Staging: rtl8192e: use DEFINE_PCI_DEVICE_TABLE
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / ordered-data.c
blobae7737e352c90f7ede523c357f72a92d78c80676
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
35 /* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
69 struct rb_node *n = root->rb_node;
70 struct rb_node *prev = NULL;
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
75 while (n) {
76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 prev = n;
78 prev_entry = entry;
80 if (file_offset < entry->file_offset)
81 n = n->rb_left;
82 else if (file_offset >= entry_end(entry))
83 n = n->rb_right;
84 else
85 return n;
87 if (!prev_ret)
88 return NULL;
90 while (prev && file_offset >= entry_end(prev_entry)) {
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
99 prev = test;
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
104 while (prev && file_offset < entry_end(prev_entry)) {
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
112 *prev_ret = prev;
113 return NULL;
117 * helper to check if a given offset is inside a given entry
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
143 struct rb_root *root = &tree->tree;
144 struct rb_node *prev;
145 struct rb_node *ret;
146 struct btrfs_ordered_extent *entry;
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
154 ret = __tree_search(root, file_offset, &prev);
155 if (!ret)
156 ret = prev;
157 if (ret)
158 tree->last = ret;
159 return ret;
162 /* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
168 * len is the length of the extent
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
175 int type, int dio)
177 struct btrfs_ordered_inode_tree *tree;
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 if (!entry)
184 return -ENOMEM;
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
189 entry->disk_len = disk_len;
190 entry->bytes_left = len;
191 entry->inode = inode;
192 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
193 set_bit(type, &entry->flags);
195 if (dio)
196 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198 /* one ref for the tree */
199 atomic_set(&entry->refs, 1);
200 init_waitqueue_head(&entry->wait);
201 INIT_LIST_HEAD(&entry->list);
202 INIT_LIST_HEAD(&entry->root_extent_list);
204 spin_lock(&tree->lock);
205 node = tree_insert(&tree->tree, file_offset,
206 &entry->rb_node);
207 BUG_ON(node);
208 spin_unlock(&tree->lock);
210 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
211 list_add_tail(&entry->root_extent_list,
212 &BTRFS_I(inode)->root->fs_info->ordered_extents);
213 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
215 BUG_ON(node);
216 return 0;
219 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
220 u64 start, u64 len, u64 disk_len, int type)
222 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
223 disk_len, type, 0);
226 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
227 u64 start, u64 len, u64 disk_len, int type)
229 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
230 disk_len, type, 1);
234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
235 * when an ordered extent is finished. If the list covers more than one
236 * ordered extent, it is split across multiples.
238 int btrfs_add_ordered_sum(struct inode *inode,
239 struct btrfs_ordered_extent *entry,
240 struct btrfs_ordered_sum *sum)
242 struct btrfs_ordered_inode_tree *tree;
244 tree = &BTRFS_I(inode)->ordered_tree;
245 spin_lock(&tree->lock);
246 list_add_tail(&sum->list, &entry->list);
247 spin_unlock(&tree->lock);
248 return 0;
252 * this is used to account for finished IO across a given range
253 * of the file. The IO may span ordered extents. If
254 * a given ordered_extent is completely done, 1 is returned, otherwise
255 * 0.
257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258 * to make sure this function only returns 1 once for a given ordered extent.
260 * file_offset is updated to one byte past the range that is recorded as
261 * complete. This allows you to walk forward in the file.
263 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
264 struct btrfs_ordered_extent **cached,
265 u64 *file_offset, u64 io_size)
267 struct btrfs_ordered_inode_tree *tree;
268 struct rb_node *node;
269 struct btrfs_ordered_extent *entry = NULL;
270 int ret;
271 u64 dec_end;
272 u64 dec_start;
273 u64 to_dec;
275 tree = &BTRFS_I(inode)->ordered_tree;
276 spin_lock(&tree->lock);
277 node = tree_search(tree, *file_offset);
278 if (!node) {
279 ret = 1;
280 goto out;
283 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
284 if (!offset_in_entry(entry, *file_offset)) {
285 ret = 1;
286 goto out;
289 dec_start = max(*file_offset, entry->file_offset);
290 dec_end = min(*file_offset + io_size, entry->file_offset +
291 entry->len);
292 *file_offset = dec_end;
293 if (dec_start > dec_end) {
294 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
295 (unsigned long long)dec_start,
296 (unsigned long long)dec_end);
298 to_dec = dec_end - dec_start;
299 if (to_dec > entry->bytes_left) {
300 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
301 (unsigned long long)entry->bytes_left,
302 (unsigned long long)to_dec);
304 entry->bytes_left -= to_dec;
305 if (entry->bytes_left == 0)
306 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
307 else
308 ret = 1;
309 out:
310 if (!ret && cached && entry) {
311 *cached = entry;
312 atomic_inc(&entry->refs);
314 spin_unlock(&tree->lock);
315 return ret == 0;
319 * this is used to account for finished IO across a given range
320 * of the file. The IO should not span ordered extents. If
321 * a given ordered_extent is completely done, 1 is returned, otherwise
322 * 0.
