drm/i915: Fix KMS regression on Sandybridge/CPT
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob5e839c7624564f25617be5bb12574b95d5d172f5
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
348 if (IS_GEN5(dev)) {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351 } else
352 return 27;
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
428 .find_pll = intel_g4x_find_best_PLL,
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
444 .find_pll = intel_g4x_find_best_PLL,
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
468 .find_pll = intel_g4x_find_best_PLL,
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
492 .find_pll = intel_g4x_find_best_PLL,
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
499 .max = G4X_VCO_MAX},
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
647 struct drm_device *dev = crtc->dev;
648 struct drm_i915_private *dev_priv = dev->dev_private;
649 const intel_limit_t *limit;
650 int refclk = 120;
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
654 refclk = 100;
656 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
657 LVDS_CLKB_POWER_UP) {
658 /* LVDS dual channel */
659 if (refclk == 100)
660 limit = &intel_limits_ironlake_dual_lvds_100m;
661 else
662 limit = &intel_limits_ironlake_dual_lvds;
663 } else {
664 if (refclk == 100)
665 limit = &intel_limits_ironlake_single_lvds_100m;
666 else
667 limit = &intel_limits_ironlake_single_lvds;
669 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
670 HAS_eDP)
671 limit = &intel_limits_ironlake_display_port;
672 else
673 limit = &intel_limits_ironlake_dac;
675 return limit;
678 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 const intel_limit_t *limit;
684 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
685 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
686 LVDS_CLKB_POWER_UP)
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_dual_channel_lvds;
689 else
690 /* LVDS with dual channel */
691 limit = &intel_limits_g4x_single_channel_lvds;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
693 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
694 limit = &intel_limits_g4x_hdmi;
695 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
696 limit = &intel_limits_g4x_sdvo;
697 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
698 limit = &intel_limits_g4x_display_port;
699 } else /* The option is for other outputs */
700 limit = &intel_limits_i9xx_sdvo;
702 return limit;
705 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
707 struct drm_device *dev = crtc->dev;
708 const intel_limit_t *limit;
710 if (HAS_PCH_SPLIT(dev))
711 limit = intel_ironlake_limit(crtc);
712 else if (IS_G4X(dev)) {
713 limit = intel_g4x_limit(crtc);
714 } else if (IS_PINEVIEW(dev)) {
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
716 limit = &intel_limits_pineview_lvds;
717 else
718 limit = &intel_limits_pineview_sdvo;
719 } else if (!IS_GEN2(dev)) {
720 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
721 limit = &intel_limits_i9xx_lvds;
722 else
723 limit = &intel_limits_i9xx_sdvo;
724 } else {
725 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
726 limit = &intel_limits_i8xx_lvds;
727 else
728 limit = &intel_limits_i8xx_dvo;
730 return limit;
733 /* m1 is reserved as 0 in Pineview, n is a ring counter */
734 static void pineview_clock(int refclk, intel_clock_t *clock)
736 clock->m = clock->m2 + 2;
737 clock->p = clock->p1 * clock->p2;
738 clock->vco = refclk * clock->m / clock->n;
739 clock->dot = clock->vco / clock->p;
742 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
744 if (IS_PINEVIEW(dev)) {
745 pineview_clock(refclk, clock);
746 return;
748 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
749 clock->p = clock->p1 * clock->p2;
750 clock->vco = refclk * clock->m / (clock->n + 2);
751 clock->dot = clock->vco / clock->p;
755 * Returns whether any output on the specified pipe is of the specified type
757 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
759 struct drm_device *dev = crtc->dev;
760 struct drm_mode_config *mode_config = &dev->mode_config;
761 struct intel_encoder *encoder;
763 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
764 if (encoder->base.crtc == crtc && encoder->type == type)
765 return true;
767 return false;
770 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
772 * Returns whether the given set of divisors are valid for a given refclk with
773 * the given connectors.
776 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
778 const intel_limit_t *limit = intel_limit (crtc);
779 struct drm_device *dev = crtc->dev;
781 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
782 INTELPllInvalid ("p1 out of range\n");
783 if (clock->p < limit->p.min || limit->p.max < clock->p)
784 INTELPllInvalid ("p out of range\n");
785 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
786 INTELPllInvalid ("m2 out of range\n");
787 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
788 INTELPllInvalid ("m1 out of range\n");
789 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
790 INTELPllInvalid ("m1 <= m2\n");
791 if (clock->m < limit->m.min || limit->m.max < clock->m)
792 INTELPllInvalid ("m out of range\n");
793 if (clock->n < limit->n.min || limit->n.max < clock->n)
794 INTELPllInvalid ("n out of range\n");
795 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
796 INTELPllInvalid ("vco out of range\n");
797 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
798 * connector, etc., rather than just a single range.
800 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
801 INTELPllInvalid ("dot out of range\n");
803 return true;
806 static bool
807 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
808 int target, int refclk, intel_clock_t *best_clock)
811 struct drm_device *dev = crtc->dev;
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 intel_clock_t clock;
814 int err = target;
816 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
817 (I915_READ(LVDS)) != 0) {
819 * For LVDS, if the panel is on, just rely on its current
820 * settings for dual-channel. We haven't figured out how to
821 * reliably set up different single/dual channel state, if we
822 * even can.
824 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
825 LVDS_CLKB_POWER_UP)
826 clock.p2 = limit->p2.p2_fast;
827 else
828 clock.p2 = limit->p2.p2_slow;
829 } else {
830 if (target < limit->p2.dot_limit)
831 clock.p2 = limit->p2.p2_slow;
832 else
833 clock.p2 = limit->p2.p2_fast;
836 memset (best_clock, 0, sizeof (*best_clock));
838 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
839 clock.m1++) {
840 for (clock.m2 = limit->m2.min;
841 clock.m2 <= limit->m2.max; clock.m2++) {
842 /* m1 is always 0 in Pineview */
843 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
844 break;
845 for (clock.n = limit->n.min;
846 clock.n <= limit->n.max; clock.n++) {
847 for (clock.p1 = limit->p1.min;
848 clock.p1 <= limit->p1.max; clock.p1++) {
849 int this_err;
851 intel_clock(dev, refclk, &clock);
853 if (!intel_PLL_is_valid(crtc, &clock))
854 continue;
856 this_err = abs(clock.dot - target);
857 if (this_err < err) {
858 *best_clock = clock;
859 err = this_err;
866 return (err != target);
869 static bool
870 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *best_clock)
873 struct drm_device *dev = crtc->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 intel_clock_t clock;
876 int max_n;
877 bool found;
878 /* approximately equals target * 0.00585 */
879 int err_most = (target >> 8) + (target >> 9);
880 found = false;
882 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
883 int lvds_reg;
885 if (HAS_PCH_SPLIT(dev))
886 lvds_reg = PCH_LVDS;
887 else
888 lvds_reg = LVDS;
889 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
890 LVDS_CLKB_POWER_UP)
891 clock.p2 = limit->p2.p2_fast;
892 else
893 clock.p2 = limit->p2.p2_slow;
894 } else {
895 if (target < limit->p2.dot_limit)
896 clock.p2 = limit->p2.p2_slow;
897 else
898 clock.p2 = limit->p2.p2_fast;
901 memset(best_clock, 0, sizeof(*best_clock));
902 max_n = limit->n.max;
903 /* based on hardware requirement, prefer smaller n to precision */
904 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
905 /* based on hardware requirement, prefere larger m1,m2 */
906 for (clock.m1 = limit->m1.max;
907 clock.m1 >= limit->m1.min; clock.m1--) {
908 for (clock.m2 = limit->m2.max;
909 clock.m2 >= limit->m2.min; clock.m2--) {
910 for (clock.p1 = limit->p1.max;
911 clock.p1 >= limit->p1.min; clock.p1--) {
912 int this_err;
914 intel_clock(dev, refclk, &clock);
915 if (!intel_PLL_is_valid(crtc, &clock))
916 continue;
917 this_err = abs(clock.dot - target) ;
918 if (this_err < err_most) {
919 *best_clock = clock;
920 err_most = this_err;
921 max_n = clock.n;
922 found = true;
928 return found;
931 static bool
932 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
933 int target, int refclk, intel_clock_t *best_clock)
935 struct drm_device *dev = crtc->dev;
936 intel_clock_t clock;
938 if (target < 200000) {
939 clock.n = 1;
940 clock.p1 = 2;
941 clock.p2 = 10;
942 clock.m1 = 12;
943 clock.m2 = 9;
944 } else {
945 clock.n = 2;
946 clock.p1 = 1;
947 clock.p2 = 10;
948 clock.m1 = 14;
949 clock.m2 = 8;
951 intel_clock(dev, refclk, &clock);
952 memcpy(best_clock, &clock, sizeof(intel_clock_t));
953 return true;
956 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
957 static bool
958 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
959 int target, int refclk, intel_clock_t *best_clock)
961 intel_clock_t clock;
962 if (target < 200000) {
963 clock.p1 = 2;
964 clock.p2 = 10;
965 clock.n = 2;
966 clock.m1 = 23;
967 clock.m2 = 8;
968 } else {
969 clock.p1 = 1;
970 clock.p2 = 10;
971 clock.n = 1;
972 clock.m1 = 14;
973 clock.m2 = 2;
975 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
976 clock.p = (clock.p1 * clock.p2);
977 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
978 clock.vco = 0;
979 memcpy(best_clock, &clock, sizeof(intel_clock_t));
980 return true;
984 * intel_wait_for_vblank - wait for vblank on a given pipe
985 * @dev: drm device
986 * @pipe: pipe to wait for
988 * Wait for vblank to occur on a given pipe. Needed for various bits of
989 * mode setting code.
991 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
996 /* Clear existing vblank status. Note this will clear any other
997 * sticky status fields as well.
999 * This races with i915_driver_irq_handler() with the result
1000 * that either function could miss a vblank event. Here it is not
1001 * fatal, as we will either wait upon the next vblank interrupt or
1002 * timeout. Generally speaking intel_wait_for_vblank() is only
1003 * called during modeset at which time the GPU should be idle and
1004 * should *not* be performing page flips and thus not waiting on
1005 * vblanks...
1006 * Currently, the result of us stealing a vblank from the irq
1007 * handler is that a single frame will be skipped during swapbuffers.
1009 I915_WRITE(pipestat_reg,
1010 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1012 /* Wait for vblank interrupt bit to set */
1013 if (wait_for(I915_READ(pipestat_reg) &
1014 PIPE_VBLANK_INTERRUPT_STATUS,
1015 50))
1016 DRM_DEBUG_KMS("vblank wait timed out\n");
1020 * intel_wait_for_pipe_off - wait for pipe to turn off
1021 * @dev: drm device
1022 * @pipe: pipe to wait for
1024 * After disabling a pipe, we can't wait for vblank in the usual way,
1025 * spinning on the vblank interrupt status bit, since we won't actually
1026 * see an interrupt when the pipe is disabled.
1028 * On Gen4 and above:
1029 * wait for the pipe register state bit to turn off
1031 * Otherwise:
1032 * wait for the display line value to settle (it usually
1033 * ends up stopping at the start of the next frame).
1036 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1040 if (INTEL_INFO(dev)->gen >= 4) {
1041 int reg = PIPECONF(pipe);
1043 /* Wait for the Pipe State to go off */
1044 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1045 100))
1046 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1047 } else {
1048 u32 last_line;
1049 int reg = PIPEDSL(pipe);
1050 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1052 /* Wait for the display line to settle */
1053 do {
1054 last_line = I915_READ(reg) & DSL_LINEMASK;
1055 mdelay(5);
1056 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1057 time_after(timeout, jiffies));
1058 if (time_after(jiffies, timeout))
1059 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1063 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1065 struct drm_device *dev = crtc->dev;
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 struct drm_framebuffer *fb = crtc->fb;
1068 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1069 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071 int plane, i;
1072 u32 fbc_ctl, fbc_ctl2;
1074 if (fb->pitch == dev_priv->cfb_pitch &&
1075 obj_priv->fence_reg == dev_priv->cfb_fence &&
1076 intel_crtc->plane == dev_priv->cfb_plane &&
1077 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1078 return;
1080 i8xx_disable_fbc(dev);
1082 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1084 if (fb->pitch < dev_priv->cfb_pitch)
1085 dev_priv->cfb_pitch = fb->pitch;
1087 /* FBC_CTL wants 64B units */
1088 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1089 dev_priv->cfb_fence = obj_priv->fence_reg;
1090 dev_priv->cfb_plane = intel_crtc->plane;
1091 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1093 /* Clear old tags */
1094 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1095 I915_WRITE(FBC_TAG + (i * 4), 0);
1097 /* Set it up... */
1098 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1099 if (obj_priv->tiling_mode != I915_TILING_NONE)
1100 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1101 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1102 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1104 /* enable it... */
1105 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1106 if (IS_I945GM(dev))
1107 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1108 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1109 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1110 if (obj_priv->tiling_mode != I915_TILING_NONE)
1111 fbc_ctl |= dev_priv->cfb_fence;
1112 I915_WRITE(FBC_CONTROL, fbc_ctl);
1114 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1115 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1118 void i8xx_disable_fbc(struct drm_device *dev)
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 u32 fbc_ctl;
1123 /* Disable compression */
1124 fbc_ctl = I915_READ(FBC_CONTROL);
1125 if ((fbc_ctl & FBC_CTL_EN) == 0)
1126 return;
1128 fbc_ctl &= ~FBC_CTL_EN;
1129 I915_WRITE(FBC_CONTROL, fbc_ctl);
1131 /* Wait for compressing bit to clear */
1132 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1133 DRM_DEBUG_KMS("FBC idle timed out\n");
1134 return;
1137 DRM_DEBUG_KMS("disabled FBC\n");
1140 static bool i8xx_fbc_enabled(struct drm_device *dev)
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1144 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1147 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1149 struct drm_device *dev = crtc->dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 struct drm_framebuffer *fb = crtc->fb;
1152 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1153 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1155 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1156 unsigned long stall_watermark = 200;
1157 u32 dpfc_ctl;
1159 dpfc_ctl = I915_READ(DPFC_CONTROL);
1160 if (dpfc_ctl & DPFC_CTL_EN) {
1161 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1162 dev_priv->cfb_fence == obj_priv->fence_reg &&
1163 dev_priv->cfb_plane == intel_crtc->plane &&
1164 dev_priv->cfb_y == crtc->y)
1165 return;
1167 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1168 POSTING_READ(DPFC_CONTROL);
1169 intel_wait_for_vblank(dev, intel_crtc->pipe);
1172 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1173 dev_priv->cfb_fence = obj_priv->fence_reg;
1174 dev_priv->cfb_plane = intel_crtc->plane;
1175 dev_priv->cfb_y = crtc->y;
1177 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1178 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1179 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1180 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1181 } else {
1182 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1185 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1186 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1187 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1188 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1190 /* enable it... */
1191 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1193 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1196 void g4x_disable_fbc(struct drm_device *dev)
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 u32 dpfc_ctl;
1201 /* Disable compression */
1202 dpfc_ctl = I915_READ(DPFC_CONTROL);
1203 if (dpfc_ctl & DPFC_CTL_EN) {
1204 dpfc_ctl &= ~DPFC_CTL_EN;
1205 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1207 DRM_DEBUG_KMS("disabled FBC\n");
1211 static bool g4x_fbc_enabled(struct drm_device *dev)
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1215 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1218 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1220 struct drm_device *dev = crtc->dev;
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 struct drm_framebuffer *fb = crtc->fb;
1223 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1224 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1226 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1227 unsigned long stall_watermark = 200;
1228 u32 dpfc_ctl;
1230 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1231 if (dpfc_ctl & DPFC_CTL_EN) {
1232 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1233 dev_priv->cfb_fence == obj_priv->fence_reg &&
1234 dev_priv->cfb_plane == intel_crtc->plane &&
1235 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1236 dev_priv->cfb_y == crtc->y)
1237 return;
1239 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1240 POSTING_READ(ILK_DPFC_CONTROL);
1241 intel_wait_for_vblank(dev, intel_crtc->pipe);
1244 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1245 dev_priv->cfb_fence = obj_priv->fence_reg;
1246 dev_priv->cfb_plane = intel_crtc->plane;
1247 dev_priv->cfb_offset = obj_priv->gtt_offset;
1248 dev_priv->cfb_y = crtc->y;
1250 dpfc_ctl &= DPFC_RESERVED;
1251 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1252 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1253 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1254 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1255 } else {
1256 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1259 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1260 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1261 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1262 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1263 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1264 /* enable it... */
1265 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1267 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1270 void ironlake_disable_fbc(struct drm_device *dev)
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 u32 dpfc_ctl;
1275 /* Disable compression */
1276 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1277 if (dpfc_ctl & DPFC_CTL_EN) {
1278 dpfc_ctl &= ~DPFC_CTL_EN;
1279 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1281 DRM_DEBUG_KMS("disabled FBC\n");
1285 static bool ironlake_fbc_enabled(struct drm_device *dev)
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1289 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1292 bool intel_fbc_enabled(struct drm_device *dev)
1294 struct drm_i915_private *dev_priv = dev->dev_private;
1296 if (!dev_priv->display.fbc_enabled)
1297 return false;
1299 return dev_priv->display.fbc_enabled(dev);
1302 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1304 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1306 if (!dev_priv->display.enable_fbc)
1307 return;
1309 dev_priv->display.enable_fbc(crtc, interval);
1312 void intel_disable_fbc(struct drm_device *dev)
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1316 if (!dev_priv->display.disable_fbc)
1317 return;
1319 dev_priv->display.disable_fbc(dev);
1323 * intel_update_fbc - enable/disable FBC as needed
1324 * @dev: the drm_device
1326 * Set up the framebuffer compression hardware at mode set time. We
1327 * enable it if possible:
1328 * - plane A only (on pre-965)
1329 * - no pixel mulitply/line duplication
1330 * - no alpha buffer discard
1331 * - no dual wide
1332 * - framebuffer <= 2048 in width, 1536 in height
1334 * We can't assume that any compression will take place (worst case),
1335 * so the compressed buffer has to be the same size as the uncompressed
1336 * one. It also must reside (along with the line length buffer) in
1337 * stolen memory.
1339 * We need to enable/disable FBC on a global basis.
1341 static void intel_update_fbc(struct drm_device *dev)
1343 struct drm_i915_private *dev_priv = dev->dev_private;
1344 struct drm_crtc *crtc = NULL, *tmp_crtc;
1345 struct intel_crtc *intel_crtc;
1346 struct drm_framebuffer *fb;
1347 struct intel_framebuffer *intel_fb;
1348 struct drm_i915_gem_object *obj_priv;
1350 DRM_DEBUG_KMS("\n");
1352 if (!i915_powersave)
1353 return;
1355 if (!I915_HAS_FBC(dev))
1356 return;
1359 * If FBC is already on, we just have to verify that we can
1360 * keep it that way...
1361 * Need to disable if:
1362 * - more than one pipe is active
1363 * - changing FBC params (stride, fence, mode)
1364 * - new fb is too large to fit in compressed buffer
1365 * - going to an unsupported config (interlace, pixel multiply, etc.)
