_down(adapter);
5246 e1000_free_irq(adapter);
5248 e1000e_reset_interrupt_capability(adapter);
5250 retval = pci_save_state(pdev);
5251 if (retval)
5252 return retval;
5254 status = er32(STATUS);
5255 if (status & E1000_STATUS_LU)
5256 wufc &= ~E1000_WUFC_LNKC;
5258 if (wufc) {
5259 e1000_setup_rctl(adapter);
5260 e1000_set_multi(netdev);
5262 /* turn on all-multi mode if wake on multicast is enabled */
5263 if (wufc & E1000_WUFC_MC) {
5264 rctl = er32(RCTL);
5265 rctl |= E1000_RCTL_MPE;
5266 ew32(RCTL, rctl);
5269 ctrl = er32(CTRL);
5270 /* advertise wake from D3Cold */
5271 #define E1000_CTRL_ADVD3WUC 0x00100000
5272 /* phy power management enable */
5273 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5274 ctrl |= E1000_CTRL_ADVD3WUC;
5275 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5276 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5277 ew32(CTRL, ctrl);
5279 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5280 adapter->hw.phy.media_type ==
5281 e1000_media_type_internal_serdes) {
5282 /* keep the laser running in D3 */
5283 ctrl_ext = er32(CTRL_EXT);
5284 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5285 ew32(CTRL_EXT, ctrl_ext);
5288 if (adapter->flags & FLAG_IS_ICH)
5289 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5291 /* Allow time for pending master requests to run */
5292 e1000e_disable_pcie_master(&adapter->hw);
5294 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5295 /* enable wakeup by the PHY */
5296 retval = e1000_init_phy_wakeup(adapter, wufc);
5297 if (retval)
5298 return retval;
5299 } else {
5300 /* enable wakeup by the MAC */
5301 ew32(WUFC, wufc);
5302 ew32(WUC, E1000_WUC_PME_EN);
5304 } else {
5305 ew32(WUC, 0);
5306 ew32(WUFC, 0);
5309 *enable_wake = !!wufc;
5311 /* make sure adapter isn't asleep if manageability is enabled */
5312 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5313 (hw->mac.ops.check_mng_mode(hw)))
5314 *enable_wake = true;
5316 if (adapter->hw.phy.type == e1000_phy_igp_3)
5317 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5320 * Release control of h/w to f/w. If f/w is AMT enabled, this
5321 * would have already happened in close and is redundant.
5323 e1000e_release_hw_control(adapter);
5325 pci_disable_device(pdev);
5327 return 0;
5330 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5332 if (sleep && wake) {
5333 pci_prepare_to_sleep(pdev);
5334 return;
5337 pci_wake_from_d3(pdev, wake);
5338 pci_set_power_state(pdev, PCI_D3hot);
5341 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5342 bool wake)
5344 struct net_device *netdev = pci_get_drvdata(pdev);
5345 struct e1000_adapter *adapter = netdev_priv(netdev);
5348 * The pci-e switch on some quad port adapters will report a
5349 * correctable error when the MAC transitions from D0 to D3. To
5350 * prevent this we need to mask off the correctable errors on the
5351 * downstream port of the pci-e switch.
5353 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5354 struct pci_dev *us_dev = pdev->bus->self;
5355 int pos = pci_pcie_cap(us_dev);
5356 u16 devctl;
5358 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5359 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5360 (devctl & ~PCI_EXP_DEVCTL_CERE));
5362 e1000_power_off(pdev, sleep, wake);
5364 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5365 } else {
5366 e1000_power_off(pdev, sleep, wake);
5370 #ifdef CONFIG_PCIEASPM
5371 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5373 pci_disable_link_state_locked(pdev, state);
5375 #else
5376 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5378 int pos;
5379 u16 reg16;
5382 * Both device and parent should have the same ASPM setting.
5383 * Disable ASPM in downstream component first and then upstream.
