thp: remove PG_buddy
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blob12ee1ea237f515b086eb01a30e69069eeb955ea9
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
312 * The next few lines have given us lots of grief...
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363 unsigned long floor, unsigned long ceiling)
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
373 unlink_anon_vmas(vma);
374 unlink_file_vma(vma);
376 if (is_vm_hugetlb_page(vma)) {
377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378 floor, next? next->vm_start: ceiling);
379 } else {
381 * Optimization: gather nearby vmas into one call down
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384 && !is_vm_hugetlb_page(next)) {
385 vma = next;
386 next = vma->vm_next;
387 unlink_anon_vmas(vma);
388 unlink_file_vma(vma);
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
393 vma = next;
397 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398 pmd_t *pmd, unsigned long address)
400 pgtable_t new = pte_alloc_one(mm, address);
401 int wait_split_huge_page;
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 wait_split_huge_page = 0;
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm->nr_ptes++;
424 pmd_populate(mm, pmd, new);
425 new = NULL;
426 } else if (unlikely(pmd_trans_splitting(*pmd)))
427 wait_split_huge_page = 1;
428 spin_unlock(&mm->page_table_lock);
429 if (new)
430 pte_free(mm, new);
431 if (wait_split_huge_page)
432 wait_split_huge_page(vma->anon_vma, pmd);
433 return 0;
436 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
438 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439 if (!new)
440 return -ENOMEM;
442 smp_wmb(); /* See comment in __pte_alloc */
444 spin_lock(&init_mm.page_table_lock);
445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
446 pmd_populate_kernel(&init_mm, pmd, new);
447 new = NULL;
448 } else
449 VM_BUG_ON(pmd_trans_splitting(*pmd));
450 spin_unlock(&init_mm.page_table_lock);
451 if (new)
452 pte_free_kernel(&init_mm, new);
453 return 0;
456 static inline void init_rss_vec(int *rss)
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 int i;
465 if (current->mm == mm)
466 sync_mm_rss(current, mm);
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 pud_t *pud = pud_offset(pgd, addr);
484 pmd_t *pmd = pmd_offset(pud, addr);
485 struct address_space *mapping;
486 pgoff_t index;
487 static unsigned long resume;
488 static unsigned long nr_shown;
489 static unsigned long nr_unshown;
492 * Allow a burst of 60 reports, then keep quiet for that minute;
493 * or allow a steady drip of one report per second.
495 if (nr_shown == 60) {
496 if (time_before(jiffies, resume)) {
497 nr_unshown++;
498 return;
500 if (nr_unshown) {
501 printk(KERN_ALERT
502 "BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
504 nr_unshown = 0;
506 nr_shown = 0;
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
514 printk(KERN_ALERT
515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518 if (page)
519 dump_page(page);
520 printk(KERN_ALERT
521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
526 if (vma->vm_ops)
527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
528 (unsigned long)vma->vm_ops->fault);
529 if (vma->vm_file && vma->vm_file->f_op)
530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
531 (unsigned long)vma->vm_file->f_op->mmap);
532 dump_stack();
533 add_taint(TAINT_BAD_PAGE);
536 static inline int is_cow_mapping(unsigned int flags)
538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
541 #ifndef is_zero_pfn
542 static inline int is_zero_pfn(unsigned long pfn)
544 return pfn == zero_pfn;
546 #endif
548 #ifndef my_zero_pfn
549 static inline unsigned long my_zero_pfn(unsigned long addr)
551 return zero_pfn;
553 #endif
556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
578 * And for normal mappings this is false.
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
597 #ifdef __HAVE_ARCH_PTE_SPECIAL
598 # define HAVE_PTE_SPECIAL 1
599 #else
600 # define HAVE_PTE_SPECIAL 0
601 #endif
602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
605 unsigned long pfn = pte_pfn(pte);
607 if (HAVE_PTE_SPECIAL) {
608 if (likely(!pte_special(pte)))
609 goto check_pfn;
610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611 return NULL;
612 if (!is_zero_pfn(pfn))
613 print_bad_pte(vma, addr, pte, NULL);
614 return NULL;
617 /* !HAVE_PTE_SPECIAL case follows: */
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
634 if (is_zero_pfn(pfn))
635 return NULL;
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
646 out:
647 return pfn_to_page(pfn);
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
656 static inline unsigned long
657 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
659 unsigned long addr, int *rss)
661 unsigned long vm_flags = vma->vm_flags;
662 pte_t pte = *src_pte;
663 struct page *page;
665 /* pte contains position in swap or file, so copy. */
666 if (unlikely(!pte_present(pte))) {
667 if (!pte_file(pte)) {
668 swp_entry_t entry = pte_to_swp_entry(pte);
670 if (swap_duplicate(entry) < 0)
671 return entry.val;
673 /* make sure dst_mm is on swapoff's mmlist. */
674 if (unlikely(list_empty(&dst_mm->mmlist))) {
675 spin_lock(&mmlist_lock);
676 if (list_empty(&dst_mm->mmlist))
677 list_add(&dst_mm->mmlist,
678 &src_mm->mmlist);
679 spin_unlock(&mmlist_lock);
681 if (likely(!non_swap_entry(entry)))
682 rss[MM_SWAPENTS]++;
683 else if (is_write_migration_entry(entry) &&
684 is_cow_mapping(vm_flags)) {
686 * COW mappings require pages in both parent
687 * and child to be set to read.
689 make_migration_entry_read(&entry);
690 pte = swp_entry_to_pte(entry);
691 set_pte_at(src_mm, addr, src_pte, pte);
694 goto out_set_pte;
698 * If it's a COW mapping, write protect it both
699 * in the parent and the child
701 if (is_cow_mapping(vm_flags)) {
702 ptep_set_wrprotect(src_mm, addr, src_pte);
703 pte = pte_wrprotect(pte);
707 * If it's a shared mapping, mark it clean in
708 * the child
710 if (vm_flags & VM_SHARED)
711 pte = pte_mkclean(pte);
712 pte = pte_mkold(pte);
714 page = vm_normal_page(vma, addr, pte);
715 if (page) {
716 get_page(page);
717 page_dup_rmap(page);
718 if (PageAnon(page))
719 rss[MM_ANONPAGES]++;
720 else
721 rss[MM_FILEPAGES]++;
724 out_set_pte:
725 set_pte_at(dst_mm, addr, dst_pte, pte);
726 return 0;
729 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731 unsigned long addr, unsigned long end)
733 pte_t *orig_src_pte, *orig_dst_pte;
734 pte_t *src_pte, *dst_pte;
735 spinlock_t *src_ptl, *dst_ptl;
736 int progress = 0;
737 int rss[NR_MM_COUNTERS];
738 swp_entry_t entry = (swp_entry_t){0};
740 again:
741 init_rss_vec(rss);
743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
744 if (!dst_pte)
745 return -ENOMEM;
746 src_pte = pte_offset_map(src_pmd, addr);
747 src_ptl = pte_lockptr(src_mm, src_pmd);
748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
749 orig_src_pte = src_pte;
750 orig_dst_pte = dst_pte;
751 arch_enter_lazy_mmu_mode();
753 do {
755 * We are holding two locks at this point - either of them
756 * could generate latencies in another task on another CPU.
758 if (progress >= 32) {
759 progress = 0;
760 if (need_resched() ||
761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
762 break;
764 if (pte_none(*src_pte)) {
765 progress++;
766 continue;
768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769 vma, addr, rss);
770 if (entry.val)
771 break;
772 progress += 8;
773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
775 arch_leave_lazy_mmu_mode();
776 spin_unlock(src_ptl);
777 pte_unmap(orig_src_pte);
778 add_mm_rss_vec(dst_mm, rss);
779 pte_unmap_unlock(orig_dst_pte, dst_ptl);
780 cond_resched();
782 if (entry.val) {
783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784 return -ENOMEM;
785 progress = 0;
787 if (addr != end)
788 goto again;
789 return 0;
792 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end)
796 pmd_t *src_pmd, *dst_pmd;
797 unsigned long next;
799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800 if (!dst_pmd)
801 return -ENOMEM;
802 src_pmd = pmd_offset(src_pud, addr);
803 do {
804 next = pmd_addr_end(addr, end);
805 if (pmd_trans_huge(*src_pmd)) {
806 int err;
807 err = copy_huge_pmd(dst_mm, src_mm,
808 dst_pmd, src_pmd, addr, vma);
809 if (err == -ENOMEM)
810 return -ENOMEM;
811 if (!err)
812 continue;
813 /* fall through */
815 if (pmd_none_or_clear_bad(src_pmd))
816 continue;
817 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
818 vma, addr, next))
819 return -ENOMEM;
820 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
821 return 0;
824 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
826 unsigned long addr, unsigned long end)
828 pud_t *src_pud, *dst_pud;
829 unsigned long next;
831 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
832 if (!dst_pud)
833 return -ENOMEM;
834 src_pud = pud_offset(src_pgd, addr);
835 do {
836 next = pud_addr_end(addr, end);
837 if (pud_none_or_clear_bad(src_pud))
838 continue;
839 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
840 vma, addr, next))
841 return -ENOMEM;
842 } while (dst_pud++, src_pud++, addr = next, addr != end);
843 return 0;
846 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 struct vm_area_struct *vma)
849 pgd_t *src_pgd, *dst_pgd;
850 unsigned long next;
851 unsigned long addr = vma->vm_start;
852 unsigned long end = vma->vm_end;
853 int ret;
856 * Don't copy ptes where a page fault will fill them correctly.
857 * Fork becomes much lighter when there are big shared or private
858 * readonly mappings. The tradeoff is that copy_page_range is more
859 * efficient than faulting.
861 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
862 if (!vma->anon_vma)
863 return 0;
866 if (is_vm_hugetlb_page(vma))
867 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
869 if (unlikely(is_pfn_mapping(vma))) {
871 * We do not free on error cases below as remove_vma
872 * gets called on error from higher level routine
874 ret = track_pfn_vma_copy(vma);
875 if (ret)
876 return ret;
880 * We need to invalidate the secondary MMU mappings only when
881 * there could be a permission downgrade on the ptes of the
882 * parent mm. And a permission downgrade will only happen if
883 * is_cow_mapping() returns true.
885 if (is_cow_mapping(vma->vm_flags))
886 mmu_notifier_invalidate_range_start(src_mm, addr, end);
888 ret = 0;
889 dst_pgd = pgd_offset(dst_mm, addr);
890 src_pgd = pgd_offset(src_mm, addr);
891 do {
892 next = pgd_addr_end(addr, end);
893 if (pgd_none_or_clear_bad(src_pgd))
894 continue;
895 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
896 vma, addr, next))) {
897 ret = -ENOMEM;
898 break;
900 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
902 if (is_cow_mapping(vma->vm_flags))
903 mmu_notifier_invalidate_range_end(src_mm,
904 vma->vm_start, end);
905 return ret;
908 static unsigned long zap_pte_range(struct mmu_gather *tlb,
909 struct vm_area_struct *vma, pmd_t *pmd,
910 unsigned long addr, unsigned long end,
911 long *zap_work, struct zap_details *details)
913 struct mm_struct *mm = tlb->mm;
914 pte_t *pte;
915 spinlock_t *ptl;
916 int rss[NR_MM_COUNTERS];
918 init_rss_vec(rss);
920 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
921 arch_enter_lazy_mmu_mode();
922 do {
923 pte_t ptent = *pte;
924 if (pte_none(ptent)) {
925 (*zap_work)--;
926 continue;
929 (*zap_work) -= PAGE_SIZE;
931 if (pte_present(ptent)) {
932 struct page *page;
934 page = vm_normal_page(vma, addr, ptent);
935 if (unlikely(details) && page) {
937 * unmap_shared_mapping_pages() wants to
938 * invalidate cache without truncating:
939 * unmap shared but keep private pages.
941 if (details->check_mapping &&
942 details->check_mapping != page->mapping)
943 continue;
945 * Each page->index must be checked when
946 * invalidating or truncating nonlinear.