1367 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1368 if (tmp_crtc->enabled) {
1369 if (crtc) {
1370 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1371 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1372 goto out_disable;
1374 crtc = tmp_crtc;
1378 if (!crtc || crtc->fb == NULL) {
1379 DRM_DEBUG_KMS("no output, disabling\n");
1380 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1381 goto out_disable;
1384 intel_crtc = to_intel_crtc(crtc);
1385 fb = crtc->fb;
1386 intel_fb = to_intel_framebuffer(fb);
1387 obj_priv = to_intel_bo(intel_fb->obj);
1389 if (intel_fb->obj->size > dev_priv->cfb_size) {
1390 DRM_DEBUG_KMS("framebuffer too large, disabling "
1391 "compression\n");
1392 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1393 goto out_disable;
1395 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1396 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1397 DRM_DEBUG_KMS("mode incompatible with compression, "
1398 "disabling\n");
1399 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1400 goto out_disable;
1402 if ((crtc->mode.hdisplay > 2048) ||
1403 (crtc->mode.vdisplay > 1536)) {
1404 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1405 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1406 goto out_disable;
1408 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1409 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1410 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1411 goto out_disable;
1413 if (obj_priv->tiling_mode != I915_TILING_X) {
1414 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1415 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1416 goto out_disable;
1419 /* If the kernel debugger is active, always disable compression */
1420 if (in_dbg_master())
1421 goto out_disable;
1423 intel_enable_fbc(crtc, 500);
1424 return;
1426 out_disable:
1427 /* Multiple disables should be harmless */
1428 if (intel_fbc_enabled(dev)) {
1429 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1430 intel_disable_fbc(dev);
1435 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1436 struct drm_gem_object *obj,
1437 bool pipelined)
1439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440 u32 alignment;
1441 int ret;
1443 switch (obj_priv->tiling_mode) {
1444 case I915_TILING_NONE:
1445 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1446 alignment = 128 * 1024;
1447 else if (INTEL_INFO(dev)->gen >= 4)
1448 alignment = 4 * 1024;
1449 else
1450 alignment = 64 * 1024;
1451 break;
1452 case I915_TILING_X:
1453 /* pin() will align the object as required by fence */
1454 alignment = 0;
1455 break;
1456 case I915_TILING_Y:
1457 /* FIXME: Is this true? */
1458 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1459 return -EINVAL;
1460 default:
1461 BUG();
1464 ret = i915_gem_object_pin(obj, alignment);
1465 if (ret)
1466 return ret;
1468 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1469 if (ret)
1470 goto err_unpin;
1472 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1473 * fence, whereas 965+ only requires a fence if using
1474 * framebuffer compression. For simplicity, we always install
1475 * a fence as the cost is not that onerous.
1477 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1478 obj_priv->tiling_mode != I915_TILING_NONE) {
1479 ret = i915_gem_object_get_fence_reg(obj, false);
1480 if (ret)
1481 goto err_unpin;
1484 return 0;
1486 err_unpin:
1487 i915_gem_object_unpin(obj);
1488 return ret;
1491 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1492 static int
1493 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1494 int x, int y, enum mode_set_atomic state)
1496 struct drm_device *dev = crtc->dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1499 struct intel_framebuffer *intel_fb;
1500 struct drm_i915_gem_object *obj_priv;
1501 struct drm_gem_object *obj;
1502 int plane = intel_crtc->plane;
1503 unsigned long Start, Offset;
1504 u32 dspcntr;
1505 u32 reg;
1507 switch (plane) {
1508 case 0:
1509 case 1:
1510 break;
1511 default:
1512 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1513 return -EINVAL;
1516 intel_fb = to_intel_framebuffer(fb);
1517 obj = intel_fb->obj;
1518 obj_priv = to_intel_bo(obj);
1520 reg = DSPCNTR(plane);
1521 dspcntr = I915_READ(reg);
1522 /* Mask out pixel format bits in case we change it */
1523 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524 switch (fb->bits_per_pixel) {
1525 case 8:
1526 dspcntr |= DISPPLANE_8BPP;
1527 break;
1528 case 16:
1529 if (fb->depth == 15)
1530 dspcntr |= DISPPLANE_15_16BPP;
1531 else
1532 dspcntr |= DISPPLANE_16BPP;
1533 break;
1534 case 24:
1535 case 32:
1536 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537 break;
1538 default:
1539 DRM_ERROR("Unknown color depth\n");
1540 return -EINVAL;
1542 if (INTEL_INFO(dev)->gen >= 4) {
1543 if (obj_priv->tiling_mode != I915_TILING_NONE)
1544 dspcntr |= DISPPLANE_TILED;
1545 else
1546 dspcntr &= ~DISPPLANE_TILED;
1549 if (HAS_PCH_SPLIT(dev))
1550 /* must disable */
1551 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1553 I915_WRITE(reg, dspcntr);
1555 Start = obj_priv->gtt_offset;
1556 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1558 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559 Start, Offset, x, y, fb->pitch);
1560 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561 if (INTEL_INFO(dev)->gen >= 4) {
1562 I915_WRITE(DSPSURF(plane), Start);
1563 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564 I915_WRITE(DSPADDR(plane), Offset);
1565 } else
1566 I915_WRITE(DSPADDR(plane), Start + Offset);
1567 POSTING_READ(reg);
1569 intel_update_fbc(dev);
1570 intel_increase_pllclock(crtc);
1572 return 0;
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577 struct drm_framebuffer *old_fb)
1579 struct drm_device *dev = crtc->dev;
1580 struct drm_i915_master_private *master_priv;
1581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582 int ret;
1584 /* no fb bound */
1585 if (!crtc->fb) {
1586 DRM_DEBUG_KMS("No FB bound\n");
1587 return 0;
1590 switch (intel_crtc->plane) {
1591 case 0:
1592 case 1:
1593 break;
1594 default:
1595 return -EINVAL;
1598 mutex_lock(&dev->struct_mutex);
1599 ret = intel_pin_and_fence_fb_obj(dev,
1600 to_intel_framebuffer(crtc->fb)->obj,
1601 false);
1602 if (ret != 0) {
1603 mutex_unlock(&dev->struct_mutex);
1604 return ret;
1607 if (old_fb) {
1608 struct drm_i915_private *dev_priv = dev->dev_private;
1609 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1612 wait_event(dev_priv->pending_flip_queue,
1613 atomic_read(&obj_priv->pending_flip) == 0);
1616 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1617 LEAVE_ATOMIC_MODE_SET);
1618 if (ret) {
1619 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1620 mutex_unlock(&dev->struct_mutex);
1621 return ret;
1624 if (old_fb)
1625 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1627 mutex_unlock(&dev->struct_mutex);
1629 if (!dev->primary->master)
1630 return 0;
1632 master_priv = dev->primary->master->driver_priv;
1633 if (!master_priv->sarea_priv)
1634 return 0;
1636 if (intel_crtc->pipe) {
1637 master_priv->sarea_priv->pipeB_x = x;
1638 master_priv->sarea_priv->pipeB_y = y;
1639 } else {
1640 master_priv->sarea_priv->pipeA_x = x;
1641 master_priv->sarea_priv->pipeA_y = y;
1644 return 0;
1647 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1649 struct drm_device *dev = crtc->dev;
1650 struct drm_i915_private *dev_priv = dev->dev_private;
1651 u32 dpa_ctl;
1653 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1654 dpa_ctl = I915_READ(DP_A);
1655 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1657 if (clock < 200000) {
1658 u32 temp;
1659 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1660 /* workaround for 160Mhz:
1661 1) program 0x4600c bits 15:0 = 0x8124
1662 2) program 0x46010 bit 0 = 1
1663 3) program 0x46034 bit 24 = 1
1664 4) program 0x64000 bit 14 = 1
1666 temp = I915_READ(0x4600c);
1667 temp &= 0xffff0000;
1668 I915_WRITE(0x4600c, temp | 0x8124);
1670 temp = I915_READ(0x46010);
1671 I915_WRITE(0x46010, temp | 1);
1673 temp = I915_READ(0x46034);
1674 I915_WRITE(0x46034, temp | (1 << 24));
1675 } else {
1676 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1678 I915_WRITE(DP_A, dpa_ctl);
1680 POSTING_READ(DP_A);
1681 udelay(500);
1684 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1686 struct drm_device *dev = crtc->dev;
1687 struct drm_i915_private *dev_priv = dev->dev_private;
1688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1689 int pipe = intel_crtc->pipe;
1690 u32 reg, temp;
1692 /* enable normal train */
1693 reg = FDI_TX_CTL(pipe);
1694 temp = I915_READ(reg);
1695 temp &= ~FDI_LINK_TRAIN_NONE;
1696 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1697 I915_WRITE(reg, temp);
1699 reg = FDI_RX_CTL(pipe);
1700 temp = I915_READ(reg);
1701 if (HAS_PCH_CPT(dev)) {
1702 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1703 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1704 } else {
1705 temp &= ~FDI_LINK_TRAIN_NONE;
1706 temp |= FDI_LINK_TRAIN_NONE;
1708 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1710 /* wait one idle pattern time */
1711 POSTING_READ(reg);
1712 udelay(1000);
1715 /* The FDI link training functions for ILK/Ibexpeak. */
1716 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1718 struct drm_device *dev = crtc->dev;
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1721 int pipe = intel_crtc->pipe;
1722 u32 reg, temp, tries;
1724 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1725 for train result */
1726 reg = FDI_RX_IMR(pipe);
1727 temp = I915_READ(reg);
1728 temp &= ~FDI_RX_SYMBOL_LOCK;
1729 temp &= ~FDI_RX_BIT_LOCK;
1730 I915_WRITE(reg, temp);
1731 I915_READ(reg);
1732 udelay(150);
1734 /* enable CPU FDI TX and PCH FDI RX */
1735 reg = FDI_TX_CTL(pipe);
1736 temp = I915_READ(reg);
1737 temp &= ~(7 << 19);
1738 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1739 temp &= ~FDI_LINK_TRAIN_NONE;
1740 temp |= FDI_LINK_TRAIN_PATTERN_1;
1741 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1743 reg = FDI_RX_CTL(pipe);
1744 temp = I915_READ(reg);
1745 temp &= ~FDI_LINK_TRAIN_NONE;
1746 temp |= FDI_LINK_TRAIN_PATTERN_1;
1747 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1749 POSTING_READ(reg);
1750 udelay(150);
1752 /* Ironlake workaround, enable clock pointer after FDI enable*/
1753 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1755 reg = FDI_RX_IIR(pipe);
1756 for (tries = 0; tries < 5; tries++) {
1757 temp = I915_READ(reg);
1758 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1760 if ((temp & FDI_RX_BIT_LOCK)) {
1761 DRM_DEBUG_KMS("FDI train 1 done.\n");
1762 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1763 break;
1766 if (tries == 5)
1767 DRM_ERROR("FDI train 1 fail!\n");
1769 /* Train 2 */
1770 reg = FDI_TX_CTL(pipe);
1771 temp = I915_READ(reg);
1772 temp &= ~FDI_LINK_TRAIN_NONE;
1773 temp |= FDI_LINK_TRAIN_PATTERN_2;
1774 I915_WRITE(reg, temp);
1776 reg = FDI_RX_CTL(pipe);
1777 temp = I915_READ(reg);
1778 temp &= ~FDI_LINK_TRAIN_NONE;
1779 temp |= FDI_LINK_TRAIN_PATTERN_2;
1780 I915_WRITE(reg, temp);
1782 POSTING_READ(reg);
1783 udelay(150);
1785 reg = FDI_RX_IIR(pipe);
1786 for (tries = 0; tries < 5; tries++) {
1787 temp = I915_READ(reg);
1788 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1790 if (temp & FDI_RX_SYMBOL_LOCK) {
1791 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1792 DRM_DEBUG_KMS("FDI train 2 done.\n");
1793 break;
1796 if (tries == 5)
1797 DRM_ERROR("FDI train 2 fail!\n");
1799 DRM_DEBUG_KMS("FDI train done\n");
1803 static const int const snb_b_fdi_train_param [] = {
1804 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1805 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1806 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1807 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1810 /* The FDI link training functions for SNB/Cougarpoint. */
1811 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1813 struct drm_device *dev = crtc->dev;
1814 struct drm_i915_private *dev_priv = dev->dev_private;
1815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1816 int pipe = intel_crtc->pipe;
1817 u32 reg, temp, i;
1819 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1820 for train result */
1821 reg = FDI_RX_IMR(pipe);
1822 temp = I915_READ(reg);
1823 temp &= ~FDI_RX_SYMBOL_LOCK;
1824 temp &= ~FDI_RX_BIT_LOCK;
1825 I915_WRITE(reg, temp);
1827 POSTING_READ(reg);
1828 udelay(150);
1830 /* enable CPU FDI TX and PCH FDI RX */
1831 reg = FDI_TX_CTL(pipe);
1832 temp = I915_READ(reg);
1833 temp &= ~(7 << 19);
1834 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1835 temp &= ~FDI_LINK_TRAIN_NONE;
1836 temp |= FDI_LINK_TRAIN_PATTERN_1;
1837 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1838 /* SNB-B */
1839 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1840 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1842 reg = FDI_RX_CTL(pipe);
1843 temp = I915_READ(reg);
1844 if (HAS_PCH_CPT(dev)) {
1845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1847 } else {
1848 temp &= ~FDI_LINK_TRAIN_NONE;
1849 temp |= FDI_LINK_TRAIN_PATTERN_1;
1851 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1853 POSTING_READ(reg);
1854 udelay(150);
1856 for (i = 0; i < 4; i++ ) {
1857 reg = FDI_TX_CTL(pipe);
1858 temp = I915_READ(reg);
1859 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1860 temp |= snb_b_fdi_train_param[i];
1861 I915_WRITE(reg, temp);
1863 POSTING_READ(reg);
1864 udelay(500);
1866 reg = FDI_RX_IIR(pipe);
1867 temp = I915_READ(reg);
1868 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1870 if (temp & FDI_RX_BIT_LOCK) {
1871 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1872 DRM_DEBUG_KMS("FDI train 1 done.\n");
1873 break;
1876 if (i == 4)
1877 DRM_ERROR("FDI train 1 fail!\n");
1879 /* Train 2 */
1880 reg = FDI_TX_CTL(pipe);
1881 temp = I915_READ(reg);
1882 temp &= ~FDI_LINK_TRAIN_NONE;
1883 temp |= FDI_LINK_TRAIN_PATTERN_2;
1884 if (IS_GEN6(dev)) {
1885 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1886 /* SNB-B */
1887 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1889 I915_WRITE(reg, temp);
1891 reg = FDI_RX_CTL(pipe);
1892 temp = I915_READ(reg);
1893 if (HAS_PCH_CPT(dev)) {
1894 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1895 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1896 } else {
1897 temp &= ~FDI_LINK_TRAIN_NONE;
1898 temp |= FDI_LINK_TRAIN_PATTERN_2;
1900 I915_WRITE(reg, temp);
1902 POSTING_READ(reg);
1903 udelay(150);
1905 for (i = 0; i < 4; i++ ) {
1906 reg = FDI_TX_CTL(pipe);
1907 temp = I915_READ(reg);
1908 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1909 temp |= snb_b_fdi_train_param[i];
1910 I915_WRITE(reg, temp);
1912 POSTING_READ(reg);
1913 udelay(500);
1915 reg = FDI_RX_IIR(pipe);
1916 temp = I915_READ(reg);
1917 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1919 if (temp & FDI_RX_SYMBOL_LOCK) {
1920 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1921 DRM_DEBUG_KMS("FDI train 2 done.\n");
1922 break;
1925 if (i == 4)
1926 DRM_ERROR("FDI train 2 fail!\n");
1928 DRM_DEBUG_KMS("FDI train done.\n");
1931 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1933 struct drm_device *dev = crtc->dev;
1934 struct drm_i915_private *dev_priv = dev->dev_private;
1935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1936 int pipe = intel_crtc->pipe;
1937 u32 reg, temp;
1939 /* Write the TU size bits so error detection works */
1940 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1941 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1943 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1944 reg = FDI_RX_CTL(pipe);
1945 temp = I915_READ(reg);
1946 temp &= ~((0x7 << 19) | (0x7 << 16));
1947 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1948 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1949 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1951 POSTING_READ(reg);
1952 udelay(200);
1954 /* Switch from Rawclk to PCDclk */
1955 temp = I915_READ(reg);
1956 I915_WRITE(reg, temp | FDI_PCDCLK);
1958 POSTING_READ(reg);
1959 udelay(200);
1961 /* Enable CPU FDI TX PLL, always on for Ironlake */
1962 reg = FDI_TX_CTL(pipe);
1963 temp = I915_READ(reg);
1964 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1965 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1967 POSTING_READ(reg);
1968 udelay(100);
1972 static void intel_flush_display_plane(struct drm_device *dev,
1973 int plane)
1975 struct drm_i915_private *dev_priv = dev->dev_private;
1976 u32 reg = DSPADDR(plane);
1977 I915_WRITE(reg, I915_READ(reg));
1981 * When we disable a pipe, we need to clear any pending scanline wait events
1982 * to avoid hanging the ring, which we assume we are waiting on.
1984 static void intel_clear_scanline_wait(struct drm_device *dev)
1986 struct drm_i915_private *dev_priv = dev->dev_private;
1987 u32 tmp;
1989 if (IS_GEN2(dev))
1990 /* Can't break the hang on i8xx */
1991 return;
1993 tmp = I915_READ(PRB0_CTL);
1994 if (tmp & RING_WAIT) {
1995 I915_WRITE(PRB0_CTL, tmp);
1996 POSTING_READ(PRB0_CTL);
2000 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2002 struct drm_i915_gem_object *obj_priv;
2003 struct drm_i915_private *dev_priv;
2005 if (crtc->fb == NULL)
2006 return;
2008 obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
2009 dev_priv = crtc->dev->dev_private;
2010 wait_event(dev_priv->pending_flip_queue,
2011 atomic_read(&obj_priv->pending_flip) == 0);
2014 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2016 struct drm_device *dev = crtc->dev;
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2019 int pipe = intel_crtc->pipe;
2020 int plane = intel_crtc->plane;
2021 u32 reg, temp;
2023 if (intel_crtc->active)
2024 return;
2026 intel_crtc->active = true;
2027 intel_update_watermarks(dev);
2029 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2030 temp = I915_READ(PCH_LVDS);
2031 if ((temp & LVDS_PORT_EN) == 0)
2032 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2035 ironlake_fdi_enable(crtc);
2037 /* Enable panel fitting for LVDS */
2038 if (dev_priv->pch_pf_size &&
2039 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2040 /* Force use of hard-coded filter coefficients
2041 * as some pre-programmed values are broken,
2042 * e.g. x201.
