1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
110 #define E1000_ICH_RAR_ENTRIES 7
112 #define PHY_PAGE_SHIFT 5
113 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
114 ((reg) & MAX_PHY_REG_ADDRESS))
115 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
116 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
118 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
119 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
120 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
122 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
124 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
126 /* SMBus Address Phy Register */
127 #define HV_SMB_ADDR PHY_REG(768, 26)
128 #define HV_SMB_ADDR_MASK 0x007F
129 #define HV_SMB_ADDR_PEC_EN 0x0200
130 #define HV_SMB_ADDR_VALID 0x0080
132 /* PHY Power Management Control */
133 #define HV_PM_CTRL PHY_REG(770, 17)
135 /* PHY Low Power Idle Control */
136 #define I82579_LPI_CTRL PHY_REG(772, 20)
137 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
139 /* Strapping Option Register - RO */
140 #define E1000_STRAP 0x0000C
141 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
142 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
144 /* OEM Bits Phy Register */
145 #define HV_OEM_BITS PHY_REG(768, 25)
146 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
147 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
148 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
150 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
151 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
153 /* KMRN Mode Control */
154 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
155 #define HV_KMRN_MDIO_SLOW 0x0400
157 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
158 /* Offset 04h HSFSTS */
159 union ich8_hws_flash_status
{
161 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
162 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
163 u16 dael
:1; /* bit 2 Direct Access error Log */
164 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
165 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
166 u16 reserved1
:2; /* bit 13:6 Reserved */
167 u16 reserved2
:6; /* bit 13:6 Reserved */
168 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
169 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
174 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
175 /* Offset 06h FLCTL */
176 union ich8_hws_flash_ctrl
{
177 struct ich8_hsflctl
{
178 u16 flcgo
:1; /* 0 Flash Cycle Go */
179 u16 flcycle
:2; /* 2:1 Flash Cycle */
180 u16 reserved
:5; /* 7:3 Reserved */
181 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
182 u16 flockdn
:6; /* 15:10 Reserved */
187 /* ICH Flash Region Access Permissions */
188 union ich8_hws_flash_regacc
{
190 u32 grra
:8; /* 0:7 GbE region Read Access */
191 u32 grwa
:8; /* 8:15 GbE region Write Access */
192 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
193 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
198 /* ICH Flash Protected Region */
199 union ich8_flash_protected_range
{
201 u32 base
:13; /* 0:12 Protected Range Base */
202 u32 reserved1
:2; /* 13:14 Reserved */
203 u32 rpe
:1; /* 15 Read Protection Enable */
204 u32 limit
:13; /* 16:28 Protected Range Limit */
205 u32 reserved2
:2; /* 29:30 Reserved */
206 u32 wpe
:1; /* 31 Write Protection Enable */
211 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
212 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
213 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
214 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
215 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
216 u32 offset
, u8 byte
);
217 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
219 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
221 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
223 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
224 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
225 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
226 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
227 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
228 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
229 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
230 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
231 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
232 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
233 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
234 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
235 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
236 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
237 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
238 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
239 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
240 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
242 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
244 return readw(hw
->flash_address
+ reg
);
247 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
249 return readl(hw
->flash_address
+ reg
);
252 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
254 writew(val
, hw
->flash_address
+ reg
);
257 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
259 writel(val
, hw
->flash_address
+ reg
);
262 #define er16flash(reg) __er16flash(hw, (reg))
263 #define er32flash(reg) __er32flash(hw, (reg))
264 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
265 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
268 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
269 * @hw: pointer to the HW structure
271 * Initialize family-specific PHY parameters and function pointers.
273 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
275 struct e1000_phy_info
*phy
= &hw
->phy
;
280 phy
->reset_delay_us
= 100;
282 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
283 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
284 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
285 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
286 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
287 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
288 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
289 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
290 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
293 * The MAC-PHY interconnect may still be in SMBus mode
294 * after Sx->S0. If the manageability engine (ME) is
295 * disabled, then toggle the LANPHYPC Value bit to force
296 * the interconnect to PCIe mode.
298 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
300 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
301 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
304 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
310 * Reset the PHY before any acccess to it. Doing so, ensures that
311 * the PHY is in a known good state before we read/write PHY registers.
312 * The generic reset is sufficient here, because we haven't determined
315 ret_val
= e1000e_phy_hw_reset_generic(hw
);
319 phy
->id
= e1000_phy_unknown
;
320 ret_val
= e1000e_get_phy_id(hw
);
323 if ((phy
->id
== 0) || (phy
->id
== PHY_REVISION_MASK
)) {
325 * In case the PHY needs to be in mdio slow mode (eg. 82577),
326 * set slow mode and try to get the PHY id again.
328 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
331 ret_val
= e1000e_get_phy_id(hw
);
335 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
338 case e1000_phy_82577
:
339 case e1000_phy_82579
:
340 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
341 phy
->ops
.force_speed_duplex
=
342 e1000_phy_force_speed_duplex_82577
;
343 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
344 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
345 phy
->ops
.commit
= e1000e_phy_sw_reset
;
347 case e1000_phy_82578
:
348 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
349 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
350 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
351 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
354 ret_val
= -E1000_ERR_PHY
;
363 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
364 * @hw: pointer to the HW structure
366 * Initialize family-specific PHY parameters and function pointers.
368 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
370 struct e1000_phy_info
*phy
= &hw
->phy
;
375 phy
->reset_delay_us
= 100;
377 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
378 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
381 * We may need to do this twice - once for IGP and if that fails,
382 * we'll set BM func pointers and try again
384 ret_val
= e1000e_determine_phy_address(hw
);
386 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
387 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
388 ret_val
= e1000e_determine_phy_address(hw
);
390 e_dbg("Cannot determine PHY addr. Erroring out\n");
396 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
399 ret_val
= e1000e_get_phy_id(hw
);
406 case IGP03E1000_E_PHY_ID
:
407 phy
->type
= e1000_phy_igp_3
;
408 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
409 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
410 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
411 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
412 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
413 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
416 case IFE_PLUS_E_PHY_ID
:
418 phy
->type
= e1000_phy_ife
;
419 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
420 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
421 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
422 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
424 case BME1000_E_PHY_ID
:
425 phy
->type
= e1000_phy_bm
;
426 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
427 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
428 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
429 phy
->ops
.commit
= e1000e_phy_sw_reset
;
430 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
431 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
432 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
435 return -E1000_ERR_PHY
;
443 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
444 * @hw: pointer to the HW structure
446 * Initialize family-specific NVM parameters and function
449 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
451 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
452 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
453 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
456 /* Can't read flash registers if the register set isn't mapped. */
457 if (!hw
->flash_address
) {
458 e_dbg("ERROR: Flash registers not mapped\n");
459 return -E1000_ERR_CONFIG
;
462 nvm
->type
= e1000_nvm_flash_sw
;
464 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
467 * sector_X_addr is a "sector"-aligned address (4096 bytes)
468 * Add 1 to sector_end_addr since this sector is included in
471 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
472 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
474 /* flash_base_addr is byte-aligned */
475 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
478 * find total size of the NVM, then cut in half since the total
479 * size represents two separate NVM banks.
481 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
482 << FLASH_SECTOR_ADDR_SHIFT
;
483 nvm
->flash_bank_size
/= 2;
484 /* Adjust to word count */
485 nvm
->flash_bank_size
/= sizeof(u16
);
487 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
489 /* Clear shadow ram */
490 for (i
= 0; i
< nvm
->word_size
; i
++) {
491 dev_spec
->shadow_ram
[i
].modified
= false;
492 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
499 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
500 * @hw: pointer to the HW structure
502 * Initialize family-specific MAC parameters and function
505 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
507 struct e1000_hw
*hw
= &adapter
->hw
;
508 struct e1000_mac_info
*mac
= &hw
->mac
;
510 /* Set media type function pointer */
511 hw
->phy
.media_type
= e1000_media_type_copper
;
513 /* Set mta register count */
514 mac
->mta_reg_count
= 32;
515 /* Set rar entry count */
516 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
517 if (mac
->type
== e1000_ich8lan
)
518 mac
->rar_entry_count
--;
520 mac
->has_fwsm
= true;
521 /* ARC subsystem not supported */
522 mac
->arc_subsystem_valid
= false;
523 /* Adaptive IFS supported */
524 mac
->adaptive_ifs
= true;
531 /* check management mode */
532 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
534 mac
->ops
.id_led_init
= e1000e_id_led_init
;
536 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
538 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
539 /* turn on/off LED */
540 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
541 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
545 /* check management mode */
546 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
548 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
550 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
552 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
553 /* turn on/off LED */
554 mac
->ops
.led_on
= e1000_led_on_pchlan
;
555 mac
->ops
.led_off
= e1000_led_off_pchlan
;
561 /* Enable PCS Lock-loss workaround for ICH8 */
562 if (mac
->type
== e1000_ich8lan
)
563 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
565 /* Disable PHY configuration by hardware, config by software */
566 if (mac
->type
== e1000_pch2lan
) {
567 u32 extcnf_ctrl
= er32(EXTCNF_CTRL
);
569 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
570 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
577 * e1000_set_eee_pchlan - Enable/disable EEE support
578 * @hw: pointer to the HW structure
580 * Enable/disable EEE based on setting in dev_spec structure. The bits in
581 * the LPI Control register will remain set only if/when link is up.