324 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
325 * to make sure this function only returns 1 once for a given ordered extent.
327 int btrfs_dec_test_ordered_pending(struct inode *inode,
328 struct btrfs_ordered_extent **cached,
329 u64 file_offset, u64 io_size)
331 struct btrfs_ordered_inode_tree *tree;
332 struct rb_node *node;
333 struct btrfs_ordered_extent *entry = NULL;
334 int ret;
336 tree = &BTRFS_I(inode)->ordered_tree;
337 spin_lock(&tree->lock);
338 node = tree_search(tree, file_offset);
339 if (!node) {
340 ret = 1;
341 goto out;
344 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
345 if (!offset_in_entry(entry, file_offset)) {
346 ret = 1;
347 goto out;
350 if (io_size > entry->bytes_left) {
351 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
352 (unsigned long long)entry->bytes_left,
353 (unsigned long long)io_size);
355 entry->bytes_left -= io_size;
356 if (entry->bytes_left == 0)
357 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
358 else
359 ret = 1;
360 out:
361 if (!ret && cached && entry) {
362 *cached = entry;
363 atomic_inc(&entry->refs);
365 spin_unlock(&tree->lock);
366 return ret == 0;
370 * used to drop a reference on an ordered extent. This will free
371 * the extent if the last reference is dropped
373 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
375 struct list_head *cur;
376 struct btrfs_ordered_sum *sum;
378 if (atomic_dec_and_test(&entry->refs)) {
379 while (!list_empty(&entry->list)) {
380 cur = entry->list.next;
381 sum = list_entry(cur, struct btrfs_ordered_sum, list);
382 list_del(&sum->list);
383 kfree(sum);
385 kfree(entry);
387 return 0;
391 * remove an ordered extent from the tree. No references are dropped
392 * and you must wake_up entry->wait. You must hold the tree lock
393 * while you call this function.
395 static int __btrfs_remove_ordered_extent(struct inode *inode,
396 struct btrfs_ordered_extent *entry)
398 struct btrfs_ordered_inode_tree *tree;
399 struct btrfs_root *root = BTRFS_I(inode)->root;
400 struct rb_node *node;
402 tree = &BTRFS_I(inode)->ordered_tree;
403 node = &entry->rb_node;
404 rb_erase(node, &tree->tree);
405 tree->last = NULL;
406 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
408 spin_lock(&root->fs_info->ordered_extent_lock);
409 list_del_init(&entry->root_extent_list);
412 * we have no more ordered extents for this inode and
413 * no dirty pages. We can safely remove it from the
414 * list of ordered extents
416 if (RB_EMPTY_ROOT(&tree->tree) &&
417 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
418 list_del_init(&BTRFS_I(inode)->ordered_operations);
420 spin_unlock(&root->fs_info->ordered_extent_lock);
422 return 0;
426 * remove an ordered extent from the tree. No references are dropped
427 * but any waiters are woken.
429 int btrfs_remove_ordered_extent(struct inode *inode,
430 struct btrfs_ordered_extent *entry)
432 struct btrfs_ordered_inode_tree *tree;
433 int ret;
435 tree = &BTRFS_I(inode)->ordered_tree;
436 spin_lock(&tree->lock);
437 ret = __btrfs_remove_ordered_extent(inode, entry);
438 spin_unlock(&tree->lock);
439 wake_up(&entry->wait);
441 return ret;
445 * wait for all the ordered extents in a root. This is done when balancing
446 * space between drives.
448 int btrfs_wait_ordered_extents(struct btrfs_root *root,
449 int nocow_only, int delay_iput)
451 struct list_head splice;
452 struct list_head *cur;
453 struct btrfs_ordered_extent *ordered;
454 struct inode *inode;
456 INIT_LIST_HEAD(&splice);
458 spin_lock(&root->fs_info->ordered_extent_lock);
459 list_splice_init(&root->fs_info->ordered_extents, &splice);
460 while (!list_empty(&splice)) {
461 cur = splice.next;
462 ordered = list_entry(cur, struct btrfs_ordered_extent,
463 root_extent_list);
464 if (nocow_only &&
465 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
466 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
467 list_move(&ordered->root_extent_list,
468 &root->fs_info->ordered_extents);
469 cond_resched_lock(&root->fs_info->ordered_extent_lock);
470 continue;
473 list_del_init(&ordered->root_extent_list);
474 atomic_inc(&ordered->refs);
477 * the inode may be getting freed (in sys_unlink path).