2044 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2045 PF_ENABLE | PF_FILTER_MED_3x3);
2046 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2047 dev_priv->pch_pf_pos);
2048 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2049 dev_priv->pch_pf_size);
2052 /* Enable CPU pipe */
2053 reg = PIPECONF(pipe);
2054 temp = I915_READ(reg);
2055 if ((temp & PIPECONF_ENABLE) == 0) {
2056 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2057 POSTING_READ(reg);
2058 intel_wait_for_vblank(dev, intel_crtc->pipe);
2061 /* configure and enable CPU plane */
2062 reg = DSPCNTR(plane);
2063 temp = I915_READ(reg);
2064 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2065 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2066 intel_flush_display_plane(dev, plane);
2069 /* For PCH output, training FDI link */
2070 if (IS_GEN6(dev))
2071 gen6_fdi_link_train(crtc);
2072 else
2073 ironlake_fdi_link_train(crtc);
2075 /* enable PCH DPLL */
2076 reg = PCH_DPLL(pipe);
2077 temp = I915_READ(reg);
2078 if ((temp & DPLL_VCO_ENABLE) == 0) {
2079 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2080 POSTING_READ(reg);
2081 udelay(200);
2084 if (HAS_PCH_CPT(dev)) {
2085 /* Be sure PCH DPLL SEL is set */
2086 temp = I915_READ(PCH_DPLL_SEL);
2087 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2088 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2089 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2090 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2091 I915_WRITE(PCH_DPLL_SEL, temp);
2094 /* set transcoder timing */
2095 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2096 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2097 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2099 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2100 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2101 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2103 intel_fdi_normal_train(crtc);
2105 /* For PCH DP, enable TRANS_DP_CTL */
2106 if (HAS_PCH_CPT(dev) &&
2107 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2108 reg = TRANS_DP_CTL(pipe);
2109 temp = I915_READ(reg);
2110 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2111 TRANS_DP_SYNC_MASK);
2112 temp |= (TRANS_DP_OUTPUT_ENABLE |
2113 TRANS_DP_ENH_FRAMING);
2115 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2116 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2117 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2118 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2120 switch (intel_trans_dp_port_sel(crtc)) {
2121 case PCH_DP_B:
2122 temp |= TRANS_DP_PORT_SEL_B;
2123 break;
2124 case PCH_DP_C:
2125 temp |= TRANS_DP_PORT_SEL_C;
2126 break;
2127 case PCH_DP_D:
2128 temp |= TRANS_DP_PORT_SEL_D;
2129 break;
2130 default:
2131 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2132 temp |= TRANS_DP_PORT_SEL_B;
2133 break;
2136 I915_WRITE(reg, temp);
2139 /* enable PCH transcoder */
2140 reg = TRANSCONF(pipe);
2141 temp = I915_READ(reg);
2143 * make the BPC in transcoder be consistent with
2144 * that in pipeconf reg.
2146 temp &= ~PIPE_BPC_MASK;
2147 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2148 I915_WRITE(reg, temp | TRANS_ENABLE);
2149 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2150 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2152 intel_crtc_load_lut(crtc);
2153 intel_update_fbc(dev);
2154 intel_crtc_update_cursor(crtc, true);
2157 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2159 struct drm_device *dev = crtc->dev;
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162 int pipe = intel_crtc->pipe;
2163 int plane = intel_crtc->plane;
2164 u32 reg, temp;
2166 if (!intel_crtc->active)
2167 return;
2169 intel_crtc_wait_for_pending_flips(crtc);
2170 drm_vblank_off(dev, pipe);
2171 intel_crtc_update_cursor(crtc, false);
2173 /* Disable display plane */
2174 reg = DSPCNTR(plane);
2175 temp = I915_READ(reg);
2176 if (temp & DISPLAY_PLANE_ENABLE) {
2177 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2178 intel_flush_display_plane(dev, plane);
2181 if (dev_priv->cfb_plane == plane &&
2182 dev_priv->display.disable_fbc)
2183 dev_priv->display.disable_fbc(dev);
2185 /* disable cpu pipe, disable after all planes disabled */
2186 reg = PIPECONF(pipe);
2187 temp = I915_READ(reg);
2188 if (temp & PIPECONF_ENABLE) {
2189 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2190 POSTING_READ(reg);
2191 /* wait for cpu pipe off, pipe state */
2192 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2195 /* Disable PF */
2196 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2197 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2199 /* disable CPU FDI tx and PCH FDI rx */
2200 reg = FDI_TX_CTL(pipe);
2201 temp = I915_READ(reg);
2202 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2203 POSTING_READ(reg);
2205 reg = FDI_RX_CTL(pipe);
2206 temp = I915_READ(reg);
2207 temp &= ~(0x7 << 16);
2208 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2209 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2211 POSTING_READ(reg);
2212 udelay(100);
2214 /* Ironlake workaround, disable clock pointer after downing FDI */
2215 I915_WRITE(FDI_RX_CHICKEN(pipe),
2216 I915_READ(FDI_RX_CHICKEN(pipe) &
2217 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2219 /* still set train pattern 1 */
2220 reg = FDI_TX_CTL(pipe);
2221 temp = I915_READ(reg);
2222 temp &= ~FDI_LINK_TRAIN_NONE;
2223 temp |= FDI_LINK_TRAIN_PATTERN_1;
2224 I915_WRITE(reg, temp);
2226 reg = FDI_RX_CTL(pipe);
2227 temp = I915_READ(reg);
2228 if (HAS_PCH_CPT(dev)) {
2229 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2230 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2231 } else {
2232 temp &= ~FDI_LINK_TRAIN_NONE;
2233 temp |= FDI_LINK_TRAIN_PATTERN_1;
2235 /* BPC in FDI rx is consistent with that in PIPECONF */
2236 temp &= ~(0x07 << 16);
2237 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2238 I915_WRITE(reg, temp);
2240 POSTING_READ(reg);
2241 udelay(100);
2243 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2244 temp = I915_READ(PCH_LVDS);
2245 if (temp & LVDS_PORT_EN) {
2246 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2247 POSTING_READ(PCH_LVDS);
2248 udelay(100);
2252 /* disable PCH transcoder */
2253 reg = TRANSCONF(plane);
2254 temp = I915_READ(reg);
2255 if (temp & TRANS_ENABLE) {
2256 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2257 /* wait for PCH transcoder off, transcoder state */
2258 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2259 DRM_ERROR("failed to disable transcoder\n");
2262 if (HAS_PCH_CPT(dev)) {
2263 /* disable TRANS_DP_CTL */
2264 reg = TRANS_DP_CTL(pipe);
2265 temp = I915_READ(reg);
2266 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2267 I915_WRITE(reg, temp);
2269 /* disable DPLL_SEL */
2270 temp = I915_READ(PCH_DPLL_SEL);
2271 if (pipe == 0)
2272 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2273 else
2274 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2275 I915_WRITE(PCH_DPLL_SEL, temp);
2278 /* disable PCH DPLL */
2279 reg = PCH_DPLL(pipe);
2280 temp = I915_READ(reg);
2281 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2283 /* Switch from PCDclk to Rawclk */
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2288 /* Disable CPU FDI TX PLL */
2289 reg = FDI_TX_CTL(pipe);
2290 temp = I915_READ(reg);
2291 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2293 POSTING_READ(reg);
2294 udelay(100);
2296 reg = FDI_RX_CTL(pipe);
2297 temp = I915_READ(reg);
2298 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2300 /* Wait for the clocks to turn off. */
2301 POSTING_READ(reg);
2302 udelay(100);
2304 intel_crtc->active = false;
2305 intel_update_watermarks(dev);
2306 intel_update_fbc(dev);
2307 intel_clear_scanline_wait(dev);
2310 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2313 int pipe = intel_crtc->pipe;
2314 int plane = intel_crtc->plane;
2316 /* XXX: When our outputs are all unaware of DPMS modes other than off
2317 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2319 switch (mode) {
2320 case DRM_MODE_DPMS_ON:
2321 case DRM_MODE_DPMS_STANDBY:
2322 case DRM_MODE_DPMS_SUSPEND:
2323 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2324 ironlake_crtc_enable(crtc);
2325 break;
2327 case DRM_MODE_DPMS_OFF:
2328 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2329 ironlake_crtc_disable(crtc);
2330 break;
2334 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2336 if (!enable && intel_crtc->overlay) {
2337 struct drm_device *dev = intel_crtc->base.dev;
2339 mutex_lock(&dev->struct_mutex);
2340 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2341 mutex_unlock(&dev->struct_mutex);
2344 /* Let userspace switch the overlay on again. In most cases userspace
2345 * has to recompute where to put it anyway.
2349 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2351 struct drm_device *dev = crtc->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2354 int pipe = intel_crtc->pipe;
2355 int plane = intel_crtc->plane;
2356 u32 reg, temp;
2358 if (intel_crtc->active)
2359 return;
2361 intel_crtc->active = true;
2362 intel_update_watermarks(dev);
2364 /* Enable the DPLL */
2365 reg = DPLL(pipe);
2366 temp = I915_READ(reg);
2367 if ((temp & DPLL_VCO_ENABLE) == 0) {
2368 I915_WRITE(reg, temp);
2370 /* Wait for the clocks to stabilize. */
2371 POSTING_READ(reg);
2372 udelay(150);
2374 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2376 /* Wait for the clocks to stabilize. */
2377 POSTING_READ(reg);
2378 udelay(150);
2380 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2382 /* Wait for the clocks to stabilize. */
2383 POSTING_READ(reg);
2384 udelay(150);
2387 /* Enable the pipe */
2388 reg = PIPECONF(pipe);
2389 temp = I915_READ(reg);
2390 if ((temp & PIPECONF_ENABLE) == 0)
2391 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2393 /* Enable the plane */
2394 reg = DSPCNTR(plane);
2395 temp = I915_READ(reg);
2396 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2397 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2398 intel_flush_display_plane(dev, plane);
2401 intel_crtc_load_lut(crtc);
2402 intel_update_fbc(dev);
2404 /* Give the overlay scaler a chance to enable if it's on this pipe */
2405 intel_crtc_dpms_overlay(intel_crtc, true);
2406 intel_crtc_update_cursor(crtc, true);
2409 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2411 struct drm_device *dev = crtc->dev;
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414 int pipe = intel_crtc->pipe;
2415 int plane = intel_crtc->plane;
2416 u32 reg, temp;
2418 if (!intel_crtc->active)
2419 return;
2421 /* Give the overlay scaler a chance to disable if it's on this pipe */
2422 intel_crtc_wait_for_pending_flips(crtc);
2423 drm_vblank_off(dev, pipe);
2424 intel_crtc_dpms_overlay(intel_crtc, false);
2425 intel_crtc_update_cursor(crtc, false);
2427 if (dev_priv->cfb_plane == plane &&
2428 dev_priv->display.disable_fbc)
2429 dev_priv->display.disable_fbc(dev);
2431 /* Disable display plane */
2432 reg = DSPCNTR(plane);
2433 temp = I915_READ(reg);
2434 if (temp & DISPLAY_PLANE_ENABLE) {
2435 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2436 /* Flush the plane changes */
2437 intel_flush_display_plane(dev, plane);
2439 /* Wait for vblank for the disable to take effect */
2440 if (IS_GEN2(dev))
2441 intel_wait_for_vblank(dev, pipe);
2444 /* Don't disable pipe A or pipe A PLLs if needed */
2445 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2446 goto done;
2448 /* Next, disable display pipes */
2449 reg = PIPECONF(pipe);
2450 temp = I915_READ(reg);
2451 if (temp & PIPECONF_ENABLE) {
2452 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2454 /* Wait for the pipe to turn off */
2455 POSTING_READ(reg);
2456 intel_wait_for_pipe_off(dev, pipe);
2459 reg = DPLL(pipe);
2460 temp = I915_READ(reg);
2461 if (temp & DPLL_VCO_ENABLE) {
2462 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2464 /* Wait for the clocks to turn off. */
2465 POSTING_READ(reg);
2466 udelay(150);
2469 done:
2470 intel_crtc->active = false;
2471 intel_update_fbc(dev);
2472 intel_update_watermarks(dev);
2473 intel_clear_scanline_wait(dev);
2476 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2478 /* XXX: When our outputs are all unaware of DPMS modes other than off
2479 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2481 switch (mode) {
2482 case DRM_MODE_DPMS_ON:
2483 case DRM_MODE_DPMS_STANDBY:
2484 case DRM_MODE_DPMS_SUSPEND:
2485 i9xx_crtc_enable(crtc);
2486 break;
2487 case DRM_MODE_DPMS_OFF:
2488 i9xx_crtc_disable(crtc);
2489 break;
2494 * Sets the power management mode of the pipe and plane.
2496 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2498 struct drm_device *dev = crtc->dev;
2499 struct drm_i915_private *dev_priv = dev->dev_private;
2500 struct drm_i915_master_private *master_priv;
2501 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2502 int pipe = intel_crtc->pipe;
2503 bool enabled;
2505 if (intel_crtc->dpms_mode == mode)
2506 return;
2508 intel_crtc->dpms_mode = mode;
2510 dev_priv->display.dpms(crtc, mode);
2512 if (!dev->primary->master)
2513 return;
2515 master_priv = dev->primary->master->driver_priv;
2516 if (!master_priv->sarea_priv)
2517 return;
2519 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2521 switch (pipe) {
2522 case 0:
2523 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2524 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2525 break;
2526 case 1:
2527 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2528 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2529 break;
2530 default:
2531 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2532 break;
2536 static void intel_crtc_disable(struct drm_crtc *crtc)
2538 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2539 struct drm_device *dev = crtc->dev;
2541 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2543 if (crtc->fb) {
2544 mutex_lock(&dev->struct_mutex);
2545 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2546 mutex_unlock(&dev->struct_mutex);
2550 /* Prepare for a mode set.
2552 * Note we could be a lot smarter here. We need to figure out which outputs
2553 * will be enabled, which disabled (in short, how the config will changes)
2554 * and perform the minimum necessary steps to accomplish that, e.g. updating
2555 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2556 * panel fitting is in the proper state, etc.
2558 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2560 i9xx_crtc_disable(crtc);
2563 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2565 i9xx_crtc_enable(crtc);
2568 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2570 ironlake_crtc_disable(crtc);
2573 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2575 ironlake_crtc_enable(crtc);
2578 void intel_encoder_prepare (struct drm_encoder *encoder)
2580 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2581 /* lvds has its own version of prepare see intel_lvds_prepare */
2582 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2585 void intel_encoder_commit (struct drm_encoder *encoder)
2587 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2588 /* lvds has its own version of commit see intel_lvds_commit */
2589 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2592 void intel_encoder_destroy(struct drm_encoder *encoder)
2594 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2596 drm_encoder_cleanup(encoder);
2597 kfree(intel_encoder);
2600 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2601 struct drm_display_mode *mode,
2602 struct drm_display_mode *adjusted_mode)
2604 struct drm_device *dev = crtc->dev;
2606 if (HAS_PCH_SPLIT(dev)) {
2607 /* FDI link clock is fixed at 2.7G */
2608 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2609 return false;
2612 /* XXX some encoders set the crtcinfo, others don't.
2613 * Obviously we need some form of conflict resolution here...
2615 if (adjusted_mode->crtc_htotal == 0)
2616 drm_mode_set_crtcinfo(adjusted_mode, 0);
2618 return true;
2621 static int i945_get_display_clock_speed(struct drm_device *dev)
2623 return 400000;
2626 static int i915_get_display_clock_speed(struct drm_device *dev)
2628 return 333000;
2631 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2633 return 200000;
2636 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2638 u16 gcfgc = 0;
2640 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2642 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2643 return 133000;
2644 else {
2645 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2646 case GC_DISPLAY_CLOCK_333_MHZ:
2647 return 333000;
2648 default:
2649 case GC_DISPLAY_CLOCK_190_200_MHZ:
2650 return 190000;
2655 static int i865_get_display_clock_speed(struct drm_device *dev)
2657 return 266000;
2660 static int i855_get_display_clock_speed(struct drm_device *dev)
2662 u16 hpllcc = 0;
2663 /* Assume that the hardware is in the high speed state. This
2664 * should be the default.
2666 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2667 case GC_CLOCK_133_200:
2668 case GC_CLOCK_100_200:
2669 return 200000;
2670 case GC_CLOCK_166_250:
2671 return 250000;
2672 case GC_CLOCK_100_133:
2673 return 133000;
2676 /* Shouldn't happen */
2677 return 0;
2680 static int i830_get_display_clock_speed(struct drm_device *dev)
2682 return 133000;
2685 struct fdi_m_n {
2686 u32 tu;
2687 u32 gmch_m;
2688 u32 gmch_n;
2689 u32 link_m;
2690 u32 link_n;
2693 static void
2694 fdi_reduce_ratio(u32 *num, u32 *den)
2696 while (*num > 0xffffff || *den > 0xffffff) {
2697 *num >>= 1;
2698 *den >>= 1;
2702 #define DATA_N 0x800000
2703 #define LINK_N 0x80000
2705 static void
2706 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2707 int link_clock, struct fdi_m_n *m_n)
2709 u64 temp;
2711 m_n->tu = 64; /* default size */
2713 temp = (u64) DATA_N * pixel_clock;
2714 temp = div_u64(temp, link_clock);
2715 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2716 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2717 m_n->gmch_n = DATA_N;
2718 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2720 temp = (u64) LINK_N * pixel_clock;
2721 m_n->link_m = div_u64(temp, link_clock);
2722 m_n->link_n = LINK_N;
2723 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2727 struct intel_watermark_params {
2728 unsigned long fifo_size;
2729 unsigned long max_wm;
2730 unsigned long default_wm;
2731 unsigned long guard_size;
2732 unsigned long cacheline_size;
2735 /* Pineview has different values for various configs */
2736 static struct intel_watermark_params pineview_display_wm = {
2737 PINEVIEW_DISPLAY_FIFO,
2738 PINEVIEW_MAX_WM,
2739 PINEVIEW_DFT_WM,
2740 PINEVIEW_GUARD_WM,
2741 PINEVIEW_FIFO_LINE_SIZE
2743 static struct intel_watermark_params pineview_display_hplloff_wm = {
2744 PINEVIEW_DISPLAY_FIFO,
2745 PINEVIEW_MAX_WM,
2746 PINEVIEW_DFT_HPLLOFF_WM,
2747 PINEVIEW_GUARD_WM,
2748 PINEVIEW_FIFO_LINE_SIZE
2750 static struct intel_watermark_params pineview_cursor_wm = {
2751 PINEVIEW_CURSOR_FIFO,
2752 PINEVIEW_CURSOR_MAX_WM,
2753 PINEVIEW_CURSOR_DFT_WM,
2754 PINEVIEW_CURSOR_GUARD_WM,
2755 PINEVIEW_FIFO_LINE_SIZE,
2757 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2758 PINEVIEW_CURSOR_FIFO,
2759 PINEVIEW_CURSOR_MAX_WM,
2760 PINEVIEW_CURSOR_DFT_WM,
2761 PINEVIEW_CURSOR_GUARD_WM,
2762 PINEVIEW_FIFO_LINE_SIZE
2764 static struct intel_watermark_params g4x_wm_info = {
2765 G4X_FIFO_SIZE,
2766 G4X_MAX_WM,
2767 G4X_MAX_WM,
2769 G4X_FIFO_LINE_SIZE,
2771 static struct intel_watermark_params g4x_cursor_wm_info = {
2772 I965_CURSOR_FIFO,
2773 I965_CURSOR_MAX_WM,
2774 I965_CURSOR_DFT_WM,
2776 G4X_FIFO_LINE_SIZE,
2778 static struct intel_watermark_params i965_cursor_wm_info = {
2779 I965_CURSOR_FIFO,
2780 I965_CURSOR_MAX_WM,
2781 I965_CURSOR_DFT_WM,
2783 I915_FIFO_LINE_SIZE,
2785 static struct intel_watermark_params i945_wm_info = {
2786 I945_FIFO_SIZE,
2787 I915_MAX_WM,
2790 I915_FIFO_LINE_SIZE
2792 static struct intel_watermark_params i915_wm_info = {
2793 I915_FIFO_SIZE,
2794 I915_MAX_WM,
2797 I915_FIFO_LINE_SIZE
2799 static struct intel_watermark_params i855_wm_info = {
2800 I855GM_FIFO_SIZE,
2801 I915_MAX_WM,
2804 I830_FIFO_LINE_SIZE
2806 static struct intel_watermark_params i830_wm_info = {
2807 I830_FIFO_SIZE,
2808 I915_MAX_WM,
2811 I830_FIFO_LINE_SIZE
2814 static struct intel_watermark_params ironlake_display_wm_info = {
2815 ILK_DISPLAY_FIFO,
2816 ILK_DISPLAY_MAXWM,
2817 ILK_DISPLAY_DFTWM,
2819 ILK_FIFO_LINE_SIZE
2822 static struct intel_watermark_params ironlake_cursor_wm_info = {
2823 ILK_CURSOR_FIFO,
2824 ILK_CURSOR_MAXWM,
2825 ILK_CURSOR_DFTWM,
2827 ILK_FIFO_LINE_SIZE
2830 static struct intel_watermark_params ironlake_display_srwm_info = {
2831 ILK_DISPLAY_SR_FIFO,
2832 ILK_DISPLAY_MAX_SRWM,
2833 ILK_DISPLAY_DFT_SRWM,
2835 ILK_FIFO_LINE_SIZE
2838 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2839 ILK_CURSOR_SR_FIFO,
2840 ILK_CURSOR_MAX_SRWM,
2841 ILK_CURSOR_DFT_SRWM,
2843 ILK_FIFO_LINE_SIZE
2847 * intel_calculate_wm - calculate watermark level
2848 * @clock_in_khz: pixel clock
2849 * @wm: chip FIFO params
2850 * @pixel_size: display pixel size
2851 * @latency_ns: memory latency for the platform
2853 * Calculate the watermark level (the level at which the display plane will
2854 * start fetching from memory again). Each chip has a different display
2855 * FIFO size and allocation, so the caller needs to figure that out and pass
2856 * in the correct intel_watermark_params structure.
2858 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2859 * on the pixel size. When it reaches the watermark level, it'll start
2860 * fetching FIFO line sized based chunks from memory until the FIFO fills
2861 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2862 * will occur, and a display engine hang could result.
2864 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2865 struct intel_watermark_params *wm,
2866 int pixel_size,
2867 unsigned long latency_ns)
2869 long entries_required, wm_size;
2872 * Note: we need to make sure we don't overflow for various clock &
2873 * latency values.
2874 * clocks go from a few thousand to several hundred thousand.
2875 * latency is usually a few thousand
2877 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2878 1000;
2879 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2881 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2883 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2885 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2887 /* Don't promote wm_size to unsigned... */
2888 if (wm_size > (long)wm->max_wm)
2889 wm_size = wm->max_wm;
2890 if (wm_size <= 0)
2891 wm_size = wm->default_wm;
2892 return wm_size;
2895 struct cxsr_latency {
2896 int is_desktop;
2897 int is_ddr3;
2898 unsigned long fsb_freq;
2899 unsigned long mem_freq;
2900 unsigned long display_sr;
2901 unsigned long display_hpll_disable;
2902 unsigned long cursor_sr;
2903 unsigned long cursor_hpll_disable;
2906 static const struct cxsr_latency cxsr_latency_table[] = {
2907 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2908 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2909 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2910 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2911 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2913 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2914 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2915 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2916 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2917 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2919 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2920 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2921 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2922 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2923 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2925 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2926 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2927 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2928 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2929 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2931 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2932 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2933 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2934 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2935 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2937 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2938 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2939 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2940 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2941 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2944 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2945 int is_ddr3,
2946 int fsb,
2947 int mem)
2949 const struct cxsr_latency *latency;
2950 int i;
2952 if (fsb == 0 || mem == 0)
2953 return NULL;
2955 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2956 latency = &cxsr_latency_table[i];
2957 if (is_desktop == latency->is_desktop &&
2958 is_ddr3 == latency->is_ddr3 &&
2959 fsb == latency->fsb_freq && mem == latency->mem_freq)
2960 return latency;
2963 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2965 return NULL;
2968 static void pineview_disable_cxsr(struct drm_device *dev)
2970 struct drm_i915_private *dev_priv = dev->dev_private;
2972 /* deactivate cxsr */
2973 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2977 * Latency for FIFO fetches is dependent on several factors:
2978 * - memory configuration (speed, channels)
2979 * - chipset
2980 * - current MCH state
2981 * It can be fairly high in some situations, so here we assume a fairly
2982 * pessimal value. It's a tradeoff between extra memory fetches (if we
2983 * set this value too high, the FIFO will fetch frequently to stay full)
2984 * and power consumption (set it too low to save power and we might see
2985 * FIFO underruns and display "flicker").
2987 * A value of 5us seems to be a good balance; safe for very low end
2988 * platforms but not overly aggressive on lower latency configs.
2990 static const int latency_ns = 5000;
2992 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2994 struct drm_i915_private *dev_priv = dev->dev_private;
2995 uint32_t dsparb = I915_READ(DSPARB);
2996 int size;
2998 size = dsparb & 0x7f;
2999 if (plane)
3000 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3002 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3003 plane ? "B" : "A", size);
3005 return size;
3008 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011 uint32_t dsparb = I915_READ(DSPARB);
3012 int size;
3014 size = dsparb & 0x1ff;
3015 if (plane)
3016 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3017 size >>= 1; /* Convert to cachelines */
3019 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3020 plane ? "B" : "A", size);
3022 return size;
3025 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3027 struct drm_i915_private *dev_priv = dev->dev_private;
3028 uint32_t dsparb = I915_READ(DSPARB);
3029 int size;
3031 size = dsparb & 0x7f;
3032 size >>= 2; /* Convert to cachelines */
3034 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3035 plane ? "B" : "A",
3036 size);
3038 return size;
3041 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3043 struct drm_i915_private *dev_priv = dev->dev_private;
3044 uint32_t dsparb = I915_READ(DSPARB);
3045 int size;
3047 size = dsparb & 0x7f;
3048 size >>= 1; /* Convert to cachelines */
3050 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3051 plane ? "B" : "A", size);
3053 return size;
3056 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3057 int planeb_clock, int sr_hdisplay, int unused,
3058 int pixel_size)
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 const struct cxsr_latency *latency;
3062 u32 reg;
3063 unsigned long wm;
3064 int sr_clock;
3066 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3067 dev_priv->fsb_freq, dev_priv->mem_freq);
3068 if (!latency) {
3069 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3070 pineview_disable_cxsr(dev);
3071 return;
3074 if (!planea_clock || !planeb_clock) {
3075 sr_clock = planea_clock ? planea_clock : planeb_clock;
3077 /* Display SR */
3078 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3079 pixel_size, latency->display_sr);
3080 reg = I915_READ(DSPFW1);
3081 reg &= ~DSPFW_SR_MASK;
3082 reg |= wm << DSPFW_SR_SHIFT;
3083 I915_WRITE(DSPFW1, reg);
3084 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3086 /* cursor SR */
3087 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3088 pixel_size, latency->cursor_sr);
3089 reg = I915_READ(DSPFW3);
3090 reg &= ~DSPFW_CURSOR_SR_MASK;
3091 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3092 I915_WRITE(DSPFW3, reg);
3094 /* Display HPLL off SR */
3095 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3096 pixel_size, latency->display_hpll_disable);
3097 reg = I915_READ(DSPFW3);
3098 reg &= ~DSPFW_HPLL_SR_MASK;
3099 reg |= wm & DSPFW_HPLL_SR_MASK;
3100 I915_WRITE(DSPFW3, reg);
3102 /* cursor HPLL off SR */
3103 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3104 pixel_size, latency->cursor_hpll_disable);
3105 reg = I915_READ(DSPFW3);
3106 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3107 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3108 I915_WRITE(DSPFW3, reg);
3109 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3111 /* activate cxsr */
3112 I915_WRITE(DSPFW3,
3113 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3114 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3115 } else {
3116 pineview_disable_cxsr(dev);
3117 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3121 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3122 int planeb_clock, int sr_hdisplay, int sr_htotal,
3123 int pixel_size)
3125 struct drm_i915_private *dev_priv = dev->dev_private;
3126 int total_size, cacheline_size;
3127 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3128 struct intel_watermark_params planea_params, planeb_params;
3129 unsigned long line_time_us;
3130 int sr_clock, sr_entries = 0, entries_required;
3132 /* Create copies of the base settings for each pipe */
3133 planea_params = planeb_params = g4x_wm_info;
3135 /* Grab a couple of global values before we overwrite them */
3136 total_size = planea_params.fifo_size;
3137 cacheline_size = planea_params.cacheline_size;
3140 * Note: we need to make sure we don't overflow for various clock &
3141 * latency values.
3142 * clocks go from a few thousand to several hundred thousand.
3143 * latency is usually a few thousand
3145 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3146 1000;
3147 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3148 planea_wm = entries_required + planea_params.guard_size;
3150 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3151 1000;
3152 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3153 planeb_wm = entries_required + planeb_params.guard_size;
3155 cursora_wm = cursorb_wm = 16;
3156 cursor_sr = 32;
3158 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3160 /* Calc sr entries for one plane configs */
3161 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3162 /* self-refresh has much higher latency */
3163 static const int sr_latency_ns = 12000;
3165 sr_clock = planea_clock ? planea_clock : planeb_clock;
3166 line_time_us = ((sr_htotal * 1000) / sr_clock);
3168 /* Use ns/us then divide to preserve precision */
3169 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3170 pixel_size * sr_hdisplay;
3171 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3173 entries_required = (((sr_latency_ns / line_time_us) +
3174 1000) / 1000) * pixel_size * 64;
3175 entries_required = DIV_ROUND_UP(entries_required,
3176 g4x_cursor_wm_info.cacheline_size);
3177 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3179 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3180 cursor_sr = g4x_cursor_wm_info.max_wm;
3181 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3182 "cursor %d\n", sr_entries, cursor_sr);
3184 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3185 } else {
3186 /* Turn off self refresh if both pipes are enabled */
3187 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3188 & ~FW_BLC_SELF_EN);
3191 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3192 planea_wm, planeb_wm, sr_entries);
3194 planea_wm &= 0x3f;
3195 planeb_wm &= 0x3f;
3197 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3198 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3199 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3200 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3201 (cursora_wm << DSPFW_CURSORA_SHIFT));
3202 /* HPLL off in SR has some issues on G4x... disable it */
3203 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3204 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3207 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3208 int planeb_clock, int sr_hdisplay, int sr_htotal,
3209 int pixel_size)
3211 struct drm_i915_private *dev_priv = dev->dev_private;
3212 unsigned long line_time_us;
3213 int sr_clock, sr_entries, srwm = 1;
3214 int cursor_sr = 16;
3216 /* Calc sr entries for one plane configs */
3217 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3218 /* self-refresh has much higher latency */
3219 static const int sr_latency_ns = 12000;
3221 sr_clock = planea_clock ? planea_clock : planeb_clock;
3222 line_time_us = ((sr_htotal * 1000) / sr_clock);
3224 /* Use ns/us then divide to preserve precision */
3225 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3226 pixel_size * sr_hdisplay;
3227 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3228 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3229 srwm = I965_FIFO_SIZE - sr_entries;
3230 if (srwm < 0)
3231 srwm = 1;
3232 srwm &= 0x1ff;
3234 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3235 pixel_size * 64;
3236 sr_entries = DIV_ROUND_UP(sr_entries,
3237 i965_cursor_wm_info.cacheline_size);
3238 cursor_sr = i965_cursor_wm_info.fifo_size -
3239 (sr_entries + i965_cursor_wm_info.guard_size);
3241 if (cursor_sr > i965_cursor_wm_info.max_wm)
3242 cursor_sr = i965_cursor_wm_info.max_wm;
3244 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3245 "cursor %d\n", srwm, cursor_sr);
3247 if (IS_CRESTLINE(dev))
3248 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3249 } else {
3250 /* Turn off self refresh if both pipes are enabled */
3251 if (IS_CRESTLINE(dev))
3252 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3253 & ~FW_BLC_SELF_EN);
3256 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3257 srwm);
3259 /* 965 has limitations... */
3260 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3261 (8 << 0));
3262 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3263 /* update cursor SR watermark */
3264 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3267 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3268 int planeb_clock, int sr_hdisplay, int sr_htotal,
3269 int pixel_size)
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 uint32_t fwater_lo;
3273 uint32_t fwater_hi;
3274 int total_size, cacheline_size, cwm, srwm = 1;
3275 int planea_wm, planeb_wm;
3276 struct intel_watermark_params planea_params, planeb_params;
3277 unsigned long line_time_us;
3278 int sr_clock, sr_entries = 0;
3280 /* Create copies of the base settings for each pipe */
3281 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3282 planea_params = planeb_params = i945_wm_info;
3283 else if (!IS_GEN2(dev))
3284 planea_params = planeb_params = i915_wm_info;
3285 else
3286 planea_params = planeb_params = i855_wm_info;
3288 /* Grab a couple of global values before we overwrite them */
3289 total_size = planea_params.fifo_size;
3290 cacheline_size = planea_params.cacheline_size;
3292 /* Update per-plane FIFO sizes */
3293 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3294 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3296 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3297 pixel_size, latency_ns);
3298 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3299 pixel_size, latency_ns);
3300 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3303 * Overlay gets an aggressive default since video jitter is bad.
3305 cwm = 2;
3307 /* Calc sr entries for one plane configs */
3308 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3309 (!planea_clock || !planeb_clock)) {
3310 /* self-refresh has much higher latency */
3311 static const int sr_latency_ns = 6000;
3313 sr_clock = planea_clock ? planea_clock : planeb_clock;
3314 line_time_us = ((sr_htotal * 1000) / sr_clock);
3316 /* Use ns/us then divide to preserve precision */
3317 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3318 pixel_size * sr_hdisplay;
3319 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3320 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3321 srwm = total_size - sr_entries;
3322 if (srwm < 0)
3323 srwm = 1;
3325 if (IS_I945G(dev) || IS_I945GM(dev))
3326 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3327 else if (IS_I915GM(dev)) {
3328 /* 915M has a smaller SRWM field */
3329 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3330 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3332 } else {
3333 /* Turn off self refresh if both pipes are enabled */
3334 if (IS_I945G(dev) || IS_I945GM(dev)) {
3335 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3336 & ~FW_BLC_SELF_EN);
3337 } else if (IS_I915GM(dev)) {
3338 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3342 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3343 planea_wm, planeb_wm, cwm, srwm);
3345 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3346 fwater_hi = (cwm & 0x1f);
3348 /* Set request length to 8 cachelines per fetch */
3349 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3350 fwater_hi = fwater_hi | (1 << 8);
3352 I915_WRITE(FW_BLC, fwater_lo);
3353 I915_WRITE(FW_BLC2, fwater_hi);
3356 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3357 int unused2, int unused3, int pixel_size)
3359 struct drm_i915_private *dev_priv = dev->dev_private;
3360 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3361 int planea_wm;
3363 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3365 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3366 pixel_size, latency_ns);
3367 fwater_lo |= (3<<8) | planea_wm;
3369 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3371 I915_WRITE(FW_BLC, fwater_lo);
3374 #define ILK_LP0_PLANE_LATENCY 700
3375 #define ILK_LP0_CURSOR_LATENCY 1300
3377 static bool ironlake_compute_wm0(struct drm_device *dev,
3378 int pipe,
3379 int *plane_wm,
3380 int *cursor_wm)
3382 struct drm_crtc *crtc;
3383 int htotal, hdisplay, clock, pixel_size = 0;
3384 int line_time_us, line_count, entries;
3386 crtc = intel_get_crtc_for_pipe(dev, pipe);
3387 if (crtc->fb == NULL || !crtc->enabled)
3388 return false;
3390 htotal = crtc->mode.htotal;
3391 hdisplay = crtc->mode.hdisplay;
3392 clock = crtc->mode.clock;
3393 pixel_size = crtc->fb->bits_per_pixel / 8;
3395 /* Use the small buffer method to calculate plane watermark */
3396 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3397 entries = DIV_ROUND_UP(entries,
3398 ironlake_display_wm_info.cacheline_size);
3399 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3400 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3401 *plane_wm = ironlake_display_wm_info.max_wm;
3403 /* Use the large buffer method to calculate cursor watermark */
3404 line_time_us = ((htotal * 1000) / clock);
3405 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3406 entries = line_count * 64 * pixel_size;
3407 entries = DIV_ROUND_UP(entries,
3408 ironlake_cursor_wm_info.cacheline_size);
3409 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3410 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3411 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3413 return true;
3416 static void ironlake_update_wm(struct drm_device *dev,
3417 int planea_clock, int planeb_clock,
3418 int sr_hdisplay, int sr_htotal,
3419 int pixel_size)
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 int plane_wm, cursor_wm, enabled;
3423 int tmp;
3425 enabled = 0;
3426 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3427 I915_WRITE(WM0_PIPEA_ILK,
3428 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3429 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3430 " plane %d, " "cursor: %d\n",
3431 plane_wm, cursor_wm);
3432 enabled++;
3435 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3436 I915_WRITE(WM0_PIPEB_ILK,
3437 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3438 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3439 " plane %d, cursor: %d\n",
3440 plane_wm, cursor_wm);
3441 enabled++;
3445 * Calculate and update the self-refresh watermark only when one
3446 * display plane is used.
3448 tmp = 0;
3449 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3450 unsigned long line_time_us;
3451 int small, large, plane_fbc;
3452 int sr_clock, entries;
3453 int line_count, line_size;
3454 /* Read the self-refresh latency. The unit is 0.5us */
3455 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3457 sr_clock = planea_clock ? planea_clock : planeb_clock;
3458 line_time_us = (sr_htotal * 1000) / sr_clock;
3460 /* Use ns/us then divide to preserve precision */
3461 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3462 / 1000;
3463 line_size = sr_hdisplay * pixel_size;
3465 /* Use the minimum of the small and large buffer method for primary */
3466 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3467 large = line_count * line_size;
3469 entries = DIV_ROUND_UP(min(small, large),
3470 ironlake_display_srwm_info.cacheline_size);
3472 plane_fbc = entries * 64;
3473 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3475 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3476 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3477 plane_wm = ironlake_display_srwm_info.max_wm;
3479 /* calculate the self-refresh watermark for display cursor */
3480 entries = line_count * pixel_size * 64;
3481 entries = DIV_ROUND_UP(entries,
3482 ironlake_cursor_srwm_info.cacheline_size);
3484 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3485 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3486 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3488 /* configure watermark and enable self-refresh */
3489 tmp = (WM1_LP_SR_EN |
3490 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3491 (plane_fbc << WM1_LP_FBC_SHIFT) |
3492 (plane_wm << WM1_LP_SR_SHIFT) |
3493 cursor_wm);
3494 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3495 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3497 I915_WRITE(WM1_LP_ILK, tmp);
3498 /* XXX setup WM2 and WM3 */
3502 * intel_update_watermarks - update FIFO watermark values based on current modes
3504 * Calculate watermark values for the various WM regs based on current mode
3505 * and plane configuration.
3507 * There are several cases to deal with here:
3508 * - normal (i.e. non-self-refresh)
3509 * - self-refresh (SR) mode
3510 * - lines are large relative to FIFO size (buffer can hold up to 2)
3511 * - lines are small relative to FIFO size (buffer can hold more than 2
3512 * lines), so need to account for TLB latency
3514 * The normal calculation is:
3515 * watermark = dotclock * bytes per pixel * latency
3516 * where latency is platform & configuration dependent (we assume pessimal
3517 * values here).
3519 * The SR calculation is:
3520 * watermark = (trunc(latency/line time)+1) * surface width *
3521 * bytes per pixel
3522 * where
3523 * line time = htotal / dotclock
3524 * surface width = hdisplay for normal plane and 64 for cursor
3525 * and latency is assumed to be high, as above.
3527 * The final value programmed to the register should always be rounded up,
3528 * and include an extra 2 entries to account for clock crossings.
3530 * We don't use the sprite, so we can ignore that. And on Crestline we have
3531 * to set the non-SR watermarks to 8.