583 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
588 if (hw
->phy
.type
!= e1000_phy_82579
)
591 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
595 if (hw
->dev_spec
.ich8lan
.eee_disable
)
596 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
598 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
600 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
606 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
607 * @hw: pointer to the HW structure
609 * Checks to see of the link status of the hardware has changed. If a
610 * change in link status has been detected, then we read the PHY registers
611 * to get the current speed/duplex if link exists.
613 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
615 struct e1000_mac_info
*mac
= &hw
->mac
;
620 * We only want to go out to the PHY registers to see if Auto-Neg
621 * has completed and/or if our link status has changed. The
622 * get_link_status flag is set upon receiving a Link Status
623 * Change or Rx Sequence Error interrupt.
625 if (!mac
->get_link_status
) {
631 * First we want to see if the MII Status Register reports
632 * link. If so, then we want to get the current speed/duplex
635 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
639 if (hw
->mac
.type
== e1000_pchlan
) {
640 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
646 goto out
; /* No link detected */
648 mac
->get_link_status
= false;
650 if (hw
->phy
.type
== e1000_phy_82578
) {
651 ret_val
= e1000_link_stall_workaround_hv(hw
);
657 * Check if there was DownShift, must be checked
658 * immediately after link-up
660 e1000e_check_downshift(hw
);
662 /* Enable/Disable EEE after link up */
663 ret_val
= e1000_set_eee_pchlan(hw
);
668 * If we are forcing speed/duplex, then we simply return since
669 * we have already determined whether we have link or not.
672 ret_val
= -E1000_ERR_CONFIG
;
677 * Auto-Neg is enabled. Auto Speed Detection takes care
678 * of MAC speed/duplex configuration. So we only need to
679 * configure Collision Distance in the MAC.
681 e1000e_config_collision_dist(hw
);
684 * Configure Flow Control now that Auto-Neg has completed.
685 * First, we need to restore the desired flow control
686 * settings because we may have had to re-autoneg with a
687 * different link partner.
689 ret_val
= e1000e_config_fc_after_link_up(hw
);
691 e_dbg("Error configuring flow control\n");
697 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
699 struct e1000_hw
*hw
= &adapter
->hw
;
702 rc
= e1000_init_mac_params_ich8lan(adapter
);
706 rc
= e1000_init_nvm_params_ich8lan(hw
);
710 switch (hw
->mac
.type
) {
714 rc
= e1000_init_phy_params_ich8lan(hw
);
718 rc
= e1000_init_phy_params_pchlan(hw
);
726 if (adapter
->hw
.phy
.type
== e1000_phy_ife
) {
727 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
728 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
731 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
732 (adapter
->hw
.phy
.type
== e1000_phy_igp_3
))
733 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
735 /* Disable EEE by default until IEEE802.3az spec is finalized */
736 if (adapter
->flags2
& FLAG2_HAS_EEE
)
737 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
742 static DEFINE_MUTEX(nvm_mutex
);
745 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
746 * @hw: pointer to the HW structure
748 * Acquires the mutex for performing NVM operations.
750 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
752 mutex_lock(&nvm_mutex
);
758 * e1000_release_nvm_ich8lan - Release NVM mutex
759 * @hw: pointer to the HW structure
761 * Releases the mutex used while performing NVM operations.
763 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
765 mutex_unlock(&nvm_mutex
);
768 static DEFINE_MUTEX(swflag_mutex
);
771 * e1000_acquire_swflag_ich8lan - Acquire software control flag
772 * @hw: pointer to the HW structure
774 * Acquires the software control flag for performing PHY and select
777 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
779 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
782 mutex_lock(&swflag_mutex
);
785 extcnf_ctrl
= er32(EXTCNF_CTRL
);
786 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
794 e_dbg("SW/FW/HW has locked the resource for too long.\n");
795 ret_val
= -E1000_ERR_CONFIG
;
799 timeout
= SW_FLAG_TIMEOUT
;
801 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
802 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
805 extcnf_ctrl
= er32(EXTCNF_CTRL
);
806 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
814 e_dbg("Failed to acquire the semaphore.\n");
815 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
816 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
817 ret_val
= -E1000_ERR_CONFIG
;
823 mutex_unlock(&swflag_mutex
);
829 * e1000_release_swflag_ich8lan - Release software control flag
830 * @hw: pointer to the HW structure
832 * Releases the software control flag for performing PHY and select
835 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
839 extcnf_ctrl
= er32(EXTCNF_CTRL
);
840 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
841 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
843 mutex_unlock(&swflag_mutex
);
847 * e1000_check_mng_mode_ich8lan - Checks management mode
848 * @hw: pointer to the HW structure
850 * This checks if the adapter has any manageability enabled.
851 * This is a function pointer entry point only called by read/write
852 * routines for the PHY and NVM parts.
854 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
859 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
860 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
861 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
865 * e1000_check_mng_mode_pchlan - Checks management mode
866 * @hw: pointer to the HW structure
868 * This checks if the adapter has iAMT enabled.
869 * This is a function pointer entry point only called by read/write
870 * routines for the PHY and NVM parts.
872 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
877 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
878 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
882 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
883 * @hw: pointer to the HW structure
885 * Checks if firmware is blocking the reset of the PHY.
886 * This is a function pointer entry point only called by
889 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
895 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
899 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
900 * @hw: pointer to the HW structure
902 * Assumes semaphore already acquired.
905 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
908 u32 strap
= er32(STRAP
);
911 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
913 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
917 phy_data
&= ~HV_SMB_ADDR_MASK
;
918 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
919 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
920 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
927 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
928 * @hw: pointer to the HW structure
930 * SW should configure the LCD from the NVM extended configuration region
931 * as a workaround for certain parts.
933 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
935 struct e1000_phy_info
*phy
= &hw
->phy
;
936 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
938 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
941 * Initialize the PHY from the NVM on ICH platforms. This
942 * is needed due to an issue where the NVM configuration is
943 * not properly autoloaded after power transitions.
944 * Therefore, after each PHY reset, we will load the
945 * configuration data out of the NVM manually.
947 switch (hw
->mac
.type
) {
949 if (phy
->type
!= e1000_phy_igp_3
)
952 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
953 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
954 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
960 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
966 ret_val
= hw
->phy
.ops
.acquire(hw
);
970 data
= er32(FEXTNVM
);
971 if (!(data
& sw_cfg_mask
))
975 * Make sure HW does not configure LCD from PHY
976 * extended configuration before SW configuration
978 data
= er32(EXTCNF_CTRL
);
979 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
980 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
984 cnf_size
= er32(EXTCNF_SIZE
);
985 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
986 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
990 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
991 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
993 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
994 (hw
->mac
.type
== e1000_pchlan
)) ||
995 (hw
->mac
.type
== e1000_pch2lan
)) {
997 * HW configures the SMBus address and LEDs when the
998 * OEM and LCD Write Enable bits are set in the NVM.
999 * When both NVM bits are cleared, SW will configure
1002 ret_val
= e1000_write_smbus_addr(hw
);
1006 data
= er32(LEDCTL
);
1007 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1013 /* Configure LCD from extended configuration region. */
1015 /* cnf_base_addr is in DWORD */
1016 word_addr
= (u16
)(cnf_base_addr
<< 1);
1018 for (i
= 0; i
< cnf_size
; i
++) {
1019 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1024 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1029 /* Save off the PHY page for future writes. */
1030 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1031 phy_page
= reg_data
;
1035 reg_addr
&= PHY_REG_MASK
;
1036 reg_addr
|= phy_page
;
1038 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1045 hw
->phy
.ops
.release(hw
);
1050 * e1000_k1_gig_workaround_hv - K1 Si workaround
1051 * @hw: pointer to the HW structure
1052 * @link: link up bool flag
1054 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1055 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1056 * If link is down, the function will restore the default K1 setting located
1059 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1063 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1065 if (hw
->mac
.type
!= e1000_pchlan
)
1068 /* Wrap the whole flow with the sw flag */
1069 ret_val
= hw
->phy
.ops
.acquire(hw
);
1073 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1075 if (hw
->phy
.type
== e1000_phy_82578
) {
1076 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1081 status_reg
&= BM_CS_STATUS_LINK_UP
|
1082 BM_CS_STATUS_RESOLVED
|
1083 BM_CS_STATUS_SPEED_MASK
;
1085 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1086 BM_CS_STATUS_RESOLVED
|
1087 BM_CS_STATUS_SPEED_1000
))
1091 if (hw
->phy
.type
== e1000_phy_82577
) {
1092 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1097 status_reg
&= HV_M_STATUS_LINK_UP
|
1098 HV_M_STATUS_AUTONEG_COMPLETE
|
1099 HV_M_STATUS_SPEED_MASK
;
1101 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1102 HV_M_STATUS_AUTONEG_COMPLETE
|
1103 HV_M_STATUS_SPEED_1000
))
1107 /* Link stall fix for link up */
1108 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1114 /* Link stall fix for link down */
1115 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1121 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1124 hw
->phy
.ops
.release(hw
);
1130 * e1000_configure_k1_ich8lan - Configure K1 power state
1131 * @hw: pointer to the HW structure
1132 * @enable: K1 state to configure
1134 * Configure the K1 power state based on the provided parameter.