479 inode = igrab(ordered->inode);
481 spin_unlock(&root->fs_info->ordered_extent_lock);
483 if (inode) {
484 btrfs_start_ordered_extent(inode, ordered, 1);
485 btrfs_put_ordered_extent(ordered);
486 if (delay_iput)
487 btrfs_add_delayed_iput(inode);
488 else
489 iput(inode);
490 } else {
491 btrfs_put_ordered_extent(ordered);
494 spin_lock(&root->fs_info->ordered_extent_lock);
496 spin_unlock(&root->fs_info->ordered_extent_lock);
497 return 0;
501 * this is used during transaction commit to write all the inodes
502 * added to the ordered operation list. These files must be fully on
503 * disk before the transaction commits.
505 * we have two modes here, one is to just start the IO via filemap_flush
506 * and the other is to wait for all the io. When we wait, we have an
507 * extra check to make sure the ordered operation list really is empty
508 * before we return
510 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
512 struct btrfs_inode *btrfs_inode;
513 struct inode *inode;
514 struct list_head splice;
516 INIT_LIST_HEAD(&splice);
518 mutex_lock(&root->fs_info->ordered_operations_mutex);
519 spin_lock(&root->fs_info->ordered_extent_lock);
520 again:
521 list_splice_init(&root->fs_info->ordered_operations, &splice);
523 while (!list_empty(&splice)) {
524 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
525 ordered_operations);
527 inode = &btrfs_inode->vfs_inode;
529 list_del_init(&btrfs_inode->ordered_operations);
532 * the inode may be getting freed (in sys_unlink path).
534 inode = igrab(inode);
536 if (!wait && inode) {
537 list_add_tail(&BTRFS_I(inode)->ordered_operations,
538 &root->fs_info->ordered_operations);
540 spin_unlock(&root->fs_info->ordered_extent_lock);
542 if (inode) {
543 if (wait)
544 btrfs_wait_ordered_range(inode, 0, (u64)-1);
545 else
546 filemap_flush(inode->i_mapping);
547 btrfs_add_delayed_iput(inode);
550 cond_resched();
551 spin_lock(&root->fs_info->ordered_extent_lock);
553 if (wait && !list_empty(&root->fs_info->ordered_operations))
554 goto again;
556 spin_unlock(&root->fs_info->ordered_extent_lock);
557 mutex_unlock(&root->fs_info->ordered_operations_mutex);
559 return 0;
563 * Used to start IO or wait for a given ordered extent to finish.
565 * If wait is one, this effectively waits on page writeback for all the pages
566 * in the extent, and it waits on the io completion code to insert
567 * metadata into the btree corresponding to the extent
569 void btrfs_start_ordered_extent(struct inode *inode,
570 struct btrfs_ordered_extent *entry,
571 int wait)
573 u64 start = entry->file_offset;
574 u64 end = start + entry->len - 1;
577 * pages in the range can be dirty, clean or writeback. We
578 * start IO on any dirty ones so the wait doesn't stall waiting
579 * for pdflush to find them
581 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
582 filemap_fdatawrite_range(inode->i_mapping, start, end);
583 if (wait) {
584 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
585 &entry->flags));
590 * Used to wait on ordered extents across a large range of bytes.