948 if (details->nonlinear_vma &&
949 (page->index < details->first_index ||
950 page->index > details->last_index))
951 continue;
953 ptent = ptep_get_and_clear_full(mm, addr, pte,
954 tlb->fullmm);
955 tlb_remove_tlb_entry(tlb, pte, addr);
956 if (unlikely(!page))
957 continue;
958 if (unlikely(details) && details->nonlinear_vma
959 && linear_page_index(details->nonlinear_vma,
960 addr) != page->index)
961 set_pte_at(mm, addr, pte,
962 pgoff_to_pte(page->index));
963 if (PageAnon(page))
964 rss[MM_ANONPAGES]--;
965 else {
966 if (pte_dirty(ptent))
967 set_page_dirty(page);
968 if (pte_young(ptent) &&
969 likely(!VM_SequentialReadHint(vma)))
970 mark_page_accessed(page);
971 rss[MM_FILEPAGES]--;
973 page_remove_rmap(page);
974 if (unlikely(page_mapcount(page) < 0))
975 print_bad_pte(vma, addr, ptent, page);
976 tlb_remove_page(tlb, page);
977 continue;
980 * If details->check_mapping, we leave swap entries;
981 * if details->nonlinear_vma, we leave file entries.
983 if (unlikely(details))
984 continue;
985 if (pte_file(ptent)) {
986 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
987 print_bad_pte(vma, addr, ptent, NULL);
988 } else {
989 swp_entry_t entry = pte_to_swp_entry(ptent);
991 if (!non_swap_entry(entry))
992 rss[MM_SWAPENTS]--;
993 if (unlikely(!free_swap_and_cache(entry)))
994 print_bad_pte(vma, addr, ptent, NULL);
996 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
997 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
999 add_mm_rss_vec(mm, rss);
1000 arch_leave_lazy_mmu_mode();
1001 pte_unmap_unlock(pte - 1, ptl);
1003 return addr;
1006 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1007 struct vm_area_struct *vma, pud_t *pud,
1008 unsigned long addr, unsigned long end,
1009 long *zap_work, struct zap_details *details)
1011 pmd_t *pmd;
1012 unsigned long next;
1014 pmd = pmd_offset(pud, addr);
1015 do {
1016 next = pmd_addr_end(addr, end);
1017 if (pmd_trans_huge(*pmd)) {
1018 if (next-addr != HPAGE_PMD_SIZE)
1019 split_huge_page_pmd(vma->vm_mm, pmd);
1020 else if (zap_huge_pmd(tlb, vma, pmd)) {
1021 (*zap_work)--;
1022 continue;
1024 /* fall through */
1026 if (pmd_none_or_clear_bad(pmd)) {
1027 (*zap_work)--;
1028 continue;
1030 next = zap_pte_range(tlb, vma, pmd, addr, next,
1031 zap_work, details);
1032 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1034 return addr;
1037 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1038 struct vm_area_struct *vma, pgd_t *pgd,
1039 unsigned long addr, unsigned long end,
1040 long *zap_work, struct zap_details *details)
1042 pud_t *pud;
1043 unsigned long next;
1045 pud = pud_offset(pgd, addr);
1046 do {
1047 next = pud_addr_end(addr, end);
1048 if (pud_none_or_clear_bad(pud)) {
1049 (*zap_work)--;
1050 continue;
1052 next = zap_pmd_range(tlb, vma, pud, addr, next,
1053 zap_work, details);
1054 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1056 return addr;
1059 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1060 struct vm_area_struct *vma,
1061 unsigned long addr, unsigned long end,
1062 long *zap_work, struct zap_details *details)
1064 pgd_t *pgd;
1065 unsigned long next;
1067 if (details && !details->check_mapping && !details->nonlinear_vma)
1068 details = NULL;
1070 BUG_ON(addr >= end);
1071 mem_cgroup_uncharge_start();
1072 tlb_start_vma(tlb, vma);
1073 pgd = pgd_offset(vma->vm_mm, addr);
1074 do {
1075 next = pgd_addr_end(addr, end);
1076 if (pgd_none_or_clear_bad(pgd)) {
1077 (*zap_work)--;
1078 continue;
1080 next = zap_pud_range(tlb, vma, pgd, addr, next,
1081 zap_work, details);
1082 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1083 tlb_end_vma(tlb, vma);
1084 mem_cgroup_uncharge_end();
1086 return addr;
1089 #ifdef CONFIG_PREEMPT
1090 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1091 #else
1092 /* No preempt: go for improved straight-line efficiency */
1093 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1094 #endif
1097 * unmap_vmas - unmap a range of memory covered by a list of vma's
1098 * @tlbp: address of the caller's struct mmu_gather
1099 * @vma: the starting vma
1100 * @start_addr: virtual address at which to start unmapping
1101 * @end_addr: virtual address at which to end unmapping
1102 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1103 * @details: details of nonlinear truncation or shared cache invalidation
1105 * Returns the end address of the unmapping (restart addr if interrupted).
1107 * Unmap all pages in the vma list.
1109 * We aim to not hold locks for too long (for scheduling latency reasons).
1110 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1111 * return the ending mmu_gather to the caller.
1113 * Only addresses between `start' and `end' will be unmapped.
1115 * The VMA list must be sorted in ascending virtual address order.
1117 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1118 * range after unmap_vmas() returns. So the only responsibility here is to
1119 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1120 * drops the lock and schedules.
1122 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1123 struct vm_area_struct *vma, unsigned long start_addr,
1124 unsigned long end_addr, unsigned long *nr_accounted,
1125 struct zap_details *details)
1127 long zap_work = ZAP_BLOCK_SIZE;
1128 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1129 int tlb_start_valid = 0;
1130 unsigned long start = start_addr;
1131 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1132 int fullmm = (*tlbp)->fullmm;
1133 struct mm_struct *mm = vma->vm_mm;
1135 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1136 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1137 unsigned long end;
1139 start = max(vma->vm_start, start_addr);
1140 if (start >= vma->vm_end)
1141 continue;
1142 end = min(vma->vm_end, end_addr);
1143 if (end <= vma->vm_start)
1144 continue;
1146 if (vma->vm_flags & VM_ACCOUNT)
1147 *nr_accounted += (end - start) >> PAGE_SHIFT;
1149 if (unlikely(is_pfn_mapping(vma)))
1150 untrack_pfn_vma(vma, 0, 0);
1152 while (start != end) {
1153 if (!tlb_start_valid) {
1154 tlb_start = start;
1155 tlb_start_valid = 1;
1158 if (unlikely(is_vm_hugetlb_page(vma))) {
1160 * It is undesirable to test vma->vm_file as it
1161 * should be non-null for valid hugetlb area.
1162 * However, vm_file will be NULL in the error
1163 * cleanup path of do_mmap_pgoff. When
1164 * hugetlbfs ->mmap method fails,
1165 * do_mmap_pgoff() nullifies vma->vm_file
1166 * before calling this function to clean up.
1167 * Since no pte has actually been setup, it is
1168 * safe to do nothing in this case.
1170 if (vma->vm_file) {
1171 unmap_hugepage_range(vma, start, end, NULL);
1172 zap_work -= (end - start) /
1173 pages_per_huge_page(hstate_vma(vma));
1176 start = end;
1177 } else
1178 start = unmap_page_range(*tlbp, vma,
1179 start, end, &zap_work, details);
1181 if (zap_work > 0) {
1182 BUG_ON(start != end);
1183 break;
1186 tlb_finish_mmu(*tlbp, tlb_start, start);
1188 if (need_resched() ||
1189 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1190 if (i_mmap_lock) {
1191 *tlbp = NULL;
1192 goto out;
1194 cond_resched();
1197 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1198 tlb_start_valid = 0;
1199 zap_work = ZAP_BLOCK_SIZE;
1202 out:
1203 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1204 return start; /* which is now the end (or restart) address */
1208 * zap_page_range - remove user pages in a given range
1209 * @vma: vm_area_struct holding the applicable pages
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1212 * @details: details of nonlinear truncation or shared cache invalidation
1214 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1215 unsigned long size, struct zap_details *details)
1217 struct mm_struct *mm = vma->vm_mm;
1218 struct mmu_gather *tlb;
1219 unsigned long end = address + size;
1220 unsigned long nr_accounted = 0;
1222 lru_add_drain();
1223 tlb = tlb_gather_mmu(mm, 0);
1224 update_hiwater_rss(mm);
1225 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1226 if (tlb)
1227 tlb_finish_mmu(tlb, address, end);
1228 return end;
1232 * zap_vma_ptes - remove ptes mapping the vma
1233 * @vma: vm_area_struct holding ptes to be zapped
1234 * @address: starting address of pages to zap
1235 * @size: number of bytes to zap
1237 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1239 * The entire address range must be fully contained within the vma.
1241 * Returns 0 if successful.
1243 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1244 unsigned long size)
1246 if (address < vma->vm_start || address + size > vma->vm_end ||
1247 !(vma->vm_flags & VM_PFNMAP))
1248 return -1;
1249 zap_page_range(vma, address, size, NULL);
1250 return 0;
1252 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1255 * follow_page - look up a page descriptor from a user-virtual address
1256 * @vma: vm_area_struct mapping @address
1257 * @address: virtual address to look up
1258 * @flags: flags modifying lookup behaviour
1260 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1262 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1263 * an error pointer if there is a mapping to something not represented
1264 * by a page descriptor (see also vm_normal_page()).
1266 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1267 unsigned int flags)
1269 pgd_t *pgd;
1270 pud_t *pud;
1271 pmd_t *pmd;
1272 pte_t *ptep, pte;
1273 spinlock_t *ptl;
1274 struct page *page;
1275 struct mm_struct *mm = vma->vm_mm;
1277 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1278 if (!IS_ERR(page)) {
1279 BUG_ON(flags & FOLL_GET);
1280 goto out;
1283 page = NULL;
1284 pgd = pgd_offset(mm, address);
1285 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1286 goto no_page_table;
1288 pud = pud_offset(pgd, address);
1289 if (pud_none(*pud))
1290 goto no_page_table;
1291 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1292 BUG_ON(flags & FOLL_GET);
1293 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1294 goto out;
1296 if (unlikely(pud_bad(*pud)))
1297 goto no_page_table;
1299 pmd = pmd_offset(pud, address);
1300 if (pmd_none(*pmd))
1301 goto no_page_table;
1302 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1303 BUG_ON(flags & FOLL_GET);
1304 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1305 goto out;
1307 if (pmd_trans_huge(*pmd)) {
1308 if (flags & FOLL_SPLIT) {
1309 split_huge_page_pmd(mm, pmd);
1310 goto split_fallthrough;
1312 spin_lock(&mm->page_table_lock);
1313 if (likely(pmd_trans_huge(*pmd))) {
1314 if (unlikely(pmd_trans_splitting(*pmd))) {
1315 spin_unlock(&mm->page_table_lock);
1316 wait_split_huge_page(vma->anon_vma, pmd);
1317 } else {
1318 page = follow_trans_huge_pmd(mm, address,
1319 pmd, flags);
1320 spin_unlock(&mm->page_table_lock);
1321 goto out;
1323 } else
1324 spin_unlock(&mm->page_table_lock);
1325 /* fall through */
1327 split_fallthrough:
1328 if (unlikely(pmd_bad(*pmd)))
1329 goto no_page_table;
1331 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1333 pte = *ptep;
1334 if (!pte_present(pte))
1335 goto no_page;
1336 if ((flags & FOLL_WRITE) && !pte_write(pte))
1337 goto unlock;
1339 page = vm_normal_page(vma, address, pte);
1340 if (unlikely(!page)) {
1341 if ((flags & FOLL_DUMP) ||
1342 !is_zero_pfn(pte_pfn(pte)))
1343 goto bad_page;
1344 page = pte_page(pte);
1347 if (flags & FOLL_GET)
1348 get_page(page);
1349 if (flags & FOLL_TOUCH) {
1350 if ((flags & FOLL_WRITE) &&
1351 !pte_dirty(pte) && !PageDirty(page))
1352 set_page_dirty(page);
1354 * pte_mkyoung() would be more correct here, but atomic care
1355 * is needed to avoid losing the dirty bit: it is easier to use
1356 * mark_page_accessed().