1135 * Assumes semaphore already acquired.
1137 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1139 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1147 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1148 E1000_KMRNCTRLSTA_K1_CONFIG
,
1154 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1156 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1158 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1159 E1000_KMRNCTRLSTA_K1_CONFIG
,
1165 ctrl_ext
= er32(CTRL_EXT
);
1166 ctrl_reg
= er32(CTRL
);
1168 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1169 reg
|= E1000_CTRL_FRCSPD
;
1172 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1174 ew32(CTRL
, ctrl_reg
);
1175 ew32(CTRL_EXT
, ctrl_ext
);
1183 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1184 * @hw: pointer to the HW structure
1185 * @d0_state: boolean if entering d0 or d3 device state
1187 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1188 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1189 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1191 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1197 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1200 ret_val
= hw
->phy
.ops
.acquire(hw
);
1204 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1205 mac_reg
= er32(EXTCNF_CTRL
);
1206 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1210 mac_reg
= er32(FEXTNVM
);
1211 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1214 mac_reg
= er32(PHY_CTRL
);
1216 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1220 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1223 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1224 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1226 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1227 oem_reg
|= HV_OEM_BITS_LPLU
;
1229 if (mac_reg
& E1000_PHY_CTRL_NOND0A_GBE_DISABLE
)
1230 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1232 if (mac_reg
& E1000_PHY_CTRL_NOND0A_LPLU
)
1233 oem_reg
|= HV_OEM_BITS_LPLU
;
1235 /* Restart auto-neg to activate the bits */
1236 if (!e1000_check_reset_block(hw
))
1237 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1238 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1241 hw
->phy
.ops
.release(hw
);
1248 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1249 * @hw: pointer to the HW structure
1251 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1256 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1260 data
|= HV_KMRN_MDIO_SLOW
;
1262 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1268 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1269 * done after every PHY reset.
1271 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1276 if (hw
->mac
.type
!= e1000_pchlan
)
1279 /* Set MDIO slow mode before any other MDIO access */
1280 if (hw
->phy
.type
== e1000_phy_82577
) {
1281 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1286 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1287 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1288 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1289 /* Disable generation of early preamble */
1290 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1294 /* Preamble tuning for SSC */
1295 ret_val
= e1e_wphy(hw
, PHY_REG(770, 16), 0xA204);
1300 if (hw
->phy
.type
== e1000_phy_82578
) {
1302 * Return registers to default by doing a soft reset then
1303 * writing 0x3140 to the control register.
1305 if (hw
->phy
.revision
< 2) {
1306 e1000e_phy_sw_reset(hw
);
1307 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1312 ret_val
= hw
->phy
.ops
.acquire(hw
);
1317 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1318 hw
->phy
.ops
.release(hw
);
1323 * Configure the K1 Si workaround during phy reset assuming there is
1324 * link so that it disables K1 if link is in 1Gbps.
1326 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1330 /* Workaround for link disconnects on a busy hub in half duplex */
1331 ret_val
= hw
->phy
.ops
.acquire(hw
);
1334 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
,
1335 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1339 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
,
1340 PHY_REG(BM_PORT_CTRL_PAGE
, 17),
1343 hw
->phy
.ops
.release(hw
);
1349 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1350 * @hw: pointer to the HW structure
1352 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1357 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1358 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1359 mac_reg
= er32(RAL(i
));
1360 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
1361 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
1362 mac_reg
= er32(RAH(i
));
1363 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
1364 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0x8000));
1368 static u32
e1000_calc_rx_da_crc(u8 mac
[])
1370 u32 poly
= 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
1371 u32 i
, j
, mask
, crc
;
1374 for (i
= 0; i
< 6; i
++) {
1376 for (j
= 8; j
> 0; j
--) {
1377 mask
= (crc
& 1) * (-1);
1378 crc
= (crc
>> 1) ^ (poly
& mask
);
1385 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1387 * @hw: pointer to the HW structure
1388 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1390 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1397 if (hw
->mac
.type
!= e1000_pch2lan
)
1400 /* disable Rx path while enabling/disabling workaround */
1401 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1402 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1408 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1409 * SHRAL/H) and initial CRC values to the MAC
1411 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1412 u8 mac_addr
[ETH_ALEN
] = {0};
1413 u32 addr_high
, addr_low
;
1415 addr_high
= er32(RAH(i
));
1416 if (!(addr_high
& E1000_RAH_AV
))
1418 addr_low
= er32(RAL(i
));
1419 mac_addr
[0] = (addr_low
& 0xFF);
1420 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1421 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1422 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1423 mac_addr
[4] = (addr_high
& 0xFF);
1424 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1427 e1000_calc_rx_da_crc(mac_addr
));
1430 /* Write Rx addresses to the PHY */
1431 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1433 /* Enable jumbo frame workaround in the MAC */
1434 mac_reg
= er32(FFLT_DBG
);
1435 mac_reg
&= ~(1 << 14);
1436 mac_reg
|= (7 << 15);
1437 ew32(FFLT_DBG
, mac_reg
);
1439 mac_reg
= er32(RCTL
);
1440 mac_reg
|= E1000_RCTL_SECRC
;
1441 ew32(RCTL
, mac_reg
);
1443 ret_val
= e1000e_read_kmrn_reg(hw
,
1444 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1448 ret_val
= e1000e_write_kmrn_reg(hw
,
1449 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1453 ret_val
= e1000e_read_kmrn_reg(hw
,
1454 E1000_KMRNCTRLSTA_HD_CTRL
,
1458 data
&= ~(0xF << 8);
1460 ret_val
= e1000e_write_kmrn_reg(hw
,
1461 E1000_KMRNCTRLSTA_HD_CTRL
,
1466 /* Enable jumbo frame workaround in the PHY */
1467 e1e_rphy(hw
, PHY_REG(769, 20), &data
);
1468 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), data
& ~(1 << 14));
1471 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1472 data
&= ~(0x7F << 5);
1473 data
|= (0x37 << 5);
1474 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1477 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1480 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1483 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1484 data
&= ~(0x3FF << 2);
1485 data
|= (0x1A << 2);
1486 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1489 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xFE00);
1492 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1493 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1497 /* Write MAC register values back to h/w defaults */
1498 mac_reg
= er32(FFLT_DBG
);
1499 mac_reg
&= ~(0xF << 14);
1500 ew32(FFLT_DBG
, mac_reg
);
1502 mac_reg
= er32(RCTL
);
1503 mac_reg
&= ~E1000_RCTL_SECRC
;
1504 ew32(FFLT_DBG
, mac_reg
);
1506 ret_val
= e1000e_read_kmrn_reg(hw
,
1507 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1511 ret_val
= e1000e_write_kmrn_reg(hw
,
1512 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1516 ret_val
= e1000e_read_kmrn_reg(hw
,
1517 E1000_KMRNCTRLSTA_HD_CTRL
,
1521 data
&= ~(0xF << 8);
1523 ret_val
= e1000e_write_kmrn_reg(hw
,
1524 E1000_KMRNCTRLSTA_HD_CTRL
,
1529 /* Write PHY register values back to h/w defaults */
1530 e1e_rphy(hw
, PHY_REG(769, 20), &data
);
1531 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), data
& ~(1 << 14));
1534 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1535 data
&= ~(0x7F << 5);
1536 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1539 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1542 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1545 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1546 data
&= ~(0x3FF << 2);
1548 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1551 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1554 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1555 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1560 /* re-enable Rx path after enabling/disabling workaround */
1561 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1568 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1569 * done after every PHY reset.
1571 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1575 if (hw
->mac
.type
!= e1000_pch2lan
)
1578 /* Set MDIO slow mode before any other MDIO access */
1579 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1586 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1587 * @hw: pointer to the HW structure
1589 * Check the appropriate indication the MAC has finished configuring the
1590 * PHY after a software reset.
1592 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1594 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1596 /* Wait for basic configuration completes before proceeding */
1598 data
= er32(STATUS
);
1599 data
&= E1000_STATUS_LAN_INIT_DONE
;
1601 } while ((!data
) && --loop
);
1604 * If basic configuration is incomplete before the above loop
1605 * count reaches 0, loading the configuration from NVM will
1606 * leave the PHY in a bad state possibly resulting in no link.
1609 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1611 /* Clear the Init Done bit for the next init event */
1612 data
= er32(STATUS
);
1613 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1618 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1619 * @hw: pointer to the HW structure
1621 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1626 if (e1000_check_reset_block(hw
))
1629 /* Allow time for h/w to get to quiescent state after reset */
1632 /* Perform any necessary post-reset workarounds */
1633 switch (hw
->mac
.type
) {
1635 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1640 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1648 /* Dummy read to clear the phy wakeup bit after lcd reset */
1649 if (hw
->mac
.type
>= e1000_pchlan
)
1650 e1e_rphy(hw
, BM_WUC
, ®
);
1652 /* Configure the LCD with the extended configuration region in NVM */
1653 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1657 /* Configure the LCD with the OEM bits in NVM */
1658 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1665 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1666 * @hw: pointer to the HW structure
1669 * This is a function pointer entry point called by drivers
1670 * or other shared routines.