3533 static void intel_update_watermarks(struct drm_device *dev)
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536 struct drm_crtc *crtc;
3537 int sr_hdisplay = 0;
3538 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3539 int enabled = 0, pixel_size = 0;
3540 int sr_htotal = 0;
3542 if (!dev_priv->display.update_wm)
3543 return;
3545 /* Get the clock config from both planes */
3546 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3548 if (intel_crtc->active) {
3549 enabled++;
3550 if (intel_crtc->plane == 0) {
3551 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3552 intel_crtc->pipe, crtc->mode.clock);
3553 planea_clock = crtc->mode.clock;
3554 } else {
3555 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3556 intel_crtc->pipe, crtc->mode.clock);
3557 planeb_clock = crtc->mode.clock;
3559 sr_hdisplay = crtc->mode.hdisplay;
3560 sr_clock = crtc->mode.clock;
3561 sr_htotal = crtc->mode.htotal;
3562 if (crtc->fb)
3563 pixel_size = crtc->fb->bits_per_pixel / 8;
3564 else
3565 pixel_size = 4; /* by default */
3569 if (enabled <= 0)
3570 return;
3572 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3573 sr_hdisplay, sr_htotal, pixel_size);
3576 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3577 struct drm_display_mode *mode,
3578 struct drm_display_mode *adjusted_mode,
3579 int x, int y,
3580 struct drm_framebuffer *old_fb)
3582 struct drm_device *dev = crtc->dev;
3583 struct drm_i915_private *dev_priv = dev->dev_private;
3584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3585 int pipe = intel_crtc->pipe;
3586 int plane = intel_crtc->plane;
3587 u32 fp_reg, dpll_reg;
3588 int refclk, num_connectors = 0;
3589 intel_clock_t clock, reduced_clock;
3590 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3591 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3592 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3593 struct intel_encoder *has_edp_encoder = NULL;
3594 struct drm_mode_config *mode_config = &dev->mode_config;
3595 struct intel_encoder *encoder;
3596 const intel_limit_t *limit;
3597 int ret;
3598 struct fdi_m_n m_n = {0};
3599 u32 reg, temp;
3600 int target_clock;
3602 drm_vblank_pre_modeset(dev, pipe);
3604 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3605 if (encoder->base.crtc != crtc)
3606 continue;
3608 switch (encoder->type) {
3609 case INTEL_OUTPUT_LVDS:
3610 is_lvds = true;
3611 break;
3612 case INTEL_OUTPUT_SDVO:
3613 case INTEL_OUTPUT_HDMI:
3614 is_sdvo = true;
3615 if (encoder->needs_tv_clock)
3616 is_tv = true;
3617 break;
3618 case INTEL_OUTPUT_DVO:
3619 is_dvo = true;
3620 break;
3621 case INTEL_OUTPUT_TVOUT:
3622 is_tv = true;
3623 break;
3624 case INTEL_OUTPUT_ANALOG:
3625 is_crt = true;
3626 break;
3627 case INTEL_OUTPUT_DISPLAYPORT:
3628 is_dp = true;
3629 break;
3630 case INTEL_OUTPUT_EDP:
3631 has_edp_encoder = encoder;
3632 break;
3635 num_connectors++;
3638 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3639 refclk = dev_priv->lvds_ssc_freq * 1000;
3640 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3641 refclk / 1000);
3642 } else if (!IS_GEN2(dev)) {
3643 refclk = 96000;
3644 if (HAS_PCH_SPLIT(dev) &&
3645 (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3646 refclk = 120000; /* 120Mhz refclk */
3647 } else {
3648 refclk = 48000;
3652 * Returns a set of divisors for the desired target clock with the given
3653 * refclk, or FALSE. The returned values represent the clock equation:
3654 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3656 limit = intel_limit(crtc);
3657 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3658 if (!ok) {
3659 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3660 drm_vblank_post_modeset(dev, pipe);
3661 return -EINVAL;
3664 /* Ensure that the cursor is valid for the new mode before changing... */
3665 intel_crtc_update_cursor(crtc, true);
3667 if (is_lvds && dev_priv->lvds_downclock_avail) {
3668 has_reduced_clock = limit->find_pll(limit, crtc,
3669 dev_priv->lvds_downclock,
3670 refclk,
3671 &reduced_clock);
3672 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3674 * If the different P is found, it means that we can't
3675 * switch the display clock by using the FP0/FP1.
3676 * In such case we will disable the LVDS downclock
3677 * feature.
3679 DRM_DEBUG_KMS("Different P is found for "
3680 "LVDS clock/downclock\n");
3681 has_reduced_clock = 0;
3684 /* SDVO TV has fixed PLL values depend on its clock range,
3685 this mirrors vbios setting. */
3686 if (is_sdvo && is_tv) {
3687 if (adjusted_mode->clock >= 100000
3688 && adjusted_mode->clock < 140500) {
3689 clock.p1 = 2;
3690 clock.p2 = 10;
3691 clock.n = 3;
3692 clock.m1 = 16;
3693 clock.m2 = 8;
3694 } else if (adjusted_mode->clock >= 140500
3695 && adjusted_mode->clock <= 200000) {
3696 clock.p1 = 1;
3697 clock.p2 = 10;
3698 clock.n = 6;
3699 clock.m1 = 12;
3700 clock.m2 = 8;
3704 /* FDI link */
3705 if (HAS_PCH_SPLIT(dev)) {
3706 int lane = 0, link_bw, bpp;
3707 /* CPU eDP doesn't require FDI link, so just set DP M/N
3708 according to current link config */
3709 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3710 target_clock = mode->clock;
3711 intel_edp_link_config(has_edp_encoder,
3712 &lane, &link_bw);
3713 } else {
3714 /* [e]DP over FDI requires target mode clock
3715 instead of link clock */
3716 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3717 target_clock = mode->clock;
3718 else
3719 target_clock = adjusted_mode->clock;
3721 /* FDI is a binary signal running at ~2.7GHz, encoding
3722 * each output octet as 10 bits. The actual frequency
3723 * is stored as a divider into a 100MHz clock, and the
3724 * mode pixel clock is stored in units of 1KHz.
3725 * Hence the bw of each lane in terms of the mode signal
3726 * is:
3728 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3731 /* determine panel color depth */
3732 temp = I915_READ(PIPECONF(pipe));
3733 temp &= ~PIPE_BPC_MASK;
3734 if (is_lvds) {
3735 /* the BPC will be 6 if it is 18-bit LVDS panel */
3736 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3737 temp |= PIPE_8BPC;
3738 else
3739 temp |= PIPE_6BPC;
3740 } else if (has_edp_encoder) {
3741 switch (dev_priv->edp.bpp/3) {
3742 case 8:
3743 temp |= PIPE_8BPC;
3744 break;
3745 case 10:
3746 temp |= PIPE_10BPC;
3747 break;
3748 case 6:
3749 temp |= PIPE_6BPC;
3750 break;
3751 case 12:
3752 temp |= PIPE_12BPC;
3753 break;
3755 } else
3756 temp |= PIPE_8BPC;
3757 I915_WRITE(PIPECONF(pipe), temp);
3759 switch (temp & PIPE_BPC_MASK) {
3760 case PIPE_8BPC:
3761 bpp = 24;
3762 break;
3763 case PIPE_10BPC:
3764 bpp = 30;
3765 break;
3766 case PIPE_6BPC:
3767 bpp = 18;
3768 break;
3769 case PIPE_12BPC:
3770 bpp = 36;
3771 break;
3772 default:
3773 DRM_ERROR("unknown pipe bpc value\n");
3774 bpp = 24;
3777 if (!lane) {
3779 * Account for spread spectrum to avoid
3780 * oversubscribing the link. Max center spread
3781 * is 2.5%; use 5% for safety's sake.
3783 u32 bps = target_clock * bpp * 21 / 20;
3784 lane = bps / (link_bw * 8) + 1;
3787 intel_crtc->fdi_lanes = lane;
3789 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3792 /* Ironlake: try to setup display ref clock before DPLL
3793 * enabling. This is only under driver's control after
3794 * PCH B stepping, previous chipset stepping should be
3795 * ignoring this setting.
3797 if (HAS_PCH_SPLIT(dev)) {
3798 temp = I915_READ(PCH_DREF_CONTROL);
3799 /* Always enable nonspread source */
3800 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3801 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3802 temp &= ~DREF_SSC_SOURCE_MASK;
3803 temp |= DREF_SSC_SOURCE_ENABLE;
3804 I915_WRITE(PCH_DREF_CONTROL, temp);
3806 POSTING_READ(PCH_DREF_CONTROL);
3807 udelay(200);
3809 if (has_edp_encoder) {
3810 if (dev_priv->lvds_use_ssc) {
3811 temp |= DREF_SSC1_ENABLE;
3812 I915_WRITE(PCH_DREF_CONTROL, temp);
3814 POSTING_READ(PCH_DREF_CONTROL);
3815 udelay(200);
3817 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3819 /* Enable CPU source on CPU attached eDP */
3820 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3821 if (dev_priv->lvds_use_ssc)
3822 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3823 else
3824 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3825 } else {
3826 /* Enable SSC on PCH eDP if needed */
3827 if (dev_priv->lvds_use_ssc) {
3828 DRM_ERROR("enabling SSC on PCH\n");
3829 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3832 I915_WRITE(PCH_DREF_CONTROL, temp);
3833 POSTING_READ(PCH_DREF_CONTROL);
3834 udelay(200);
3838 if (IS_PINEVIEW(dev)) {
3839 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3840 if (has_reduced_clock)
3841 fp2 = (1 << reduced_clock.n) << 16 |
3842 reduced_clock.m1 << 8 | reduced_clock.m2;
3843 } else {
3844 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3845 if (has_reduced_clock)
3846 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3847 reduced_clock.m2;
3850 dpll = 0;
3851 if (!HAS_PCH_SPLIT(dev))
3852 dpll = DPLL_VGA_MODE_DIS;
3854 if (!IS_GEN2(dev)) {
3855 if (is_lvds)
3856 dpll |= DPLLB_MODE_LVDS;
3857 else
3858 dpll |= DPLLB_MODE_DAC_SERIAL;
3859 if (is_sdvo) {
3860 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3861 if (pixel_multiplier > 1) {
3862 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3863 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3864 else if (HAS_PCH_SPLIT(dev))
3865 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3867 dpll |= DPLL_DVO_HIGH_SPEED;
3869 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3870 dpll |= DPLL_DVO_HIGH_SPEED;
3872 /* compute bitmask from p1 value */
3873 if (IS_PINEVIEW(dev))
3874 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3875 else {
3876 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3877 /* also FPA1 */
3878 if (HAS_PCH_SPLIT(dev))
3879 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3880 if (IS_G4X(dev) && has_reduced_clock)
3881 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3883 switch (clock.p2) {
3884 case 5:
3885 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3886 break;
3887 case 7:
3888 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3889 break;
3890 case 10:
3891 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3892 break;
3893 case 14:
3894 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3895 break;
3897 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3898 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3899 } else {
3900 if (is_lvds) {
3901 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3902 } else {
3903 if (clock.p1 == 2)
3904 dpll |= PLL_P1_DIVIDE_BY_TWO;
3905 else
3906 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3907 if (clock.p2 == 4)
3908 dpll |= PLL_P2_DIVIDE_BY_4;
3912 if (is_sdvo && is_tv)
3913 dpll |= PLL_REF_INPUT_TVCLKINBC;
3914 else if (is_tv)
3915 /* XXX: just matching BIOS for now */
3916 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3917 dpll |= 3;
3918 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3919 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3920 else
3921 dpll |= PLL_REF_INPUT_DREFCLK;
3923 /* setup pipeconf */
3924 pipeconf = I915_READ(PIPECONF(pipe));
3926 /* Set up the display plane register */
3927 dspcntr = DISPPLANE_GAMMA_ENABLE;
3929 /* Ironlake's plane is forced to pipe, bit 24 is to
3930 enable color space conversion */
3931 if (!HAS_PCH_SPLIT(dev)) {
3932 if (pipe == 0)
3933 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3934 else
3935 dspcntr |= DISPPLANE_SEL_PIPE_B;
3938 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3939 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3940 * core speed.
3942 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3943 * pipe == 0 check?
3945 if (mode->clock >
3946 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3947 pipeconf |= PIPECONF_DOUBLE_WIDE;
3948 else
3949 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3952 dspcntr |= DISPLAY_PLANE_ENABLE;
3953 pipeconf |= PIPECONF_ENABLE;
3954 dpll |= DPLL_VCO_ENABLE;
3956 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3957 drm_mode_debug_printmodeline(mode);
3959 /* assign to Ironlake registers */
3960 if (HAS_PCH_SPLIT(dev)) {
3961 fp_reg = PCH_FP0(pipe);
3962 dpll_reg = PCH_DPLL(pipe);
3963 } else {
3964 fp_reg = FP0(pipe);
3965 dpll_reg = DPLL(pipe);
3968 /* PCH eDP needs FDI, but CPU eDP does not */
3969 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3970 I915_WRITE(fp_reg, fp);
3971 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3973 POSTING_READ(dpll_reg);
3974 udelay(150);
3977 /* enable transcoder DPLL */
3978 if (HAS_PCH_CPT(dev)) {
3979 temp = I915_READ(PCH_DPLL_SEL);
3980 if (pipe == 0)
3981 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3982 else
3983 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3984 I915_WRITE(PCH_DPLL_SEL, temp);
3986 POSTING_READ(PCH_DPLL_SEL);
3987 udelay(150);
3990 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3991 * This is an exception to the general rule that mode_set doesn't turn
3992 * things on.
3994 if (is_lvds) {
3995 reg = LVDS;
3996 if (HAS_PCH_SPLIT(dev))
3997 reg = PCH_LVDS;
3999 temp = I915_READ(reg);
4000 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4001 if (pipe == 1) {
4002 if (HAS_PCH_CPT(dev))
4003 temp |= PORT_TRANS_B_SEL_CPT;
4004 else
4005 temp |= LVDS_PIPEB_SELECT;
4006 } else {
4007 if (HAS_PCH_CPT(dev))
4008 temp &= ~PORT_TRANS_SEL_MASK;
4009 else
4010 temp &= ~LVDS_PIPEB_SELECT;
4012 /* set the corresponsding LVDS_BORDER bit */
4013 temp |= dev_priv->lvds_border_bits;
4014 /* Set the B0-B3 data pairs corresponding to whether we're going to
4015 * set the DPLLs for dual-channel mode or not.
4017 if (clock.p2 == 7)
4018 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4019 else
4020 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4022 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4023 * appropriately here, but we need to look more thoroughly into how
4024 * panels behave in the two modes.
4026 /* set the dithering flag on non-PCH LVDS as needed */
4027 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4028 if (dev_priv->lvds_dither)
4029 temp |= LVDS_ENABLE_DITHER;
4030 else
4031 temp &= ~LVDS_ENABLE_DITHER;
4033 I915_WRITE(reg, temp);
4036 /* set the dithering flag and clear for anything other than a panel. */
4037 if (HAS_PCH_SPLIT(dev)) {
4038 pipeconf &= ~PIPECONF_DITHER_EN;
4039 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4040 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4041 pipeconf |= PIPECONF_DITHER_EN;
4042 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4046 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4047 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4048 } else if (HAS_PCH_SPLIT(dev)) {
4049 /* For non-DP output, clear any trans DP clock recovery setting.*/
4050 if (pipe == 0) {
4051 I915_WRITE(TRANSA_DATA_M1, 0);
4052 I915_WRITE(TRANSA_DATA_N1, 0);
4053 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4054 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4055 } else {
4056 I915_WRITE(TRANSB_DATA_M1, 0);
4057 I915_WRITE(TRANSB_DATA_N1, 0);
4058 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4059 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4063 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4064 I915_WRITE(fp_reg, fp);
4065 I915_WRITE(dpll_reg, dpll);
4067 /* Wait for the clocks to stabilize. */
4068 POSTING_READ(dpll_reg);
4069 udelay(150);
4071 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4072 temp = 0;
4073 if (is_sdvo) {
4074 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4075 if (temp > 1)
4076 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4077 else
4078 temp = 0;
4080 I915_WRITE(DPLL_MD(pipe), temp);
4081 } else {
4082 /* write it again -- the BIOS does, after all */
4083 I915_WRITE(dpll_reg, dpll);
4086 /* Wait for the clocks to stabilize. */
4087 POSTING_READ(dpll_reg);
4088 udelay(150);
4091 intel_crtc->lowfreq_avail = false;
4092 if (is_lvds && has_reduced_clock && i915_powersave) {
4093 I915_WRITE(fp_reg + 4, fp2);
4094 intel_crtc->lowfreq_avail = true;
4095 if (HAS_PIPE_CXSR(dev)) {
4096 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4097 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4099 } else {
4100 I915_WRITE(fp_reg + 4, fp);
4101 if (HAS_PIPE_CXSR(dev)) {
4102 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4103 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4107 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4108 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4109 /* the chip adds 2 halflines automatically */
4110 adjusted_mode->crtc_vdisplay -= 1;
4111 adjusted_mode->crtc_vtotal -= 1;
4112 adjusted_mode->crtc_vblank_start -= 1;
4113 adjusted_mode->crtc_vblank_end -= 1;
4114 adjusted_mode->crtc_vsync_end -= 1;
4115 adjusted_mode->crtc_vsync_start -= 1;
4116 } else
4117 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4119 I915_WRITE(HTOTAL(pipe),
4120 (adjusted_mode->crtc_hdisplay - 1) |
4121 ((adjusted_mode->crtc_htotal - 1) << 16));
4122 I915_WRITE(HBLANK(pipe),
4123 (adjusted_mode->crtc_hblank_start - 1) |
4124 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4125 I915_WRITE(HSYNC(pipe),
4126 (adjusted_mode->crtc_hsync_start - 1) |
4127 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4129 I915_WRITE(VTOTAL(pipe),
4130 (adjusted_mode->crtc_vdisplay - 1) |
4131 ((adjusted_mode->crtc_vtotal - 1) << 16));
4132 I915_WRITE(VBLANK(pipe),
4133 (adjusted_mode->crtc_vblank_start - 1) |
4134 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4135 I915_WRITE(VSYNC(pipe),
4136 (adjusted_mode->crtc_vsync_start - 1) |
4137 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4139 /* pipesrc and dspsize control the size that is scaled from,
4140 * which should always be the user's requested size.
4142 if (!HAS_PCH_SPLIT(dev)) {
4143 I915_WRITE(DSPSIZE(plane),
4144 ((mode->vdisplay - 1) << 16) |
4145 (mode->hdisplay - 1));
4146 I915_WRITE(DSPPOS(plane), 0);
4148 I915_WRITE(PIPESRC(pipe),
4149 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4151 if (HAS_PCH_SPLIT(dev)) {
4152 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4153 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4154 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4155 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4157 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4158 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4162 I915_WRITE(PIPECONF(pipe), pipeconf);
4163 POSTING_READ(PIPECONF(pipe));
4165 intel_wait_for_vblank(dev, pipe);
4167 if (IS_GEN5(dev)) {
4168 /* enable address swizzle for tiling buffer */
4169 temp = I915_READ(DISP_ARB_CTL);
4170 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4173 I915_WRITE(DSPCNTR(plane), dspcntr);
4175 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4177 intel_update_watermarks(dev);
4179 drm_vblank_post_modeset(dev, pipe);
4181 return ret;
4184 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4185 void intel_crtc_load_lut(struct drm_crtc *crtc)
4187 struct drm_device *dev = crtc->dev;
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4190 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4191 int i;
4193 /* The clocks have to be on to load the palette. */
4194 if (!crtc->enabled)
4195 return;
4197 /* use legacy palette for Ironlake */
4198 if (HAS_PCH_SPLIT(dev))
4199 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4200 LGC_PALETTE_B;
4202 for (i = 0; i < 256; i++) {
4203 I915_WRITE(palreg + 4 * i,
4204 (intel_crtc->lut_r[i] << 16) |
4205 (intel_crtc->lut_g[i] << 8) |
4206 intel_crtc->lut_b[i]);
4210 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4212 struct drm_device *dev = crtc->dev;
4213 struct drm_i915_private *dev_priv = dev->dev_private;
4214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4215 bool visible = base != 0;
4216 u32 cntl;
4218 if (intel_crtc->cursor_visible == visible)
4219 return;
4221 cntl = I915_READ(CURACNTR);
4222 if (visible) {
4223 /* On these chipsets we can only modify the base whilst
4224 * the cursor is disabled.