1358 mark_page_accessed(page);
1360 if (flags & FOLL_MLOCK) {
1362 * The preliminary mapping check is mainly to avoid the
1363 * pointless overhead of lock_page on the ZERO_PAGE
1364 * which might bounce very badly if there is contention.
1366 * If the page is already locked, we don't need to
1367 * handle it now - vmscan will handle it later if and
1368 * when it attempts to reclaim the page.
1370 if (page->mapping && trylock_page(page)) {
1371 lru_add_drain(); /* push cached pages to LRU */
1373 * Because we lock page here and migration is
1374 * blocked by the pte's page reference, we need
1375 * only check for file-cache page truncation.
1377 if (page->mapping)
1378 mlock_vma_page(page);
1379 unlock_page(page);
1382 unlock:
1383 pte_unmap_unlock(ptep, ptl);
1384 out:
1385 return page;
1387 bad_page:
1388 pte_unmap_unlock(ptep, ptl);
1389 return ERR_PTR(-EFAULT);
1391 no_page:
1392 pte_unmap_unlock(ptep, ptl);
1393 if (!pte_none(pte))
1394 return page;
1396 no_page_table:
1398 * When core dumping an enormous anonymous area that nobody
1399 * has touched so far, we don't want to allocate unnecessary pages or
1400 * page tables. Return error instead of NULL to skip handle_mm_fault,
1401 * then get_dump_page() will return NULL to leave a hole in the dump.
1402 * But we can only make this optimization where a hole would surely
1403 * be zero-filled if handle_mm_fault() actually did handle it.
1405 if ((flags & FOLL_DUMP) &&
1406 (!vma->vm_ops || !vma->vm_ops->fault))
1407 return ERR_PTR(-EFAULT);
1408 return page;
1411 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1412 unsigned long start, int nr_pages, unsigned int gup_flags,
1413 struct page **pages, struct vm_area_struct **vmas,
1414 int *nonblocking)
1416 int i;
1417 unsigned long vm_flags;
1419 if (nr_pages <= 0)
1420 return 0;
1422 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1425 * Require read or write permissions.
1426 * If FOLL_FORCE is set, we only require the "MAY" flags.
1428 vm_flags = (gup_flags & FOLL_WRITE) ?
1429 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1430 vm_flags &= (gup_flags & FOLL_FORCE) ?
1431 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1432 i = 0;
1434 do {
1435 struct vm_area_struct *vma;
1437 vma = find_extend_vma(mm, start);
1438 if (!vma && in_gate_area(tsk, start)) {
1439 unsigned long pg = start & PAGE_MASK;
1440 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1441 pgd_t *pgd;
1442 pud_t *pud;
1443 pmd_t *pmd;
1444 pte_t *pte;
1446 /* user gate pages are read-only */
1447 if (gup_flags & FOLL_WRITE)
1448 return i ? : -EFAULT;
1449 if (pg > TASK_SIZE)
1450 pgd = pgd_offset_k(pg);
1451 else
1452 pgd = pgd_offset_gate(mm, pg);
1453 BUG_ON(pgd_none(*pgd));
1454 pud = pud_offset(pgd, pg);
1455 BUG_ON(pud_none(*pud));
1456 pmd = pmd_offset(pud, pg);
1457 if (pmd_none(*pmd))
1458 return i ? : -EFAULT;
1459 VM_BUG_ON(pmd_trans_huge(*pmd));
1460 pte = pte_offset_map(pmd, pg);
1461 if (pte_none(*pte)) {
1462 pte_unmap(pte);
1463 return i ? : -EFAULT;
1465 if (pages) {
1466 struct page *page;
1468 page = vm_normal_page(gate_vma, start, *pte);
1469 if (!page) {
1470 if (!(gup_flags & FOLL_DUMP) &&
1471 is_zero_pfn(pte_pfn(*pte)))
1472 page = pte_page(*pte);
1473 else {
1474 pte_unmap(pte);
1475 return i ? : -EFAULT;
1478 pages[i] = page;
1479 get_page(page);
1481 pte_unmap(pte);
1482 if (vmas)
1483 vmas[i] = gate_vma;
1484 i++;
1485 start += PAGE_SIZE;
1486 nr_pages--;
1487 continue;
1490 if (!vma ||
1491 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1492 !(vm_flags & vma->vm_flags))
1493 return i ? : -EFAULT;
1495 if (is_vm_hugetlb_page(vma)) {
1496 i = follow_hugetlb_page(mm, vma, pages, vmas,
1497 &start, &nr_pages, i, gup_flags);
1498 continue;
1501 do {
1502 struct page *page;
1503 unsigned int foll_flags = gup_flags;
1506 * If we have a pending SIGKILL, don't keep faulting
1507 * pages and potentially allocating memory.
1509 if (unlikely(fatal_signal_pending(current)))
1510 return i ? i : -ERESTARTSYS;
1512 cond_resched();
1513 while (!(page = follow_page(vma, start, foll_flags))) {
1514 int ret;
1515 unsigned int fault_flags = 0;
1517 if (foll_flags & FOLL_WRITE)
1518 fault_flags |= FAULT_FLAG_WRITE;
1519 if (nonblocking)
1520 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1522 ret = handle_mm_fault(mm, vma, start,
1523 fault_flags);
1525 if (ret & VM_FAULT_ERROR) {
1526 if (ret & VM_FAULT_OOM)
1527 return i ? i : -ENOMEM;
1528 if (ret &
1529 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1530 VM_FAULT_SIGBUS))
1531 return i ? i : -EFAULT;
1532 BUG();
1534 if (ret & VM_FAULT_MAJOR)
1535 tsk->maj_flt++;
1536 else
1537 tsk->min_flt++;
1539 if (ret & VM_FAULT_RETRY) {
1540 *nonblocking = 0;
1541 return i;
1545 * The VM_FAULT_WRITE bit tells us that
1546 * do_wp_page has broken COW when necessary,
1547 * even if maybe_mkwrite decided not to set
1548 * pte_write. We can thus safely do subsequent
1549 * page lookups as if they were reads. But only
1550 * do so when looping for pte_write is futile:
1551 * in some cases userspace may also be wanting
1552 * to write to the gotten user page, which a
1553 * read fault here might prevent (a readonly
1554 * page might get reCOWed by userspace write).
1556 if ((ret & VM_FAULT_WRITE) &&
1557 !(vma->vm_flags & VM_WRITE))
1558 foll_flags &= ~FOLL_WRITE;
1560 cond_resched();
1562 if (IS_ERR(page))
1563 return i ? i : PTR_ERR(page);
1564 if (pages) {
1565 pages[i] = page;
1567 flush_anon_page(vma, page, start);
1568 flush_dcache_page(page);
1570 if (vmas)
1571 vmas[i] = vma;
1572 i++;
1573 start += PAGE_SIZE;
1574 nr_pages--;
1575 } while (nr_pages && start < vma->vm_end);
1576 } while (nr_pages);
1577 return i;
1581 * get_user_pages() - pin user pages in memory
1582 * @tsk: task_struct of target task
1583 * @mm: mm_struct of target mm
1584 * @start: starting user address
1585 * @nr_pages: number of pages from start to pin
1586 * @write: whether pages will be written to by the caller
1587 * @force: whether to force write access even if user mapping is
1588 * readonly. This will result in the page being COWed even
1589 * in MAP_SHARED mappings. You do not want this.
1590 * @pages: array that receives pointers to the pages pinned.
1591 * Should be at least nr_pages long. Or NULL, if caller
1592 * only intends to ensure the pages are faulted in.
1593 * @vmas: array of pointers to vmas corresponding to each page.
1594 * Or NULL if the caller does not require them.
1596 * Returns number of pages pinned. This may be fewer than the number
1597 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1598 * were pinned, returns -errno. Each page returned must be released
1599 * with a put_page() call when it is finished with. vmas will only
1600 * remain valid while mmap_sem is held.
1602 * Must be called with mmap_sem held for read or write.
1604 * get_user_pages walks a process's page tables and takes a reference to
1605 * each struct page that each user address corresponds to at a given
1606 * instant. That is, it takes the page that would be accessed if a user
1607 * thread accesses the given user virtual address at that instant.
1609 * This does not guarantee that the page exists in the user mappings when
1610 * get_user_pages returns, and there may even be a completely different
1611 * page there in some cases (eg. if mmapped pagecache has been invalidated
1612 * and subsequently re faulted). However it does guarantee that the page
1613 * won't be freed completely. And mostly callers simply care that the page
1614 * contains data that was valid *at some point in time*. Typically, an IO
1615 * or similar operation cannot guarantee anything stronger anyway because
1616 * locks can't be held over the syscall boundary.
1618 * If write=0, the page must not be written to. If the page is written to,
1619 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1620 * after the page is finished with, and before put_page is called.
1622 * get_user_pages is typically used for fewer-copy IO operations, to get a
1623 * handle on the memory by some means other than accesses via the user virtual
1624 * addresses. The pages may be submitted for DMA to devices or accessed via
1625 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1626 * use the correct cache flushing APIs.
1628 * See also get_user_pages_fast, for performance critical applications.
1630 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1631 unsigned long start, int nr_pages, int write, int force,
1632 struct page **pages, struct vm_area_struct **vmas)
1634 int flags = FOLL_TOUCH;
1636 if (pages)
1637 flags |= FOLL_GET;
1638 if (write)
1639 flags |= FOLL_WRITE;
1640 if (force)
1641 flags |= FOLL_FORCE;
1643 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1644 NULL);
1646 EXPORT_SYMBOL(get_user_pages);
1649 * get_dump_page() - pin user page in memory while writing it to core dump
1650 * @addr: user address
1652 * Returns struct page pointer of user page pinned for dump,
1653 * to be freed afterwards by page_cache_release() or put_page().
1655 * Returns NULL on any kind of failure - a hole must then be inserted into
1656 * the corefile, to preserve alignment with its headers; and also returns
1657 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1658 * allowing a hole to be left in the corefile to save diskspace.
1660 * Called without mmap_sem, but after all other threads have been killed.
1662 #ifdef CONFIG_ELF_CORE
1663 struct page *get_dump_page(unsigned long addr)
1665 struct vm_area_struct *vma;
1666 struct page *page;
1668 if (__get_user_pages(current, current->mm, addr, 1,
1669 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1670 NULL) < 1)
1671 return NULL;
1672 flush_cache_page(vma, addr, page_to_pfn(page));
1673 return page;
1675 #endif /* CONFIG_ELF_CORE */
1677 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1678 spinlock_t **ptl)
1680 pgd_t * pgd = pgd_offset(mm, addr);
1681 pud_t * pud = pud_alloc(mm, pgd, addr);
1682 if (pud) {
1683 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1684 if (pmd) {
1685 VM_BUG_ON(pmd_trans_huge(*pmd));
1686 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1689 return NULL;
1693 * This is the old fallback for page remapping.
1695 * For historical reasons, it only allows reserved pages. Only
1696 * old drivers should use this, and they needed to mark their
1697 * pages reserved for the old functions anyway.
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700 struct page *page, pgprot_t prot)
1702 struct mm_struct *mm = vma->vm_mm;
1703 int retval;
1704 pte_t *pte;
1705 spinlock_t *ptl;
1707 retval = -EINVAL;
1708 if (PageAnon(page))
1709 goto out;
1710 retval = -ENOMEM;
1711 flush_dcache_page(page);
1712 pte = get_locked_pte(mm, addr, &ptl);
1713 if (!pte)
1714 goto out;
1715 retval = -EBUSY;
1716 if (!pte_none(*pte))
1717 goto out_unlock;
1719 /* Ok, finally just insert the thing.. */
1720 get_page(page);
1721 inc_mm_counter_fast(mm, MM_FILEPAGES);
1722 page_add_file_rmap(page);
1723 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1725 retval = 0;
1726 pte_unmap_unlock(pte, ptl);
1727 return retval;
1728 out_unlock:
1729 pte_unmap_unlock(pte, ptl);
1730 out:
1731 return retval;
1735 * vm_insert_page - insert single page into user vma
1736 * @vma: user vma to map to
1737 * @addr: target user address of this page
1738 * @page: source kernel page
1740 * This allows drivers to insert individual pages they've allocated
1741 * into a user vma.