1672 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1676 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1680 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1687 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1688 * @hw: pointer to the HW structure
1689 * @active: true to enable LPLU, false to disable
1691 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1692 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1693 * the phy speed. This function will manually set the LPLU bit and restart
1694 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1695 * since it configures the same bit.
1697 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1702 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1707 oem_reg
|= HV_OEM_BITS_LPLU
;
1709 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1711 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1712 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1719 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1720 * @hw: pointer to the HW structure
1721 * @active: true to enable LPLU, false to disable
1723 * Sets the LPLU D0 state according to the active flag. When
1724 * activating LPLU this function also disables smart speed
1725 * and vice versa. LPLU will not be activated unless the
1726 * device autonegotiation advertisement meets standards of
1727 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1728 * This is a function pointer entry point only called by
1729 * PHY setup routines.
1731 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1733 struct e1000_phy_info
*phy
= &hw
->phy
;
1738 if (phy
->type
== e1000_phy_ife
)
1741 phy_ctrl
= er32(PHY_CTRL
);
1744 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1745 ew32(PHY_CTRL
, phy_ctrl
);
1747 if (phy
->type
!= e1000_phy_igp_3
)
1751 * Call gig speed drop workaround on LPLU before accessing
1754 if (hw
->mac
.type
== e1000_ich8lan
)
1755 e1000e_gig_downshift_workaround_ich8lan(hw
);
1757 /* When LPLU is enabled, we should disable SmartSpeed */
1758 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1759 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1760 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1764 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1765 ew32(PHY_CTRL
, phy_ctrl
);
1767 if (phy
->type
!= e1000_phy_igp_3
)
1771 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1772 * during Dx states where the power conservation is most
1773 * important. During driver activity we should enable
1774 * SmartSpeed, so performance is maintained.
1776 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1777 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1782 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1783 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1787 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1788 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1793 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1794 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1805 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1806 * @hw: pointer to the HW structure
1807 * @active: true to enable LPLU, false to disable
1809 * Sets the LPLU D3 state according to the active flag. When
1810 * activating LPLU this function also disables smart speed
1811 * and vice versa. LPLU will not be activated unless the
1812 * device autonegotiation advertisement meets standards of
1813 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1814 * This is a function pointer entry point only called by
1815 * PHY setup routines.
1817 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1819 struct e1000_phy_info
*phy
= &hw
->phy
;
1824 phy_ctrl
= er32(PHY_CTRL
);
1827 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
1828 ew32(PHY_CTRL
, phy_ctrl
);
1830 if (phy
->type
!= e1000_phy_igp_3
)
1834 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1835 * during Dx states where the power conservation is most
1836 * important. During driver activity we should enable
1837 * SmartSpeed, so performance is maintained.
1839 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1840 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1845 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1846 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1850 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1851 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1856 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1857 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1862 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1863 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1864 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1865 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
1866 ew32(PHY_CTRL
, phy_ctrl
);
1868 if (phy
->type
!= e1000_phy_igp_3
)
1872 * Call gig speed drop workaround on LPLU before accessing
1875 if (hw
->mac
.type
== e1000_ich8lan
)
1876 e1000e_gig_downshift_workaround_ich8lan(hw
);
1878 /* When LPLU is enabled, we should disable SmartSpeed */
1879 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1883 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1884 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1891 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1892 * @hw: pointer to the HW structure
1893 * @bank: pointer to the variable that returns the active bank
1895 * Reads signature byte from the NVM using the flash access registers.
1896 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1898 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
1901 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1902 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
1903 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
1907 switch (hw
->mac
.type
) {
1911 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
1912 E1000_EECD_SEC1VAL_VALID_MASK
) {
1913 if (eecd
& E1000_EECD_SEC1VAL
)
1920 e_dbg("Unable to determine valid NVM bank via EEC - "
1921 "reading flash signature\n");
1924 /* set bank to 0 in case flash read fails */
1928 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
1932 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1933 E1000_ICH_NVM_SIG_VALUE
) {
1939 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
1944 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
1945 E1000_ICH_NVM_SIG_VALUE
) {
1950 e_dbg("ERROR: No valid NVM bank present\n");
1951 return -E1000_ERR_NVM
;
1958 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1959 * @hw: pointer to the HW structure
1960 * @offset: The offset (in bytes) of the word(s) to read.
1961 * @words: Size of data to read in words
1962 * @data: Pointer to the word(s) to read at offset.
1964 * Reads a word(s) from the NVM using the flash access registers.
1966 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
1969 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1970 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
1976 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
1978 e_dbg("nvm parameter(s) out of bounds\n");
1979 ret_val
= -E1000_ERR_NVM
;
1983 nvm
->ops
.acquire(hw
);
1985 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
1987 e_dbg("Could not detect valid bank, assuming bank 0\n");
1991 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
1992 act_offset
+= offset
;
1995 for (i
= 0; i
< words
; i
++) {
1996 if ((dev_spec
->shadow_ram
) &&
1997 (dev_spec
->shadow_ram
[offset
+i
].modified
)) {
1998 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2000 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2009 nvm
->ops
.release(hw
);
2013 e_dbg("NVM read error: %d\n", ret_val
);
2019 * e1000_flash_cycle_init_ich8lan - Initialize flash
2020 * @hw: pointer to the HW structure
2022 * This function does initial flash setup so that a new read/write/erase cycle
2025 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2027 union ich8_hws_flash_status hsfsts
;
2028 s32 ret_val
= -E1000_ERR_NVM
;
2031 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2033 /* Check if the flash descriptor is valid */
2034 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2035 e_dbg("Flash descriptor invalid. "
2036 "SW Sequencing must be used.\n");
2037 return -E1000_ERR_NVM
;
2040 /* Clear FCERR and DAEL in hw status by writing 1 */
2041 hsfsts
.hsf_status
.flcerr
= 1;
2042 hsfsts
.hsf_status
.dael
= 1;
2044 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2047 * Either we should have a hardware SPI cycle in progress
2048 * bit to check against, in order to start a new cycle or
2049 * FDONE bit should be changed in the hardware so that it
2050 * is 1 after hardware reset, which can then be used as an
2051 * indication whether a cycle is in progress or has been
2055 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2057 * There is no cycle running at present,
2058 * so we can start a cycle.
2059 * Begin by setting Flash Cycle Done.
2061 hsfsts
.hsf_status
.flcdone
= 1;
2062 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2066 * Otherwise poll for sometime so the current
2067 * cycle has a chance to end before giving up.
2069 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2070 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2071 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2079 * Successful in waiting for previous cycle to timeout,
2080 * now set the Flash Cycle Done.
2082 hsfsts
.hsf_status
.flcdone
= 1;
2083 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2085 e_dbg("Flash controller busy, cannot get access\n");
2093 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2094 * @hw: pointer to the HW structure
2095 * @timeout: maximum time to wait for completion
2097 * This function starts a flash cycle and waits for its completion.
2099 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2101 union ich8_hws_flash_ctrl hsflctl
;
2102 union ich8_hws_flash_status hsfsts
;
2103 s32 ret_val
= -E1000_ERR_NVM
;
2106 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2107 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2108 hsflctl
.hsf_ctrl
.flcgo
= 1;
2109 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2111 /* wait till FDONE bit is set to 1 */
2113 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2114 if (hsfsts
.hsf_status
.flcdone
== 1)
2117 } while (i
++ < timeout
);
2119 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2126 * e1000_read_flash_word_ich8lan - Read word from flash
2127 * @hw: pointer to the HW structure
2128 * @offset: offset to data location
2129 * @data: pointer to the location for storing the data
2131 * Reads the flash word at offset into data. Offset is converted
2132 * to bytes before read.
2134 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2137 /* Must convert offset into bytes. */
2140 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2144 * e1000_read_flash_byte_ich8lan - Read byte from flash
2145 * @hw: pointer to the HW structure
2146 * @offset: The offset of the byte to read.
2147 * @data: Pointer to a byte to store the value read.
2149 * Reads a single byte from the NVM using the flash access registers.
2151 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2157 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2167 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2168 * @hw: pointer to the HW structure
2169 * @offset: The offset (in bytes) of the byte or word to read.
2170 * @size: Size of data to read, 1=byte 2=word
2171 * @data: Pointer to the word to store the value read.
2173 * Reads a byte or word from the NVM using the flash access registers.
2175 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2178 union ich8_hws_flash_status hsfsts
;
2179 union ich8_hws_flash_ctrl hsflctl
;
2180 u32 flash_linear_addr
;
2182 s32 ret_val
= -E1000_ERR_NVM
;
2185 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2186 return -E1000_ERR_NVM
;
2188 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2189 hw
->nvm
.flash_base_addr
;
2194 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2198 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2199 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2200 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2201 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2202 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2204 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2206 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2207 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2210 * Check if FCERR is set to 1, if set to 1, clear it
2211 * and try the whole sequence a few more times, else
2212 * read in (shift in) the Flash Data0, the order is
2213 * least significant byte first msb to lsb
2216 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2218 *data
= (u8
)(flash_data
& 0x000000FF);
2219 } else if (size
== 2) {
2220 *data
= (u16
)(flash_data
& 0x0000FFFF);
2225 * If we've gotten here, then things are probably
2226 * completely hosed, but if the error condition is
2227 * detected, it won't hurt to give it another try...