592 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
594 u64 end;
595 u64 orig_end;
596 struct btrfs_ordered_extent *ordered;
597 int found;
599 if (start + len < start) {
600 orig_end = INT_LIMIT(loff_t);
601 } else {
602 orig_end = start + len - 1;
603 if (orig_end > INT_LIMIT(loff_t))
604 orig_end = INT_LIMIT(loff_t);
606 again:
607 /* start IO across the range first to instantiate any delalloc
608 * extents
610 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
612 /* The compression code will leave pages locked but return from
613 * writepage without setting the page writeback. Starting again
614 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
616 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
618 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
620 end = orig_end;
621 found = 0;
622 while (1) {
623 ordered = btrfs_lookup_first_ordered_extent(inode, end);
624 if (!ordered)
625 break;
626 if (ordered->file_offset > orig_end) {
627 btrfs_put_ordered_extent(ordered);
628 break;
630 if (ordered->file_offset + ordered->len < start) {
631 btrfs_put_ordered_extent(ordered);
632 break;
634 found++;
635 btrfs_start_ordered_extent(inode, ordered, 1);
636 end = ordered->file_offset;
637 btrfs_put_ordered_extent(ordered);
638 if (end == 0 || end == start)
639 break;
640 end--;
642 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
643 EXTENT_DELALLOC, 0, NULL)) {
644 schedule_timeout(1);
645 goto again;
647 return 0;
651 * find an ordered extent corresponding to file_offset. return NULL if
652 * nothing is found, otherwise take a reference on the extent and return it
654 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
655 u64 file_offset)
657 struct btrfs_ordered_inode_tree *tree;
658 struct rb_node *node;
659 struct btrfs_ordered_extent *entry = NULL;
661 tree = &BTRFS_I(inode)->ordered_tree;
662 spin_lock(&tree->lock);
663 node = tree_search(tree, file_offset);
664 if (!node)
665 goto out;
667 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
668 if (!offset_in_entry(entry, file_offset))
669 entry = NULL;
670 if (entry)
671 atomic_inc(&entry->refs);
672 out:
673 spin_unlock(&tree->lock);
674 return entry;
677 /* Since the DIO code tries to lock a wide area we need to look for any ordered
678 * extents that exist in the range, rather than just the start of the range.
680 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
681 u64 file_offset,
682 u64 len)
684 struct btrfs_ordered_inode_tree *tree;
685 struct rb_node *node;
686 struct btrfs_ordered_extent *entry = NULL;
688 tree = &BTRFS_I(inode)->ordered_tree;
689 spin_lock(&tree->lock);
690 node = tree_search(tree, file_offset);
691 if (!node) {
692 node = tree_search(tree, file_offset + len);
693 if (!node)
694 goto out;
697 while (1) {
698 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
699 if (range_overlaps(entry, file_offset, len))
700 break;
702 if (entry->file_offset >= file_offset + len) {
703 entry = NULL;
704 break;
706 entry = NULL;
707 node = rb_next(node);
708 if (!node)
709 break;
711 out:
712 if (entry)
713 atomic_inc(&entry->refs);
714 spin_unlock(&tree->lock);
715 return entry;
719 * lookup and return any extent before 'file_offset'. NULL is returned
720 * if none is found
722 struct btrfs_ordered_extent *
723 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
725 struct btrfs_ordered_inode_tree *tree;
726 struct rb_node *node;
727 struct btrfs_ordered_extent *entry = NULL;
729 tree = &BTRFS_I(inode)->ordered_tree;
730 spin_lock(&tree->lock);
731 node = tree_search(tree, file_offset);
732 if (!node)
733 goto out;
735 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
736 atomic_inc(&entry->refs);
737 out:
738 spin_unlock(&tree->lock);
739 return entry;
743 * After an extent is done, call this to conditionally update the on disk
744 * i_size. i_size is updated to cover any fully written part of the file.
746 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
747 struct btrfs_ordered_extent *ordered)
749 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
751 u64 disk_i_size;
752 u64 new_i_size;
753 u64 i_size_test;
754 u64 i_size = i_size_read(inode);
755 struct rb_node *node;
756 struct rb_node *prev = NULL;
757 struct btrfs_ordered_extent *test;
758 int ret = 1;
760 if (ordered)
761 offset = entry_end(ordered);
762 else
763 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
765 spin_lock(&tree->lock);
766 disk_i_size = BTRFS_I(inode)->disk_i_size;
768 /* truncate file */
769 if (disk_i_size > i_size) {
770 BTRFS_I(inode)->disk_i_size = i_size;
771 ret = 0;
772 goto out;
776 * if the disk i_size is already at the inode->i_size, or
777 * this ordered extent is inside the disk i_size, we're done
779 if (disk_i_size == i_size || offset <= disk_i_size) {
780 goto out;
784 * we can't update the disk_isize if there are delalloc bytes
785 * between disk_i_size and this ordered extent
787 if (test_range_bit(io_tree, disk_i_size, offset - 1,
788 EXTENT_DELALLOC, 0, NULL)) {
789 goto out;
792 * walk backward from this ordered extent to disk_i_size.