1743 * The page has to be a nice clean _individual_ kernel allocation.
1744 * If you allocate a compound page, you need to have marked it as
1745 * such (__GFP_COMP), or manually just split the page up yourself
1746 * (see split_page()).
1748 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749 * took an arbitrary page protection parameter. This doesn't allow
1750 * that. Your vma protection will have to be set up correctly, which
1751 * means that if you want a shared writable mapping, you'd better
1752 * ask for a shared writable mapping!
1754 * The page does not need to be reserved.
1756 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1757 struct page *page)
1759 if (addr < vma->vm_start || addr >= vma->vm_end)
1760 return -EFAULT;
1761 if (!page_count(page))
1762 return -EINVAL;
1763 vma->vm_flags |= VM_INSERTPAGE;
1764 return insert_page(vma, addr, page, vma->vm_page_prot);
1766 EXPORT_SYMBOL(vm_insert_page);
1768 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1769 unsigned long pfn, pgprot_t prot)
1771 struct mm_struct *mm = vma->vm_mm;
1772 int retval;
1773 pte_t *pte, entry;
1774 spinlock_t *ptl;
1776 retval = -ENOMEM;
1777 pte = get_locked_pte(mm, addr, &ptl);
1778 if (!pte)
1779 goto out;
1780 retval = -EBUSY;
1781 if (!pte_none(*pte))
1782 goto out_unlock;
1784 /* Ok, finally just insert the thing.. */
1785 entry = pte_mkspecial(pfn_pte(pfn, prot));
1786 set_pte_at(mm, addr, pte, entry);
1787 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1789 retval = 0;
1790 out_unlock:
1791 pte_unmap_unlock(pte, ptl);
1792 out:
1793 return retval;
1797 * vm_insert_pfn - insert single pfn into user vma
1798 * @vma: user vma to map to
1799 * @addr: target user address of this page
1800 * @pfn: source kernel pfn
1802 * Similar to vm_inert_page, this allows drivers to insert individual pages
1803 * they've allocated into a user vma. Same comments apply.
1805 * This function should only be called from a vm_ops->fault handler, and
1806 * in that case the handler should return NULL.
1808 * vma cannot be a COW mapping.
1810 * As this is called only for pages that do not currently exist, we
1811 * do not need to flush old virtual caches or the TLB.
1813 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1814 unsigned long pfn)
1816 int ret;
1817 pgprot_t pgprot = vma->vm_page_prot;
1819 * Technically, architectures with pte_special can avoid all these
1820 * restrictions (same for remap_pfn_range). However we would like
1821 * consistency in testing and feature parity among all, so we should
1822 * try to keep these invariants in place for everybody.
1824 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1825 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1826 (VM_PFNMAP|VM_MIXEDMAP));
1827 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1828 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1830 if (addr < vma->vm_start || addr >= vma->vm_end)
1831 return -EFAULT;
1832 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1833 return -EINVAL;
1835 ret = insert_pfn(vma, addr, pfn, pgprot);
1837 if (ret)
1838 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1840 return ret;
1842 EXPORT_SYMBOL(vm_insert_pfn);
1844 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1845 unsigned long pfn)
1847 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1849 if (addr < vma->vm_start || addr >= vma->vm_end)
1850 return -EFAULT;
1853 * If we don't have pte special, then we have to use the pfn_valid()
1854 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1855 * refcount the page if pfn_valid is true (hence insert_page rather
1856 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1857 * without pte special, it would there be refcounted as a normal page.
1859 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1860 struct page *page;
1862 page = pfn_to_page(pfn);
1863 return insert_page(vma, addr, page, vma->vm_page_prot);
1865 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1867 EXPORT_SYMBOL(vm_insert_mixed);
1870 * maps a range of physical memory into the requested pages. the old
1871 * mappings are removed. any references to nonexistent pages results
1872 * in null mappings (currently treated as "copy-on-access")
1874 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1875 unsigned long addr, unsigned long end,
1876 unsigned long pfn, pgprot_t prot)
1878 pte_t *pte;
1879 spinlock_t *ptl;
1881 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1882 if (!pte)
1883 return -ENOMEM;
1884 arch_enter_lazy_mmu_mode();
1885 do {
1886 BUG_ON(!pte_none(*pte));
1887 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1888 pfn++;
1889 } while (pte++, addr += PAGE_SIZE, addr != end);
1890 arch_leave_lazy_mmu_mode();
1891 pte_unmap_unlock(pte - 1, ptl);
1892 return 0;
1895 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1896 unsigned long addr, unsigned long end,
1897 unsigned long pfn, pgprot_t prot)
1899 pmd_t *pmd;
1900 unsigned long next;
1902 pfn -= addr >> PAGE_SHIFT;
1903 pmd = pmd_alloc(mm, pud, addr);
1904 if (!pmd)
1905 return -ENOMEM;
1906 VM_BUG_ON(pmd_trans_huge(*pmd));
1907 do {
1908 next = pmd_addr_end(addr, end);
1909 if (remap_pte_range(mm, pmd, addr, next,
1910 pfn + (addr >> PAGE_SHIFT), prot))
1911 return -ENOMEM;
1912 } while (pmd++, addr = next, addr != end);
1913 return 0;
1916 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1917 unsigned long addr, unsigned long end,
1918 unsigned long pfn, pgprot_t prot)
1920 pud_t *pud;
1921 unsigned long next;
1923 pfn -= addr >> PAGE_SHIFT;
1924 pud = pud_alloc(mm, pgd, addr);
1925 if (!pud)
1926 return -ENOMEM;
1927 do {
1928 next = pud_addr_end(addr, end);
1929 if (remap_pmd_range(mm, pud, addr, next,
1930 pfn + (addr >> PAGE_SHIFT), prot))
1931 return -ENOMEM;
1932 } while (pud++, addr = next, addr != end);
1933 return 0;
1937 * remap_pfn_range - remap kernel memory to userspace
1938 * @vma: user vma to map to
1939 * @addr: target user address to start at
1940 * @pfn: physical address of kernel memory
1941 * @size: size of map area
1942 * @prot: page protection flags for this mapping
1944 * Note: this is only safe if the mm semaphore is held when called.
1946 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1947 unsigned long pfn, unsigned long size, pgprot_t prot)
1949 pgd_t *pgd;
1950 unsigned long next;
1951 unsigned long end = addr + PAGE_ALIGN(size);
1952 struct mm_struct *mm = vma->vm_mm;
1953 int err;
1956 * Physically remapped pages are special. Tell the
1957 * rest of the world about it:
1958 * VM_IO tells people not to look at these pages
1959 * (accesses can have side effects).
1960 * VM_RESERVED is specified all over the place, because
1961 * in 2.4 it kept swapout's vma scan off this vma; but
1962 * in 2.6 the LRU scan won't even find its pages, so this
1963 * flag means no more than count its pages in reserved_vm,
1964 * and omit it from core dump, even when VM_IO turned off.
1965 * VM_PFNMAP tells the core MM that the base pages are just
1966 * raw PFN mappings, and do not have a "struct page" associated
1967 * with them.
1969 * There's a horrible special case to handle copy-on-write
1970 * behaviour that some programs depend on. We mark the "original"
1971 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1973 if (addr == vma->vm_start && end == vma->vm_end) {
1974 vma->vm_pgoff = pfn;
1975 vma->vm_flags |= VM_PFN_AT_MMAP;
1976 } else if (is_cow_mapping(vma->vm_flags))
1977 return -EINVAL;
1979 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1981 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1982 if (err) {
1984 * To indicate that track_pfn related cleanup is not
1985 * needed from higher level routine calling unmap_vmas
1987 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1988 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1989 return -EINVAL;
1992 BUG_ON(addr >= end);
1993 pfn -= addr >> PAGE_SHIFT;
1994 pgd = pgd_offset(mm, addr);
1995 flush_cache_range(vma, addr, end);
1996 do {
1997 next = pgd_addr_end(addr, end);
1998 err = remap_pud_range(mm, pgd, addr, next,
1999 pfn + (addr >> PAGE_SHIFT), prot);
2000 if (err)
2001 break;
2002 } while (pgd++, addr = next, addr != end);
2004 if (err)
2005 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2007 return err;
2009 EXPORT_SYMBOL(remap_pfn_range);
2011 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2012 unsigned long addr, unsigned long end,
2013 pte_fn_t fn, void *data)
2015 pte_t *pte;
2016 int err;
2017 pgtable_t token;
2018 spinlock_t *uninitialized_var(ptl);
2020 pte = (mm == &init_mm) ?
2021 pte_alloc_kernel(pmd, addr) :
2022 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2023 if (!pte)
2024 return -ENOMEM;
2026 BUG_ON(pmd_huge(*pmd));
2028 arch_enter_lazy_mmu_mode();
2030 token = pmd_pgtable(*pmd);
2032 do {
2033 err = fn(pte++, token, addr, data);
2034 if (err)
2035 break;
2036 } while (addr += PAGE_SIZE, addr != end);
2038 arch_leave_lazy_mmu_mode();
2040 if (mm != &init_mm)
2041 pte_unmap_unlock(pte-1, ptl);
2042 return err;
2045 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2046 unsigned long addr, unsigned long end,
2047 pte_fn_t fn, void *data)
2049 pmd_t *pmd;
2050 unsigned long next;
2051 int err;
2053 BUG_ON(pud_huge(*pud));
2055 pmd = pmd_alloc(mm, pud, addr);
2056 if (!pmd)
2057 return -ENOMEM;
2058 do {
2059 next = pmd_addr_end(addr, end);
2060 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2061 if (err)
2062 break;
2063 } while (pmd++, addr = next, addr != end);
2064 return err;
2067 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2068 unsigned long addr, unsigned long end,
2069 pte_fn_t fn, void *data)
2071 pud_t *pud;
2072 unsigned long next;
2073 int err;
2075 pud = pud_alloc(mm, pgd, addr);
2076 if (!pud)
2077 return -ENOMEM;
2078 do {
2079 next = pud_addr_end(addr, end);
2080 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2081 if (err)
2082 break;
2083 } while (pud++, addr = next, addr != end);
2084 return err;
2088 * Scan a region of virtual memory, filling in page tables as necessary
2089 * and calling a provided function on each leaf page table.
2091 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2092 unsigned long size, pte_fn_t fn, void *data)
2094 pgd_t *pgd;
2095 unsigned long next;
2096 unsigned long end = addr + size;
2097 int err;
2099 BUG_ON(addr >= end);
2100 pgd = pgd_offset(mm, addr);
2101 do {
2102 next = pgd_addr_end(addr, end);
2103 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2104 if (err)
2105 break;
2106 } while (pgd++, addr = next, addr != end);
2108 return err;
2110 EXPORT_SYMBOL_GPL(apply_to_page_range);
2113 * handle_pte_fault chooses page fault handler according to an entry
2114 * which was read non-atomically. Before making any commitment, on
2115 * those architectures or configurations (e.g. i386 with PAE) which
2116 * might give a mix of unmatched parts, do_swap_page and do_file_page
2117 * must check under lock before unmapping the pte and proceeding
2118 * (but do_wp_page is only called after already making such a check;
2119 * and do_anonymous_page and do_no_page can safely check later on).
2121 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2122 pte_t *page_table, pte_t orig_pte)
2124 int same = 1;
2125 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2126 if (sizeof(pte_t) > sizeof(unsigned long)) {
2127 spinlock_t *ptl = pte_lockptr(mm, pmd);
2128 spin_lock(ptl);
2129 same = pte_same(*page_table, orig_pte);
2130 spin_unlock(ptl);
2132 #endif
2133 pte_unmap(page_table);
2134 return same;
2137 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2140 * If the source page was a PFN mapping, we don't have
2141 * a "struct page" for it. We do a best-effort copy by
2142 * just copying from the original user address. If that
2143 * fails, we just zero-fill it. Live with it.