5385 pos = pci_pcie_cap(pdev);
5386 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5387 reg16 &= ~state;
5388 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5390 if (!pdev->bus->self)
5391 return;
5393 pos = pci_pcie_cap(pdev->bus->self);
5394 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5395 reg16 &= ~state;
5396 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5398 #endif
5399 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5401 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5402 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5403 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5405 __e1000e_disable_aspm(pdev, state);
5408 #ifdef CONFIG_PM
5409 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5411 return !!adapter->tx_ring->buffer_info;
5414 static int __e1000_resume(struct pci_dev *pdev)
5416 struct net_device *netdev = pci_get_drvdata(pdev);
5417 struct e1000_adapter *adapter = netdev_priv(netdev);
5418 struct e1000_hw *hw = &adapter->hw;
5419 u16 aspm_disable_flag = 0;
5420 u32 err;
5422 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5423 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5424 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5425 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5426 if (aspm_disable_flag)
5427 e1000e_disable_aspm(pdev, aspm_disable_flag);
5429 pci_set_power_state(pdev, PCI_D0);
5430 pci_restore_state(pdev);
5431 pci_save_state(pdev);
5433 e1000e_set_interrupt_capability(adapter);
5434 if (netif_running(netdev)) {
5435 err = e1000_request_irq(adapter);
5436 if (err)
5437 return err;
5440 if (hw->mac.type == e1000_pch2lan)
5441 e1000_resume_workarounds_pchlan(&adapter->hw);
5443 e1000e_power_up_phy(adapter);
5445 /* report the system wakeup cause from S3/S4 */
5446 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5447 u16 phy_data;
5449 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5450 if (phy_data) {
5451 e_info("PHY Wakeup cause - %s\n",
5452 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5453 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5454 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5455 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5456 phy_data & E1000_WUS_LNKC ? "Link Status "
5457 " Change" : "other");
5459 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5460 } else {
5461 u32 wus = er32(WUS);
5462 if (wus) {
5463 e_info("MAC Wakeup cause - %s\n",
5464 wus & E1000_WUS_EX ? "Unicast Packet" :
5465 wus & E1000_WUS_MC ? "Multicast Packet" :
5466 wus & E1000_WUS_BC ? "Broadcast Packet" :
5467 wus & E1000_WUS_MAG ? "Magic Packet" :
5468 wus & E1000_WUS_LNKC ? "Link Status Change" :
5469 "other");
5471 ew32(WUS, ~0);
5474 e1000e_reset(adapter);
5476 e1000_init_manageability_pt(adapter);
5478 if (netif_running(netdev))
5479 e1000e_up(adapter);
5481 netif_device_attach(netdev);
5484 * If the controller has AMT, do not set DRV_LOAD until the interface
5485 * is up. For all other cases, let the f/w know that the h/w is now
5486 * under the control of the driver.
5488 if (!(adapter->flags & FLAG_HAS_AMT))
5489 e1000e_get_hw_control(adapter);
5491 return 0;
5494 #ifdef CONFIG_PM_SLEEP
5495 static int e1000_suspend(struct device *dev)
5497 struct pci_dev *pdev = to_pci_dev(dev);
5498 int retval;
5499 bool wake;
5501 retval = __e1000_shutdown(pdev, &wake, false);
5502 if (!retval)
5503 e1000_complete_shutdown(pdev, true, wake);
5505 return retval;
5508 static int e1000_resume(struct device *dev)