4226 I915_WRITE(CURABASE, base);
4228 cntl &= ~(CURSOR_FORMAT_MASK);
4229 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4230 cntl |= CURSOR_ENABLE |
4231 CURSOR_GAMMA_ENABLE |
4232 CURSOR_FORMAT_ARGB;
4233 } else
4234 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4235 I915_WRITE(CURACNTR, cntl);
4237 intel_crtc->cursor_visible = visible;
4240 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4242 struct drm_device *dev = crtc->dev;
4243 struct drm_i915_private *dev_priv = dev->dev_private;
4244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4245 int pipe = intel_crtc->pipe;
4246 bool visible = base != 0;
4248 if (intel_crtc->cursor_visible != visible) {
4249 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4250 if (base) {
4251 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4252 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4253 cntl |= pipe << 28; /* Connect to correct pipe */
4254 } else {
4255 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4256 cntl |= CURSOR_MODE_DISABLE;
4258 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4260 intel_crtc->cursor_visible = visible;
4262 /* and commit changes on next vblank */
4263 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4266 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4267 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4268 bool on)
4270 struct drm_device *dev = crtc->dev;
4271 struct drm_i915_private *dev_priv = dev->dev_private;
4272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4273 int pipe = intel_crtc->pipe;
4274 int x = intel_crtc->cursor_x;
4275 int y = intel_crtc->cursor_y;
4276 u32 base, pos;
4277 bool visible;
4279 pos = 0;
4281 if (on && crtc->enabled && crtc->fb) {
4282 base = intel_crtc->cursor_addr;
4283 if (x > (int) crtc->fb->width)
4284 base = 0;
4286 if (y > (int) crtc->fb->height)
4287 base = 0;
4288 } else
4289 base = 0;
4291 if (x < 0) {
4292 if (x + intel_crtc->cursor_width < 0)
4293 base = 0;
4295 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4296 x = -x;
4298 pos |= x << CURSOR_X_SHIFT;
4300 if (y < 0) {
4301 if (y + intel_crtc->cursor_height < 0)
4302 base = 0;
4304 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4305 y = -y;
4307 pos |= y << CURSOR_Y_SHIFT;
4309 visible = base != 0;
4310 if (!visible && !intel_crtc->cursor_visible)
4311 return;
4313 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4314 if (IS_845G(dev) || IS_I865G(dev))
4315 i845_update_cursor(crtc, base);
4316 else
4317 i9xx_update_cursor(crtc, base);
4319 if (visible)
4320 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4323 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4324 struct drm_file *file_priv,
4325 uint32_t handle,
4326 uint32_t width, uint32_t height)
4328 struct drm_device *dev = crtc->dev;
4329 struct drm_i915_private *dev_priv = dev->dev_private;
4330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4331 struct drm_gem_object *bo;
4332 struct drm_i915_gem_object *obj_priv;
4333 uint32_t addr;
4334 int ret;
4336 DRM_DEBUG_KMS("\n");
4338 /* if we want to turn off the cursor ignore width and height */
4339 if (!handle) {
4340 DRM_DEBUG_KMS("cursor off\n");
4341 addr = 0;
4342 bo = NULL;
4343 mutex_lock(&dev->struct_mutex);
4344 goto finish;
4347 /* Currently we only support 64x64 cursors */
4348 if (width != 64 || height != 64) {
4349 DRM_ERROR("we currently only support 64x64 cursors\n");
4350 return -EINVAL;
4353 bo = drm_gem_object_lookup(dev, file_priv, handle);
4354 if (!bo)
4355 return -ENOENT;
4357 obj_priv = to_intel_bo(bo);
4359 if (bo->size < width * height * 4) {
4360 DRM_ERROR("buffer is to small\n");
4361 ret = -ENOMEM;
4362 goto fail;
4365 /* we only need to pin inside GTT if cursor is non-phy */
4366 mutex_lock(&dev->struct_mutex);
4367 if (!dev_priv->info->cursor_needs_physical) {
4368 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4369 if (ret) {
4370 DRM_ERROR("failed to pin cursor bo\n");
4371 goto fail_locked;
4374 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4375 if (ret) {
4376 DRM_ERROR("failed to move cursor bo into the GTT\n");
4377 goto fail_unpin;
4380 addr = obj_priv->gtt_offset;
4381 } else {
4382 int align = IS_I830(dev) ? 16 * 1024 : 256;
4383 ret = i915_gem_attach_phys_object(dev, bo,
4384 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4385 align);
4386 if (ret) {
4387 DRM_ERROR("failed to attach phys object\n");
4388 goto fail_locked;
4390 addr = obj_priv->phys_obj->handle->busaddr;
4393 if (IS_GEN2(dev))
4394 I915_WRITE(CURSIZE, (height << 12) | width);
4396 finish:
4397 if (intel_crtc->cursor_bo) {
4398 if (dev_priv->info->cursor_needs_physical) {
4399 if (intel_crtc->cursor_bo != bo)
4400 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4401 } else
4402 i915_gem_object_unpin(intel_crtc->cursor_bo);
4403 drm_gem_object_unreference(intel_crtc->cursor_bo);
4406 mutex_unlock(&dev->struct_mutex);
4408 intel_crtc->cursor_addr = addr;
4409 intel_crtc->cursor_bo = bo;
4410 intel_crtc->cursor_width = width;
4411 intel_crtc->cursor_height = height;
4413 intel_crtc_update_cursor(crtc, true);
4415 return 0;
4416 fail_unpin:
4417 i915_gem_object_unpin(bo);
4418 fail_locked:
4419 mutex_unlock(&dev->struct_mutex);
4420 fail:
4421 drm_gem_object_unreference_unlocked(bo);
4422 return ret;
4425 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4427 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4429 intel_crtc->cursor_x = x;
4430 intel_crtc->cursor_y = y;
4432 intel_crtc_update_cursor(crtc, true);
4434 return 0;
4437 /** Sets the color ramps on behalf of RandR */
4438 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4439 u16 blue, int regno)
4441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4443 intel_crtc->lut_r[regno] = red >> 8;
4444 intel_crtc->lut_g[regno] = green >> 8;
4445 intel_crtc->lut_b[regno] = blue >> 8;
4448 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4449 u16 *blue, int regno)
4451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4453 *red = intel_crtc->lut_r[regno] << 8;
4454 *green = intel_crtc->lut_g[regno] << 8;
4455 *blue = intel_crtc->lut_b[regno] << 8;
4458 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4459 u16 *blue, uint32_t start, uint32_t size)
4461 int end = (start + size > 256) ? 256 : start + size, i;
4462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4464 for (i = start; i < end; i++) {
4465 intel_crtc->lut_r[i] = red[i] >> 8;
4466 intel_crtc->lut_g[i] = green[i] >> 8;
4467 intel_crtc->lut_b[i] = blue[i] >> 8;
4470 intel_crtc_load_lut(crtc);
4474 * Get a pipe with a simple mode set on it for doing load-based monitor
4475 * detection.
4477 * It will be up to the load-detect code to adjust the pipe as appropriate for
4478 * its requirements. The pipe will be connected to no other encoders.
4480 * Currently this code will only succeed if there is a pipe with no encoders
4481 * configured for it. In the future, it could choose to temporarily disable
4482 * some outputs to free up a pipe for its use.
4484 * \return crtc, or NULL if no pipes are available.
4487 /* VESA 640x480x72Hz mode to set on the pipe */
4488 static struct drm_display_mode load_detect_mode = {
4489 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4490 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4493 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4494 struct drm_connector *connector,
4495 struct drm_display_mode *mode,
4496 int *dpms_mode)
4498 struct intel_crtc *intel_crtc;
4499 struct drm_crtc *possible_crtc;
4500 struct drm_crtc *supported_crtc =NULL;
4501 struct drm_encoder *encoder = &intel_encoder->base;
4502 struct drm_crtc *crtc = NULL;
4503 struct drm_device *dev = encoder->dev;
4504 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4505 struct drm_crtc_helper_funcs *crtc_funcs;
4506 int i = -1;
4509 * Algorithm gets a little messy:
4510 * - if the connector already has an assigned crtc, use it (but make
4511 * sure it's on first)
4512 * - try to find the first unused crtc that can drive this connector,
4513 * and use that if we find one
4514 * - if there are no unused crtcs available, try to use the first
4515 * one we found that supports the connector
4518 /* See if we already have a CRTC for this connector */
4519 if (encoder->crtc) {
4520 crtc = encoder->crtc;
4521 /* Make sure the crtc and connector are running */
4522 intel_crtc = to_intel_crtc(crtc);
4523 *dpms_mode = intel_crtc->dpms_mode;
4524 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4525 crtc_funcs = crtc->helper_private;
4526 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4527 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4529 return crtc;
4532 /* Find an unused one (if possible) */
4533 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4534 i++;
4535 if (!(encoder->possible_crtcs & (1 << i)))
4536 continue;
4537 if (!possible_crtc->enabled) {
4538 crtc = possible_crtc;
4539 break;
4541 if (!supported_crtc)
4542 supported_crtc = possible_crtc;
4546 * If we didn't find an unused CRTC, don't use any.
4548 if (!crtc) {
4549 return NULL;
4552 encoder->crtc = crtc;
4553 connector->encoder = encoder;
4554 intel_encoder->load_detect_temp = true;
4556 intel_crtc = to_intel_crtc(crtc);
4557 *dpms_mode = intel_crtc->dpms_mode;
4559 if (!crtc->enabled) {
4560 if (!mode)
4561 mode = &load_detect_mode;
4562 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4563 } else {
4564 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4565 crtc_funcs = crtc->helper_private;
4566 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4569 /* Add this connector to the crtc */
4570 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4571 encoder_funcs->commit(encoder);
4573 /* let the connector get through one full cycle before testing */
4574 intel_wait_for_vblank(dev, intel_crtc->pipe);
4576 return crtc;
4579 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4580 struct drm_connector *connector, int dpms_mode)
4582 struct drm_encoder *encoder = &intel_encoder->base;
4583 struct drm_device *dev = encoder->dev;
4584 struct drm_crtc *crtc = encoder->crtc;
4585 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4586 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4588 if (intel_encoder->load_detect_temp) {
4589 encoder->crtc = NULL;
4590 connector->encoder = NULL;
4591 intel_encoder->load_detect_temp = false;
4592 crtc->enabled = drm_helper_crtc_in_use(crtc);
4593 drm_helper_disable_unused_functions(dev);
4596 /* Switch crtc and encoder back off if necessary */
4597 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4598 if (encoder->crtc == crtc)
4599 encoder_funcs->dpms(encoder, dpms_mode);
4600 crtc_funcs->dpms(crtc, dpms_mode);
4604 /* Returns the clock of the currently programmed mode of the given pipe. */
4605 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4607 struct drm_i915_private *dev_priv = dev->dev_private;
4608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4609 int pipe = intel_crtc->pipe;
4610 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4611 u32 fp;
4612 intel_clock_t clock;
4614 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4615 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4616 else
4617 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4619 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4620 if (IS_PINEVIEW(dev)) {
4621 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4622 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4623 } else {
4624 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4625 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4628 if (!IS_GEN2(dev)) {
4629 if (IS_PINEVIEW(dev))
4630 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4631 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4632 else
4633 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4634 DPLL_FPA01_P1_POST_DIV_SHIFT);
4636 switch (dpll & DPLL_MODE_MASK) {
4637 case DPLLB_MODE_DAC_SERIAL:
4638 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4639 5 : 10;
4640 break;
4641 case DPLLB_MODE_LVDS:
4642 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4643 7 : 14;
4644 break;
4645 default:
4646 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4647 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4648 return 0;
4651 /* XXX: Handle the 100Mhz refclk */
4652 intel_clock(dev, 96000, &clock);
4653 } else {
4654 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4656 if (is_lvds) {
4657 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4658 DPLL_FPA01_P1_POST_DIV_SHIFT);
4659 clock.p2 = 14;
4661 if ((dpll & PLL_REF_INPUT_MASK) ==
4662 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4663 /* XXX: might not be 66MHz */
4664 intel_clock(dev, 66000, &clock);
4665 } else
4666 intel_clock(dev, 48000, &clock);
4667 } else {
4668 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4669 clock.p1 = 2;
4670 else {
4671 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4672 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4674 if (dpll & PLL_P2_DIVIDE_BY_4)
4675 clock.p2 = 4;
4676 else
4677 clock.p2 = 2;
4679 intel_clock(dev, 48000, &clock);
4683 /* XXX: It would be nice to validate the clocks, but we can't reuse
4684 * i830PllIsValid() because it relies on the xf86_config connector
4685 * configuration being accurate, which it isn't necessarily.
4688 return clock.dot;
4691 /** Returns the currently programmed mode of the given pipe. */
4692 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4693 struct drm_crtc *crtc)
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4697 int pipe = intel_crtc->pipe;
4698 struct drm_display_mode *mode;
4699 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4700 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4701 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4702 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4704 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4705 if (!mode)
4706 return NULL;
4708 mode->clock = intel_crtc_clock_get(dev, crtc);
4709 mode->hdisplay = (htot & 0xffff) + 1;
4710 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4711 mode->hsync_start = (hsync & 0xffff) + 1;
4712 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4713 mode->vdisplay = (vtot & 0xffff) + 1;
4714 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4715 mode->vsync_start = (vsync & 0xffff) + 1;
4716 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4718 drm_mode_set_name(mode);
4719 drm_mode_set_crtcinfo(mode, 0);
4721 return mode;
4724 #define GPU_IDLE_TIMEOUT 500 /* ms */
4726 /* When this timer fires, we've been idle for awhile */
4727 static void intel_gpu_idle_timer(unsigned long arg)
4729 struct drm_device *dev = (struct drm_device *)arg;
4730 drm_i915_private_t *dev_priv = dev->dev_private;
4732 dev_priv->busy = false;
4734 queue_work(dev_priv->wq, &dev_priv->idle_work);
4737 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4739 static void intel_crtc_idle_timer(unsigned long arg)
4741 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4742 struct drm_crtc *crtc = &intel_crtc->base;
4743 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4745 intel_crtc->busy = false;
4747 queue_work(dev_priv->wq, &dev_priv->idle_work);
4750 static void intel_increase_pllclock(struct drm_crtc *crtc)
4752 struct drm_device *dev = crtc->dev;
4753 drm_i915_private_t *dev_priv = dev->dev_private;
4754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4755 int pipe = intel_crtc->pipe;
4756 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4757 int dpll = I915_READ(dpll_reg);
4759 if (HAS_PCH_SPLIT(dev))
4760 return;
4762 if (!dev_priv->lvds_downclock_avail)
4763 return;
4765 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4766 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4768 /* Unlock panel regs */
4769 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4770 PANEL_UNLOCK_REGS);
4772 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4773 I915_WRITE(dpll_reg, dpll);
4774 dpll = I915_READ(dpll_reg);
4775 intel_wait_for_vblank(dev, pipe);
4776 dpll = I915_READ(dpll_reg);
4777 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4778 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4780 /* ...and lock them again */
4781 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4784 /* Schedule downclock */
4785 mod_timer(&intel_crtc->idle_timer, jiffies +
4786 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4789 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4791 struct drm_device *dev = crtc->dev;
4792 drm_i915_private_t *dev_priv = dev->dev_private;
4793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4794 int pipe = intel_crtc->pipe;
4795 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4796 int dpll = I915_READ(dpll_reg);
4798 if (HAS_PCH_SPLIT(dev))
4799 return;
4801 if (!dev_priv->lvds_downclock_avail)
4802 return;
4805 * Since this is called by a timer, we should never get here in
4806 * the manual case.
4808 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4809 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4811 /* Unlock panel regs */
4812 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4813 PANEL_UNLOCK_REGS);
4815 dpll |= DISPLAY_RATE_SELECT_FPA1;
4816 I915_WRITE(dpll_reg, dpll);
4817 dpll = I915_READ(dpll_reg);
4818 intel_wait_for_vblank(dev, pipe);
4819 dpll = I915_READ(dpll_reg);
4820 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4821 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4823 /* ...and lock them again */
4824 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4830 * intel_idle_update - adjust clocks for idleness
4831 * @work: work struct
4833 * Either the GPU or display (or both) went idle. Check the busy status
4834 * here and adjust the CRTC and GPU clocks as necessary.
4836 static void intel_idle_update(struct work_struct *work)
4838 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4839 idle_work);
4840 struct drm_device *dev = dev_priv->dev;
4841 struct drm_crtc *crtc;
4842 struct intel_crtc *intel_crtc;
4843 int enabled = 0;
4845 if (!i915_powersave)
4846 return;
4848 mutex_lock(&dev->struct_mutex);
4850 i915_update_gfx_val(dev_priv);
4852 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4853 /* Skip inactive CRTCs */
4854 if (!crtc->fb)
4855 continue;
4857 enabled++;
4858 intel_crtc = to_intel_crtc(crtc);
4859 if (!intel_crtc->busy)
4860 intel_decrease_pllclock(crtc);
4863 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4864 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4865 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4868 mutex_unlock(&dev->struct_mutex);
4872 * intel_mark_busy - mark the GPU and possibly the display busy
4873 * @dev: drm device
4874 * @obj: object we're operating on
4876 * Callers can use this function to indicate that the GPU is busy processing
4877 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4878 * buffer), we'll also mark the display as busy, so we know to increase its
4879 * clock frequency.