2145 if (unlikely(!src)) {
2146 void *kaddr = kmap_atomic(dst, KM_USER0);
2147 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2150 * This really shouldn't fail, because the page is there
2151 * in the page tables. But it might just be unreadable,
2152 * in which case we just give up and fill the result with
2153 * zeroes.
2155 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2156 clear_page(kaddr);
2157 kunmap_atomic(kaddr, KM_USER0);
2158 flush_dcache_page(dst);
2159 } else
2160 copy_user_highpage(dst, src, va, vma);
2164 * This routine handles present pages, when users try to write
2165 * to a shared page. It is done by copying the page to a new address
2166 * and decrementing the shared-page counter for the old page.
2168 * Note that this routine assumes that the protection checks have been
2169 * done by the caller (the low-level page fault routine in most cases).
2170 * Thus we can safely just mark it writable once we've done any necessary
2171 * COW.
2173 * We also mark the page dirty at this point even though the page will
2174 * change only once the write actually happens. This avoids a few races,
2175 * and potentially makes it more efficient.
2177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2178 * but allow concurrent faults), with pte both mapped and locked.
2179 * We return with mmap_sem still held, but pte unmapped and unlocked.
2181 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2182 unsigned long address, pte_t *page_table, pmd_t *pmd,
2183 spinlock_t *ptl, pte_t orig_pte)
2184 __releases(ptl)
2186 struct page *old_page, *new_page;
2187 pte_t entry;
2188 int ret = 0;
2189 int page_mkwrite = 0;
2190 struct page *dirty_page = NULL;
2192 old_page = vm_normal_page(vma, address, orig_pte);
2193 if (!old_page) {
2195 * VM_MIXEDMAP !pfn_valid() case
2197 * We should not cow pages in a shared writeable mapping.
2198 * Just mark the pages writable as we can't do any dirty
2199 * accounting on raw pfn maps.
2201 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2202 (VM_WRITE|VM_SHARED))
2203 goto reuse;
2204 goto gotten;
2208 * Take out anonymous pages first, anonymous shared vmas are
2209 * not dirty accountable.
2211 if (PageAnon(old_page) && !PageKsm(old_page)) {
2212 if (!trylock_page(old_page)) {
2213 page_cache_get(old_page);
2214 pte_unmap_unlock(page_table, ptl);
2215 lock_page(old_page);
2216 page_table = pte_offset_map_lock(mm, pmd, address,
2217 &ptl);
2218 if (!pte_same(*page_table, orig_pte)) {
2219 unlock_page(old_page);
2220 page_cache_release(old_page);
2221 goto unlock;
2223 page_cache_release(old_page);
2225 if (reuse_swap_page(old_page)) {
2227 * The page is all ours. Move it to our anon_vma so
2228 * the rmap code will not search our parent or siblings.
2229 * Protected against the rmap code by the page lock.
2231 page_move_anon_rmap(old_page, vma, address);
2232 unlock_page(old_page);
2233 goto reuse;
2235 unlock_page(old_page);
2236 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2237 (VM_WRITE|VM_SHARED))) {
2239 * Only catch write-faults on shared writable pages,
2240 * read-only shared pages can get COWed by
2241 * get_user_pages(.write=1, .force=1).
2243 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2244 struct vm_fault vmf;
2245 int tmp;
2247 vmf.virtual_address = (void __user *)(address &
2248 PAGE_MASK);
2249 vmf.pgoff = old_page->index;
2250 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2251 vmf.page = old_page;
2254 * Notify the address space that the page is about to
2255 * become writable so that it can prohibit this or wait
2256 * for the page to get into an appropriate state.
2258 * We do this without the lock held, so that it can
2259 * sleep if it needs to.
2261 page_cache_get(old_page);
2262 pte_unmap_unlock(page_table, ptl);
2264 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2265 if (unlikely(tmp &
2266 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2267 ret = tmp;
2268 goto unwritable_page;
2270 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2271 lock_page(old_page);
2272 if (!old_page->mapping) {
2273 ret = 0; /* retry the fault */
2274 unlock_page(old_page);
2275 goto unwritable_page;
2277 } else
2278 VM_BUG_ON(!PageLocked(old_page));
2281 * Since we dropped the lock we need to revalidate
2282 * the PTE as someone else may have changed it. If
2283 * they did, we just return, as we can count on the
2284 * MMU to tell us if they didn't also make it writable.
2286 page_table = pte_offset_map_lock(mm, pmd, address,
2287 &ptl);
2288 if (!pte_same(*page_table, orig_pte)) {
2289 unlock_page(old_page);
2290 page_cache_release(old_page);
2291 goto unlock;
2294 page_mkwrite = 1;
2296 dirty_page = old_page;
2297 get_page(dirty_page);
2299 reuse:
2300 flush_cache_page(vma, address, pte_pfn(orig_pte));
2301 entry = pte_mkyoung(orig_pte);
2302 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2303 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2304 update_mmu_cache(vma, address, page_table);
2305 pte_unmap_unlock(page_table, ptl);
2306 ret |= VM_FAULT_WRITE;
2308 if (!dirty_page)
2309 return ret;
2312 * Yes, Virginia, this is actually required to prevent a race
2313 * with clear_page_dirty_for_io() from clearing the page dirty
2314 * bit after it clear all dirty ptes, but before a racing
2315 * do_wp_page installs a dirty pte.
2317 * do_no_page is protected similarly.
2319 if (!page_mkwrite) {
2320 wait_on_page_locked(dirty_page);
2321 set_page_dirty_balance(dirty_page, page_mkwrite);
2323 put_page(dirty_page);
2324 if (page_mkwrite) {
2325 struct address_space *mapping = dirty_page->mapping;
2327 set_page_dirty(dirty_page);
2328 unlock_page(dirty_page);
2329 page_cache_release(dirty_page);
2330 if (mapping) {
2332 * Some device drivers do not set page.mapping
2333 * but still dirty their pages
2335 balance_dirty_pages_ratelimited(mapping);
2339 /* file_update_time outside page_lock */
2340 if (vma->vm_file)
2341 file_update_time(vma->vm_file);
2343 return ret;
2347 * Ok, we need to copy. Oh, well..
2349 page_cache_get(old_page);
2350 gotten:
2351 pte_unmap_unlock(page_table, ptl);
2353 if (unlikely(anon_vma_prepare(vma)))
2354 goto oom;
2356 if (is_zero_pfn(pte_pfn(orig_pte))) {
2357 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2358 if (!new_page)
2359 goto oom;
2360 } else {
2361 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2362 if (!new_page)
2363 goto oom;
2364 cow_user_page(new_page, old_page, address, vma);
2366 __SetPageUptodate(new_page);
2369 * Don't let another task, with possibly unlocked vma,
2370 * keep the mlocked page.
2372 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2373 lock_page(old_page); /* for LRU manipulation */
2374 clear_page_mlock(old_page);
2375 unlock_page(old_page);
2378 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2379 goto oom_free_new;
2382 * Re-check the pte - we dropped the lock
2384 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2385 if (likely(pte_same(*page_table, orig_pte))) {
2386 if (old_page) {
2387 if (!PageAnon(old_page)) {
2388 dec_mm_counter_fast(mm, MM_FILEPAGES);
2389 inc_mm_counter_fast(mm, MM_ANONPAGES);
2391 } else
2392 inc_mm_counter_fast(mm, MM_ANONPAGES);
2393 flush_cache_page(vma, address, pte_pfn(orig_pte));
2394 entry = mk_pte(new_page, vma->vm_page_prot);
2395 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2397 * Clear the pte entry and flush it first, before updating the
2398 * pte with the new entry. This will avoid a race condition
2399 * seen in the presence of one thread doing SMC and another
2400 * thread doing COW.
2402 ptep_clear_flush(vma, address, page_table);
2403 page_add_new_anon_rmap(new_page, vma, address);
2405 * We call the notify macro here because, when using secondary
2406 * mmu page tables (such as kvm shadow page tables), we want the
2407 * new page to be mapped directly into the secondary page table.
2409 set_pte_at_notify(mm, address, page_table, entry);
2410 update_mmu_cache(vma, address, page_table);
2411 if (old_page) {
2413 * Only after switching the pte to the new page may
2414 * we remove the mapcount here. Otherwise another
2415 * process may come and find the rmap count decremented
2416 * before the pte is switched to the new page, and
2417 * "reuse" the old page writing into it while our pte
2418 * here still points into it and can be read by other
2419 * threads.
2421 * The critical issue is to order this
2422 * page_remove_rmap with the ptp_clear_flush above.
2423 * Those stores are ordered by (if nothing else,)
2424 * the barrier present in the atomic_add_negative
2425 * in page_remove_rmap.
2427 * Then the TLB flush in ptep_clear_flush ensures that
2428 * no process can access the old page before the
2429 * decremented mapcount is visible. And the old page
2430 * cannot be reused until after the decremented
2431 * mapcount is visible. So transitively, TLBs to
2432 * old page will be flushed before it can be reused.
2434 page_remove_rmap(old_page);
2437 /* Free the old page.. */
2438 new_page = old_page;
2439 ret |= VM_FAULT_WRITE;
2440 } else
2441 mem_cgroup_uncharge_page(new_page);
2443 if (new_page)
2444 page_cache_release(new_page);
2445 if (old_page)
2446 page_cache_release(old_page);
2447 unlock:
2448 pte_unmap_unlock(page_table, ptl);
2449 return ret;
2450 oom_free_new:
2451 page_cache_release(new_page);
2452 oom:
2453 if (old_page) {
2454 if (page_mkwrite) {
2455 unlock_page(old_page);
2456 page_cache_release(old_page);
2458 page_cache_release(old_page);
2460 return VM_FAULT_OOM;
2462 unwritable_page:
2463 page_cache_release(old_page);
2464 return ret;
2468 * Helper functions for unmap_mapping_range().
2470 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2472 * We have to restart searching the prio_tree whenever we drop the lock,
2473 * since the iterator is only valid while the lock is held, and anyway
2474 * a later vma might be split and reinserted earlier while lock dropped.
2476 * The list of nonlinear vmas could be handled more efficiently, using
2477 * a placeholder, but handle it in the same way until a need is shown.
2478 * It is important to search the prio_tree before nonlinear list: a vma
2479 * may become nonlinear and be shifted from prio_tree to nonlinear list
2480 * while the lock is dropped; but never shifted from list to prio_tree.
2482 * In order to make forward progress despite restarting the search,
2483 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2484 * quickly skip it next time around. Since the prio_tree search only
2485 * shows us those vmas affected by unmapping the range in question, we
2486 * can't efficiently keep all vmas in step with mapping->truncate_count:
2487 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2488 * mapping->truncate_count and vma->vm_truncate_count are protected by
2489 * i_mmap_lock.
2491 * In order to make forward progress despite repeatedly restarting some
2492 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2493 * and restart from that address when we reach that vma again. It might
2494 * have been split or merged, shrunk or extended, but never shifted: so
2495 * restart_addr remains valid so long as it remains in the vma's range.
2496 * unmap_mapping_range forces truncate_count to leap over page-aligned
2497 * values so we can save vma's restart_addr in its truncate_count field.
2499 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2501 static void reset_vma_truncate_counts(struct address_space *mapping)
2503 struct vm_area_struct *vma;
2504 struct prio_tree_iter iter;
2506 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2507 vma->vm_truncate_count = 0;
2508 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2509 vma->vm_truncate_count = 0;
2512 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2513 unsigned long start_addr, unsigned long end_addr,
2514 struct zap_details *details)
2516 unsigned long restart_addr;
2517 int need_break;
2520 * files that support invalidating or truncating portions of the
2521 * file from under mmaped areas must have their ->fault function
2522 * return a locked page (and set VM_FAULT_LOCKED in the return).
2523 * This provides synchronisation against concurrent unmapping here.