5510 struct pci_dev *pdev = to_pci_dev(dev);
5511 struct net_device *netdev = pci_get_drvdata(pdev);
5512 struct e1000_adapter *adapter = netdev_priv(netdev);
5514 if (e1000e_pm_ready(adapter))
5515 adapter->idle_check = true;
5517 return __e1000_resume(pdev);
5519 #endif /* CONFIG_PM_SLEEP */
5521 #ifdef CONFIG_PM_RUNTIME
5522 static int e1000_runtime_suspend(struct device *dev)
5524 struct pci_dev *pdev = to_pci_dev(dev);
5525 struct net_device *netdev = pci_get_drvdata(pdev);
5526 struct e1000_adapter *adapter = netdev_priv(netdev);
5528 if (e1000e_pm_ready(adapter)) {
5529 bool wake;
5531 __e1000_shutdown(pdev, &wake, true);
5534 return 0;
5537 static int e1000_idle(struct device *dev)
5539 struct pci_dev *pdev = to_pci_dev(dev);
5540 struct net_device *netdev = pci_get_drvdata(pdev);
5541 struct e1000_adapter *adapter = netdev_priv(netdev);
5543 if (!e1000e_pm_ready(adapter))
5544 return 0;
5546 if (adapter->idle_check) {
5547 adapter->idle_check = false;
5548 if (!e1000e_has_link(adapter))
5549 pm_schedule_suspend(dev, MSEC_PER_SEC);
5552 return -EBUSY;
5555 static int e1000_runtime_resume(struct device *dev)
5557 struct pci_dev *pdev = to_pci_dev(dev);
5558 struct net_device *netdev = pci_get_drvdata(pdev);
5559 struct e1000_adapter *adapter = netdev_priv(netdev);
5561 if (!e1000e_pm_ready(adapter))
5562 return 0;
5564 adapter->idle_check = !dev->power.runtime_auto;
5565 return __e1000_resume(pdev);
5567 #endif /* CONFIG_PM_RUNTIME */
5568 #endif /* CONFIG_PM */
5570 static void e1000_shutdown(struct pci_dev *pdev)
5572 bool wake = false;
5574 __e1000_shutdown(pdev, &wake, false);
5576 if (system_state == SYSTEM_POWER_OFF)
5577 e1000_complete_shutdown(pdev, false, wake);
5580 #ifdef CONFIG_NET_POLL_CONTROLLER
5582 static irqreturn_t e1000_intr_msix(int irq, void *data)
5584 struct net_device *netdev = data;
5585 struct e1000_adapter *adapter = netdev_priv(netdev);
5587 if (adapter->msix_entries) {
5588 int vector, msix_irq;
5590 vector = 0;
5591 msix_irq = adapter->msix_entries[vector].vector;
5592 disable_irq(msix_irq);
5593 e1000_intr_msix_rx(msix_irq, netdev);
5594 enable_irq(msix_irq);
5596 vector++;
5597 msix_irq = adapter->msix_entries[vector].vector;
5598 disable_irq(msix_irq);
5599 e1000_intr_msix_tx(msix_irq, netdev);
5600 enable_irq(msix_irq);
5602 vector++;
5603 msix_irq = adapter->msix_entries[vector].vector;
5604 disable_irq(msix_irq);
5605 e1000_msix_other(msix_irq, netdev);
5606 enable_irq(msix_irq);
5609 return IRQ_HANDLED;
5613 * Polling 'interrupt' - used by things like netconsole to send skbs
5614 * without having to re-enable interrupts. It's not called while
5615 * the interrupt routine is executing.
5617 static void e1000_netpoll(struct net_device *netdev)
5619 struct e1000_adapter *adapter = netdev_priv(netdev);
5621 switch (adapter->int_mode) {
5622 case E1000E_INT_MODE_MSIX:
5623 e1000_intr_msix(adapter->pdev->irq, netdev);
5624 break;
5625 case E1000E_INT_MODE_MSI:
5626 disable_irq(adapter->pdev->irq);
5627 e1000_intr_msi(adapter->pdev->irq, netdev);
5628 enable_irq(adapter->pdev->irq);
5629 break;
5630 default: /* E1000E_INT_MODE_LEGACY */
5631 disable_irq(adapter->pdev->irq);
5632 e1000_intr(adapter->pdev->irq, netdev);
5633 enable_irq(adapter->pdev->irq);
5634 break;
5637 #endif
5640 * e1000_io_error_detected - called when PCI error is detected
5641 * @pdev: Pointer to PCI device
5642 * @state: The current pci connection state
5644 * This function is called after a PCI bus error affecting
5645 * this device has been detected.