4881 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4883 drm_i915_private_t *dev_priv = dev->dev_private;
4884 struct drm_crtc *crtc = NULL;
4885 struct intel_framebuffer *intel_fb;
4886 struct intel_crtc *intel_crtc;
4888 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4889 return;
4891 if (!dev_priv->busy) {
4892 if (IS_I945G(dev) || IS_I945GM(dev)) {
4893 u32 fw_blc_self;
4895 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4896 fw_blc_self = I915_READ(FW_BLC_SELF);
4897 fw_blc_self &= ~FW_BLC_SELF_EN;
4898 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4900 dev_priv->busy = true;
4901 } else
4902 mod_timer(&dev_priv->idle_timer, jiffies +
4903 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4905 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4906 if (!crtc->fb)
4907 continue;
4909 intel_crtc = to_intel_crtc(crtc);
4910 intel_fb = to_intel_framebuffer(crtc->fb);
4911 if (intel_fb->obj == obj) {
4912 if (!intel_crtc->busy) {
4913 if (IS_I945G(dev) || IS_I945GM(dev)) {
4914 u32 fw_blc_self;
4916 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4917 fw_blc_self = I915_READ(FW_BLC_SELF);
4918 fw_blc_self &= ~FW_BLC_SELF_EN;
4919 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4921 /* Non-busy -> busy, upclock */
4922 intel_increase_pllclock(crtc);
4923 intel_crtc->busy = true;
4924 } else {
4925 /* Busy -> busy, put off timer */
4926 mod_timer(&intel_crtc->idle_timer, jiffies +
4927 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4933 static void intel_crtc_destroy(struct drm_crtc *crtc)
4935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4936 struct drm_device *dev = crtc->dev;
4937 struct intel_unpin_work *work;
4938 unsigned long flags;
4940 spin_lock_irqsave(&dev->event_lock, flags);
4941 work = intel_crtc->unpin_work;
4942 intel_crtc->unpin_work = NULL;
4943 spin_unlock_irqrestore(&dev->event_lock, flags);
4945 if (work) {
4946 cancel_work_sync(&work->work);
4947 kfree(work);
4950 drm_crtc_cleanup(crtc);
4952 kfree(intel_crtc);
4955 static void intel_unpin_work_fn(struct work_struct *__work)
4957 struct intel_unpin_work *work =
4958 container_of(__work, struct intel_unpin_work, work);
4960 mutex_lock(&work->dev->struct_mutex);
4961 i915_gem_object_unpin(work->old_fb_obj);
4962 drm_gem_object_unreference(work->pending_flip_obj);
4963 drm_gem_object_unreference(work->old_fb_obj);
4964 mutex_unlock(&work->dev->struct_mutex);
4965 kfree(work);
4968 static void do_intel_finish_page_flip(struct drm_device *dev,
4969 struct drm_crtc *crtc)
4971 drm_i915_private_t *dev_priv = dev->dev_private;
4972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4973 struct intel_unpin_work *work;
4974 struct drm_i915_gem_object *obj_priv;
4975 struct drm_pending_vblank_event *e;
4976 struct timeval now;
4977 unsigned long flags;
4979 /* Ignore early vblank irqs */
4980 if (intel_crtc == NULL)
4981 return;
4983 spin_lock_irqsave(&dev->event_lock, flags);
4984 work = intel_crtc->unpin_work;
4985 if (work == NULL || !work->pending) {
4986 spin_unlock_irqrestore(&dev->event_lock, flags);
4987 return;
4990 intel_crtc->unpin_work = NULL;
4991 drm_vblank_put(dev, intel_crtc->pipe);
4993 if (work->event) {
4994 e = work->event;
4995 do_gettimeofday(&now);
4996 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4997 e->event.tv_sec = now.tv_sec;
4998 e->event.tv_usec = now.tv_usec;
4999 list_add_tail(&e->base.link,
5000 &e->base.file_priv->event_list);
5001 wake_up_interruptible(&e->base.file_priv->event_wait);
5004 spin_unlock_irqrestore(&dev->event_lock, flags);
5006 obj_priv = to_intel_bo(work->old_fb_obj);
5007 atomic_clear_mask(1 << intel_crtc->plane,
5008 &obj_priv->pending_flip.counter);
5009 if (atomic_read(&obj_priv->pending_flip) == 0)
5010 wake_up(&dev_priv->pending_flip_queue);
5011 schedule_work(&work->work);
5013 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5016 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5018 drm_i915_private_t *dev_priv = dev->dev_private;
5019 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5021 do_intel_finish_page_flip(dev, crtc);
5024 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5026 drm_i915_private_t *dev_priv = dev->dev_private;
5027 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5029 do_intel_finish_page_flip(dev, crtc);
5032 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5034 drm_i915_private_t *dev_priv = dev->dev_private;
5035 struct intel_crtc *intel_crtc =
5036 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5037 unsigned long flags;
5039 spin_lock_irqsave(&dev->event_lock, flags);
5040 if (intel_crtc->unpin_work) {
5041 if ((++intel_crtc->unpin_work->pending) > 1)
5042 DRM_ERROR("Prepared flip multiple times\n");
5043 } else {
5044 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5046 spin_unlock_irqrestore(&dev->event_lock, flags);
5049 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5050 struct drm_framebuffer *fb,
5051 struct drm_pending_vblank_event *event)
5053 struct drm_device *dev = crtc->dev;
5054 struct drm_i915_private *dev_priv = dev->dev_private;
5055 struct intel_framebuffer *intel_fb;
5056 struct drm_i915_gem_object *obj_priv;
5057 struct drm_gem_object *obj;
5058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5059 struct intel_unpin_work *work;
5060 unsigned long flags, offset;
5061 int pipe = intel_crtc->pipe;
5062 u32 pf, pipesrc;
5063 int ret;
5065 work = kzalloc(sizeof *work, GFP_KERNEL);
5066 if (work == NULL)
5067 return -ENOMEM;
5069 work->event = event;
5070 work->dev = crtc->dev;
5071 intel_fb = to_intel_framebuffer(crtc->fb);
5072 work->old_fb_obj = intel_fb->obj;
5073 INIT_WORK(&work->work, intel_unpin_work_fn);
5075 /* We borrow the event spin lock for protecting unpin_work */
5076 spin_lock_irqsave(&dev->event_lock, flags);
5077 if (intel_crtc->unpin_work) {
5078 spin_unlock_irqrestore(&dev->event_lock, flags);
5079 kfree(work);
5081 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5082 return -EBUSY;
5084 intel_crtc->unpin_work = work;
5085 spin_unlock_irqrestore(&dev->event_lock, flags);
5087 intel_fb = to_intel_framebuffer(fb);
5088 obj = intel_fb->obj;
5090 mutex_lock(&dev->struct_mutex);
5091 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5092 if (ret)
5093 goto cleanup_work;
5095 /* Reference the objects for the scheduled work. */
5096 drm_gem_object_reference(work->old_fb_obj);
5097 drm_gem_object_reference(obj);
5099 crtc->fb = fb;
5101 ret = drm_vblank_get(dev, intel_crtc->pipe);
5102 if (ret)
5103 goto cleanup_objs;
5105 /* Block clients from rendering to the new back buffer until
5106 * the flip occurs and the object is no longer visible.
5108 atomic_add(1 << intel_crtc->plane,
5109 &to_intel_bo(work->old_fb_obj)->pending_flip);
5111 work->pending_flip_obj = obj;
5112 obj_priv = to_intel_bo(obj);
5114 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5115 u32 flip_mask;
5117 /* Can't queue multiple flips, so wait for the previous
5118 * one to finish before executing the next.
5120 BEGIN_LP_RING(2);
5121 if (intel_crtc->plane)
5122 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5123 else
5124 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5125 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5126 OUT_RING(MI_NOOP);
5127 ADVANCE_LP_RING();
5130 work->enable_stall_check = true;
5132 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5133 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5135 BEGIN_LP_RING(4);
5136 switch(INTEL_INFO(dev)->gen) {
5137 case 2:
5138 OUT_RING(MI_DISPLAY_FLIP |
5139 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5140 OUT_RING(fb->pitch);
5141 OUT_RING(obj_priv->gtt_offset + offset);
5142 OUT_RING(MI_NOOP);
5143 break;
5145 case 3:
5146 OUT_RING(MI_DISPLAY_FLIP_I915 |
5147 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5148 OUT_RING(fb->pitch);
5149 OUT_RING(obj_priv->gtt_offset + offset);
5150 OUT_RING(MI_NOOP);
5151 break;
5153 case 4:
5154 case 5:
5155 /* i965+ uses the linear or tiled offsets from the
5156 * Display Registers (which do not change across a page-flip)
5157 * so we need only reprogram the base address.
5159 OUT_RING(MI_DISPLAY_FLIP |
5160 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5161 OUT_RING(fb->pitch);
5162 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5164 /* XXX Enabling the panel-fitter across page-flip is so far
5165 * untested on non-native modes, so ignore it for now.
5166 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5168 pf = 0;
5169 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5170 OUT_RING(pf | pipesrc);
5171 break;
5173 case 6:
5174 OUT_RING(MI_DISPLAY_FLIP |
5175 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5176 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5177 OUT_RING(obj_priv->gtt_offset);
5179 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5180 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5181 OUT_RING(pf | pipesrc);
5182 break;
5184 ADVANCE_LP_RING();
5186 mutex_unlock(&dev->struct_mutex);
5188 trace_i915_flip_request(intel_crtc->plane, obj);
5190 return 0;
5192 cleanup_objs:
5193 drm_gem_object_unreference(work->old_fb_obj);
5194 drm_gem_object_unreference(obj);
5195 cleanup_work:
5196 mutex_unlock(&dev->struct_mutex);
5198 spin_lock_irqsave(&dev->event_lock, flags);
5199 intel_crtc->unpin_work = NULL;
5200 spin_unlock_irqrestore(&dev->event_lock, flags);
5202 kfree(work);
5204 return ret;
5207 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5208 .dpms = intel_crtc_dpms,
5209 .mode_fixup = intel_crtc_mode_fixup,
5210 .mode_set = intel_crtc_mode_set,
5211 .mode_set_base = intel_pipe_set_base,
5212 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5213 .load_lut = intel_crtc_load_lut,
5214 .disable = intel_crtc_disable,
5217 static const struct drm_crtc_funcs intel_crtc_funcs = {
5218 .cursor_set = intel_crtc_cursor_set,
5219 .cursor_move = intel_crtc_cursor_move,
5220 .gamma_set = intel_crtc_gamma_set,
5221 .set_config = drm_crtc_helper_set_config,
5222 .destroy = intel_crtc_destroy,
5223 .page_flip = intel_crtc_page_flip,
5227 static void intel_crtc_init(struct drm_device *dev, int pipe)
5229 drm_i915_private_t *dev_priv = dev->dev_private;
5230 struct intel_crtc *intel_crtc;
5231 int i;
5233 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5234 if (intel_crtc == NULL)
5235 return;
5237 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5239 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5240 for (i = 0; i < 256; i++) {
5241 intel_crtc->lut_r[i] = i;
5242 intel_crtc->lut_g[i] = i;
5243 intel_crtc->lut_b[i] = i;
5246 /* Swap pipes & planes for FBC on pre-965 */
5247 intel_crtc->pipe = pipe;
5248 intel_crtc->plane = pipe;
5249 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5250 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5251 intel_crtc->plane = !pipe;
5254 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5255 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5256 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5257 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5259 intel_crtc->cursor_addr = 0;
5260 intel_crtc->dpms_mode = -1;
5261 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5263 if (HAS_PCH_SPLIT(dev)) {
5264 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5265 intel_helper_funcs.commit = ironlake_crtc_commit;
5266 } else {
5267 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5268 intel_helper_funcs.commit = i9xx_crtc_commit;
5271 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5273 intel_crtc->busy = false;
5275 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5276 (unsigned long)intel_crtc);
5279 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5280 struct drm_file *file_priv)
5282 drm_i915_private_t *dev_priv = dev->dev_private;
5283 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5284 struct drm_mode_object *drmmode_obj;
5285 struct intel_crtc *crtc;
5287 if (!dev_priv) {
5288 DRM_ERROR("called with no initialization\n");
5289 return -EINVAL;
5292 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5293 DRM_MODE_OBJECT_CRTC);
5295 if (!drmmode_obj) {
5296 DRM_ERROR("no such CRTC id\n");
5297 return -EINVAL;
5300 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5301 pipe_from_crtc_id->pipe = crtc->pipe;
5303 return 0;
5306 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5308 struct intel_encoder *encoder;
5309 int index_mask = 0;
5310 int entry = 0;
5312 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5313 if (type_mask & encoder->clone_mask)
5314 index_mask |= (1 << entry);
5315 entry++;
5318 return index_mask;
5321 static void intel_setup_outputs(struct drm_device *dev)
5323 struct drm_i915_private *dev_priv = dev->dev_private;
5324 struct intel_encoder *encoder;
5325 bool dpd_is_edp = false;
5327 if (IS_MOBILE(dev) && !IS_I830(dev))
5328 intel_lvds_init(dev);
5330 if (HAS_PCH_SPLIT(dev)) {
5331 dpd_is_edp = intel_dpd_is_edp(dev);
5333 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5334 intel_dp_init(dev, DP_A);
5336 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5337 intel_dp_init(dev, PCH_DP_D);
5340 intel_crt_init(dev);
5342 if (HAS_PCH_SPLIT(dev)) {
5343 int found;
5345 if (I915_READ(HDMIB) & PORT_DETECTED) {
5346 /* PCH SDVOB multiplex with HDMIB */
5347 found = intel_sdvo_init(dev, PCH_SDVOB);
5348 if (!found)
5349 intel_hdmi_init(dev, HDMIB);
5350 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5351 intel_dp_init(dev, PCH_DP_B);
5354 if (I915_READ(HDMIC) & PORT_DETECTED)
5355 intel_hdmi_init(dev, HDMIC);
5357 if (I915_READ(HDMID) & PORT_DETECTED)
5358 intel_hdmi_init(dev, HDMID);
5360 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5361 intel_dp_init(dev, PCH_DP_C);
5363 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5364 intel_dp_init(dev, PCH_DP_D);
5366 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5367 bool found = false;
5369 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5370 DRM_DEBUG_KMS("probing SDVOB\n");
5371 found = intel_sdvo_init(dev, SDVOB);
5372 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5373 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5374 intel_hdmi_init(dev, SDVOB);
5377 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5378 DRM_DEBUG_KMS("probing DP_B\n");
5379 intel_dp_init(dev, DP_B);
5383 /* Before G4X SDVOC doesn't have its own detect register */
5385 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5386 DRM_DEBUG_KMS("probing SDVOC\n");
5387 found = intel_sdvo_init(dev, SDVOC);
5390 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5392 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5393 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5394 intel_hdmi_init(dev, SDVOC);
5396 if (SUPPORTS_INTEGRATED_DP(dev)) {
5397 DRM_DEBUG_KMS("probing DP_C\n");
5398 intel_dp_init(dev, DP_C);
5402 if (SUPPORTS_INTEGRATED_DP(dev) &&
5403 (I915_READ(DP_D) & DP_DETECTED)) {
5404 DRM_DEBUG_KMS("probing DP_D\n");
5405 intel_dp_init(dev, DP_D);
5407 } else if (IS_GEN2(dev))
5408 intel_dvo_init(dev);
5410 if (SUPPORTS_TV(dev))
5411 intel_tv_init(dev);
5413 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5414 encoder->base.possible_crtcs = encoder->crtc_mask;
5415 encoder->base.possible_clones =
5416 intel_encoder_clones(dev, encoder->clone_mask);
5420 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5422 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5424 drm_framebuffer_cleanup(fb);
5425 drm_gem_object_unreference_unlocked(intel_fb->obj);
5427 kfree(intel_fb);
5430 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5431 struct drm_file *file_priv,
5432 unsigned int *handle)
5434 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5435 struct drm_gem_object *object = intel_fb->obj;
5437 return drm_gem_handle_create(file_priv, object, handle);
5440 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5441 .destroy = intel_user_framebuffer_destroy,
5442 .create_handle = intel_user_framebuffer_create_handle,
5445 int intel_framebuffer_init(struct drm_device *dev,
5446 struct intel_framebuffer *intel_fb,
5447 struct drm_mode_fb_cmd *mode_cmd,
5448 struct drm_gem_object *obj)
5450 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5451 int ret;
5453 if (obj_priv->tiling_mode == I915_TILING_Y)
5454 return -EINVAL;
5456 if (mode_cmd->pitch & 63)
5457 return -EINVAL;
5459 switch (mode_cmd->bpp) {
5460 case 8:
5461 case 16:
5462 case 24:
5463 case 32:
5464 break;
5465 default:
5466 return -EINVAL;
5469 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5470 if (ret) {
5471 DRM_ERROR("framebuffer init failed %d\n", ret);
5472 return ret;
5475 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5476 intel_fb->obj = obj;
5477 return 0;
5480 static struct drm_framebuffer *
5481 intel_user_framebuffer_create(struct drm_device *dev,
5482 struct drm_file *filp,
5483 struct drm_mode_fb_cmd *mode_cmd)
5485 struct drm_gem_object *obj;
5486 struct intel_framebuffer *intel_fb;
5487 int ret;
5489 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5490 if (!obj)
5491 return ERR_PTR(-ENOENT);
5493 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5494 if (!intel_fb)
5495 return ERR_PTR(-ENOMEM);
5497 ret = intel_framebuffer_init(dev, intel_fb,
5498 mode_cmd, obj);
5499 if (ret) {
5500 drm_gem_object_unreference_unlocked(obj);
5501 kfree(intel_fb);
5502 return ERR_PTR(ret);
5505 return &intel_fb->base;
5508 static const struct drm_mode_config_funcs intel_mode_funcs = {
5509 .fb_create = intel_user_framebuffer_create,
5510 .output_poll_changed = intel_fb_output_poll_changed,
5513 static struct drm_gem_object *
5514 intel_alloc_context_page(struct drm_device *dev)
5516 struct drm_gem_object *ctx;
5517 int ret;
5519 ctx = i915_gem_alloc_object(dev, 4096);
5520 if (!ctx) {
5521 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5522 return NULL;
5525 mutex_lock(&dev->struct_mutex);
5526 ret = i915_gem_object_pin(ctx, 4096);
5527 if (ret) {
5528 DRM_ERROR("failed to pin power context: %d\n", ret);
5529 goto err_unref;
5532 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5533 if (ret) {
5534 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5535 goto err_unpin;
5537 mutex_unlock(&dev->struct_mutex);
5539 return ctx;
5541 err_unpin:
5542 i915_gem_object_unpin(ctx);
5543 err_unref:
5544 drm_gem_object_unreference(ctx);
5545 mutex_unlock(&dev->struct_mutex);
5546 return NULL;
5549 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5551 struct drm_i915_private *dev_priv = dev->dev_private;
5552 u16 rgvswctl;
5554 rgvswctl = I915_READ16(MEMSWCTL);
5555 if (rgvswctl & MEMCTL_CMD_STS) {
5556 DRM_DEBUG("gpu busy, RCS change rejected\n");
5557 return false; /* still busy with another command */
5560 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5561 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5562 I915_WRITE16(MEMSWCTL, rgvswctl);
5563 POSTING_READ16(MEMSWCTL);
5565 rgvswctl |= MEMCTL_CMD_STS;
5566 I915_WRITE16(MEMSWCTL, rgvswctl);
5568 return true;
5571 void ironlake_enable_drps(struct drm_device *dev)
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574 u32 rgvmodectl = I915_READ(MEMMODECTL);
5575 u8 fmax, fmin, fstart, vstart;
5577 /* Enable temp reporting */
5578 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5579 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5581 /* 100ms RC evaluation intervals */
5582 I915_WRITE(RCUPEI, 100000);
5583 I915_WRITE(RCDNEI, 100000);
5585 /* Set max/min thresholds to 90ms and 80ms respectively */
5586 I915_WRITE(RCBMAXAVG, 90000);
5587 I915_WRITE(RCBMINAVG, 80000);
5589 I915_WRITE(MEMIHYST, 1);
5591 /* Set up min, max, and cur for interrupt handling */
5592 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5593 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5594 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5595 MEMMODE_FSTART_SHIFT;
5597 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5598 PXVFREQ_PX_SHIFT;
5600 dev_priv->fmax = fmax; /* IPS callback will increase this */
5601 dev_priv->fstart = fstart;
5603 dev_priv->max_delay = fstart;
5604 dev_priv->min_delay = fmin;
5605 dev_priv->cur_delay = fstart;
5607 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5608 fmax, fmin, fstart);
5610 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5613 * Interrupts will be enabled in ironlake_irq_postinstall
5616 I915_WRITE(VIDSTART, vstart);
5617 POSTING_READ(VIDSTART);
5619 rgvmodectl |= MEMMODE_SWMODE_EN;
5620 I915_WRITE(MEMMODECTL, rgvmodectl);
5622 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5623 DRM_ERROR("stuck trying to change perf mode\n");
5624 msleep(1);
5626 ironlake_set_drps(dev, fstart);
5628 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5629 I915_READ(0x112e0);
5630 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5631 dev_priv->last_count2 = I915_READ(0x112f4);
5632 getrawmonotonic(&dev_priv->last_time2);
5635 void ironlake_disable_drps(struct drm_device *dev)
5637 struct drm_i915_private *dev_priv = dev->dev_private;
5638 u16 rgvswctl = I915_READ16(MEMSWCTL);
5640 /* Ack interrupts, disable EFC interrupt */
5641 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5642 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5643 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5644 I915_WRITE(DEIIR, DE_PCU_EVENT);
5645 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5647 /* Go back to the starting frequency */
5648 ironlake_set_drps(dev, dev_priv->fstart);
5649 msleep(1);
5650 rgvswctl |= MEMCTL_CMD_STS;
5651 I915_WRITE(MEMSWCTL, rgvswctl);
5652 msleep(1);
5656 static unsigned long intel_pxfreq(u32 vidfreq)
5658 unsigned long freq;
5659 int div = (vidfreq & 0x3f0000) >> 16;
5660 int post = (vidfreq & 0x3000) >> 12;
5661 int pre = (vidfreq & 0x7);
5663 if (!pre)
5664 return 0;
5666 freq = ((div * 133333) / ((1<<post) * pre));
5668 return freq;
5671 void intel_init_emon(struct drm_device *dev)
5673 struct drm_i915_private *dev_priv = dev->dev_private;
5674 u32 lcfuse;
5675 u8 pxw[16];
5676 int i;
5678 /* Disable to program */
5679 I915_WRITE(ECR, 0);
5680 POSTING_READ(ECR);
5682 /* Program energy weights for various events */
5683 I915_WRITE(SDEW, 0x15040d00);
5684 I915_WRITE(CSIEW0, 0x007f0000);
5685 I915_WRITE(CSIEW1, 0x1e220004);
5686 I915_WRITE(CSIEW2, 0x04000004);
5688 for (i = 0; i < 5; i++)
5689 I915_WRITE(PEW + (i * 4), 0);
5690 for (i = 0; i < 3; i++)
5691 I915_WRITE(DEW + (i * 4), 0);
5693 /* Program P-state weights to account for frequency power adjustment */
5694 for (i = 0; i < 16; i++) {
5695 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5696 unsigned long freq = intel_pxfreq(pxvidfreq);
5697 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5698 PXVFREQ_PX_SHIFT;
5699 unsigned long val;
5701 val = vid * vid;
5702 val *= (freq / 1000);
5703 val *= 255;
5704 val /= (127*127*900);
5705 if (val > 0xff)
5706 DRM_ERROR("bad pxval: %ld\n", val);
5707 pxw[i] = val;
5709 /* Render standby states get 0 weight */
5710 pxw[14] = 0;
5711 pxw[15] = 0;
5713 for (i = 0; i < 4; i++) {
5714 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5715 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5716 I915_WRITE(PXW + (i * 4), val);
5719 /* Adjust magic regs to magic values (more experimental results) */
5720 I915_WRITE(OGW0, 0);
5721 I915_WRITE(OGW1, 0);
5722 I915_WRITE(EG0, 0x00007f00);
5723 I915_WRITE(EG1, 0x0000000e);
5724 I915_WRITE(EG2, 0x000e0000);
5725 I915_WRITE(EG3, 0x68000300);
5726 I915_WRITE(EG4, 0x42000000);
5727 I915_WRITE(EG5, 0x00140031);
5728 I915_WRITE(EG6, 0);
5729 I915_WRITE(EG7, 0);
5731 for (i = 0; i < 8; i++)
5732 I915_WRITE(PXWL + (i * 4), 0);
5734 /* Enable PMON + select events */
5735 I915_WRITE(ECR, 0x80000019);
5737 lcfuse = I915_READ(LCFUSE02);
5739 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5742 void intel_init_clock_gating(struct drm_device *dev)
5744 struct drm_i915_private *dev_priv = dev->dev_private;
5747 * Disable clock gating reported to work incorrectly according to the
5748 * specs, but enable as much else as we can.
5750 if (HAS_PCH_SPLIT(dev)) {
5751 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5753 if (IS_GEN5(dev)) {
5754 /* Required for FBC */
5755 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5756 /* Required for CxSR */
5757 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5759 I915_WRITE(PCH_3DCGDIS0,
5760 MARIUNIT_CLOCK_GATE_DISABLE |
5761 SVSMUNIT_CLOCK_GATE_DISABLE);
5764 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5767 * On Ibex Peak and Cougar Point, we need to disable clock
5768 * gating for the panel power sequencer or it will fail to
5769 * start up when no ports are active.
5771 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5774 * According to the spec the following bits should be set in
5775 * order to enable memory self-refresh
5776 * The bit 22/21 of 0x42004
5777 * The bit 5 of 0x42020
5778 * The bit 15 of 0x45000
5780 if (IS_GEN5(dev)) {
5781 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5782 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5783 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5784 I915_WRITE(ILK_DSPCLK_GATE,
5785 (I915_READ(ILK_DSPCLK_GATE) |
5786 ILK_DPARB_CLK_GATE));
5787 I915_WRITE(DISP_ARB_CTL,
5788 (I915_READ(DISP_ARB_CTL) |
5789 DISP_FBC_WM_DIS));
5790 I915_WRITE(WM3_LP_ILK, 0);
5791 I915_WRITE(WM2_LP_ILK, 0);
5792 I915_WRITE(WM1_LP_ILK, 0);
5795 * Based on the document from hardware guys the following bits
5796 * should be set unconditionally in order to enable FBC.
5797 * The bit 22 of 0x42000
5798 * The bit 22 of 0x42004
5799 * The bit 7,8,9 of 0x42020.
5801 if (IS_IRONLAKE_M(dev)) {
5802 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5803 I915_READ(ILK_DISPLAY_CHICKEN1) |
5804 ILK_FBCQ_DIS);
5805 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5806 I915_READ(ILK_DISPLAY_CHICKEN2) |
5807 ILK_DPARB_GATE);
5808 I915_WRITE(ILK_DSPCLK_GATE,
5809 I915_READ(ILK_DSPCLK_GATE) |
5810 ILK_DPFC_DIS1 |
5811 ILK_DPFC_DIS2 |
5812 ILK_CLK_FBC);
5814 return;
5815 } else if (IS_G4X(dev)) {
5816 uint32_t dspclk_gate;
5817 I915_WRITE(RENCLK_GATE_D1, 0);
5818 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5819 GS_UNIT_CLOCK_GATE_DISABLE |
5820 CL_UNIT_CLOCK_GATE_DISABLE);
5821 I915_WRITE(RAMCLK_GATE_D, 0);
5822 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5823 OVRUNIT_CLOCK_GATE_DISABLE |
5824 OVCUNIT_CLOCK_GATE_DISABLE;
5825 if (IS_GM45(dev))
5826 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5827 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5828 } else if (IS_CRESTLINE(dev)) {
5829 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5830 I915_WRITE(RENCLK_GATE_D2, 0);
5831 I915_WRITE(DSPCLK_GATE_D, 0);
5832 I915_WRITE(RAMCLK_GATE_D, 0);
5833 I915_WRITE16(DEUC, 0);
5834 } else if (IS_BROADWATER(dev)) {
5835 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5836 I965_RCC_CLOCK_GATE_DISABLE |
5837 I965_RCPB_CLOCK_GATE_DISABLE |
5838 I965_ISC_CLOCK_GATE_DISABLE |
5839 I965_FBC_CLOCK_GATE_DISABLE);
5840 I915_WRITE(RENCLK_GATE_D2, 0);
5841 } else if (IS_GEN3(dev)) {
5842 u32 dstate = I915_READ(D_STATE);
5844 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5845 DSTATE_DOT_CLOCK_GATING;
5846 I915_WRITE(D_STATE, dstate);
5847 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5848 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5849 } else if (IS_I830(dev)) {
5850 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5854 * GPU can automatically power down the render unit if given a page
5855 * to save state.
5857 if (IS_IRONLAKE_M(dev)) {
5858 if (dev_priv->renderctx == NULL)
5859 dev_priv->renderctx = intel_alloc_context_page(dev);
5860 if (dev_priv->renderctx) {
5861 struct drm_i915_gem_object *obj_priv;
5862 obj_priv = to_intel_bo(dev_priv->renderctx);
5863 if (obj_priv) {
5864 BEGIN_LP_RING(4);
5865 OUT_RING(MI_SET_CONTEXT);
5866 OUT_RING(obj_priv->gtt_offset |
5867 MI_MM_SPACE_GTT |
5868 MI_SAVE_EXT_STATE_EN |
5869 MI_RESTORE_EXT_STATE_EN |
5870 MI_RESTORE_INHIBIT);
5871 OUT_RING(MI_NOOP);
5872 OUT_RING(MI_FLUSH);
5873 ADVANCE_LP_RING();
5875 } else
5876 DRM_DEBUG_KMS("Failed to allocate render context."
5877 "Disable RC6\n");
5880 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5881 struct drm_i915_gem_object *obj_priv = NULL;
5883 if (dev_priv->pwrctx) {
5884 obj_priv = to_intel_bo(dev_priv->pwrctx);
5885 } else {
5886 struct drm_gem_object *pwrctx;
5888 pwrctx = intel_alloc_context_page(dev);
5889 if (pwrctx) {
5890 dev_priv->pwrctx = pwrctx;
5891 obj_priv = to_intel_bo(pwrctx);
5895 if (obj_priv) {
5896 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5897 I915_WRITE(MCHBAR_RENDER_STANDBY,
5898 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5903 /* Set up chip specific display functions */
5904 static void intel_init_display(struct drm_device *dev)
5906 struct drm_i915_private *dev_priv = dev->dev_private;
5908 /* We always want a DPMS function */
5909 if (HAS_PCH_SPLIT(dev))
5910 dev_priv->display.dpms = ironlake_crtc_dpms;
5911 else
5912 dev_priv->display.dpms = i9xx_crtc_dpms;
5914 if (I915_HAS_FBC(dev)) {
5915 if (IS_IRONLAKE_M(dev)) {
5916 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5917 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5918 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5919 } else if (IS_GM45(dev)) {
5920 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5921 dev_priv->display.enable_fbc = g4x_enable_fbc;
5922 dev_priv->display.disable_fbc = g4x_disable_fbc;
5923 } else if (IS_CRESTLINE(dev)) {
5924 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5925 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5926 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5928 /* 855GM needs testing */
5931 /* Returns the core display clock speed */
5932 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5933 dev_priv->display.get_display_clock_speed =
5934 i945_get_display_clock_speed;
5935 else if (IS_I915G(dev))
5936 dev_priv->display.get_display_clock_speed =
5937 i915_get_display_clock_speed;
5938 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5939 dev_priv->display.get_display_clock_speed =
5940 i9xx_misc_get_display_clock_speed;
5941 else if (IS_I915GM(dev))
5942 dev_priv->display.get_display_clock_speed =
5943 i915gm_get_display_clock_speed;
5944 else if (IS_I865G(dev))
5945 dev_priv->display.get_display_clock_speed =
5946 i865_get_display_clock_speed;
5947 else if (IS_I85X(dev))
5948 dev_priv->display.get_display_clock_speed =
5949 i855_get_display_clock_speed;
5950 else /* 852, 830 */
5951 dev_priv->display.get_display_clock_speed =
5952 i830_get_display_clock_speed;
5954 /* For FIFO watermark updates */
5955 if (HAS_PCH_SPLIT(dev)) {
5956 if (IS_GEN5(dev)) {
5957 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5958 dev_priv->display.update_wm = ironlake_update_wm;
5959 else {
5960 DRM_DEBUG_KMS("Failed to get proper latency. "
5961 "Disable CxSR\n");
5962 dev_priv->display.update_wm = NULL;
5964 } else
5965 dev_priv->display.update_wm = NULL;
5966 } else if (IS_PINEVIEW(dev)) {
5967 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5968 dev_priv->is_ddr3,
5969 dev_priv->fsb_freq,
5970 dev_priv->mem_freq)) {
5971 DRM_INFO("failed to find known CxSR latency "
5972 "(found ddr%s fsb freq %d, mem freq %d), "
5973 "disabling CxSR\n",
5974 (dev_priv->is_ddr3 == 1) ? "3": "2",
5975 dev_priv->fsb_freq, dev_priv->mem_freq);
5976 /* Disable CxSR and never update its watermark again */
5977 pineview_disable_cxsr(dev);
5978 dev_priv->display.update_wm = NULL;
5979 } else
5980 dev_priv->display.update_wm = pineview_update_wm;
5981 } else if (IS_G4X(dev))
5982 dev_priv->display.update_wm = g4x_update_wm;
5983 else if (IS_GEN4(dev))
5984 dev_priv->display.update_wm = i965_update_wm;
5985 else if (IS_GEN3(dev)) {
5986 dev_priv->display.update_wm = i9xx_update_wm;
5987 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5988 } else if (IS_I85X(dev)) {
5989 dev_priv->display.update_wm = i9xx_update_wm;
5990 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5991 } else {
5992 dev_priv->display.update_wm = i830_update_wm;
5993 if (IS_845G(dev))
5994 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5995 else
5996 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6001 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6002 * resume, or other times. This quirk makes sure that's the case for
6003 * affected systems.
6005 static void quirk_pipea_force (struct drm_device *dev)
6007 struct drm_i915_private *dev_priv = dev->dev_private;
6009 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6010 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6013 struct intel_quirk {
6014 int device;
6015 int subsystem_vendor;
6016 int subsystem_device;
6017 void (*hook)(struct drm_device *dev);
6020 struct intel_quirk intel_quirks[] = {
6021 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6022 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6023 /* HP Mini needs pipe A force quirk (LP: #322104) */
6024 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6026 /* Thinkpad R31 needs pipe A force quirk */
6027 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6028 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6029 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6031 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6032 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6033 /* ThinkPad X40 needs pipe A force quirk */
6035 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6036 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6038 /* 855 & before need to leave pipe A & dpll A up */
6039 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6040 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6043 static void intel_init_quirks(struct drm_device *dev)
6045 struct pci_dev *d = dev->pdev;
6046 int i;
6048 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6049 struct intel_quirk *q = &intel_quirks[i];
6051 if (d->device == q->device &&
6052 (d->subsystem_vendor == q->subsystem_vendor ||
6053 q->subsystem_vendor == PCI_ANY_ID) &&
6054 (d->subsystem_device == q->subsystem_device ||
6055 q->subsystem_device == PCI_ANY_ID))
6056 q->hook(dev);
6060 /* Disable the VGA plane that we never use */
6061 static void i915_disable_vga(struct drm_device *dev)
6063 struct drm_i915_private *dev_priv = dev->dev_private;
6064 u8 sr1;
6065 u32 vga_reg;
6067 if (HAS_PCH_SPLIT(dev))
6068 vga_reg = CPU_VGACNTRL;
6069 else
6070 vga_reg = VGACNTRL;
6072 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6073 outb(1, VGA_SR_INDEX);
6074 sr1 = inb(VGA_SR_DATA);
6075 outb(sr1 | 1<<5, VGA_SR_DATA);
6076 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6077 udelay(300);
6079 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6080 POSTING_READ(vga_reg);
6083 void intel_modeset_init(struct drm_device *dev)
6085 struct drm_i915_private *dev_priv = dev->dev_private;
6086 int i;
6088 drm_mode_config_init(dev);
6090 dev->mode_config.min_width = 0;
6091 dev->mode_config.min_height = 0;
6093 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6095 intel_init_quirks(dev);
6097 intel_init_display(dev);
6099 if (IS_GEN2(dev)) {
6100 dev->mode_config.max_width = 2048;
6101 dev->mode_config.max_height = 2048;
6102 } else if (IS_GEN3(dev)) {
6103 dev->mode_config.max_width = 4096;
6104 dev->mode_config.max_height = 4096;
6105 } else {
6106 dev->mode_config.max_width = 8192;
6107 dev->mode_config.max_height = 8192;
6110 /* set memory base */
6111 if (IS_GEN2(dev))
6112 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6113 else
6114 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6116 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6117 dev_priv->num_pipe = 2;
6118 else
6119 dev_priv->num_pipe = 1;
6120 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6121 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6123 for (i = 0; i < dev_priv->num_pipe; i++) {
6124 intel_crtc_init(dev, i);
6127 intel_setup_outputs(dev);
6129 intel_init_clock_gating(dev);
6131 /* Just disable it once at startup */
6132 i915_disable_vga(dev);
6134 if (IS_IRONLAKE_M(dev)) {
6135 ironlake_enable_drps(dev);
6136 intel_init_emon(dev);
6139 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6140 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6141 (unsigned long)dev);
6143 intel_setup_overlay(dev);
6146 void intel_modeset_cleanup(struct drm_device *dev)
6148 struct drm_i915_private *dev_priv = dev->dev_private;
6149 struct drm_crtc *crtc;
6150 struct intel_crtc *intel_crtc;
6152 drm_kms_helper_poll_fini(dev);
6153 mutex_lock(&dev->struct_mutex);
6155 intel_unregister_dsm_handler();
6158 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6159 /* Skip inactive CRTCs */
6160 if (!crtc->fb)
6161 continue;
6163 intel_crtc = to_intel_crtc(crtc);
6164 intel_increase_pllclock(crtc);
6167 if (dev_priv->display.disable_fbc)
6168 dev_priv->display.disable_fbc(dev);
6170 if (dev_priv->renderctx) {
6171 struct drm_i915_gem_object *obj_priv;
6173 obj_priv = to_intel_bo(dev_priv->renderctx);
6174 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6175 I915_READ(CCID);
6176 i915_gem_object_unpin(dev_priv->renderctx);
6177 drm_gem_object_unreference(dev_priv->renderctx);
6180 if (dev_priv->pwrctx) {
6181 struct drm_i915_gem_object *obj_priv;
6183 obj_priv = to_intel_bo(dev_priv->pwrctx);
6184 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6185 I915_READ(PWRCTXA);
6186 i915_gem_object_unpin(dev_priv->pwrctx);
6187 drm_gem_object_unreference(dev_priv->pwrctx);
6190 if (IS_IRONLAKE_M(dev))
6191 ironlake_disable_drps(dev);
6193 mutex_unlock(&dev->struct_mutex);
6195 /* Disable the irq before mode object teardown, for the irq might
6196 * enqueue unpin/hotplug work. */
6197 drm_irq_uninstall(dev);
6198 cancel_work_sync(&dev_priv->hotplug_work);
6200 /* Shut off idle work before the crtcs get freed. */
6201 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6202 intel_crtc = to_intel_crtc(crtc);
6203 del_timer_sync(&intel_crtc->idle_timer);
6205 del_timer_sync(&dev_priv->idle_timer);
6206 cancel_work_sync(&dev_priv->idle_work);
6208 drm_mode_config_cleanup(dev);
6212 * Return which encoder is currently attached for connector.
6214 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6216 return &intel_attached_encoder(connector)->base;
6219 void intel_connector_attach_encoder(struct intel_connector *connector,
6220 struct intel_encoder *encoder)
6222 connector->encoder = encoder;
6223 drm_mode_connector_attach_encoder(&connector->base,
6224 &encoder->base);
6228 * set vga decode state - true == enable VGA decode
6230 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6232 struct drm_i915_private *dev_priv = dev->dev_private;
6233 u16 gmch_ctrl;
6235 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6236 if (state)
6237 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6238 else
6239 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6240 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6241 return 0;