2526 again:
2527 restart_addr = vma->vm_truncate_count;
2528 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2529 start_addr = restart_addr;
2530 if (start_addr >= end_addr) {
2531 /* Top of vma has been split off since last time */
2532 vma->vm_truncate_count = details->truncate_count;
2533 return 0;
2537 restart_addr = zap_page_range(vma, start_addr,
2538 end_addr - start_addr, details);
2539 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2541 if (restart_addr >= end_addr) {
2542 /* We have now completed this vma: mark it so */
2543 vma->vm_truncate_count = details->truncate_count;
2544 if (!need_break)
2545 return 0;
2546 } else {
2547 /* Note restart_addr in vma's truncate_count field */
2548 vma->vm_truncate_count = restart_addr;
2549 if (!need_break)
2550 goto again;
2553 spin_unlock(details->i_mmap_lock);
2554 cond_resched();
2555 spin_lock(details->i_mmap_lock);
2556 return -EINTR;
2559 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2560 struct zap_details *details)
2562 struct vm_area_struct *vma;
2563 struct prio_tree_iter iter;
2564 pgoff_t vba, vea, zba, zea;
2566 restart:
2567 vma_prio_tree_foreach(vma, &iter, root,
2568 details->first_index, details->last_index) {
2569 /* Skip quickly over those we have already dealt with */
2570 if (vma->vm_truncate_count == details->truncate_count)
2571 continue;
2573 vba = vma->vm_pgoff;
2574 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2575 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2576 zba = details->first_index;
2577 if (zba < vba)
2578 zba = vba;
2579 zea = details->last_index;
2580 if (zea > vea)
2581 zea = vea;
2583 if (unmap_mapping_range_vma(vma,
2584 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2585 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2586 details) < 0)
2587 goto restart;
2591 static inline void unmap_mapping_range_list(struct list_head *head,
2592 struct zap_details *details)
2594 struct vm_area_struct *vma;
2597 * In nonlinear VMAs there is no correspondence between virtual address
2598 * offset and file offset. So we must perform an exhaustive search
2599 * across *all* the pages in each nonlinear VMA, not just the pages
2600 * whose virtual address lies outside the file truncation point.
2602 restart:
2603 list_for_each_entry(vma, head, shared.vm_set.list) {
2604 /* Skip quickly over those we have already dealt with */
2605 if (vma->vm_truncate_count == details->truncate_count)
2606 continue;
2607 details->nonlinear_vma = vma;
2608 if (unmap_mapping_range_vma(vma, vma->vm_start,
2609 vma->vm_end, details) < 0)
2610 goto restart;
2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2616 * @mapping: the address space containing mmaps to be unmapped.
2617 * @holebegin: byte in first page to unmap, relative to the start of
2618 * the underlying file. This will be rounded down to a PAGE_SIZE
2619 * boundary. Note that this is different from truncate_pagecache(), which
2620 * must keep the partial page. In contrast, we must get rid of
2621 * partial pages.
2622 * @holelen: size of prospective hole in bytes. This will be rounded
2623 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2624 * end of the file.
2625 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2626 * but 0 when invalidating pagecache, don't throw away private data.
2628 void unmap_mapping_range(struct address_space *mapping,
2629 loff_t const holebegin, loff_t const holelen, int even_cows)
2631 struct zap_details details;
2632 pgoff_t hba = holebegin >> PAGE_SHIFT;
2633 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2635 /* Check for overflow. */
2636 if (sizeof(holelen) > sizeof(hlen)) {
2637 long long holeend =
2638 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2639 if (holeend & ~(long long)ULONG_MAX)
2640 hlen = ULONG_MAX - hba + 1;
2643 details.check_mapping = even_cows? NULL: mapping;
2644 details.nonlinear_vma = NULL;
2645 details.first_index = hba;
2646 details.last_index = hba + hlen - 1;
2647 if (details.last_index < details.first_index)
2648 details.last_index = ULONG_MAX;
2649 details.i_mmap_lock = &mapping->i_mmap_lock;
2651 spin_lock(&mapping->i_mmap_lock);
2653 /* Protect against endless unmapping loops */
2654 mapping->truncate_count++;
2655 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2656 if (mapping->truncate_count == 0)
2657 reset_vma_truncate_counts(mapping);
2658 mapping->truncate_count++;
2660 details.truncate_count = mapping->truncate_count;
2662 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2663 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2664 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2665 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2666 spin_unlock(&mapping->i_mmap_lock);
2668 EXPORT_SYMBOL(unmap_mapping_range);
2670 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2672 struct address_space *mapping = inode->i_mapping;
2675 * If the underlying filesystem is not going to provide
2676 * a way to truncate a range of blocks (punch a hole) -
2677 * we should return failure right now.
2679 if (!inode->i_op->truncate_range)
2680 return -ENOSYS;
2682 mutex_lock(&inode->i_mutex);
2683 down_write(&inode->i_alloc_sem);
2684 unmap_mapping_range(mapping, offset, (end - offset), 1);
2685 truncate_inode_pages_range(mapping, offset, end);
2686 unmap_mapping_range(mapping, offset, (end - offset), 1);
2687 inode->i_op->truncate_range(inode, offset, end);
2688 up_write(&inode->i_alloc_sem);
2689 mutex_unlock(&inode->i_mutex);
2691 return 0;
2695 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696 * but allow concurrent faults), and pte mapped but not yet locked.
2697 * We return with mmap_sem still held, but pte unmapped and unlocked.
2699 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2700 unsigned long address, pte_t *page_table, pmd_t *pmd,
2701 unsigned int flags, pte_t orig_pte)
2703 spinlock_t *ptl;
2704 struct page *page, *swapcache = NULL;
2705 swp_entry_t entry;
2706 pte_t pte;
2707 int locked;
2708 struct mem_cgroup *ptr = NULL;
2709 int exclusive = 0;
2710 int ret = 0;
2712 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2713 goto out;
2715 entry = pte_to_swp_entry(orig_pte);
2716 if (unlikely(non_swap_entry(entry))) {
2717 if (is_migration_entry(entry)) {
2718 migration_entry_wait(mm, pmd, address);
2719 } else if (is_hwpoison_entry(entry)) {
2720 ret = VM_FAULT_HWPOISON;
2721 } else {
2722 print_bad_pte(vma, address, orig_pte, NULL);
2723 ret = VM_FAULT_SIGBUS;
2725 goto out;
2727 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2728 page = lookup_swap_cache(entry);
2729 if (!page) {
2730 grab_swap_token(mm); /* Contend for token _before_ read-in */
2731 page = swapin_readahead(entry,
2732 GFP_HIGHUSER_MOVABLE, vma, address);
2733 if (!page) {
2735 * Back out if somebody else faulted in this pte
2736 * while we released the pte lock.
2738 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2739 if (likely(pte_same(*page_table, orig_pte)))
2740 ret = VM_FAULT_OOM;
2741 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2742 goto unlock;
2745 /* Had to read the page from swap area: Major fault */
2746 ret = VM_FAULT_MAJOR;
2747 count_vm_event(PGMAJFAULT);
2748 } else if (PageHWPoison(page)) {
2750 * hwpoisoned dirty swapcache pages are kept for killing
2751 * owner processes (which may be unknown at hwpoison time)
2753 ret = VM_FAULT_HWPOISON;
2754 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2755 goto out_release;
2758 locked = lock_page_or_retry(page, mm, flags);
2759 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2760 if (!locked) {
2761 ret |= VM_FAULT_RETRY;
2762 goto out_release;
2766 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2767 * release the swapcache from under us. The page pin, and pte_same
2768 * test below, are not enough to exclude that. Even if it is still
2769 * swapcache, we need to check that the page's swap has not changed.
2771 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2772 goto out_page;
2774 if (ksm_might_need_to_copy(page, vma, address)) {
2775 swapcache = page;
2776 page = ksm_does_need_to_copy(page, vma, address);
2778 if (unlikely(!page)) {
2779 ret = VM_FAULT_OOM;
2780 page = swapcache;
2781 swapcache = NULL;
2782 goto out_page;
2786 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2787 ret = VM_FAULT_OOM;
2788 goto out_page;
2792 * Back out if somebody else already faulted in this pte.
2794 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2795 if (unlikely(!pte_same(*page_table, orig_pte)))
2796 goto out_nomap;
2798 if (unlikely(!PageUptodate(page))) {
2799 ret = VM_FAULT_SIGBUS;
2800 goto out_nomap;
2804 * The page isn't present yet, go ahead with the fault.
2806 * Be careful about the sequence of operations here.
2807 * To get its accounting right, reuse_swap_page() must be called
2808 * while the page is counted on swap but not yet in mapcount i.e.
2809 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2810 * must be called after the swap_free(), or it will never succeed.
2811 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2812 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2813 * in page->private. In this case, a record in swap_cgroup is silently
2814 * discarded at swap_free().
2817 inc_mm_counter_fast(mm, MM_ANONPAGES);
2818 dec_mm_counter_fast(mm, MM_SWAPENTS);
2819 pte = mk_pte(page, vma->vm_page_prot);
2820 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2821 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2822 flags &= ~FAULT_FLAG_WRITE;
2823 ret |= VM_FAULT_WRITE;
2824 exclusive = 1;
2826 flush_icache_page(vma, page);
2827 set_pte_at(mm, address, page_table, pte);
2828 do_page_add_anon_rmap(page, vma, address, exclusive);
2829 /* It's better to call commit-charge after rmap is established */
2830 mem_cgroup_commit_charge_swapin(page, ptr);
2832 swap_free(entry);
2833 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2834 try_to_free_swap(page);
2835 unlock_page(page);
2836 if (swapcache) {
2838 * Hold the lock to avoid the swap entry to be reused
2839 * until we take the PT lock for the pte_same() check
2840 * (to avoid false positives from pte_same). For
2841 * further safety release the lock after the swap_free
2842 * so that the swap count won't change under a
2843 * parallel locked swapcache.
2845 unlock_page(swapcache);
2846 page_cache_release(swapcache);
2849 if (flags & FAULT_FLAG_WRITE) {
2850 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2851 if (ret & VM_FAULT_ERROR)
2852 ret &= VM_FAULT_ERROR;
2853 goto out;
2856 /* No need to invalidate - it was non-present before */
2857 update_mmu_cache(vma, address, page_table);
2858 unlock:
2859 pte_unmap_unlock(page_table, ptl);
2860 out:
2861 return ret;
2862 out_nomap:
2863 mem_cgroup_cancel_charge_swapin(ptr);
2864 pte_unmap_unlock(page_table, ptl);
2865 out_page:
2866 unlock_page(page);
2867 out_release:
2868 page_cache_release(page);
2869 if (swapcache) {
2870 unlock_page(swapcache);
2871 page_cache_release(swapcache);
2873 return ret;
2877 * This is like a special single-page "expand_{down|up}wards()",
2878 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2879 * doesn't hit another vma.
2881 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2883 address &= PAGE_MASK;
2884 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2885 struct vm_area_struct *prev = vma->vm_prev;
2888 * Is there a mapping abutting this one below?
2890 * That's only ok if it's the same stack mapping
2891 * that has gotten split..
2893 if (prev && prev->vm_end == address)
2894 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2896 expand_stack(vma, address - PAGE_SIZE);
2898 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2899 struct vm_area_struct *next = vma->vm_next;
2901 /* As VM_GROWSDOWN but s/below/above/ */
2902 if (next && next->vm_start == address + PAGE_SIZE)
2903 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2905 expand_upwards(vma, address + PAGE_SIZE);
2907 return 0;
2911 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2912 * but allow concurrent faults), and pte mapped but not yet locked.
2913 * We return with mmap_sem still held, but pte unmapped and unlocked.