2228 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2230 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2231 if (hsfsts
.hsf_status
.flcerr
== 1) {
2232 /* Repeat for some time before giving up. */
2234 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2235 e_dbg("Timeout error - flash cycle "
2236 "did not complete.\n");
2240 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2246 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2247 * @hw: pointer to the HW structure
2248 * @offset: The offset (in bytes) of the word(s) to write.
2249 * @words: Size of data to write in words
2250 * @data: Pointer to the word(s) to write at offset.
2252 * Writes a byte or word to the NVM using the flash access registers.
2254 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2257 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2258 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2261 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2263 e_dbg("nvm parameter(s) out of bounds\n");
2264 return -E1000_ERR_NVM
;
2267 nvm
->ops
.acquire(hw
);
2269 for (i
= 0; i
< words
; i
++) {
2270 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2271 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2274 nvm
->ops
.release(hw
);
2280 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2281 * @hw: pointer to the HW structure
2283 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2284 * which writes the checksum to the shadow ram. The changes in the shadow
2285 * ram are then committed to the EEPROM by processing each bank at a time
2286 * checking for the modified bit and writing only the pending changes.
2287 * After a successful commit, the shadow ram is cleared and is ready for
2290 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2292 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2293 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2294 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2298 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2302 if (nvm
->type
!= e1000_nvm_flash_sw
)
2305 nvm
->ops
.acquire(hw
);
2308 * We're writing to the opposite bank so if we're on bank 1,
2309 * write to bank 0 etc. We also need to erase the segment that
2310 * is going to be written
2312 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2314 e_dbg("Could not detect valid bank, assuming bank 0\n");
2319 new_bank_offset
= nvm
->flash_bank_size
;
2320 old_bank_offset
= 0;
2321 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2325 old_bank_offset
= nvm
->flash_bank_size
;
2326 new_bank_offset
= 0;
2327 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2332 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2334 * Determine whether to write the value stored
2335 * in the other NVM bank or a modified value stored
2338 if (dev_spec
->shadow_ram
[i
].modified
) {
2339 data
= dev_spec
->shadow_ram
[i
].value
;
2341 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2349 * If the word is 0x13, then make sure the signature bits
2350 * (15:14) are 11b until the commit has completed.
2351 * This will allow us to write 10b which indicates the
2352 * signature is valid. We want to do this after the write
2353 * has completed so that we don't mark the segment valid
2354 * while the write is still in progress
2356 if (i
== E1000_ICH_NVM_SIG_WORD
)
2357 data
|= E1000_ICH_NVM_SIG_MASK
;
2359 /* Convert offset to bytes. */
2360 act_offset
= (i
+ new_bank_offset
) << 1;
2363 /* Write the bytes to the new bank. */
2364 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2371 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2379 * Don't bother writing the segment valid bits if sector
2380 * programming failed.
2383 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2384 e_dbg("Flash commit failed.\n");
2389 * Finally validate the new segment by setting bit 15:14
2390 * to 10b in word 0x13 , this can be done without an
2391 * erase as well since these bits are 11 to start with
2392 * and we need to change bit 14 to 0b
2394 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2395 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2400 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2407 * And invalidate the previously valid segment by setting
2408 * its signature word (0x13) high_byte to 0b. This can be
2409 * done without an erase because flash erase sets all bits
2410 * to 1's. We can write 1's to 0's without an erase
2412 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2413 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2417 /* Great! Everything worked, we can now clear the cached entries. */
2418 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2419 dev_spec
->shadow_ram
[i
].modified
= false;
2420 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2424 nvm
->ops
.release(hw
);
2427 * Reload the EEPROM, or else modifications will not appear
2428 * until after the next adapter reset.
2431 e1000e_reload_nvm(hw
);
2437 e_dbg("NVM update error: %d\n", ret_val
);
2443 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2444 * @hw: pointer to the HW structure
2446 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2447 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2448 * calculated, in which case we need to calculate the checksum and set bit 6.
2450 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2456 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2457 * needs to be fixed. This bit is an indication that the NVM
2458 * was prepared by OEM software and did not calculate the
2459 * checksum...a likely scenario.
2461 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2465 if ((data
& 0x40) == 0) {
2467 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2470 ret_val
= e1000e_update_nvm_checksum(hw
);
2475 return e1000e_validate_nvm_checksum_generic(hw
);
2479 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2480 * @hw: pointer to the HW structure
2482 * To prevent malicious write/erase of the NVM, set it to be read-only
2483 * so that the hardware ignores all write/erase cycles of the NVM via
2484 * the flash control registers. The shadow-ram copy of the NVM will
2485 * still be updated, however any updates to this copy will not stick
2486 * across driver reloads.
2488 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2490 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2491 union ich8_flash_protected_range pr0
;
2492 union ich8_hws_flash_status hsfsts
;
2495 nvm
->ops
.acquire(hw
);
2497 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2499 /* Write-protect GbE Sector of NVM */
2500 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2501 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2502 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2503 pr0
.range
.wpe
= true;
2504 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2507 * Lock down a subset of GbE Flash Control Registers, e.g.
2508 * PR0 to prevent the write-protection from being lifted.
2509 * Once FLOCKDN is set, the registers protected by it cannot
2510 * be written until FLOCKDN is cleared by a hardware reset.
2512 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2513 hsfsts
.hsf_status
.flockdn
= true;
2514 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2516 nvm
->ops
.release(hw
);
2520 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2521 * @hw: pointer to the HW structure
2522 * @offset: The offset (in bytes) of the byte/word to read.
2523 * @size: Size of data to read, 1=byte 2=word
2524 * @data: The byte(s) to write to the NVM.
2526 * Writes one/two bytes to the NVM using the flash access registers.
2528 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2531 union ich8_hws_flash_status hsfsts
;
2532 union ich8_hws_flash_ctrl hsflctl
;
2533 u32 flash_linear_addr
;
2538 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2539 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2540 return -E1000_ERR_NVM
;
2542 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2543 hw
->nvm
.flash_base_addr
;
2548 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2552 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2553 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2554 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2555 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2556 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2558 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2561 flash_data
= (u32
)data
& 0x00FF;
2563 flash_data
= (u32
)data
;
2565 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2568 * check if FCERR is set to 1 , if set to 1, clear it
2569 * and try the whole sequence a few more times else done
2571 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2572 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2577 * If we're here, then things are most likely
2578 * completely hosed, but if the error condition
2579 * is detected, it won't hurt to give it another
2580 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2582 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2583 if (hsfsts
.hsf_status
.flcerr
== 1)
2584 /* Repeat for some time before giving up. */
2586 if (hsfsts
.hsf_status
.flcdone
== 0) {
2587 e_dbg("Timeout error - flash cycle "
2588 "did not complete.");
2591 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2597 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2598 * @hw: pointer to the HW structure
2599 * @offset: The index of the byte to read.
2600 * @data: The byte to write to the NVM.
2602 * Writes a single byte to the NVM using the flash access registers.
2604 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2607 u16 word
= (u16
)data
;
2609 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2613 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2614 * @hw: pointer to the HW structure
2615 * @offset: The offset of the byte to write.
2616 * @byte: The byte to write to the NVM.
2618 * Writes a single byte to the NVM using the flash access registers.
2619 * Goes through a retry algorithm before giving up.
2621 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2622 u32 offset
, u8 byte
)
2625 u16 program_retries
;
2627 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2631 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2632 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2634 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2638 if (program_retries
== 100)
2639 return -E1000_ERR_NVM
;
2645 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2646 * @hw: pointer to the HW structure
2647 * @bank: 0 for first bank, 1 for second bank, etc.
2649 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2650 * bank N is 4096 * N + flash_reg_addr.
2652 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2654 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2655 union ich8_hws_flash_status hsfsts
;
2656 union ich8_hws_flash_ctrl hsflctl
;
2657 u32 flash_linear_addr
;
2658 /* bank size is in 16bit words - adjust to bytes */
2659 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2662 s32 j
, iteration
, sector_size
;
2664 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2667 * Determine HW Sector size: Read BERASE bits of hw flash status
2669 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2670 * consecutive sectors. The start index for the nth Hw sector
2671 * can be calculated as = bank * 4096 + n * 256
2672 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2673 * The start index for the nth Hw sector can be calculated
2675 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2676 * (ich9 only, otherwise error condition)
2677 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2679 switch (hsfsts
.hsf_status
.berasesz
) {
2681 /* Hw sector size 256 */
2682 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2683 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2686 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2690 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2694 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2698 return -E1000_ERR_NVM
;
2701 /* Start with the base address, then add the sector offset. */
2702 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2703 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2705 for (j
= 0; j
< iteration
; j
++) {
2708 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2713 * Write a value 11 (block Erase) in Flash
2714 * Cycle field in hw flash control
2716 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2717 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2718 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2721 * Write the last 24 bits of an index within the
2722 * block into Flash Linear address field in Flash
2725 flash_linear_addr
+= (j
* sector_size
);
2726 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2728 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2729 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2734 * Check if FCERR is set to 1. If 1,
2735 * clear it and try the whole sequence
2736 * a few more times else Done
2738 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2739 if (hsfsts
.hsf_status
.flcerr
== 1)
2740 /* repeat for some time before giving up */
2742 else if (hsfsts
.hsf_status
.flcdone
== 0)
2744 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2751 * e1000_valid_led_default_ich8lan - Set the default LED settings
2752 * @hw: pointer to the HW structure
2753 * @data: Pointer to the LED settings
2755 * Reads the LED default settings from the NVM to data. If the NVM LED
2756 * settings is all 0's or F's, set the LED default to a valid LED default
2759 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2763 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2765 e_dbg("NVM Read Error\n");
2769 if (*data
== ID_LED_RESERVED_0000
||
2770 *data
== ID_LED_RESERVED_FFFF
)
2771 *data
= ID_LED_DEFAULT_ICH8LAN
;
2777 * e1000_id_led_init_pchlan - store LED configurations
2778 * @hw: pointer to the HW structure
2780 * PCH does not control LEDs via the LEDCTL register, rather it uses
2781 * the PHY LED configuration register.
2783 * PCH also does not have an "always on" or "always off" mode which
2784 * complicates the ID feature. Instead of using the "on" mode to indicate
2785 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2786 * use "link_up" mode. The LEDs will still ID on request if there is no
2787 * link based on logic in e1000_led_[on|off]_pchlan().
2789 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2791 struct e1000_mac_info
*mac
= &hw
->mac
;
2793 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2794 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2795 u16 data
, i
, temp
, shift
;
2797 /* Get default ID LED modes */
2798 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2802 mac
->ledctl_default
= er32(LEDCTL
);
2803 mac
->ledctl_mode1
= mac
->ledctl_default
;
2804 mac
->ledctl_mode2
= mac
->ledctl_default
;
2806 for (i
= 0; i
< 4; i
++) {
2807 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
2810 case ID_LED_ON1_DEF2
:
2811 case ID_LED_ON1_ON2
:
2812 case ID_LED_ON1_OFF2
:
2813 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2814 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
2816 case ID_LED_OFF1_DEF2
:
2817 case ID_LED_OFF1_ON2
:
2818 case ID_LED_OFF1_OFF2
:
2819 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2820 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
2827 case ID_LED_DEF1_ON2
:
2828 case ID_LED_ON1_ON2
:
2829 case ID_LED_OFF1_ON2
:
2830 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2831 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
2833 case ID_LED_DEF1_OFF2
:
2834 case ID_LED_ON1_OFF2
:
2835 case ID_LED_OFF1_OFF2
:
2836 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
2837 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
2850 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2851 * @hw: pointer to the HW structure
2853 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2854 * register, so the the bus width is hard coded.
2856 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
2858 struct e1000_bus_info
*bus
= &hw
->bus
;
2861 ret_val
= e1000e_get_bus_info_pcie(hw
);
2864 * ICH devices are "PCI Express"-ish. They have
2865 * a configuration space, but do not contain
2866 * PCI Express Capability registers, so bus width
2867 * must be hardcoded.
2869 if (bus
->width
== e1000_bus_width_unknown
)
2870 bus
->width
= e1000_bus_width_pcie_x1
;
2876 * e1000_reset_hw_ich8lan - Reset the hardware
2877 * @hw: pointer to the HW structure
2879 * Does a full reset of the hardware which includes a reset of the PHY and
2882 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
2884 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2890 * Prevent the PCI-E bus from sticking if there is no TLP connection
2891 * on the last TLP read/write transaction when MAC is reset.
2893 ret_val
= e1000e_disable_pcie_master(hw
);
2895 e_dbg("PCI-E Master disable polling has failed.\n");
2897 e_dbg("Masking off all interrupts\n");
2898 ew32(IMC
, 0xffffffff);
2901 * Disable the Transmit and Receive units. Then delay to allow
2902 * any pending transactions to complete before we hit the MAC
2903 * with the global reset.
2906 ew32(TCTL
, E1000_TCTL_PSP
);
2911 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2912 if (hw
->mac
.type
== e1000_ich8lan
) {
2913 /* Set Tx and Rx buffer allocation to 8k apiece. */
2914 ew32(PBA
, E1000_PBA_8K
);
2915 /* Set Packet Buffer Size to 16k. */
2916 ew32(PBS
, E1000_PBS_16K
);
2919 if (hw
->mac
.type
== e1000_pchlan
) {
2920 /* Save the NVM K1 bit setting*/
2921 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
2925 if (reg
& E1000_NVM_K1_ENABLE
)
2926 dev_spec
->nvm_k1_enabled
= true;
2928 dev_spec
->nvm_k1_enabled
= false;
2933 if (!e1000_check_reset_block(hw
)) {
2935 * Full-chip reset requires MAC and PHY reset at the same
2936 * time to make sure the interface between MAC and the
2937 * external PHY is reset.
2939 ctrl
|= E1000_CTRL_PHY_RST
;
2941 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
2942 e_dbg("Issuing a global reset to ich8lan\n");
2943 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
2947 e1000_release_swflag_ich8lan(hw
);
2949 if (ctrl
& E1000_CTRL_PHY_RST
) {
2950 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
2954 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
2960 * For PCH, this write will make sure that any noise
2961 * will be detected as a CRC error and be dropped rather than show up
2962 * as a bad packet to the DMA engine.
2964 if (hw
->mac
.type
== e1000_pchlan
)
2965 ew32(CRC_OFFSET
, 0x65656565);
2967 ew32(IMC
, 0xffffffff);
2970 kab
= er32(KABGTXD
);
2971 kab
|= E1000_KABGTXD_BGSQLBIAS
;
2979 * e1000_init_hw_ich8lan - Initialize the hardware
2980 * @hw: pointer to the HW structure
2982 * Prepares the hardware for transmit and receive by doing the following:
2983 * - initialize hardware bits
2984 * - initialize LED identification
2985 * - setup receive address registers
2986 * - setup flow control
2987 * - setup transmit descriptors
2988 * - clear statistics
2990 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
2992 struct e1000_mac_info
*mac
= &hw
->mac
;
2993 u32 ctrl_ext
, txdctl
, snoop
;
2997 e1000_initialize_hw_bits_ich8lan(hw
);
2999 /* Initialize identification LED */
3000 ret_val
= mac
->ops
.id_led_init(hw
);
3002 e_dbg("Error initializing identification LED\n");
3003 /* This is not fatal and we should not stop init due to this */
3005 /* Setup the receive address. */
3006 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3008 /* Zero out the Multicast HASH table */
3009 e_dbg("Zeroing the MTA\n");
3010 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3011 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3014 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3015 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
3016 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3018 if (hw
->phy
.type
== e1000_phy_82578
) {
3019 hw
->phy
.ops
.read_reg(hw
, BM_WUC
, &i
);
3020 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3025 /* Setup link and flow control */
3026 ret_val
= e1000_setup_link_ich8lan(hw
);
3028 /* Set the transmit descriptor write-back policy for both queues */
3029 txdctl
= er32(TXDCTL(0));
3030 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3031 E1000_TXDCTL_FULL_TX_DESC_WB
;
3032 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3033 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3034 ew32(TXDCTL(0), txdctl
);
3035 txdctl
= er32(TXDCTL(1));
3036 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3037 E1000_TXDCTL_FULL_TX_DESC_WB
;
3038 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3039 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3040 ew32(TXDCTL(1), txdctl
);
3043 * ICH8 has opposite polarity of no_snoop bits.
3044 * By default, we should use snoop behavior.
3046 if (mac
->type
== e1000_ich8lan
)
3047 snoop
= PCIE_ICH8_SNOOP_ALL
;
3049 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3050 e1000e_set_pcie_no_snoop(hw
, snoop
);
3052 ctrl_ext
= er32(CTRL_EXT
);
3053 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3054 ew32(CTRL_EXT
, ctrl_ext
);
3057 * Clear all of the statistics registers (clear on read). It is
3058 * important that we do this after we have tried to establish link
3059 * because the symbol error count will increment wildly if there
3062 e1000_clear_hw_cntrs_ich8lan(hw
);
3067 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3068 * @hw: pointer to the HW structure
3070 * Sets/Clears required hardware bits necessary for correctly setting up the
3071 * hardware for transmit and receive.
3073 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3077 /* Extended Device Control */
3078 reg
= er32(CTRL_EXT
);
3080 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3081 if (hw
->mac
.type
>= e1000_pchlan
)
3082 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3083 ew32(CTRL_EXT
, reg
);
3085 /* Transmit Descriptor Control 0 */
3086 reg
= er32(TXDCTL(0));
3088 ew32(TXDCTL(0), reg
);
3090 /* Transmit Descriptor Control 1 */
3091 reg
= er32(TXDCTL(1));
3093 ew32(TXDCTL(1), reg
);
3095 /* Transmit Arbitration Control 0 */
3096 reg
= er32(TARC(0));
3097 if (hw
->mac
.type
== e1000_ich8lan
)
3098 reg
|= (1 << 28) | (1 << 29);
3099 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3102 /* Transmit Arbitration Control 1 */
3103 reg
= er32(TARC(1));
3104 if (er32(TCTL
) & E1000_TCTL_MULR
)
3108 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3112 if (hw
->mac
.type
== e1000_ich8lan
) {
3119 * work-around descriptor data corruption issue during nfs v2 udp
3120 * traffic, just disable the nfs filtering capability
3123 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3128 * e1000_setup_link_ich8lan - Setup flow control and link settings
3129 * @hw: pointer to the HW structure
3131 * Determines which flow control settings to use, then configures flow
3132 * control. Calls the appropriate media-specific link configuration
3133 * function. Assuming the adapter has a valid link partner, a valid link
3134 * should be established. Assumes the hardware has previously been reset
3135 * and the transmitter and receiver are not enabled.
3137 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3141 if (e1000_check_reset_block(hw
))
3145 * ICH parts do not have a word in the NVM to determine
3146 * the default flow control setting, so we explicitly
3149 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3150 /* Workaround h/w hang when Tx flow control enabled */
3151 if (hw
->mac
.type
== e1000_pchlan
)
3152 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3154 hw
->fc
.requested_mode
= e1000_fc_full
;
3158 * Save off the requested flow control mode for use later. Depending
3159 * on the link partner's capabilities, we may or may not use this mode.
3161 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3163 e_dbg("After fix-ups FlowControl is now = %x\n",
3164 hw
->fc
.current_mode
);
3166 /* Continue to configure the copper link. */
3167 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3171 ew32(FCTTV
, hw
->fc
.pause_time
);
3172 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3173 (hw
->phy
.type
== e1000_phy_82579
) ||
3174 (hw
->phy
.type
== e1000_phy_82577
)) {
3175 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3177 ret_val
= hw
->phy
.ops
.write_reg(hw
,
3178 PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3184 return e1000e_set_fc_watermarks(hw
);
3188 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3189 * @hw: pointer to the HW structure
3191 * Configures the kumeran interface to the PHY to wait the appropriate time
3192 * when polling the PHY, then call the generic setup_copper_link to finish
3193 * configuring the copper link.
3195 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3202 ctrl
|= E1000_CTRL_SLU
;
3203 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3207 * Set the mac to wait the maximum time between each iteration
3208 * and increase the max iterations when polling the phy;
3209 * this fixes erroneous timeouts at 10Mbps.
3211 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3214 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3219 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3224 switch (hw
->phy
.type
) {
3225 case e1000_phy_igp_3
:
3226 ret_val
= e1000e_copper_link_setup_igp(hw
);
3231 case e1000_phy_82578
:
3232 ret_val
= e1000e_copper_link_setup_m88(hw
);
3236 case e1000_phy_82577
:
3237 case e1000_phy_82579
:
3238 ret_val
= e1000_copper_link_setup_82577(hw
);
3243 ret_val
= hw
->phy
.ops
.read_reg(hw
, IFE_PHY_MDIX_CONTROL
,
3248 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3250 switch (hw
->phy
.mdix
) {
3252 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3255 reg_data
|= IFE_PMC_FORCE_MDIX
;
3259 reg_data
|= IFE_PMC_AUTO_MDIX
;
3262 ret_val
= hw
->phy
.ops
.write_reg(hw
, IFE_PHY_MDIX_CONTROL
,
3270 return e1000e_setup_copper_link(hw
);
3274 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3275 * @hw: pointer to the HW structure
3276 * @speed: pointer to store current link speed
3277 * @duplex: pointer to store the current link duplex
3279 * Calls the generic get_speed_and_duplex to retrieve the current link
3280 * information and then calls the Kumeran lock loss workaround for links at
3283 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3288 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3292 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3293 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3294 (*speed
== SPEED_1000
)) {
3295 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3302 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3303 * @hw: pointer to the HW structure
3305 * Work-around for 82566 Kumeran PCS lock loss:
3306 * On link status change (i.e. PCI reset, speed change) and link is up and
3308 * 0) if workaround is optionally disabled do nothing
3309 * 1) wait 1ms for Kumeran link to come up
3310 * 2) check Kumeran Diagnostic register PCS lock loss bit
3311 * 3) if not set the link is locked (all is good), otherwise...
3313 * 5) repeat up to 10 times
3314 * Note: this is only called for IGP3 copper when speed is 1gb.
3316 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3318 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3324 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3328 * Make sure link is up before proceeding. If not just return.
3329 * Attempting this while link is negotiating fouled up link
3332 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3336 for (i
= 0; i
< 10; i
++) {
3337 /* read once to clear */
3338 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3341 /* and again to get new status */
3342 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3346 /* check for PCS lock */
3347 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3350 /* Issue PHY reset */
3351 e1000_phy_hw_reset(hw
);
3354 /* Disable GigE link negotiation */
3355 phy_ctrl
= er32(PHY_CTRL
);
3356 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3357 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3358 ew32(PHY_CTRL
, phy_ctrl
);
3361 * Call gig speed drop workaround on Gig disable before accessing
3364 e1000e_gig_downshift_workaround_ich8lan(hw
);
3366 /* unable to acquire PCS lock */
3367 return -E1000_ERR_PHY
;
3371 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3372 * @hw: pointer to the HW structure
3373 * @state: boolean value used to set the current Kumeran workaround state
3375 * If ICH8, set the current Kumeran workaround state (enabled - true
3376 * /disabled - false).
3378 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3381 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3383 if (hw
->mac
.type
!= e1000_ich8lan
) {
3384 e_dbg("Workaround applies to ICH8 only.\n");
3388 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3392 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3393 * @hw: pointer to the HW structure
3395 * Workaround for 82566 power-down on D3 entry:
3396 * 1) disable gigabit link
3397 * 2) write VR power-down enable
3399 * Continue if successful, else issue LCD reset and repeat
3401 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3407 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3410 /* Try the workaround twice (if needed) */
3413 reg
= er32(PHY_CTRL
);
3414 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3415 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3416 ew32(PHY_CTRL
, reg
);
3419 * Call gig speed drop workaround on Gig disable before
3420 * accessing any PHY registers
3422 if (hw
->mac
.type
== e1000_ich8lan
)
3423 e1000e_gig_downshift_workaround_ich8lan(hw
);
3425 /* Write VR power-down enable */
3426 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3427 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3428 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3430 /* Read it back and test */
3431 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3432 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3433 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3436 /* Issue PHY reset and repeat at most one more time */
3438 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3444 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3445 * @hw: pointer to the HW structure
3447 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3448 * LPLU, Gig disable, MDIC PHY reset):
3449 * 1) Set Kumeran Near-end loopback
3450 * 2) Clear Kumeran Near-end loopback
3451 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3453 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3458 if ((hw
->mac
.type
!= e1000_ich8lan
) ||
3459 (hw
->phy
.type
!= e1000_phy_igp_3
))
3462 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3466 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3467 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3471 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3472 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3477 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3478 * @hw: pointer to the HW structure
3480 * During S0 to Sx transition, it is possible the link remains at gig
3481 * instead of negotiating to a lower speed. Before going to Sx, set
3482 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3485 * Should only be called for applicable parts.
3487 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw
*hw
)
3492 phy_ctrl
= er32(PHY_CTRL
);
3493 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3494 ew32(PHY_CTRL
, phy_ctrl
);
3496 if (hw
->mac
.type
>= e1000_pchlan
) {
3497 e1000_oem_bits_config_ich8lan(hw
, true);
3498 ret_val
= hw
->phy
.ops
.acquire(hw
);
3501 e1000_write_smbus_addr(hw
);
3502 hw
->phy
.ops
.release(hw
);
3507 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3508 * @hw: pointer to the HW structure
3510 * Return the LED back to the default configuration.
3512 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3514 if (hw
->phy
.type
== e1000_phy_ife
)
3515 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3517 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3522 * e1000_led_on_ich8lan - Turn LEDs on
3523 * @hw: pointer to the HW structure
3527 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3529 if (hw
->phy
.type
== e1000_phy_ife
)
3530 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3531 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3533 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3538 * e1000_led_off_ich8lan - Turn LEDs off
3539 * @hw: pointer to the HW structure
3541 * Turn off the LEDs.
3543 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3545 if (hw
->phy
.type
== e1000_phy_ife
)
3546 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3547 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_OFF
));
3549 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3554 * e1000_setup_led_pchlan - Configures SW controllable LED
3555 * @hw: pointer to the HW structure
3557 * This prepares the SW controllable LED for use.
3559 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3561 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
,
3562 (u16
)hw
->mac
.ledctl_mode1
);
3566 * e1000_cleanup_led_pchlan - Restore the default LED operation
3567 * @hw: pointer to the HW structure
3569 * Return the LED back to the default configuration.
3571 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3573 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
,
3574 (u16
)hw
->mac
.ledctl_default
);
3578 * e1000_led_on_pchlan - Turn LEDs on
3579 * @hw: pointer to the HW structure
3583 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3585 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3589 * If no link, then turn LED on by setting the invert bit
3590 * for each LED that's mode is "link_up" in ledctl_mode2.
3592 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3593 for (i
= 0; i
< 3; i
++) {
3594 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3595 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3596 E1000_LEDCTL_MODE_LINK_UP
)
3598 if (led
& E1000_PHY_LED0_IVRT
)
3599 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3601 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3605 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
, data
);
3609 * e1000_led_off_pchlan - Turn LEDs off
3610 * @hw: pointer to the HW structure
3612 * Turn off the LEDs.
3614 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3616 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3620 * If no link, then turn LED off by clearing the invert bit
3621 * for each LED that's mode is "link_up" in ledctl_mode1.