793 * if we find an ordered extent then we can't update disk i_size
794 * yet
796 if (ordered) {
797 node = rb_prev(&ordered->rb_node);
798 } else {
799 prev = tree_search(tree, offset);
801 * we insert file extents without involving ordered struct,
802 * so there should be no ordered struct cover this offset
804 if (prev) {
805 test = rb_entry(prev, struct btrfs_ordered_extent,
806 rb_node);
807 BUG_ON(offset_in_entry(test, offset));
809 node = prev;
811 while (node) {
812 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
813 if (test->file_offset + test->len <= disk_i_size)
814 break;
815 if (test->file_offset >= i_size)
816 break;
817 if (test->file_offset >= disk_i_size)
818 goto out;
819 node = rb_prev(node);
821 new_i_size = min_t(u64, offset, i_size);
824 * at this point, we know we can safely update i_size to at least
825 * the offset from this ordered extent. But, we need to
826 * walk forward and see if ios from higher up in the file have
827 * finished.
829 if (ordered) {
830 node = rb_next(&ordered->rb_node);
831 } else {
832 if (prev)
833 node = rb_next(prev);
834 else
835 node = rb_first(&tree->tree);
837 i_size_test = 0;
838 if (node) {
840 * do we have an area where IO might have finished
841 * between our ordered extent and the next one.
843 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
844 if (test->file_offset > offset)
845 i_size_test = test->file_offset;
846 } else {
847 i_size_test = i_size;
851 * i_size_test is the end of a region after this ordered
852 * extent where there are no ordered extents. As long as there
853 * are no delalloc bytes in this area, it is safe to update
854 * disk_i_size to the end of the region.
856 if (i_size_test > offset &&
857 !test_range_bit(io_tree, offset, i_size_test - 1,
858 EXTENT_DELALLOC, 0, NULL)) {
859 new_i_size = min_t(u64, i_size_test, i_size);
861 BTRFS_I(inode)->disk_i_size = new_i_size;
862 ret = 0;
863 out:
865 * we need to remove the ordered extent with the tree lock held
866 * so that other people calling this function don't find our fully
867 * processed ordered entry and skip updating the i_size
869 if (ordered)
870 __btrfs_remove_ordered_extent(inode, ordered);
871 spin_unlock(&tree->lock);
872 if (ordered)
873 wake_up(&ordered->wait);
874 return ret;
878 * search the ordered extents for one corresponding to 'offset' and
879 * try to find a checksum. This is used because we allow pages to
880 * be reclaimed before their checksum is actually put into the btree
882 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
883 u32 *sum)
885 struct btrfs_ordered_sum *ordered_sum;
886 struct btrfs_sector_sum *sector_sums;
887 struct btrfs_ordered_extent *ordered;
888 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
889 unsigned long num_sectors;
890 unsigned long i;
891 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
892 int ret = 1;
894 ordered = btrfs_lookup_ordered_extent(inode, offset);
895 if (!ordered)
896 return 1;
898 spin_lock(&tree->lock);
899 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
900 if (disk_bytenr >= ordered_sum->bytenr) {
901 num_sectors = ordered_sum->len / sectorsize;
902 sector_sums = ordered_sum->sums;
903 for (i = 0; i < num_sectors; i++) {
904 if (sector_sums[i].bytenr == disk_bytenr) {
905 *sum = sector_sums[i].sum;
906 ret = 0;
907 goto out;
912 out:
913 spin_unlock(&tree->lock);
914 btrfs_put_ordered_extent(ordered);
915 return ret;
920 * add a given inode to the list of inodes that must be fully on
921 * disk before a transaction commit finishes.
923 * This basically gives us the ext3 style data=ordered mode, and it is mostly
924 * used to make sure renamed files are fully on disk.
926 * It is a noop if the inode is already fully on disk.
928 * If trans is not null, we'll do a friendly check for a transaction that
929 * is already flushing things and force the IO down ourselves.
931 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
932 struct btrfs_root *root,
933 struct inode *inode)
935 u64 last_mod;
937 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
940 * if this file hasn't been changed since the last transaction
941 * commit, we can safely return without doing anything
943 if (last_mod < root->fs_info->last_trans_committed)
944 return 0;
947 * the transaction is already committing. Just start the IO and
948 * don't bother with all of this list nonsense
950 if (trans && root->fs_info->running_transaction->blocked) {
951 btrfs_wait_ordered_range(inode, 0, (u64)-1);
952 return 0;
955 spin_lock(&root->fs_info->ordered_extent_lock);
956 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
957 list_add_tail(&BTRFS_I(inode)->ordered_operations,
958 &root->fs_info->ordered_operations);
960 spin_unlock(&root->fs_info->ordered_extent_lock);
962 return 0;