2915 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2916 unsigned long address, pte_t *page_table, pmd_t *pmd,
2917 unsigned int flags)
2919 struct page *page;
2920 spinlock_t *ptl;
2921 pte_t entry;
2923 pte_unmap(page_table);
2925 /* Check if we need to add a guard page to the stack */
2926 if (check_stack_guard_page(vma, address) < 0)
2927 return VM_FAULT_SIGBUS;
2929 /* Use the zero-page for reads */
2930 if (!(flags & FAULT_FLAG_WRITE)) {
2931 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2932 vma->vm_page_prot));
2933 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2934 if (!pte_none(*page_table))
2935 goto unlock;
2936 goto setpte;
2939 /* Allocate our own private page. */
2940 if (unlikely(anon_vma_prepare(vma)))
2941 goto oom;
2942 page = alloc_zeroed_user_highpage_movable(vma, address);
2943 if (!page)
2944 goto oom;
2945 __SetPageUptodate(page);
2947 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2948 goto oom_free_page;
2950 entry = mk_pte(page, vma->vm_page_prot);
2951 if (vma->vm_flags & VM_WRITE)
2952 entry = pte_mkwrite(pte_mkdirty(entry));
2954 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2955 if (!pte_none(*page_table))
2956 goto release;
2958 inc_mm_counter_fast(mm, MM_ANONPAGES);
2959 page_add_new_anon_rmap(page, vma, address);
2960 setpte:
2961 set_pte_at(mm, address, page_table, entry);
2963 /* No need to invalidate - it was non-present before */
2964 update_mmu_cache(vma, address, page_table);
2965 unlock:
2966 pte_unmap_unlock(page_table, ptl);
2967 return 0;
2968 release:
2969 mem_cgroup_uncharge_page(page);
2970 page_cache_release(page);
2971 goto unlock;
2972 oom_free_page:
2973 page_cache_release(page);
2974 oom:
2975 return VM_FAULT_OOM;
2979 * __do_fault() tries to create a new page mapping. It aggressively
2980 * tries to share with existing pages, but makes a separate copy if
2981 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2982 * the next page fault.
2984 * As this is called only for pages that do not currently exist, we
2985 * do not need to flush old virtual caches or the TLB.
2987 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2988 * but allow concurrent faults), and pte neither mapped nor locked.
2989 * We return with mmap_sem still held, but pte unmapped and unlocked.
2991 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2992 unsigned long address, pmd_t *pmd,
2993 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2995 pte_t *page_table;
2996 spinlock_t *ptl;
2997 struct page *page;
2998 pte_t entry;
2999 int anon = 0;
3000 int charged = 0;
3001 struct page *dirty_page = NULL;
3002 struct vm_fault vmf;
3003 int ret;
3004 int page_mkwrite = 0;
3006 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3007 vmf.pgoff = pgoff;
3008 vmf.flags = flags;
3009 vmf.page = NULL;
3011 ret = vma->vm_ops->fault(vma, &vmf);
3012 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3013 VM_FAULT_RETRY)))
3014 return ret;
3016 if (unlikely(PageHWPoison(vmf.page))) {
3017 if (ret & VM_FAULT_LOCKED)
3018 unlock_page(vmf.page);
3019 return VM_FAULT_HWPOISON;
3023 * For consistency in subsequent calls, make the faulted page always
3024 * locked.
3026 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3027 lock_page(vmf.page);
3028 else
3029 VM_BUG_ON(!PageLocked(vmf.page));
3032 * Should we do an early C-O-W break?
3034 page = vmf.page;
3035 if (flags & FAULT_FLAG_WRITE) {
3036 if (!(vma->vm_flags & VM_SHARED)) {
3037 anon = 1;
3038 if (unlikely(anon_vma_prepare(vma))) {
3039 ret = VM_FAULT_OOM;
3040 goto out;
3042 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3043 vma, address);
3044 if (!page) {
3045 ret = VM_FAULT_OOM;
3046 goto out;
3048 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3049 ret = VM_FAULT_OOM;
3050 page_cache_release(page);
3051 goto out;
3053 charged = 1;
3055 * Don't let another task, with possibly unlocked vma,
3056 * keep the mlocked page.
3058 if (vma->vm_flags & VM_LOCKED)
3059 clear_page_mlock(vmf.page);
3060 copy_user_highpage(page, vmf.page, address, vma);
3061 __SetPageUptodate(page);
3062 } else {
3064 * If the page will be shareable, see if the backing
3065 * address space wants to know that the page is about
3066 * to become writable
3068 if (vma->vm_ops->page_mkwrite) {
3069 int tmp;
3071 unlock_page(page);
3072 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3073 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3074 if (unlikely(tmp &
3075 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3076 ret = tmp;
3077 goto unwritable_page;
3079 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3080 lock_page(page);
3081 if (!page->mapping) {
3082 ret = 0; /* retry the fault */
3083 unlock_page(page);
3084 goto unwritable_page;
3086 } else
3087 VM_BUG_ON(!PageLocked(page));
3088 page_mkwrite = 1;
3094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3097 * This silly early PAGE_DIRTY setting removes a race
3098 * due to the bad i386 page protection. But it's valid
3099 * for other architectures too.
3101 * Note that if FAULT_FLAG_WRITE is set, we either now have
3102 * an exclusive copy of the page, or this is a shared mapping,
3103 * so we can make it writable and dirty to avoid having to
3104 * handle that later.
3106 /* Only go through if we didn't race with anybody else... */
3107 if (likely(pte_same(*page_table, orig_pte))) {
3108 flush_icache_page(vma, page);
3109 entry = mk_pte(page, vma->vm_page_prot);
3110 if (flags & FAULT_FLAG_WRITE)
3111 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3112 if (anon) {
3113 inc_mm_counter_fast(mm, MM_ANONPAGES);
3114 page_add_new_anon_rmap(page, vma, address);
3115 } else {
3116 inc_mm_counter_fast(mm, MM_FILEPAGES);
3117 page_add_file_rmap(page);
3118 if (flags & FAULT_FLAG_WRITE) {
3119 dirty_page = page;
3120 get_page(dirty_page);
3123 set_pte_at(mm, address, page_table, entry);
3125 /* no need to invalidate: a not-present page won't be cached */
3126 update_mmu_cache(vma, address, page_table);
3127 } else {
3128 if (charged)
3129 mem_cgroup_uncharge_page(page);
3130 if (anon)
3131 page_cache_release(page);
3132 else
3133 anon = 1; /* no anon but release faulted_page */
3136 pte_unmap_unlock(page_table, ptl);
3138 out:
3139 if (dirty_page) {
3140 struct address_space *mapping = page->mapping;
3142 if (set_page_dirty(dirty_page))
3143 page_mkwrite = 1;
3144 unlock_page(dirty_page);
3145 put_page(dirty_page);
3146 if (page_mkwrite && mapping) {
3148 * Some device drivers do not set page.mapping but still
3149 * dirty their pages
3151 balance_dirty_pages_ratelimited(mapping);
3154 /* file_update_time outside page_lock */
3155 if (vma->vm_file)
3156 file_update_time(vma->vm_file);
3157 } else {
3158 unlock_page(vmf.page);
3159 if (anon)
3160 page_cache_release(vmf.page);
3163 return ret;
3165 unwritable_page:
3166 page_cache_release(page);
3167 return ret;
3170 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3171 unsigned long address, pte_t *page_table, pmd_t *pmd,
3172 unsigned int flags, pte_t orig_pte)
3174 pgoff_t pgoff = (((address & PAGE_MASK)
3175 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3177 pte_unmap(page_table);
3178 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3182 * Fault of a previously existing named mapping. Repopulate the pte
3183 * from the encoded file_pte if possible. This enables swappable
3184 * nonlinear vmas.
3186 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3187 * but allow concurrent faults), and pte mapped but not yet locked.
3188 * We return with mmap_sem still held, but pte unmapped and unlocked.
3190 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3191 unsigned long address, pte_t *page_table, pmd_t *pmd,
3192 unsigned int flags, pte_t orig_pte)
3194 pgoff_t pgoff;
3196 flags |= FAULT_FLAG_NONLINEAR;
3198 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3199 return 0;
3201 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3203 * Page table corrupted: show pte and kill process.
3205 print_bad_pte(vma, address, orig_pte, NULL);
3206 return VM_FAULT_SIGBUS;
3209 pgoff = pte_to_pgoff(orig_pte);
3210 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3214 * These routines also need to handle stuff like marking pages dirty
3215 * and/or accessed for architectures that don't do it in hardware (most
3216 * RISC architectures). The early dirtying is also good on the i386.
3218 * There is also a hook called "update_mmu_cache()" that architectures
3219 * with external mmu caches can use to update those (ie the Sparc or
3220 * PowerPC hashed page tables that act as extended TLBs).
3222 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3223 * but allow concurrent faults), and pte mapped but not yet locked.
3224 * We return with mmap_sem still held, but pte unmapped and unlocked.
3226 int handle_pte_fault(struct mm_struct *mm,
3227 struct vm_area_struct *vma, unsigned long address,
3228 pte_t *pte, pmd_t *pmd, unsigned int flags)
3230 pte_t entry;
3231 spinlock_t *ptl;
3233 entry = *pte;
3234 if (!pte_present(entry)) {
3235 if (pte_none(entry)) {
3236 if (vma->vm_ops) {
3237 if (likely(vma->vm_ops->fault))
3238 return do_linear_fault(mm, vma, address,
3239 pte, pmd, flags, entry);
3241 return do_anonymous_page(mm, vma, address,
3242 pte, pmd, flags);
3244 if (pte_file(entry))
3245 return do_nonlinear_fault(mm, vma, address,
3246 pte, pmd, flags, entry);
3247 return do_swap_page(mm, vma, address,
3248 pte, pmd, flags, entry);
3251 ptl = pte_lockptr(mm, pmd);
3252 spin_lock(ptl);
3253 if (unlikely(!pte_same(*pte, entry)))
3254 goto unlock;
3255 if (flags & FAULT_FLAG_WRITE) {
3256 if (!pte_write(entry))
3257 return do_wp_page(mm, vma, address,
3258 pte, pmd, ptl, entry);
3259 entry = pte_mkdirty(entry);
3261 entry = pte_mkyoung(entry);
3262 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3263 update_mmu_cache(vma, address, pte);
3264 } else {
3266 * This is needed only for protection faults but the arch code
3267 * is not yet telling us if this is a protection fault or not.
3268 * This still avoids useless tlb flushes for .text page faults
3269 * with threads.
3271 if (flags & FAULT_FLAG_WRITE)
3272 flush_tlb_fix_spurious_fault(vma, address);
3274 unlock:
3275 pte_unmap_unlock(pte, ptl);
3276 return 0;
3280 * By the time we get here, we already hold the mm semaphore
3282 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3283 unsigned long address, unsigned int flags)
3285 pgd_t *pgd;
3286 pud_t *pud;
3287 pmd_t *pmd;
3288 pte_t *pte;
3290 __set_current_state(TASK_RUNNING);
3292 count_vm_event(PGFAULT);
3294 /* do counter updates before entering really critical section. */
3295 check_sync_rss_stat(current);
3297 if (unlikely(is_vm_hugetlb_page(vma)))
3298 return hugetlb_fault(mm, vma, address, flags);
3300 pgd = pgd_offset(mm, address);
3301 pud = pud_alloc(mm, pgd, address);
3302 if (!pud)
3303 return VM_FAULT_OOM;
3304 pmd = pmd_alloc(mm, pud, address);
3305 if (!pmd)
3306 return VM_FAULT_OOM;
3307 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3308 if (!vma->vm_ops)
3309 return do_huge_pmd_anonymous_page(mm, vma, address,
3310 pmd, flags);
3311 } else {
3312 pmd_t orig_pmd = *pmd;
3313 barrier();
3314 if (pmd_trans_huge(orig_pmd)) {
3315 if (flags & FAULT_FLAG_WRITE &&
3316 !pmd_write(orig_pmd) &&
3317 !pmd_trans_splitting(orig_pmd))
3318 return do_huge_pmd_wp_page(mm, vma, address,
3319 pmd, orig_pmd);
3320 return 0;
3325 * Use __pte_alloc instead of pte_alloc_map, because we can't
3326 * run pte_offset_map on the pmd, if an huge pmd could
3327 * materialize from under us from a different thread.
3329 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
3330 return VM_FAULT_OOM;
3331 /* if an huge pmd materialized from under us just retry later */
3332 if (unlikely(pmd_trans_huge(*pmd)))
3333 return 0;
3335 * A regular pmd is established and it can't morph into a huge pmd
3336 * from under us anymore at this point because we hold the mmap_sem
3337 * read mode and khugepaged takes it in write mode. So now it's
3338 * safe to run pte_offset_map().