5647 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5648 pci_channel_state_t state)
5650 struct net_device *netdev = pci_get_drvdata(pdev);
5651 struct e1000_adapter *adapter = netdev_priv(netdev);
5653 netif_device_detach(netdev);
5655 if (state == pci_channel_io_perm_failure)
5656 return PCI_ERS_RESULT_DISCONNECT;
5658 if (netif_running(netdev))
5659 e1000e_down(adapter);
5660 pci_disable_device(pdev);
5662 /* Request a slot slot reset. */
5663 return PCI_ERS_RESULT_NEED_RESET;
5667 * e1000_io_slot_reset - called after the pci bus has been reset.
5668 * @pdev: Pointer to PCI device
5670 * Restart the card from scratch, as if from a cold-boot. Implementation
5671 * resembles the first-half of the e1000_resume routine.
5673 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5675 struct net_device *netdev = pci_get_drvdata(pdev);
5676 struct e1000_adapter *adapter = netdev_priv(netdev);
5677 struct e1000_hw *hw = &adapter->hw;
5678 u16 aspm_disable_flag = 0;
5679 int err;
5680 pci_ers_result_t result;
5682 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5683 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5684 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5685 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5686 if (aspm_disable_flag)
5687 e1000e_disable_aspm(pdev, aspm_disable_flag);
5689 err = pci_enable_device_mem(pdev);
5690 if (err) {
5691 dev_err(&pdev->dev,
5692 "Cannot re-enable PCI device after reset.\n");
5693 result = PCI_ERS_RESULT_DISCONNECT;
5694 } else {
5695 pci_set_master(pdev);
5696 pdev->state_saved = true;
5697 pci_restore_state(pdev);
5699 pci_enable_wake(pdev, PCI_D3hot, 0);
5700 pci_enable_wake(pdev, PCI_D3cold, 0);
5702 e1000e_reset(adapter);
5703 ew32(WUS, ~0);
5704 result = PCI_ERS_RESULT_RECOVERED;
5707 pci_cleanup_aer_uncorrect_error_status(pdev);
5709 return result;
5713 * e1000_io_resume - called when traffic can start flowing again.
5714 * @pdev: Pointer to PCI device
5716 * This callback is called when the error recovery driver tells us that
5717 * its OK to resume normal operation. Implementation resembles the
5718 * second-half of the e1000_resume routine.
5720 static void e1000_io_resume(struct pci_dev *pdev)
5722 struct net_device *netdev = pci_get_drvdata(pdev);
5723 struct e1000_adapter *adapter = netdev_priv(netdev);
5725 e1000_init_manageability_pt(adapter);
5727 if (netif_running(netdev)) {
5728 if (e1000e_up(adapter)) {
5729 dev_err(&pdev->dev,
5730 "can't bring device back up after reset\n");
5731 return;
5735 netif_device_attach(netdev);
5738 * If the controller has AMT, do not set DRV_LOAD until the interface
5739 * is up. For all other cases, let the f/w know that the h/w is now
5740 * under the control of the driver.
5742 if (!(adapter->flags & FLAG_HAS_AMT))
5743 e1000e_get_hw_control(adapter);
5747 static void e1000_print_device_info(struct e1000_adapter *adapter)
5749 struct e1000_hw *hw = &adapter->hw;
5750 struct net_device *netdev = adapter->netdev;
5751 u32 ret_val;
5752 u8 pba_str[E1000_PBANUM_LENGTH];
5754 /* print bus type/speed/width info */
5755 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5756 /* bus width */
5757 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5758 "Width x1"),
5759 /* MAC address */
5760 netdev->dev_addr);
5761 e_info("Intel(R) PRO/%s Network Connection\n",
5762 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5763 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5764 E1000_PBANUM_LENGTH);
5765 if (ret_val)
5766 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5767 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5768 hw->mac.type, hw->phy.type, pba_str);
5771 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5773 struct e1000_hw *hw = &adapter->hw;
5774 int ret_val;
5775 u16 buf = 0;
5777 if (hw->mac.type != e1000_82573)
5778 return;
5780 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5781 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5782 /* Deep Smart Power Down (DSPD) */
5783 dev_warn(&adapter->pdev->dev,
5784 "Warning: detected DSPD enabled in EEPROM\n");
5788 static const struct net_device_ops e1000e_netdev_ops = {
5789 .ndo_open = e1000_open,
5790 .ndo_stop = e1000_close,
5791 .ndo_start_xmit = e1000_xmit_frame,
5792 .ndo_get_stats64 = e1000e_get_stats64,
5793 .ndo_set_rx_mode = e1000_set_multi,
5794 .ndo_set_mac_address = e1000_set_mac,
5795 .ndo_change_mtu = e1000_change_mtu,
5796 .ndo_do_ioctl = e1000_ioctl,
5797 .ndo_tx_timeout = e1000_tx_timeout,
5798 .ndo_validate_addr = eth_validate_addr,
5800 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
5801 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
5802 #ifdef CONFIG_NET_POLL_CONTROLLER
5803 .ndo_poll_controller = e1000_netpoll,
5804 #endif
5808 * e1000_probe - Device Initialization Routine
5809 * @pdev: PCI device information struct
5810 * @ent: entry in e1000_pci_tbl
5812 * Returns 0 on success, negative on failure
5814 * e1000_probe initializes an adapter identified by a pci_dev structure.
5815 * The OS initialization, configuring of the adapter private structure,
5816 * and a hardware reset occur.
5818 static int __devinit e1000_probe(struct pci_dev *pdev,
5819 const struct pci_device_id *ent)
5821 struct net_device *netdev;
5822 struct e1000_adapter *adapter;
5823 struct e1000_hw *hw;
5824 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5825 resource_size_t mmio_start, mmio_len;
5826 resource_size_t flash_start, flash_len;
5828 static int cards_found;
5829 u16 aspm_disable_flag = 0;
5830 int i, err, pci_using_dac;
5831 u16 eeprom_data = 0;
5832 u16 eeprom_apme_mask = E1000_EEPROM_APME;
5834 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
5835 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5836 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5837 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5838 if (aspm_disable_flag)
5839 e1000e_disable_aspm(pdev, aspm_disable_flag);
5841 err = pci_enable_device_mem(pdev);
5842 if (err)
5843 return err;
5845 pci_using_dac = 0;
5846 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5847 if (!err) {
5848 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5849 if (!err)
5850 pci_using_dac = 1;
5851 } else {
5852 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5853 if (err) {
5854 err = dma_set_coherent_mask(&pdev->dev,
5855 DMA_BIT_MASK(32));
5856 if (err) {
5857 dev_err(&pdev->dev, "No usable DMA "
5858 "configuration, aborting\n");
5859 goto err_dma;
5864 err = pci_request_selected_regions_exclusive(pdev,
5865 pci_select_bars(pdev, IORESOURCE_MEM),
5866 e1000e_driver_name);
5867 if (err)
5868 goto err_pci_reg;
5870 /* AER (Advanced Error Reporting) hooks */
5871 pci_enable_pcie_error_reporting(pdev);
5873 pci_set_master(pdev);
5874 /* PCI config space info */
5875 err = pci_save_state(pdev);
5876 if (err)
5877 goto err_alloc_etherdev;
5879 err = -ENOMEM;
5880 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5881 if (!netdev)
5882 goto err_alloc_etherdev;
5884 SET_NETDEV_DEV(netdev, &pdev->dev);
5886 netdev->irq = pdev->irq;
5888 pci_set_drvdata(pdev, netdev);
5889 adapter = netdev_priv(netdev);
5890 hw = &adapter->hw;
5891 adapter->netdev = netdev;
5892 adapter->pdev = pdev;
5893 adapter->ei = ei;
5894 adapter->pba = ei->pba;
5895 adapter->flags = ei->flags;
5896 adapter->flags2 = ei->flags2;
5897 adapter->hw.adapter = adapter;
5898 adapter->hw.mac.type = ei->mac;
5899 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5900 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5902 mmio_start = pci_resource_start(pdev, 0);
5903 mmio_len = pci_resource_len(pdev, 0);
5905 err = -EIO;
5906 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5907 if (!adapter->hw.hw_addr)
5908 goto err_ioremap;
5910 if ((adapter->flags & FLAG_HAS_FLASH) &&
5911 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5912 flash_start = pci_resource_start(pdev, 1);
5913 flash_len = pci_resource_len(pdev, 1);
5914 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5915 if (!adapter->hw.flash_address)
5916 goto err_flashmap;
5919 /* construct the net_device struct */
5920 netdev->netdev_ops = &e1000e_netdev_ops;
5921 e1000e_set_ethtool_ops(netdev);
5922 netdev->watchdog_timeo = 5 * HZ;
5923 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5924 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5926 netdev->mem_start = mmio_start;
5927 netdev->mem_end = mmio_start + mmio_len;
5929 adapter->bd_number = cards_found++;
5931 e1000e_check_options(adapter);
5933 /* setup adapter struct */
5934 err = e1000_sw_init(adapter);
5935 if (err)
5936 goto err_sw_init;
5938 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5939 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5940 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5942 err = ei->get_variants(adapter);
5943 if (err)
5944 goto err_hw_init;
5946 if ((adapter->flags & FLAG_IS_ICH) &&
5947 (adapter->flags & FLAG_READ_ONLY_NVM))
5948 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5950 hw->mac.ops.get_bus_info(&adapter->hw);
5952 adapter->hw.phy.autoneg_wait_to_complete = 0;
5954 /* Copper options */
5955 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5956 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5957 adapter->hw.phy.disable_polarity_correction = 0;
5958 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5961 if (e1000_check_reset_block(&adapter->hw))
5962 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5964 netdev->features = NETIF_F_SG |
5965 NETIF_F_HW_CSUM |
5966 NETIF_F_HW_VLAN_TX |
5967 NETIF_F_HW_VLAN_RX;
5969 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5970 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5972 netdev->features |= NETIF_F_TSO;
5973 netdev->features |= NETIF_F_TSO6;
5975 netdev->vlan_features |= NETIF_F_TSO;
5976 netdev->vlan_features |= NETIF_F_TSO6;
5977 netdev->vlan_features |= NETIF_F_HW_CSUM;
5978 netdev->vlan_features |= NETIF_F_SG;
5980 if (pci_using_dac) {
5981 netdev->features |= NETIF_F_HIGHDMA;
5982 netdev->vlan_features |= NETIF_F_HIGHDMA;
5985 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5986 adapter->flags |= FLAG_MNG_PT_ENABLED;
5989 * before reading the NVM, reset the controller to
5990 * put the device in a known good starting state
5992 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5995 * systems with ASPM and others may see the checksum fail on the first
5996 * attempt. Let's give it a few tries
5998 for (i = 0;; i++) {
5999 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6000 break;
6001 if (i == 2) {
6002 e_err("The NVM Checksum Is Not Valid\n");
6003 err = -EIO;
6004 goto err_eeprom;
6008 e1000_eeprom_checks(adapter);
6010 /* copy the MAC address */
6011 if (e1000e_read_mac_addr(&adapter->hw))
6012 e_err("NVM Read Error while reading MAC address\n");
6014 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6015 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6017 if (!is_valid_ether_addr(netdev->perm_addr)) {
6018 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6019 err = -EIO;
6020 goto err_eeprom;
6023 init_timer(&adapter->watchdog_timer);
6024 adapter->watchdog_timer.function = e1000_watchdog;
6025 adapter->watchdog_timer.data = (unsigned long) adapter;
6027 init_timer(&adapter->phy_info_timer);
6028 adapter->phy_info_timer.function = e1000_update_phy_info;
6029 adapter->phy_info_timer.data = (unsigned long) adapter;
6031 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6032 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6033 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6034 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6035 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6037 /* Initialize link parameters. User can change them with ethtool */
6038 adapter->hw.mac.autoneg = 1;
6039 adapter->fc_autoneg = 1;
6040 adapter->hw.fc.requested_mode = e1000_fc_default;
6041 adapter->hw.fc.current_mode = e1000_fc_default;
6042 adapter->hw.phy.autoneg_advertised = 0x2f;
6044 /* ring size defaults */
6045 adapter->rx_ring->count = 256;
6046 adapter->tx_ring->count = 256;
6049 * Initial Wake on LAN setting - If APM wake is enabled in
6050 * the EEPROM, enable the ACPI Magic Packet filter
6052 if (adapter->flags & FLAG_APME_IN_WUC) {
6053 /* APME bit in EEPROM is mapped to WUC.APME */
6054 eeprom_data = er32(WUC);
6055 eeprom_apme_mask = E1000_WUC_APME;
6056 if ((hw->mac.type > e1000_ich10lan) &&
6057 (eeprom_data & E1000_WUC_PHY_WAKE))
6058 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6059 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6060 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6061 (adapter->hw.bus.func == 1))
6062 e1000_read_nvm(&adapter->hw,
6063 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6064 else
6065 e1000_read_nvm(&adapter->hw,
6066 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6069 /* fetch WoL from EEPROM */
6070 if (eeprom_data & eeprom_apme_mask)
6071 adapter->eeprom_wol |= E1000_WUFC_MAG;
6074 * now that we have the eeprom settings, apply the special cases
6075 * where the eeprom may be wrong or the board simply won't support
6076 * wake on lan on a particular port
6078 if (!(adapter->flags & FLAG_HAS_WOL))
6079 adapter->eeprom_wol = 0;
6081 /* initialize the wol settings based on the eeprom settings */
6082 adapter->wol = adapter->eeprom_wol;
6083 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6085 /* save off EEPROM version number */
6086 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6088 /* reset the hardware with the new settings */
6089 e1000e_reset(adapter);
6092 * If the controller has AMT, do not set DRV_LOAD until the interface
6093 * is up. For all other cases, let the f/w know that the h/w is now
6094 * under the control of the driver.
6096 if (!(adapter->flags & FLAG_HAS_AMT))
6097 e1000e_get_hw_control(adapter);
6099 strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6100 err = register_netdev(netdev);
6101 if (err)
6102 goto err_register;
6104 /* carrier off reporting is important to ethtool even BEFORE open */
6105 netif_carrier_off(netdev);
6107 e1000_print_device_info(adapter);
6109 if (pci_dev_run_wake(pdev))
6110 pm_runtime_put_noidle(&pdev->dev);
6112 return 0;
6114 err_register:
6115 if (!(adapter->flags & FLAG_HAS_AMT))
6116 e1000e_release_hw_control(adapter);
6117 err_eeprom:
6118 if (!e1000_check_reset_block(&adapter->hw))
6119 e1000_phy_hw_reset(&adapter->hw);
6120 err_hw_init:
6121 kfree(adapter->tx_ring);
6122 kfree(adapter->rx_ring);
6123 err_sw_init:
6124 if (adapter->hw.flash_address)
6125 iounmap(adapter->hw.flash_address);
6126 e1000e_reset_interrupt_capability(adapter);
6127 err_flashmap:
6128 iounmap(adapter->hw.hw_addr);
6129 err_ioremap:
6130 free_netdev(netdev);
6131 err_alloc_etherdev:
6132 pci_release_selected_regions(pdev,
6133 pci_select_bars(pdev, IORESOURCE_MEM));
6134 err_pci_reg:
6135 err_dma:
6136 pci_disable_device(pdev);
6137 return err;
6141 * e1000_remove - Device Removal Routine
6142 * @pdev: PCI device information struct
6144 * e1000_remove is called by the PCI subsystem to alert the driver
6145 * that it should release a PCI device. The could be caused by a
6146 * Hot-Plug event, or because the driver is going to be removed from
6147 * memory.
6149 static void __devexit e1000_remove(struct pci_dev *pdev)
6151 struct net_device *netdev = pci_get_drvdata(pdev);
6152 struct e1000_adapter *adapter = netdev_priv(netdev);
6153 bool down = test_bit(__E1000_DOWN, &adapter->state);
6156 * The timers may be rescheduled, so explicitly disable them
6157 * from being rescheduled.
6159 if (!down)
6160 set_bit(__E1000_DOWN, &adapter->state);
6161 del_timer_sync(&adapter->watchdog_timer);
6162 del_timer_sync(&adapter->phy_info_timer);
6164 cancel_work_sync(&adapter->reset_task);
6165 cancel_work_sync(&adapter->watchdog_task);
6166 cancel_work_sync(&adapter->downshift_task);
6167 cancel_work_sync(&adapter->update_phy_task);
6168 cancel_work_sync(&adapter->print_hang_task);
6170 if (!(netdev->flags & IFF_UP))
6171 e1000_power_down_phy(adapter);
6173 /* Don't lie to e1000_close() down the road. */
6174 if (!down)
6175 clear_bit(__E1000_DOWN, &adapter->state);
6176 unregister_netdev(netdev);
6178 if (pci_dev_run_wake(pdev))
6179 pm_runtime_get_noresume(&pdev->dev);
6182 * Release control of h/w to f/w. If f/w is AMT enabled, this
6183 * would have already happened in close and is redundant.
6185 e1000e_release_hw_control(adapter);
6187 e1000e_reset_interrupt_capability(adapter);
6188 kfree(adapter->tx_ring);
6189 kfree(adapter->rx_ring);
6191 iounmap(adapter->hw.hw_addr);
6192 if (adapter->hw.flash_address)
6193 iounmap(adapter->hw.flash_address);
6194 pci_release_selected_regions(pdev,
6195 pci_select_bars(pdev, IORESOURCE_MEM));
6197 free_netdev(netdev);
6199 /* AER disable */
6200 pci_disable_pcie_error_reporting(pdev);
6202 pci_disable_device(pdev);
6205 /* PCI Error Recovery (ERS) */
6206 static struct pci_error_handlers e1000_err_handler = {
6207 .error_detected = e1000_io_error_detected,
6208 .slot_reset = e1000_io_slot_reset,
6209 .resume = e1000_io_resume,
6212 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6213 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6214 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6215 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6216 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6217 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6218 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6219 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6220 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6221 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6223 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6224 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6225 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6226 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6228 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6229 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6230 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6232 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6233 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6234 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6236 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6237 board_80003es2lan },
6238 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6239 board_80003es2lan },
6240 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6241 board_80003es2lan },
6242 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6243 board_80003es2lan },
6245 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6246 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6247 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6248 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6249 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6250 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6251 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6252 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6254 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6255 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6256 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6257 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6258 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6259 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6260 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6261 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6262 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6264 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6265 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6266 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6268 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6269 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6270 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6272 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6273 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6274 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6275 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6277 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6278 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6280 { } /* terminate list */
6282 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6284 #ifdef CONFIG_PM
6285 static const struct dev_pm_ops e1000_pm_ops = {
6286 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6287 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6288 e1000_runtime_resume, e1000_idle)
6290 #endif
6292 /* PCI Device API Driver */
6293 static struct pci_driver e1000_driver = {
6294 .name = e1000e_driver_name,
6295 .id_table = e1000_pci_tbl,
6296 .probe = e1000_probe,
6297 .remove = __devexit_p(e1000_remove),
6298 #ifdef CONFIG_PM
6299 .driver.pm = &e1000_pm_ops,
6300 #endif
6301 .shutdown = e1000_shutdown,
6302 .err_handler = &e1000_err_handler
6306 * e1000_init_module - Driver Registration Routine
6308 * e1000_init_module is the first routine called when the driver is
6309 * loaded. All it does is register with the PCI subsystem.
6311 static int __init e1000_init_module(void)
6313 int ret;
6314 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6315 e1000e_driver_version);
6316 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6317 ret = pci_register_driver(&e1000_driver);
6319 return ret;
6321 module_init(e1000_init_module);
6324 * e1000_exit_module - Driver Exit Cleanup Routine
6326 * e1000_exit_module is called just before the driver is removed
6327 * from memory.
6329 static void __exit e1000_exit_module(void)
6331 pci_unregister_driver(&e1000_driver);
6333 module_exit(e1000_exit_module);
6336 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6337 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6338 MODULE_LICENSE("GPL");
6339 MODULE_VERSION(DRV_VERSION);
6341 /* e1000_main.c */