3623 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3624 for (i
= 0; i
< 3; i
++) {
3625 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3626 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3627 E1000_LEDCTL_MODE_LINK_UP
)
3629 if (led
& E1000_PHY_LED0_IVRT
)
3630 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3632 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3636 return hw
->phy
.ops
.write_reg(hw
, HV_LED_CONFIG
, data
);
3640 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3641 * @hw: pointer to the HW structure
3643 * Read appropriate register for the config done bit for completion status
3644 * and configure the PHY through s/w for EEPROM-less parts.
3646 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3647 * config done bit, so only an error is logged and continues. If we were
3648 * to return with error, EEPROM-less silicon would not be able to be reset
3651 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3657 e1000e_get_cfg_done(hw
);
3659 /* Wait for indication from h/w that it has completed basic config */
3660 if (hw
->mac
.type
>= e1000_ich10lan
) {
3661 e1000_lan_init_done_ich8lan(hw
);
3663 ret_val
= e1000e_get_auto_rd_done(hw
);
3666 * When auto config read does not complete, do not
3667 * return with an error. This can happen in situations
3668 * where there is no eeprom and prevents getting link.
3670 e_dbg("Auto Read Done did not complete\n");
3675 /* Clear PHY Reset Asserted bit */
3676 status
= er32(STATUS
);
3677 if (status
& E1000_STATUS_PHYRA
)
3678 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3680 e_dbg("PHY Reset Asserted not set - needs delay\n");
3682 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3683 if (hw
->mac
.type
<= e1000_ich9lan
) {
3684 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3685 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3686 e1000e_phy_init_script_igp3(hw
);
3689 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3690 /* Maybe we should do a basic PHY config */
3691 e_dbg("EEPROM not present\n");
3692 ret_val
= -E1000_ERR_CONFIG
;
3700 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3701 * @hw: pointer to the HW structure
3703 * In the case of a PHY power down to save power, or to turn off link during a
3704 * driver unload, or wake on lan is not enabled, remove the link.
3706 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3708 /* If the management interface is not enabled, then power down */
3709 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3710 hw
->phy
.ops
.check_reset_block(hw
)))
3711 e1000_power_down_phy_copper(hw
);
3715 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3716 * @hw: pointer to the HW structure
3718 * Clears hardware counters specific to the silicon family and calls
3719 * clear_hw_cntrs_generic to clear all general purpose counters.
3721 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3725 e1000e_clear_hw_cntrs_base(hw
);
3741 /* Clear PHY statistics registers */
3742 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3743 (hw
->phy
.type
== e1000_phy_82579
) ||
3744 (hw
->phy
.type
== e1000_phy_82577
)) {
3745 hw
->phy
.ops
.read_reg(hw
, HV_SCC_UPPER
, &phy_data
);
3746 hw
->phy
.ops
.read_reg(hw
, HV_SCC_LOWER
, &phy_data
);
3747 hw
->phy
.ops
.read_reg(hw
, HV_ECOL_UPPER
, &phy_data
);
3748 hw
->phy
.ops
.read_reg(hw
, HV_ECOL_LOWER
, &phy_data
);
3749 hw
->phy
.ops
.read_reg(hw
, HV_MCC_UPPER
, &phy_data
);
3750 hw
->phy
.ops
.read_reg(hw
, HV_MCC_LOWER
, &phy_data
);
3751 hw
->phy
.ops
.read_reg(hw
, HV_LATECOL_UPPER
, &phy_data
);
3752 hw
->phy
.ops
.read_reg(hw
, HV_LATECOL_LOWER
, &phy_data
);
3753 hw
->phy
.ops
.read_reg(hw
, HV_COLC_UPPER
, &phy_data
);
3754 hw
->phy
.ops
.read_reg(hw
, HV_COLC_LOWER
, &phy_data
);
3755 hw
->phy
.ops
.read_reg(hw
, HV_DC_UPPER
, &phy_data
);
3756 hw
->phy
.ops
.read_reg(hw
, HV_DC_LOWER
, &phy_data
);
3757 hw
->phy
.ops
.read_reg(hw
, HV_TNCRS_UPPER
, &phy_data
);
3758 hw
->phy
.ops
.read_reg(hw
, HV_TNCRS_LOWER
, &phy_data
);
3762 static struct e1000_mac_operations ich8_mac_ops
= {
3763 .id_led_init
= e1000e_id_led_init
,
3764 /* check_mng_mode dependent on mac type */
3765 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
3766 /* cleanup_led dependent on mac type */
3767 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
3768 .get_bus_info
= e1000_get_bus_info_ich8lan
,
3769 .set_lan_id
= e1000_set_lan_id_single_port
,
3770 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
3771 /* led_on dependent on mac type */
3772 /* led_off dependent on mac type */
3773 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
3774 .reset_hw
= e1000_reset_hw_ich8lan
,
3775 .init_hw
= e1000_init_hw_ich8lan
,
3776 .setup_link
= e1000_setup_link_ich8lan
,
3777 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
3778 /* id_led_init dependent on mac type */
3781 static struct e1000_phy_operations ich8_phy_ops
= {
3782 .acquire
= e1000_acquire_swflag_ich8lan
,
3783 .check_reset_block
= e1000_check_reset_block_ich8lan
,
3785 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
3786 .get_cable_length
= e1000e_get_cable_length_igp_2
,
3787 .read_reg
= e1000e_read_phy_reg_igp
,
3788 .release
= e1000_release_swflag_ich8lan
,
3789 .reset
= e1000_phy_hw_reset_ich8lan
,
3790 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
3791 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
3792 .write_reg
= e1000e_write_phy_reg_igp
,
3795 static struct e1000_nvm_operations ich8_nvm_ops
= {
3796 .acquire
= e1000_acquire_nvm_ich8lan
,
3797 .read
= e1000_read_nvm_ich8lan
,
3798 .release
= e1000_release_nvm_ich8lan
,
3799 .update
= e1000_update_nvm_checksum_ich8lan
,
3800 .valid_led_default
= e1000_valid_led_default_ich8lan
,
3801 .validate
= e1000_validate_nvm_checksum_ich8lan
,
3802 .write
= e1000_write_nvm_ich8lan
,
3805 struct e1000_info e1000_ich8_info
= {
3806 .mac
= e1000_ich8lan
,
3807 .flags
= FLAG_HAS_WOL
3809 | FLAG_RX_CSUM_ENABLED
3810 | FLAG_HAS_CTRLEXT_ON_LOAD
3815 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
3816 .get_variants
= e1000_get_variants_ich8lan
,
3817 .mac_ops
= &ich8_mac_ops
,
3818 .phy_ops
= &ich8_phy_ops
,
3819 .nvm_ops
= &ich8_nvm_ops
,
3822 struct e1000_info e1000_ich9_info
= {
3823 .mac
= e1000_ich9lan
,
3824 .flags
= FLAG_HAS_JUMBO_FRAMES
3827 | FLAG_RX_CSUM_ENABLED
3828 | FLAG_HAS_CTRLEXT_ON_LOAD
3834 .max_hw_frame_size
= DEFAULT_JUMBO
,
3835 .get_variants
= e1000_get_variants_ich8lan
,
3836 .mac_ops
= &ich8_mac_ops
,
3837 .phy_ops
= &ich8_phy_ops
,
3838 .nvm_ops
= &ich8_nvm_ops
,
3841 struct e1000_info e1000_ich10_info
= {
3842 .mac
= e1000_ich10lan
,
3843 .flags
= FLAG_HAS_JUMBO_FRAMES
3846 | FLAG_RX_CSUM_ENABLED
3847 | FLAG_HAS_CTRLEXT_ON_LOAD
3853 .max_hw_frame_size
= DEFAULT_JUMBO
,
3854 .get_variants
= e1000_get_variants_ich8lan
,
3855 .mac_ops
= &ich8_mac_ops
,
3856 .phy_ops
= &ich8_phy_ops
,
3857 .nvm_ops
= &ich8_nvm_ops
,
3860 struct e1000_info e1000_pch_info
= {
3861 .mac
= e1000_pchlan
,
3862 .flags
= FLAG_IS_ICH
3864 | FLAG_RX_CSUM_ENABLED
3865 | FLAG_HAS_CTRLEXT_ON_LOAD
3868 | FLAG_HAS_JUMBO_FRAMES
3869 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
3871 .flags2
= FLAG2_HAS_PHY_STATS
,
3873 .max_hw_frame_size
= 4096,
3874 .get_variants
= e1000_get_variants_ich8lan
,
3875 .mac_ops
= &ich8_mac_ops
,
3876 .phy_ops
= &ich8_phy_ops
,
3877 .nvm_ops
= &ich8_nvm_ops
,
3880 struct e1000_info e1000_pch2_info
= {
3881 .mac
= e1000_pch2lan
,
3882 .flags
= FLAG_IS_ICH
3884 | FLAG_RX_CSUM_ENABLED
3885 | FLAG_HAS_CTRLEXT_ON_LOAD
3888 | FLAG_HAS_JUMBO_FRAMES
3890 .flags2
= FLAG2_HAS_PHY_STATS
3893 .max_hw_frame_size
= DEFAULT_JUMBO
,
3894 .get_variants
= e1000_get_variants_ich8lan
,
3895 .mac_ops
= &ich8_mac_ops
,
3896 .phy_ops
= &ich8_phy_ops
,
3897 .nvm_ops
= &ich8_nvm_ops
,