3340 pte = pte_offset_map(pmd, address);
3342 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3345 #ifndef __PAGETABLE_PUD_FOLDED
3347 * Allocate page upper directory.
3348 * We've already handled the fast-path in-line.
3350 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3352 pud_t *new = pud_alloc_one(mm, address);
3353 if (!new)
3354 return -ENOMEM;
3356 smp_wmb(); /* See comment in __pte_alloc */
3358 spin_lock(&mm->page_table_lock);
3359 if (pgd_present(*pgd)) /* Another has populated it */
3360 pud_free(mm, new);
3361 else
3362 pgd_populate(mm, pgd, new);
3363 spin_unlock(&mm->page_table_lock);
3364 return 0;
3366 #endif /* __PAGETABLE_PUD_FOLDED */
3368 #ifndef __PAGETABLE_PMD_FOLDED
3370 * Allocate page middle directory.
3371 * We've already handled the fast-path in-line.
3373 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3375 pmd_t *new = pmd_alloc_one(mm, address);
3376 if (!new)
3377 return -ENOMEM;
3379 smp_wmb(); /* See comment in __pte_alloc */
3381 spin_lock(&mm->page_table_lock);
3382 #ifndef __ARCH_HAS_4LEVEL_HACK
3383 if (pud_present(*pud)) /* Another has populated it */
3384 pmd_free(mm, new);
3385 else
3386 pud_populate(mm, pud, new);
3387 #else
3388 if (pgd_present(*pud)) /* Another has populated it */
3389 pmd_free(mm, new);
3390 else
3391 pgd_populate(mm, pud, new);
3392 #endif /* __ARCH_HAS_4LEVEL_HACK */
3393 spin_unlock(&mm->page_table_lock);
3394 return 0;
3396 #endif /* __PAGETABLE_PMD_FOLDED */
3398 int make_pages_present(unsigned long addr, unsigned long end)
3400 int ret, len, write;
3401 struct vm_area_struct * vma;
3403 vma = find_vma(current->mm, addr);
3404 if (!vma)
3405 return -ENOMEM;
3407 * We want to touch writable mappings with a write fault in order
3408 * to break COW, except for shared mappings because these don't COW
3409 * and we would not want to dirty them for nothing.
3411 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3412 BUG_ON(addr >= end);
3413 BUG_ON(end > vma->vm_end);
3414 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3415 ret = get_user_pages(current, current->mm, addr,
3416 len, write, 0, NULL, NULL);
3417 if (ret < 0)
3418 return ret;
3419 return ret == len ? 0 : -EFAULT;
3422 #if !defined(__HAVE_ARCH_GATE_AREA)
3424 #if defined(AT_SYSINFO_EHDR)
3425 static struct vm_area_struct gate_vma;
3427 static int __init gate_vma_init(void)
3429 gate_vma.vm_mm = NULL;
3430 gate_vma.vm_start = FIXADDR_USER_START;
3431 gate_vma.vm_end = FIXADDR_USER_END;
3432 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3433 gate_vma.vm_page_prot = __P101;
3435 * Make sure the vDSO gets into every core dump.
3436 * Dumping its contents makes post-mortem fully interpretable later
3437 * without matching up the same kernel and hardware config to see
3438 * what PC values meant.
3440 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3441 return 0;
3443 __initcall(gate_vma_init);
3444 #endif
3446 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3448 #ifdef AT_SYSINFO_EHDR
3449 return &gate_vma;
3450 #else
3451 return NULL;
3452 #endif
3455 int in_gate_area_no_task(unsigned long addr)
3457 #ifdef AT_SYSINFO_EHDR
3458 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3459 return 1;
3460 #endif
3461 return 0;
3464 #endif /* __HAVE_ARCH_GATE_AREA */
3466 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3467 pte_t **ptepp, spinlock_t **ptlp)
3469 pgd_t *pgd;
3470 pud_t *pud;
3471 pmd_t *pmd;
3472 pte_t *ptep;
3474 pgd = pgd_offset(mm, address);
3475 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3476 goto out;
3478 pud = pud_offset(pgd, address);
3479 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3480 goto out;
3482 pmd = pmd_offset(pud, address);
3483 VM_BUG_ON(pmd_trans_huge(*pmd));
3484 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3485 goto out;
3487 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3488 if (pmd_huge(*pmd))
3489 goto out;
3491 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3492 if (!ptep)
3493 goto out;
3494 if (!pte_present(*ptep))
3495 goto unlock;
3496 *ptepp = ptep;
3497 return 0;
3498 unlock:
3499 pte_unmap_unlock(ptep, *ptlp);
3500 out:
3501 return -EINVAL;
3504 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3505 pte_t **ptepp, spinlock_t **ptlp)
3507 int res;
3509 /* (void) is needed to make gcc happy */
3510 (void) __cond_lock(*ptlp,
3511 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3512 return res;
3516 * follow_pfn - look up PFN at a user virtual address
3517 * @vma: memory mapping
3518 * @address: user virtual address
3519 * @pfn: location to store found PFN
3521 * Only IO mappings and raw PFN mappings are allowed.
3523 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3525 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3526 unsigned long *pfn)
3528 int ret = -EINVAL;
3529 spinlock_t *ptl;
3530 pte_t *ptep;
3532 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3533 return ret;
3535 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3536 if (ret)
3537 return ret;
3538 *pfn = pte_pfn(*ptep);
3539 pte_unmap_unlock(ptep, ptl);
3540 return 0;
3542 EXPORT_SYMBOL(follow_pfn);
3544 #ifdef CONFIG_HAVE_IOREMAP_PROT
3545 int follow_phys(struct vm_area_struct *vma,
3546 unsigned long address, unsigned int flags,
3547 unsigned long *prot, resource_size_t *phys)
3549 int ret = -EINVAL;
3550 pte_t *ptep, pte;
3551 spinlock_t *ptl;
3553 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3554 goto out;
3556 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3557 goto out;
3558 pte = *ptep;
3560 if ((flags & FOLL_WRITE) && !pte_write(pte))
3561 goto unlock;
3563 *prot = pgprot_val(pte_pgprot(pte));
3564 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3566 ret = 0;
3567 unlock:
3568 pte_unmap_unlock(ptep, ptl);
3569 out:
3570 return ret;
3573 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3574 void *buf, int len, int write)
3576 resource_size_t phys_addr;
3577 unsigned long prot = 0;
3578 void __iomem *maddr;
3579 int offset = addr & (PAGE_SIZE-1);
3581 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3582 return -EINVAL;
3584 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3585 if (write)
3586 memcpy_toio(maddr + offset, buf, len);
3587 else
3588 memcpy_fromio(buf, maddr + offset, len);
3589 iounmap(maddr);
3591 return len;
3593 #endif
3596 * Access another process' address space.
3597 * Source/target buffer must be kernel space,
3598 * Do not walk the page table directly, use get_user_pages
3600 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3602 struct mm_struct *mm;
3603 struct vm_area_struct *vma;
3604 void *old_buf = buf;
3606 mm = get_task_mm(tsk);
3607 if (!mm)
3608 return 0;
3610 down_read(&mm->mmap_sem);
3611 /* ignore errors, just check how much was successfully transferred */
3612 while (len) {
3613 int bytes, ret, offset;
3614 void *maddr;
3615 struct page *page = NULL;
3617 ret = get_user_pages(tsk, mm, addr, 1,
3618 write, 1, &page, &vma);
3619 if (ret <= 0) {
3621 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3622 * we can access using slightly different code.
3624 #ifdef CONFIG_HAVE_IOREMAP_PROT
3625 vma = find_vma(mm, addr);
3626 if (!vma)
3627 break;
3628 if (vma->vm_ops && vma->vm_ops->access)
3629 ret = vma->vm_ops->access(vma, addr, buf,
3630 len, write);
3631 if (ret <= 0)
3632 #endif
3633 break;
3634 bytes = ret;
3635 } else {
3636 bytes = len;
3637 offset = addr & (PAGE_SIZE-1);
3638 if (bytes > PAGE_SIZE-offset)
3639 bytes = PAGE_SIZE-offset;
3641 maddr = kmap(page);
3642 if (write) {
3643 copy_to_user_page(vma, page, addr,
3644 maddr + offset, buf, bytes);
3645 set_page_dirty_lock(page);
3646 } else {
3647 copy_from_user_page(vma, page, addr,
3648 buf, maddr + offset, bytes);
3650 kunmap(page);
3651 page_cache_release(page);
3653 len -= bytes;
3654 buf += bytes;
3655 addr += bytes;
3657 up_read(&mm->mmap_sem);
3658 mmput(mm);
3660 return buf - old_buf;
3664 * Print the name of a VMA.
3666 void print_vma_addr(char *prefix, unsigned long ip)
3668 struct mm_struct *mm = current->mm;
3669 struct vm_area_struct *vma;
3672 * Do not print if we are in atomic
3673 * contexts (in exception stacks, etc.):
3675 if (preempt_count())
3676 return;
3678 down_read(&mm->mmap_sem);
3679 vma = find_vma(mm, ip);
3680 if (vma && vma->vm_file) {
3681 struct file *f = vma->vm_file;
3682 char *buf = (char *)__get_free_page(GFP_KERNEL);
3683 if (buf) {
3684 char *p, *s;
3686 p = d_path(&f->f_path, buf, PAGE_SIZE);
3687 if (IS_ERR(p))
3688 p = "?";
3689 s = strrchr(p, '/');
3690 if (s)
3691 p = s+1;
3692 printk("%s%s[%lx+%lx]", prefix, p,
3693 vma->vm_start,
3694 vma->vm_end - vma->vm_start);
3695 free_page((unsigned long)buf);
3698 up_read(&current->mm->mmap_sem);
3701 #ifdef CONFIG_PROVE_LOCKING
3702 void might_fault(void)
3705 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3706 * holding the mmap_sem, this is safe because kernel memory doesn't
3707 * get paged out, therefore we'll never actually fault, and the
3708 * below annotations will generate false positives.
3710 if (segment_eq(get_fs(), KERNEL_DS))
3711 return;
3713 might_sleep();
3715 * it would be nicer only to annotate paths which are not under
3716 * pagefault_disable, however that requires a larger audit and
3717 * providing helpers like get_user_atomic.
3719 if (!in_atomic() && current->mm)
3720 might_lock_read(&current->mm->mmap_sem);
3722 EXPORT_SYMBOL(might_fault);
3723 #endif
3725 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3726 static void clear_gigantic_page(struct page *page,
3727 unsigned long addr,
3728 unsigned int pages_per_huge_page)
3730 int i;
3731 struct page *p = page;
3733 might_sleep();
3734 for (i = 0; i < pages_per_huge_page;
3735 i++, p = mem_map_next(p, page, i)) {
3736 cond_resched();
3737 clear_user_highpage(p, addr + i * PAGE_SIZE);
3740 void clear_huge_page(struct page *page,
3741 unsigned long addr, unsigned int pages_per_huge_page)
3743 int i;
3745 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3746 clear_gigantic_page(page, addr, pages_per_huge_page);
3747 return;
3750 might_sleep();
3751 for (i = 0; i < pages_per_huge_page; i++) {
3752 cond_resched();
3753 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3757 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3758 unsigned long addr,
3759 struct vm_area_struct *vma,
3760 unsigned int pages_per_huge_page)
3762 int i;
3763 struct page *dst_base = dst;
3764 struct page *src_base = src;
3766 for (i = 0; i < pages_per_huge_page; ) {
3767 cond_resched();
3768 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3770 i++;
3771 dst = mem_map_next(dst, dst_base, i);
3772 src = mem_map_next(src, src_base, i);
3776 void copy_user_huge_page(struct page *dst, struct page *src,
3777 unsigned long addr, struct vm_area_struct *vma,
3778 unsigned int pages_per_huge_page)
3780 int i;
3782 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3783 copy_user_gigantic_page(dst, src, addr, vma,
3784 pages_per_huge_page);
3785 return;
3788 might_sleep();
3789 for (i = 0; i < pages_per_huge_page; i++) {
3790 cond_resched();
3791 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3794 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */