[PATCH] mark struct file_operations const 2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / kernel / perfmon.c
blob9860794a68fb520d9b387c9c093f7e1faf72ae2c
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/smp_lock.h>
27 #include <linux/proc_fs.h>
28 #include <linux/seq_file.h>
29 #include <linux/init.h>
30 #include <linux/vmalloc.h>
31 #include <linux/mm.h>
32 #include <linux/sysctl.h>
33 #include <linux/list.h>
34 #include <linux/file.h>
35 #include <linux/poll.h>
36 #include <linux/vfs.h>
37 #include <linux/smp.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
43 #include <linux/completion.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
47 #include <asm/page.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
55 #ifdef CONFIG_PERFMON
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
70 * depth of message queue
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140 #define RDEP(x) (1UL<<(x))
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * spin_lock_irqsave()/spin_lock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
160 #define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
165 } while(0)
167 #define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
173 #define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
185 #define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
190 #define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
196 #ifdef CONFIG_SMP
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
218 * cmp0 must be the value of pmc0
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222 #define PFMFS_MAGIC 0xa0b4d889
225 * debugging
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
234 #define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
237 } while (0)
238 #endif
241 * 64-bit software counter structure
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
245 typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256 } pfm_counter_t;
259 * context flags
261 typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280 * perfmon context: encapsulates all the state of a monitoring session
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289 struct task_struct *ctx_task; /* task to which context is attached */
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293 struct completion ctx_restart_done; /* use for blocking notification mode */
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336 } pfm_context_t;
339 * magic number used to verify that structure is really
340 * a perfmon context
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
352 #endif
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
372 typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397 } pfm_reg_desc_t;
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
414 typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433 } pmu_config_t;
435 * PMU specific flags
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
440 * debug register related type definitions
442 typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
449 typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
457 typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461 } dbreg_t;
465 * perfmon command descriptions
467 typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
490 typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500 } pfm_stats_t;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
517 static pmu_config_t *pmu_conf;
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
523 static ctl_table pfm_ctl_table[]={
524 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
525 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
526 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
527 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
528 { 0, },
530 static ctl_table pfm_sysctl_dir[] = {
531 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
532 {0,},
534 static ctl_table pfm_sysctl_root[] = {
535 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
536 {0,},
538 static struct ctl_table_header *pfm_sysctl_header;
540 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
542 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
543 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
545 static inline void
546 pfm_put_task(struct task_struct *task)
548 if (task != current) put_task_struct(task);
551 static inline void
552 pfm_set_task_notify(struct task_struct *task)
554 struct thread_info *info;
556 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
557 set_bit(TIF_NOTIFY_RESUME, &info->flags);
560 static inline void
561 pfm_clear_task_notify(void)
563 clear_thread_flag(TIF_NOTIFY_RESUME);
566 static inline void
567 pfm_reserve_page(unsigned long a)
569 SetPageReserved(vmalloc_to_page((void *)a));
571 static inline void
572 pfm_unreserve_page(unsigned long a)
574 ClearPageReserved(vmalloc_to_page((void*)a));
577 static inline unsigned long
578 pfm_protect_ctx_ctxsw(pfm_context_t *x)
580 spin_lock(&(x)->ctx_lock);
581 return 0UL;
584 static inline void
585 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
587 spin_unlock(&(x)->ctx_lock);
590 static inline unsigned int
591 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
593 return do_munmap(mm, addr, len);
596 static inline unsigned long
597 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
599 return get_unmapped_area(file, addr, len, pgoff, flags);
603 static int
604 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
605 struct vfsmount *mnt)
607 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
610 static struct file_system_type pfm_fs_type = {
611 .name = "pfmfs",
612 .get_sb = pfmfs_get_sb,
613 .kill_sb = kill_anon_super,
616 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
617 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
618 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
619 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
620 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
623 /* forward declaration */
624 static const struct file_operations pfm_file_ops;
627 * forward declarations
629 #ifndef CONFIG_SMP
630 static void pfm_lazy_save_regs (struct task_struct *ta);
631 #endif
633 void dump_pmu_state(const char *);
634 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
636 #include "perfmon_itanium.h"
637 #include "perfmon_mckinley.h"
638 #include "perfmon_montecito.h"
639 #include "perfmon_generic.h"
641 static pmu_config_t *pmu_confs[]={
642 &pmu_conf_mont,
643 &pmu_conf_mck,
644 &pmu_conf_ita,
645 &pmu_conf_gen, /* must be last */
646 NULL
650 static int pfm_end_notify_user(pfm_context_t *ctx);
652 static inline void
653 pfm_clear_psr_pp(void)
655 ia64_rsm(IA64_PSR_PP);
656 ia64_srlz_i();
659 static inline void
660 pfm_set_psr_pp(void)
662 ia64_ssm(IA64_PSR_PP);
663 ia64_srlz_i();
666 static inline void
667 pfm_clear_psr_up(void)
669 ia64_rsm(IA64_PSR_UP);
670 ia64_srlz_i();
673 static inline void
674 pfm_set_psr_up(void)
676 ia64_ssm(IA64_PSR_UP);
677 ia64_srlz_i();
680 static inline unsigned long
681 pfm_get_psr(void)
683 unsigned long tmp;
684 tmp = ia64_getreg(_IA64_REG_PSR);
685 ia64_srlz_i();
686 return tmp;
689 static inline void
690 pfm_set_psr_l(unsigned long val)
692 ia64_setreg(_IA64_REG_PSR_L, val);
693 ia64_srlz_i();
696 static inline void
697 pfm_freeze_pmu(void)
699 ia64_set_pmc(0,1UL);
700 ia64_srlz_d();
703 static inline void
704 pfm_unfreeze_pmu(void)
706 ia64_set_pmc(0,0UL);
707 ia64_srlz_d();
710 static inline void
711 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
713 int i;
715 for (i=0; i < nibrs; i++) {
716 ia64_set_ibr(i, ibrs[i]);
717 ia64_dv_serialize_instruction();
719 ia64_srlz_i();
722 static inline void
723 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
725 int i;
727 for (i=0; i < ndbrs; i++) {
728 ia64_set_dbr(i, dbrs[i]);
729 ia64_dv_serialize_data();
731 ia64_srlz_d();
735 * PMD[i] must be a counter. no check is made
737 static inline unsigned long
738 pfm_read_soft_counter(pfm_context_t *ctx, int i)
740 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
744 * PMD[i] must be a counter. no check is made
746 static inline void
747 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
749 unsigned long ovfl_val = pmu_conf->ovfl_val;
751 ctx->ctx_pmds[i].val = val & ~ovfl_val;
753 * writing to unimplemented part is ignore, so we do not need to
754 * mask off top part
756 ia64_set_pmd(i, val & ovfl_val);
759 static pfm_msg_t *
760 pfm_get_new_msg(pfm_context_t *ctx)
762 int idx, next;
764 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
766 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
767 if (next == ctx->ctx_msgq_head) return NULL;
769 idx = ctx->ctx_msgq_tail;
770 ctx->ctx_msgq_tail = next;
772 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
774 return ctx->ctx_msgq+idx;
777 static pfm_msg_t *
778 pfm_get_next_msg(pfm_context_t *ctx)
780 pfm_msg_t *msg;
782 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
784 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
787 * get oldest message
789 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
792 * and move forward
794 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
796 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
798 return msg;
801 static void
802 pfm_reset_msgq(pfm_context_t *ctx)
804 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
805 DPRINT(("ctx=%p msgq reset\n", ctx));
808 static void *
809 pfm_rvmalloc(unsigned long size)
811 void *mem;
812 unsigned long addr;
814 size = PAGE_ALIGN(size);
815 mem = vmalloc(size);
816 if (mem) {
817 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
818 memset(mem, 0, size);
819 addr = (unsigned long)mem;
820 while (size > 0) {
821 pfm_reserve_page(addr);
822 addr+=PAGE_SIZE;
823 size-=PAGE_SIZE;
826 return mem;
829 static void
830 pfm_rvfree(void *mem, unsigned long size)
832 unsigned long addr;
834 if (mem) {
835 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
836 addr = (unsigned long) mem;
837 while ((long) size > 0) {
838 pfm_unreserve_page(addr);
839 addr+=PAGE_SIZE;
840 size-=PAGE_SIZE;
842 vfree(mem);
844 return;
847 static pfm_context_t *
848 pfm_context_alloc(void)
850 pfm_context_t *ctx;
853 * allocate context descriptor
854 * must be able to free with interrupts disabled
856 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
857 if (ctx) {
858 DPRINT(("alloc ctx @%p\n", ctx));
860 return ctx;
863 static void
864 pfm_context_free(pfm_context_t *ctx)
866 if (ctx) {
867 DPRINT(("free ctx @%p\n", ctx));
868 kfree(ctx);
872 static void
873 pfm_mask_monitoring(struct task_struct *task)
875 pfm_context_t *ctx = PFM_GET_CTX(task);
876 unsigned long mask, val, ovfl_mask;
877 int i;
879 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
881 ovfl_mask = pmu_conf->ovfl_val;
883 * monitoring can only be masked as a result of a valid
884 * counter overflow. In UP, it means that the PMU still
885 * has an owner. Note that the owner can be different
886 * from the current task. However the PMU state belongs
887 * to the owner.
888 * In SMP, a valid overflow only happens when task is
889 * current. Therefore if we come here, we know that
890 * the PMU state belongs to the current task, therefore
891 * we can access the live registers.
893 * So in both cases, the live register contains the owner's
894 * state. We can ONLY touch the PMU registers and NOT the PSR.
896 * As a consequence to this call, the ctx->th_pmds[] array
897 * contains stale information which must be ignored
898 * when context is reloaded AND monitoring is active (see
899 * pfm_restart).
901 mask = ctx->ctx_used_pmds[0];
902 for (i = 0; mask; i++, mask>>=1) {
903 /* skip non used pmds */
904 if ((mask & 0x1) == 0) continue;
905 val = ia64_get_pmd(i);
907 if (PMD_IS_COUNTING(i)) {
909 * we rebuild the full 64 bit value of the counter
911 ctx->ctx_pmds[i].val += (val & ovfl_mask);
912 } else {
913 ctx->ctx_pmds[i].val = val;
915 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
917 ctx->ctx_pmds[i].val,
918 val & ovfl_mask));
921 * mask monitoring by setting the privilege level to 0
922 * we cannot use psr.pp/psr.up for this, it is controlled by
923 * the user
925 * if task is current, modify actual registers, otherwise modify
926 * thread save state, i.e., what will be restored in pfm_load_regs()
928 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
929 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
930 if ((mask & 0x1) == 0UL) continue;
931 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
932 ctx->th_pmcs[i] &= ~0xfUL;
933 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
936 * make all of this visible
938 ia64_srlz_d();
942 * must always be done with task == current
944 * context must be in MASKED state when calling
946 static void
947 pfm_restore_monitoring(struct task_struct *task)
949 pfm_context_t *ctx = PFM_GET_CTX(task);
950 unsigned long mask, ovfl_mask;
951 unsigned long psr, val;
952 int i, is_system;
954 is_system = ctx->ctx_fl_system;
955 ovfl_mask = pmu_conf->ovfl_val;
957 if (task != current) {
958 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
959 return;
961 if (ctx->ctx_state != PFM_CTX_MASKED) {
962 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
963 task->pid, current->pid, ctx->ctx_state);
964 return;
966 psr = pfm_get_psr();
968 * monitoring is masked via the PMC.
969 * As we restore their value, we do not want each counter to
970 * restart right away. We stop monitoring using the PSR,
971 * restore the PMC (and PMD) and then re-establish the psr
972 * as it was. Note that there can be no pending overflow at
973 * this point, because monitoring was MASKED.
975 * system-wide session are pinned and self-monitoring
977 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
978 /* disable dcr pp */
979 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
980 pfm_clear_psr_pp();
981 } else {
982 pfm_clear_psr_up();
985 * first, we restore the PMD
987 mask = ctx->ctx_used_pmds[0];
988 for (i = 0; mask; i++, mask>>=1) {
989 /* skip non used pmds */
990 if ((mask & 0x1) == 0) continue;
992 if (PMD_IS_COUNTING(i)) {
994 * we split the 64bit value according to
995 * counter width
997 val = ctx->ctx_pmds[i].val & ovfl_mask;
998 ctx->ctx_pmds[i].val &= ~ovfl_mask;
999 } else {
1000 val = ctx->ctx_pmds[i].val;
1002 ia64_set_pmd(i, val);
1004 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1006 ctx->ctx_pmds[i].val,
1007 val));
1010 * restore the PMCs
1012 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1013 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1014 if ((mask & 0x1) == 0UL) continue;
1015 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1016 ia64_set_pmc(i, ctx->th_pmcs[i]);
1017 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1019 ia64_srlz_d();
1022 * must restore DBR/IBR because could be modified while masked
1023 * XXX: need to optimize
1025 if (ctx->ctx_fl_using_dbreg) {
1026 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1027 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1031 * now restore PSR
1033 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1034 /* enable dcr pp */
1035 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1036 ia64_srlz_i();
1038 pfm_set_psr_l(psr);
1041 static inline void
1042 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1044 int i;
1046 ia64_srlz_d();
1048 for (i=0; mask; i++, mask>>=1) {
1049 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1054 * reload from thread state (used for ctxw only)
1056 static inline void
1057 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1059 int i;
1060 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1062 for (i=0; mask; i++, mask>>=1) {
1063 if ((mask & 0x1) == 0) continue;
1064 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1065 ia64_set_pmd(i, val);
1067 ia64_srlz_d();
1071 * propagate PMD from context to thread-state
1073 static inline void
1074 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1076 unsigned long ovfl_val = pmu_conf->ovfl_val;
1077 unsigned long mask = ctx->ctx_all_pmds[0];
1078 unsigned long val;
1079 int i;
1081 DPRINT(("mask=0x%lx\n", mask));
1083 for (i=0; mask; i++, mask>>=1) {
1085 val = ctx->ctx_pmds[i].val;
1088 * We break up the 64 bit value into 2 pieces
1089 * the lower bits go to the machine state in the
1090 * thread (will be reloaded on ctxsw in).
1091 * The upper part stays in the soft-counter.
1093 if (PMD_IS_COUNTING(i)) {
1094 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1095 val &= ovfl_val;
1097 ctx->th_pmds[i] = val;
1099 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1101 ctx->th_pmds[i],
1102 ctx->ctx_pmds[i].val));
1107 * propagate PMC from context to thread-state
1109 static inline void
1110 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1112 unsigned long mask = ctx->ctx_all_pmcs[0];
1113 int i;
1115 DPRINT(("mask=0x%lx\n", mask));
1117 for (i=0; mask; i++, mask>>=1) {
1118 /* masking 0 with ovfl_val yields 0 */
1119 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1120 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1126 static inline void
1127 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1129 int i;
1131 for (i=0; mask; i++, mask>>=1) {
1132 if ((mask & 0x1) == 0) continue;
1133 ia64_set_pmc(i, pmcs[i]);
1135 ia64_srlz_d();
1138 static inline int
1139 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1141 return memcmp(a, b, sizeof(pfm_uuid_t));
1144 static inline int
1145 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1147 int ret = 0;
1148 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1149 return ret;
1152 static inline int
1153 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1155 int ret = 0;
1156 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1157 return ret;
1161 static inline int
1162 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1163 int cpu, void *arg)
1165 int ret = 0;
1166 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1167 return ret;
1170 static inline int
1171 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1172 int cpu, void *arg)
1174 int ret = 0;
1175 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1176 return ret;
1179 static inline int
1180 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1182 int ret = 0;
1183 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1184 return ret;
1187 static inline int
1188 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1190 int ret = 0;
1191 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1192 return ret;
1195 static pfm_buffer_fmt_t *
1196 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1198 struct list_head * pos;
1199 pfm_buffer_fmt_t * entry;
1201 list_for_each(pos, &pfm_buffer_fmt_list) {
1202 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1203 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1204 return entry;
1206 return NULL;
1210 * find a buffer format based on its uuid
1212 static pfm_buffer_fmt_t *
1213 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1215 pfm_buffer_fmt_t * fmt;
1216 spin_lock(&pfm_buffer_fmt_lock);
1217 fmt = __pfm_find_buffer_fmt(uuid);
1218 spin_unlock(&pfm_buffer_fmt_lock);
1219 return fmt;
1223 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1225 int ret = 0;
1227 /* some sanity checks */
1228 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1230 /* we need at least a handler */
1231 if (fmt->fmt_handler == NULL) return -EINVAL;
1234 * XXX: need check validity of fmt_arg_size
1237 spin_lock(&pfm_buffer_fmt_lock);
1239 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1240 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1241 ret = -EBUSY;
1242 goto out;
1244 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1245 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1247 out:
1248 spin_unlock(&pfm_buffer_fmt_lock);
1249 return ret;
1251 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1254 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1256 pfm_buffer_fmt_t *fmt;
1257 int ret = 0;
1259 spin_lock(&pfm_buffer_fmt_lock);
1261 fmt = __pfm_find_buffer_fmt(uuid);
1262 if (!fmt) {
1263 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1264 ret = -EINVAL;
1265 goto out;
1267 list_del_init(&fmt->fmt_list);
1268 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1270 out:
1271 spin_unlock(&pfm_buffer_fmt_lock);
1272 return ret;
1275 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1277 extern void update_pal_halt_status(int);
1279 static int
1280 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1282 unsigned long flags;
1284 * validy checks on cpu_mask have been done upstream
1286 LOCK_PFS(flags);
1288 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1289 pfm_sessions.pfs_sys_sessions,
1290 pfm_sessions.pfs_task_sessions,
1291 pfm_sessions.pfs_sys_use_dbregs,
1292 is_syswide,
1293 cpu));
1295 if (is_syswide) {
1297 * cannot mix system wide and per-task sessions
1299 if (pfm_sessions.pfs_task_sessions > 0UL) {
1300 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1301 pfm_sessions.pfs_task_sessions));
1302 goto abort;
1305 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1307 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1309 pfm_sessions.pfs_sys_session[cpu] = task;
1311 pfm_sessions.pfs_sys_sessions++ ;
1313 } else {
1314 if (pfm_sessions.pfs_sys_sessions) goto abort;
1315 pfm_sessions.pfs_task_sessions++;
1318 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1319 pfm_sessions.pfs_sys_sessions,
1320 pfm_sessions.pfs_task_sessions,
1321 pfm_sessions.pfs_sys_use_dbregs,
1322 is_syswide,
1323 cpu));
1326 * disable default_idle() to go to PAL_HALT
1328 update_pal_halt_status(0);
1330 UNLOCK_PFS(flags);
1332 return 0;
1334 error_conflict:
1335 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1336 pfm_sessions.pfs_sys_session[cpu]->pid,
1337 cpu));
1338 abort:
1339 UNLOCK_PFS(flags);
1341 return -EBUSY;
1345 static int
1346 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1348 unsigned long flags;
1350 * validy checks on cpu_mask have been done upstream
1352 LOCK_PFS(flags);
1354 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1355 pfm_sessions.pfs_sys_sessions,
1356 pfm_sessions.pfs_task_sessions,
1357 pfm_sessions.pfs_sys_use_dbregs,
1358 is_syswide,
1359 cpu));
1362 if (is_syswide) {
1363 pfm_sessions.pfs_sys_session[cpu] = NULL;
1365 * would not work with perfmon+more than one bit in cpu_mask
1367 if (ctx && ctx->ctx_fl_using_dbreg) {
1368 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1369 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1370 } else {
1371 pfm_sessions.pfs_sys_use_dbregs--;
1374 pfm_sessions.pfs_sys_sessions--;
1375 } else {
1376 pfm_sessions.pfs_task_sessions--;
1378 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1379 pfm_sessions.pfs_sys_sessions,
1380 pfm_sessions.pfs_task_sessions,
1381 pfm_sessions.pfs_sys_use_dbregs,
1382 is_syswide,
1383 cpu));
1386 * if possible, enable default_idle() to go into PAL_HALT
1388 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1389 update_pal_halt_status(1);
1391 UNLOCK_PFS(flags);
1393 return 0;
1397 * removes virtual mapping of the sampling buffer.
1398 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1399 * a PROTECT_CTX() section.
1401 static int
1402 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1404 int r;
1406 /* sanity checks */
1407 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1408 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1409 return -EINVAL;
1412 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1415 * does the actual unmapping
1417 down_write(&task->mm->mmap_sem);
1419 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1421 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1423 up_write(&task->mm->mmap_sem);
1424 if (r !=0) {
1425 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1428 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1430 return 0;
1434 * free actual physical storage used by sampling buffer
1436 #if 0
1437 static int
1438 pfm_free_smpl_buffer(pfm_context_t *ctx)
1440 pfm_buffer_fmt_t *fmt;
1442 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1445 * we won't use the buffer format anymore
1447 fmt = ctx->ctx_buf_fmt;
1449 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1450 ctx->ctx_smpl_hdr,
1451 ctx->ctx_smpl_size,
1452 ctx->ctx_smpl_vaddr));
1454 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1457 * free the buffer
1459 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1461 ctx->ctx_smpl_hdr = NULL;
1462 ctx->ctx_smpl_size = 0UL;
1464 return 0;
1466 invalid_free:
1467 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1468 return -EINVAL;
1470 #endif
1472 static inline void
1473 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1475 if (fmt == NULL) return;
1477 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1482 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1483 * no real gain from having the whole whorehouse mounted. So we don't need
1484 * any operations on the root directory. However, we need a non-trivial
1485 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1487 static struct vfsmount *pfmfs_mnt;
1489 static int __init
1490 init_pfm_fs(void)
1492 int err = register_filesystem(&pfm_fs_type);
1493 if (!err) {
1494 pfmfs_mnt = kern_mount(&pfm_fs_type);
1495 err = PTR_ERR(pfmfs_mnt);
1496 if (IS_ERR(pfmfs_mnt))
1497 unregister_filesystem(&pfm_fs_type);
1498 else
1499 err = 0;
1501 return err;
1504 static void __exit
1505 exit_pfm_fs(void)
1507 unregister_filesystem(&pfm_fs_type);
1508 mntput(pfmfs_mnt);
1511 static ssize_t
1512 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1514 pfm_context_t *ctx;
1515 pfm_msg_t *msg;
1516 ssize_t ret;
1517 unsigned long flags;
1518 DECLARE_WAITQUEUE(wait, current);
1519 if (PFM_IS_FILE(filp) == 0) {
1520 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1521 return -EINVAL;
1524 ctx = (pfm_context_t *)filp->private_data;
1525 if (ctx == NULL) {
1526 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1527 return -EINVAL;
1531 * check even when there is no message
1533 if (size < sizeof(pfm_msg_t)) {
1534 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1535 return -EINVAL;
1538 PROTECT_CTX(ctx, flags);
1541 * put ourselves on the wait queue
1543 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1546 for(;;) {
1548 * check wait queue
1551 set_current_state(TASK_INTERRUPTIBLE);
1553 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1555 ret = 0;
1556 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1558 UNPROTECT_CTX(ctx, flags);
1561 * check non-blocking read
1563 ret = -EAGAIN;
1564 if(filp->f_flags & O_NONBLOCK) break;
1567 * check pending signals
1569 if(signal_pending(current)) {
1570 ret = -EINTR;
1571 break;
1574 * no message, so wait
1576 schedule();
1578 PROTECT_CTX(ctx, flags);
1580 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1581 set_current_state(TASK_RUNNING);
1582 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1584 if (ret < 0) goto abort;
1586 ret = -EINVAL;
1587 msg = pfm_get_next_msg(ctx);
1588 if (msg == NULL) {
1589 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1590 goto abort_locked;
1593 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1595 ret = -EFAULT;
1596 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1598 abort_locked:
1599 UNPROTECT_CTX(ctx, flags);
1600 abort:
1601 return ret;
1604 static ssize_t
1605 pfm_write(struct file *file, const char __user *ubuf,
1606 size_t size, loff_t *ppos)
1608 DPRINT(("pfm_write called\n"));
1609 return -EINVAL;
1612 static unsigned int
1613 pfm_poll(struct file *filp, poll_table * wait)
1615 pfm_context_t *ctx;
1616 unsigned long flags;
1617 unsigned int mask = 0;
1619 if (PFM_IS_FILE(filp) == 0) {
1620 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1621 return 0;
1624 ctx = (pfm_context_t *)filp->private_data;
1625 if (ctx == NULL) {
1626 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1627 return 0;
1631 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1633 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1635 PROTECT_CTX(ctx, flags);
1637 if (PFM_CTXQ_EMPTY(ctx) == 0)
1638 mask = POLLIN | POLLRDNORM;
1640 UNPROTECT_CTX(ctx, flags);
1642 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1644 return mask;
1647 static int
1648 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1650 DPRINT(("pfm_ioctl called\n"));
1651 return -EINVAL;
1655 * interrupt cannot be masked when coming here
1657 static inline int
1658 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1660 int ret;
1662 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1664 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1665 current->pid,
1668 ctx->ctx_async_queue, ret));
1670 return ret;
1673 static int
1674 pfm_fasync(int fd, struct file *filp, int on)
1676 pfm_context_t *ctx;
1677 int ret;
1679 if (PFM_IS_FILE(filp) == 0) {
1680 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1681 return -EBADF;
1684 ctx = (pfm_context_t *)filp->private_data;
1685 if (ctx == NULL) {
1686 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1687 return -EBADF;
1690 * we cannot mask interrupts during this call because this may
1691 * may go to sleep if memory is not readily avalaible.
1693 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1694 * done in caller. Serialization of this function is ensured by caller.
1696 ret = pfm_do_fasync(fd, filp, ctx, on);
1699 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1702 ctx->ctx_async_queue, ret));
1704 return ret;
1707 #ifdef CONFIG_SMP
1709 * this function is exclusively called from pfm_close().
1710 * The context is not protected at that time, nor are interrupts
1711 * on the remote CPU. That's necessary to avoid deadlocks.
1713 static void
1714 pfm_syswide_force_stop(void *info)
1716 pfm_context_t *ctx = (pfm_context_t *)info;
1717 struct pt_regs *regs = task_pt_regs(current);
1718 struct task_struct *owner;
1719 unsigned long flags;
1720 int ret;
1722 if (ctx->ctx_cpu != smp_processor_id()) {
1723 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1724 ctx->ctx_cpu,
1725 smp_processor_id());
1726 return;
1728 owner = GET_PMU_OWNER();
1729 if (owner != ctx->ctx_task) {
1730 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1731 smp_processor_id(),
1732 owner->pid, ctx->ctx_task->pid);
1733 return;
1735 if (GET_PMU_CTX() != ctx) {
1736 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1737 smp_processor_id(),
1738 GET_PMU_CTX(), ctx);
1739 return;
1742 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1744 * the context is already protected in pfm_close(), we simply
1745 * need to mask interrupts to avoid a PMU interrupt race on
1746 * this CPU
1748 local_irq_save(flags);
1750 ret = pfm_context_unload(ctx, NULL, 0, regs);
1751 if (ret) {
1752 DPRINT(("context_unload returned %d\n", ret));
1756 * unmask interrupts, PMU interrupts are now spurious here
1758 local_irq_restore(flags);
1761 static void
1762 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1764 int ret;
1766 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1767 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1768 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1770 #endif /* CONFIG_SMP */
1773 * called for each close(). Partially free resources.
1774 * When caller is self-monitoring, the context is unloaded.
1776 static int
1777 pfm_flush(struct file *filp, fl_owner_t id)
1779 pfm_context_t *ctx;
1780 struct task_struct *task;
1781 struct pt_regs *regs;
1782 unsigned long flags;
1783 unsigned long smpl_buf_size = 0UL;
1784 void *smpl_buf_vaddr = NULL;
1785 int state, is_system;
1787 if (PFM_IS_FILE(filp) == 0) {
1788 DPRINT(("bad magic for\n"));
1789 return -EBADF;
1792 ctx = (pfm_context_t *)filp->private_data;
1793 if (ctx == NULL) {
1794 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1795 return -EBADF;
1799 * remove our file from the async queue, if we use this mode.
1800 * This can be done without the context being protected. We come
1801 * here when the context has become unreacheable by other tasks.
1803 * We may still have active monitoring at this point and we may
1804 * end up in pfm_overflow_handler(). However, fasync_helper()
1805 * operates with interrupts disabled and it cleans up the
1806 * queue. If the PMU handler is called prior to entering
1807 * fasync_helper() then it will send a signal. If it is
1808 * invoked after, it will find an empty queue and no
1809 * signal will be sent. In both case, we are safe
1811 if (filp->f_flags & FASYNC) {
1812 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1813 pfm_do_fasync (-1, filp, ctx, 0);
1816 PROTECT_CTX(ctx, flags);
1818 state = ctx->ctx_state;
1819 is_system = ctx->ctx_fl_system;
1821 task = PFM_CTX_TASK(ctx);
1822 regs = task_pt_regs(task);
1824 DPRINT(("ctx_state=%d is_current=%d\n",
1825 state,
1826 task == current ? 1 : 0));
1829 * if state == UNLOADED, then task is NULL
1833 * we must stop and unload because we are losing access to the context.
1835 if (task == current) {
1836 #ifdef CONFIG_SMP
1838 * the task IS the owner but it migrated to another CPU: that's bad
1839 * but we must handle this cleanly. Unfortunately, the kernel does
1840 * not provide a mechanism to block migration (while the context is loaded).
1842 * We need to release the resource on the ORIGINAL cpu.
1844 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1846 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1848 * keep context protected but unmask interrupt for IPI
1850 local_irq_restore(flags);
1852 pfm_syswide_cleanup_other_cpu(ctx);
1855 * restore interrupt masking
1857 local_irq_save(flags);
1860 * context is unloaded at this point
1862 } else
1863 #endif /* CONFIG_SMP */
1866 DPRINT(("forcing unload\n"));
1868 * stop and unload, returning with state UNLOADED
1869 * and session unreserved.
1871 pfm_context_unload(ctx, NULL, 0, regs);
1873 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1878 * remove virtual mapping, if any, for the calling task.
1879 * cannot reset ctx field until last user is calling close().
1881 * ctx_smpl_vaddr must never be cleared because it is needed
1882 * by every task with access to the context
1884 * When called from do_exit(), the mm context is gone already, therefore
1885 * mm is NULL, i.e., the VMA is already gone and we do not have to
1886 * do anything here
1888 if (ctx->ctx_smpl_vaddr && current->mm) {
1889 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1890 smpl_buf_size = ctx->ctx_smpl_size;
1893 UNPROTECT_CTX(ctx, flags);
1896 * if there was a mapping, then we systematically remove it
1897 * at this point. Cannot be done inside critical section
1898 * because some VM function reenables interrupts.
1901 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1903 return 0;
1906 * called either on explicit close() or from exit_files().
1907 * Only the LAST user of the file gets to this point, i.e., it is
1908 * called only ONCE.
1910 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1911 * (fput()),i.e, last task to access the file. Nobody else can access the
1912 * file at this point.
1914 * When called from exit_files(), the VMA has been freed because exit_mm()
1915 * is executed before exit_files().
1917 * When called from exit_files(), the current task is not yet ZOMBIE but we
1918 * flush the PMU state to the context.
1920 static int
1921 pfm_close(struct inode *inode, struct file *filp)
1923 pfm_context_t *ctx;
1924 struct task_struct *task;
1925 struct pt_regs *regs;
1926 DECLARE_WAITQUEUE(wait, current);
1927 unsigned long flags;
1928 unsigned long smpl_buf_size = 0UL;
1929 void *smpl_buf_addr = NULL;
1930 int free_possible = 1;
1931 int state, is_system;
1933 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1935 if (PFM_IS_FILE(filp) == 0) {
1936 DPRINT(("bad magic\n"));
1937 return -EBADF;
1940 ctx = (pfm_context_t *)filp->private_data;
1941 if (ctx == NULL) {
1942 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1943 return -EBADF;
1946 PROTECT_CTX(ctx, flags);
1948 state = ctx->ctx_state;
1949 is_system = ctx->ctx_fl_system;
1951 task = PFM_CTX_TASK(ctx);
1952 regs = task_pt_regs(task);
1954 DPRINT(("ctx_state=%d is_current=%d\n",
1955 state,
1956 task == current ? 1 : 0));
1959 * if task == current, then pfm_flush() unloaded the context
1961 if (state == PFM_CTX_UNLOADED) goto doit;
1964 * context is loaded/masked and task != current, we need to
1965 * either force an unload or go zombie
1969 * The task is currently blocked or will block after an overflow.
1970 * we must force it to wakeup to get out of the
1971 * MASKED state and transition to the unloaded state by itself.
1973 * This situation is only possible for per-task mode
1975 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1978 * set a "partial" zombie state to be checked
1979 * upon return from down() in pfm_handle_work().
1981 * We cannot use the ZOMBIE state, because it is checked
1982 * by pfm_load_regs() which is called upon wakeup from down().
1983 * In such case, it would free the context and then we would
1984 * return to pfm_handle_work() which would access the
1985 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1986 * but visible to pfm_handle_work().
1988 * For some window of time, we have a zombie context with
1989 * ctx_state = MASKED and not ZOMBIE
1991 ctx->ctx_fl_going_zombie = 1;
1994 * force task to wake up from MASKED state
1996 complete(&ctx->ctx_restart_done);
1998 DPRINT(("waking up ctx_state=%d\n", state));
2001 * put ourself to sleep waiting for the other
2002 * task to report completion
2004 * the context is protected by mutex, therefore there
2005 * is no risk of being notified of completion before
2006 * begin actually on the waitq.
2008 set_current_state(TASK_INTERRUPTIBLE);
2009 add_wait_queue(&ctx->ctx_zombieq, &wait);
2011 UNPROTECT_CTX(ctx, flags);
2014 * XXX: check for signals :
2015 * - ok for explicit close
2016 * - not ok when coming from exit_files()
2018 schedule();
2021 PROTECT_CTX(ctx, flags);
2024 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2025 set_current_state(TASK_RUNNING);
2028 * context is unloaded at this point
2030 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2032 else if (task != current) {
2033 #ifdef CONFIG_SMP
2035 * switch context to zombie state
2037 ctx->ctx_state = PFM_CTX_ZOMBIE;
2039 DPRINT(("zombie ctx for [%d]\n", task->pid));
2041 * cannot free the context on the spot. deferred until
2042 * the task notices the ZOMBIE state
2044 free_possible = 0;
2045 #else
2046 pfm_context_unload(ctx, NULL, 0, regs);
2047 #endif
2050 doit:
2051 /* reload state, may have changed during opening of critical section */
2052 state = ctx->ctx_state;
2055 * the context is still attached to a task (possibly current)
2056 * we cannot destroy it right now
2060 * we must free the sampling buffer right here because
2061 * we cannot rely on it being cleaned up later by the
2062 * monitored task. It is not possible to free vmalloc'ed
2063 * memory in pfm_load_regs(). Instead, we remove the buffer
2064 * now. should there be subsequent PMU overflow originally
2065 * meant for sampling, the will be converted to spurious
2066 * and that's fine because the monitoring tools is gone anyway.
2068 if (ctx->ctx_smpl_hdr) {
2069 smpl_buf_addr = ctx->ctx_smpl_hdr;
2070 smpl_buf_size = ctx->ctx_smpl_size;
2071 /* no more sampling */
2072 ctx->ctx_smpl_hdr = NULL;
2073 ctx->ctx_fl_is_sampling = 0;
2076 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2077 state,
2078 free_possible,
2079 smpl_buf_addr,
2080 smpl_buf_size));
2082 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2085 * UNLOADED that the session has already been unreserved.
2087 if (state == PFM_CTX_ZOMBIE) {
2088 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2092 * disconnect file descriptor from context must be done
2093 * before we unlock.
2095 filp->private_data = NULL;
2098 * if we free on the spot, the context is now completely unreacheable
2099 * from the callers side. The monitored task side is also cut, so we
2100 * can freely cut.
2102 * If we have a deferred free, only the caller side is disconnected.
2104 UNPROTECT_CTX(ctx, flags);
2107 * All memory free operations (especially for vmalloc'ed memory)
2108 * MUST be done with interrupts ENABLED.
2110 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2113 * return the memory used by the context
2115 if (free_possible) pfm_context_free(ctx);
2117 return 0;
2120 static int
2121 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2123 DPRINT(("pfm_no_open called\n"));
2124 return -ENXIO;
2129 static const struct file_operations pfm_file_ops = {
2130 .llseek = no_llseek,
2131 .read = pfm_read,
2132 .write = pfm_write,
2133 .poll = pfm_poll,
2134 .ioctl = pfm_ioctl,
2135 .open = pfm_no_open, /* special open code to disallow open via /proc */
2136 .fasync = pfm_fasync,
2137 .release = pfm_close,
2138 .flush = pfm_flush
2141 static int
2142 pfmfs_delete_dentry(struct dentry *dentry)
2144 return 1;
2147 static struct dentry_operations pfmfs_dentry_operations = {
2148 .d_delete = pfmfs_delete_dentry,
2152 static int
2153 pfm_alloc_fd(struct file **cfile)
2155 int fd, ret = 0;
2156 struct file *file = NULL;
2157 struct inode * inode;
2158 char name[32];
2159 struct qstr this;
2161 fd = get_unused_fd();
2162 if (fd < 0) return -ENFILE;
2164 ret = -ENFILE;
2166 file = get_empty_filp();
2167 if (!file) goto out;
2170 * allocate a new inode
2172 inode = new_inode(pfmfs_mnt->mnt_sb);
2173 if (!inode) goto out;
2175 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2177 inode->i_mode = S_IFCHR|S_IRUGO;
2178 inode->i_uid = current->fsuid;
2179 inode->i_gid = current->fsgid;
2181 sprintf(name, "[%lu]", inode->i_ino);
2182 this.name = name;
2183 this.len = strlen(name);
2184 this.hash = inode->i_ino;
2186 ret = -ENOMEM;
2189 * allocate a new dcache entry
2191 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2192 if (!file->f_path.dentry) goto out;
2194 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2196 d_add(file->f_path.dentry, inode);
2197 file->f_path.mnt = mntget(pfmfs_mnt);
2198 file->f_mapping = inode->i_mapping;
2200 file->f_op = &pfm_file_ops;
2201 file->f_mode = FMODE_READ;
2202 file->f_flags = O_RDONLY;
2203 file->f_pos = 0;
2206 * may have to delay until context is attached?
2208 fd_install(fd, file);
2211 * the file structure we will use
2213 *cfile = file;
2215 return fd;
2216 out:
2217 if (file) put_filp(file);
2218 put_unused_fd(fd);
2219 return ret;
2222 static void
2223 pfm_free_fd(int fd, struct file *file)
2225 struct files_struct *files = current->files;
2226 struct fdtable *fdt;
2229 * there ie no fd_uninstall(), so we do it here
2231 spin_lock(&files->file_lock);
2232 fdt = files_fdtable(files);
2233 rcu_assign_pointer(fdt->fd[fd], NULL);
2234 spin_unlock(&files->file_lock);
2236 if (file)
2237 put_filp(file);
2238 put_unused_fd(fd);
2241 static int
2242 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2244 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2246 while (size > 0) {
2247 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2250 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2251 return -ENOMEM;
2253 addr += PAGE_SIZE;
2254 buf += PAGE_SIZE;
2255 size -= PAGE_SIZE;
2257 return 0;
2261 * allocate a sampling buffer and remaps it into the user address space of the task
2263 static int
2264 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2266 struct mm_struct *mm = task->mm;
2267 struct vm_area_struct *vma = NULL;
2268 unsigned long size;
2269 void *smpl_buf;
2273 * the fixed header + requested size and align to page boundary
2275 size = PAGE_ALIGN(rsize);
2277 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2280 * check requested size to avoid Denial-of-service attacks
2281 * XXX: may have to refine this test
2282 * Check against address space limit.
2284 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2285 * return -ENOMEM;
2287 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2288 return -ENOMEM;
2291 * We do the easy to undo allocations first.
2293 * pfm_rvmalloc(), clears the buffer, so there is no leak
2295 smpl_buf = pfm_rvmalloc(size);
2296 if (smpl_buf == NULL) {
2297 DPRINT(("Can't allocate sampling buffer\n"));
2298 return -ENOMEM;
2301 DPRINT(("smpl_buf @%p\n", smpl_buf));
2303 /* allocate vma */
2304 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2305 if (!vma) {
2306 DPRINT(("Cannot allocate vma\n"));
2307 goto error_kmem;
2311 * partially initialize the vma for the sampling buffer
2313 vma->vm_mm = mm;
2314 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2315 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2318 * Now we have everything we need and we can initialize
2319 * and connect all the data structures
2322 ctx->ctx_smpl_hdr = smpl_buf;
2323 ctx->ctx_smpl_size = size; /* aligned size */
2326 * Let's do the difficult operations next.
2328 * now we atomically find some area in the address space and
2329 * remap the buffer in it.
2331 down_write(&task->mm->mmap_sem);
2333 /* find some free area in address space, must have mmap sem held */
2334 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2335 if (vma->vm_start == 0UL) {
2336 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2337 up_write(&task->mm->mmap_sem);
2338 goto error;
2340 vma->vm_end = vma->vm_start + size;
2341 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2343 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2345 /* can only be applied to current task, need to have the mm semaphore held when called */
2346 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2347 DPRINT(("Can't remap buffer\n"));
2348 up_write(&task->mm->mmap_sem);
2349 goto error;
2353 * now insert the vma in the vm list for the process, must be
2354 * done with mmap lock held
2356 insert_vm_struct(mm, vma);
2358 mm->total_vm += size >> PAGE_SHIFT;
2359 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2360 vma_pages(vma));
2361 up_write(&task->mm->mmap_sem);
2364 * keep track of user level virtual address
2366 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2367 *(unsigned long *)user_vaddr = vma->vm_start;
2369 return 0;
2371 error:
2372 kmem_cache_free(vm_area_cachep, vma);
2373 error_kmem:
2374 pfm_rvfree(smpl_buf, size);
2376 return -ENOMEM;
2380 * XXX: do something better here
2382 static int
2383 pfm_bad_permissions(struct task_struct *task)
2385 /* inspired by ptrace_attach() */
2386 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2387 current->uid,
2388 current->gid,
2389 task->euid,
2390 task->suid,
2391 task->uid,
2392 task->egid,
2393 task->sgid));
2395 return ((current->uid != task->euid)
2396 || (current->uid != task->suid)
2397 || (current->uid != task->uid)
2398 || (current->gid != task->egid)
2399 || (current->gid != task->sgid)
2400 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2403 static int
2404 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2406 int ctx_flags;
2408 /* valid signal */
2410 ctx_flags = pfx->ctx_flags;
2412 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2415 * cannot block in this mode
2417 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2418 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2419 return -EINVAL;
2421 } else {
2423 /* probably more to add here */
2425 return 0;
2428 static int
2429 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2430 unsigned int cpu, pfarg_context_t *arg)
2432 pfm_buffer_fmt_t *fmt = NULL;
2433 unsigned long size = 0UL;
2434 void *uaddr = NULL;
2435 void *fmt_arg = NULL;
2436 int ret = 0;
2437 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2439 /* invoke and lock buffer format, if found */
2440 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2441 if (fmt == NULL) {
2442 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2443 return -EINVAL;
2447 * buffer argument MUST be contiguous to pfarg_context_t
2449 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2451 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2453 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2455 if (ret) goto error;
2457 /* link buffer format and context */
2458 ctx->ctx_buf_fmt = fmt;
2461 * check if buffer format wants to use perfmon buffer allocation/mapping service
2463 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2464 if (ret) goto error;
2466 if (size) {
2468 * buffer is always remapped into the caller's address space
2470 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2471 if (ret) goto error;
2473 /* keep track of user address of buffer */
2474 arg->ctx_smpl_vaddr = uaddr;
2476 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2478 error:
2479 return ret;
2482 static void
2483 pfm_reset_pmu_state(pfm_context_t *ctx)
2485 int i;
2488 * install reset values for PMC.
2490 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2491 if (PMC_IS_IMPL(i) == 0) continue;
2492 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2493 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2496 * PMD registers are set to 0UL when the context in memset()
2500 * On context switched restore, we must restore ALL pmc and ALL pmd even
2501 * when they are not actively used by the task. In UP, the incoming process
2502 * may otherwise pick up left over PMC, PMD state from the previous process.
2503 * As opposed to PMD, stale PMC can cause harm to the incoming
2504 * process because they may change what is being measured.
2505 * Therefore, we must systematically reinstall the entire
2506 * PMC state. In SMP, the same thing is possible on the
2507 * same CPU but also on between 2 CPUs.
2509 * The problem with PMD is information leaking especially
2510 * to user level when psr.sp=0
2512 * There is unfortunately no easy way to avoid this problem
2513 * on either UP or SMP. This definitively slows down the
2514 * pfm_load_regs() function.
2518 * bitmask of all PMCs accessible to this context
2520 * PMC0 is treated differently.
2522 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2525 * bitmask of all PMDs that are accesible to this context
2527 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2529 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2532 * useful in case of re-enable after disable
2534 ctx->ctx_used_ibrs[0] = 0UL;
2535 ctx->ctx_used_dbrs[0] = 0UL;
2538 static int
2539 pfm_ctx_getsize(void *arg, size_t *sz)
2541 pfarg_context_t *req = (pfarg_context_t *)arg;
2542 pfm_buffer_fmt_t *fmt;
2544 *sz = 0;
2546 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2548 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2549 if (fmt == NULL) {
2550 DPRINT(("cannot find buffer format\n"));
2551 return -EINVAL;
2553 /* get just enough to copy in user parameters */
2554 *sz = fmt->fmt_arg_size;
2555 DPRINT(("arg_size=%lu\n", *sz));
2557 return 0;
2563 * cannot attach if :
2564 * - kernel task
2565 * - task not owned by caller
2566 * - task incompatible with context mode
2568 static int
2569 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2572 * no kernel task or task not owner by caller
2574 if (task->mm == NULL) {
2575 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2576 return -EPERM;
2578 if (pfm_bad_permissions(task)) {
2579 DPRINT(("no permission to attach to [%d]\n", task->pid));
2580 return -EPERM;
2583 * cannot block in self-monitoring mode
2585 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2586 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2587 return -EINVAL;
2590 if (task->exit_state == EXIT_ZOMBIE) {
2591 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2592 return -EBUSY;
2596 * always ok for self
2598 if (task == current) return 0;
2600 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2601 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2602 return -EBUSY;
2605 * make sure the task is off any CPU
2607 wait_task_inactive(task);
2609 /* more to come... */
2611 return 0;
2614 static int
2615 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2617 struct task_struct *p = current;
2618 int ret;
2620 /* XXX: need to add more checks here */
2621 if (pid < 2) return -EPERM;
2623 if (pid != current->pid) {
2625 read_lock(&tasklist_lock);
2627 p = find_task_by_pid(pid);
2629 /* make sure task cannot go away while we operate on it */
2630 if (p) get_task_struct(p);
2632 read_unlock(&tasklist_lock);
2634 if (p == NULL) return -ESRCH;
2637 ret = pfm_task_incompatible(ctx, p);
2638 if (ret == 0) {
2639 *task = p;
2640 } else if (p != current) {
2641 pfm_put_task(p);
2643 return ret;
2648 static int
2649 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2651 pfarg_context_t *req = (pfarg_context_t *)arg;
2652 struct file *filp;
2653 int ctx_flags;
2654 int ret;
2656 /* let's check the arguments first */
2657 ret = pfarg_is_sane(current, req);
2658 if (ret < 0) return ret;
2660 ctx_flags = req->ctx_flags;
2662 ret = -ENOMEM;
2664 ctx = pfm_context_alloc();
2665 if (!ctx) goto error;
2667 ret = pfm_alloc_fd(&filp);
2668 if (ret < 0) goto error_file;
2670 req->ctx_fd = ctx->ctx_fd = ret;
2673 * attach context to file
2675 filp->private_data = ctx;
2678 * does the user want to sample?
2680 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2681 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2682 if (ret) goto buffer_error;
2686 * init context protection lock
2688 spin_lock_init(&ctx->ctx_lock);
2691 * context is unloaded
2693 ctx->ctx_state = PFM_CTX_UNLOADED;
2696 * initialization of context's flags
2698 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2699 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2700 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2701 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2703 * will move to set properties
2704 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2708 * init restart semaphore to locked
2710 init_completion(&ctx->ctx_restart_done);
2713 * activation is used in SMP only
2715 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2716 SET_LAST_CPU(ctx, -1);
2719 * initialize notification message queue
2721 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2722 init_waitqueue_head(&ctx->ctx_msgq_wait);
2723 init_waitqueue_head(&ctx->ctx_zombieq);
2725 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2726 ctx,
2727 ctx_flags,
2728 ctx->ctx_fl_system,
2729 ctx->ctx_fl_block,
2730 ctx->ctx_fl_excl_idle,
2731 ctx->ctx_fl_no_msg,
2732 ctx->ctx_fd));
2735 * initialize soft PMU state
2737 pfm_reset_pmu_state(ctx);
2739 return 0;
2741 buffer_error:
2742 pfm_free_fd(ctx->ctx_fd, filp);
2744 if (ctx->ctx_buf_fmt) {
2745 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2747 error_file:
2748 pfm_context_free(ctx);
2750 error:
2751 return ret;
2754 static inline unsigned long
2755 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2757 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2758 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2759 extern unsigned long carta_random32 (unsigned long seed);
2761 if (reg->flags & PFM_REGFL_RANDOM) {
2762 new_seed = carta_random32(old_seed);
2763 val -= (old_seed & mask); /* counter values are negative numbers! */
2764 if ((mask >> 32) != 0)
2765 /* construct a full 64-bit random value: */
2766 new_seed |= carta_random32(old_seed >> 32) << 32;
2767 reg->seed = new_seed;
2769 reg->lval = val;
2770 return val;
2773 static void
2774 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2776 unsigned long mask = ovfl_regs[0];
2777 unsigned long reset_others = 0UL;
2778 unsigned long val;
2779 int i;
2782 * now restore reset value on sampling overflowed counters
2784 mask >>= PMU_FIRST_COUNTER;
2785 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2787 if ((mask & 0x1UL) == 0UL) continue;
2789 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2790 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2792 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2796 * Now take care of resetting the other registers
2798 for(i = 0; reset_others; i++, reset_others >>= 1) {
2800 if ((reset_others & 0x1) == 0) continue;
2802 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2804 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2805 is_long_reset ? "long" : "short", i, val));
2809 static void
2810 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2812 unsigned long mask = ovfl_regs[0];
2813 unsigned long reset_others = 0UL;
2814 unsigned long val;
2815 int i;
2817 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2819 if (ctx->ctx_state == PFM_CTX_MASKED) {
2820 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2821 return;
2825 * now restore reset value on sampling overflowed counters
2827 mask >>= PMU_FIRST_COUNTER;
2828 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2830 if ((mask & 0x1UL) == 0UL) continue;
2832 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2833 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2835 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2837 pfm_write_soft_counter(ctx, i, val);
2841 * Now take care of resetting the other registers
2843 for(i = 0; reset_others; i++, reset_others >>= 1) {
2845 if ((reset_others & 0x1) == 0) continue;
2847 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2849 if (PMD_IS_COUNTING(i)) {
2850 pfm_write_soft_counter(ctx, i, val);
2851 } else {
2852 ia64_set_pmd(i, val);
2854 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2855 is_long_reset ? "long" : "short", i, val));
2857 ia64_srlz_d();
2860 static int
2861 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2863 struct task_struct *task;
2864 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2865 unsigned long value, pmc_pm;
2866 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2867 unsigned int cnum, reg_flags, flags, pmc_type;
2868 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2869 int is_monitor, is_counting, state;
2870 int ret = -EINVAL;
2871 pfm_reg_check_t wr_func;
2872 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2874 state = ctx->ctx_state;
2875 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2876 is_system = ctx->ctx_fl_system;
2877 task = ctx->ctx_task;
2878 impl_pmds = pmu_conf->impl_pmds[0];
2880 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2882 if (is_loaded) {
2884 * In system wide and when the context is loaded, access can only happen
2885 * when the caller is running on the CPU being monitored by the session.
2886 * It does not have to be the owner (ctx_task) of the context per se.
2888 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2889 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2890 return -EBUSY;
2892 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2894 expert_mode = pfm_sysctl.expert_mode;
2896 for (i = 0; i < count; i++, req++) {
2898 cnum = req->reg_num;
2899 reg_flags = req->reg_flags;
2900 value = req->reg_value;
2901 smpl_pmds = req->reg_smpl_pmds[0];
2902 reset_pmds = req->reg_reset_pmds[0];
2903 flags = 0;
2906 if (cnum >= PMU_MAX_PMCS) {
2907 DPRINT(("pmc%u is invalid\n", cnum));
2908 goto error;
2911 pmc_type = pmu_conf->pmc_desc[cnum].type;
2912 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2913 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2914 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2917 * we reject all non implemented PMC as well
2918 * as attempts to modify PMC[0-3] which are used
2919 * as status registers by the PMU
2921 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2922 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2923 goto error;
2925 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2927 * If the PMC is a monitor, then if the value is not the default:
2928 * - system-wide session: PMCx.pm=1 (privileged monitor)
2929 * - per-task : PMCx.pm=0 (user monitor)
2931 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2932 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2933 cnum,
2934 pmc_pm,
2935 is_system));
2936 goto error;
2939 if (is_counting) {
2941 * enforce generation of overflow interrupt. Necessary on all
2942 * CPUs.
2944 value |= 1 << PMU_PMC_OI;
2946 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2947 flags |= PFM_REGFL_OVFL_NOTIFY;
2950 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2952 /* verify validity of smpl_pmds */
2953 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2954 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2955 goto error;
2958 /* verify validity of reset_pmds */
2959 if ((reset_pmds & impl_pmds) != reset_pmds) {
2960 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2961 goto error;
2963 } else {
2964 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2965 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2966 goto error;
2968 /* eventid on non-counting monitors are ignored */
2972 * execute write checker, if any
2974 if (likely(expert_mode == 0 && wr_func)) {
2975 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2976 if (ret) goto error;
2977 ret = -EINVAL;
2981 * no error on this register
2983 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2986 * Now we commit the changes to the software state
2990 * update overflow information
2992 if (is_counting) {
2994 * full flag update each time a register is programmed
2996 ctx->ctx_pmds[cnum].flags = flags;
2998 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2999 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3000 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3003 * Mark all PMDS to be accessed as used.
3005 * We do not keep track of PMC because we have to
3006 * systematically restore ALL of them.
3008 * We do not update the used_monitors mask, because
3009 * if we have not programmed them, then will be in
3010 * a quiescent state, therefore we will not need to
3011 * mask/restore then when context is MASKED.
3013 CTX_USED_PMD(ctx, reset_pmds);
3014 CTX_USED_PMD(ctx, smpl_pmds);
3016 * make sure we do not try to reset on
3017 * restart because we have established new values
3019 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3022 * Needed in case the user does not initialize the equivalent
3023 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3024 * possible leak here.
3026 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3029 * keep track of the monitor PMC that we are using.
3030 * we save the value of the pmc in ctx_pmcs[] and if
3031 * the monitoring is not stopped for the context we also
3032 * place it in the saved state area so that it will be
3033 * picked up later by the context switch code.
3035 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3037 * The value in th_pmcs[] may be modified on overflow, i.e., when
3038 * monitoring needs to be stopped.
3040 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3043 * update context state
3045 ctx->ctx_pmcs[cnum] = value;
3047 if (is_loaded) {
3049 * write thread state
3051 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3054 * write hardware register if we can
3056 if (can_access_pmu) {
3057 ia64_set_pmc(cnum, value);
3059 #ifdef CONFIG_SMP
3060 else {
3062 * per-task SMP only here
3064 * we are guaranteed that the task is not running on the other CPU,
3065 * we indicate that this PMD will need to be reloaded if the task
3066 * is rescheduled on the CPU it ran last on.
3068 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3070 #endif
3073 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3074 cnum,
3075 value,
3076 is_loaded,
3077 can_access_pmu,
3078 flags,
3079 ctx->ctx_all_pmcs[0],
3080 ctx->ctx_used_pmds[0],
3081 ctx->ctx_pmds[cnum].eventid,
3082 smpl_pmds,
3083 reset_pmds,
3084 ctx->ctx_reload_pmcs[0],
3085 ctx->ctx_used_monitors[0],
3086 ctx->ctx_ovfl_regs[0]));
3090 * make sure the changes are visible
3092 if (can_access_pmu) ia64_srlz_d();
3094 return 0;
3095 error:
3096 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3097 return ret;
3100 static int
3101 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3103 struct task_struct *task;
3104 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3105 unsigned long value, hw_value, ovfl_mask;
3106 unsigned int cnum;
3107 int i, can_access_pmu = 0, state;
3108 int is_counting, is_loaded, is_system, expert_mode;
3109 int ret = -EINVAL;
3110 pfm_reg_check_t wr_func;
3113 state = ctx->ctx_state;
3114 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3115 is_system = ctx->ctx_fl_system;
3116 ovfl_mask = pmu_conf->ovfl_val;
3117 task = ctx->ctx_task;
3119 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3122 * on both UP and SMP, we can only write to the PMC when the task is
3123 * the owner of the local PMU.
3125 if (likely(is_loaded)) {
3127 * In system wide and when the context is loaded, access can only happen
3128 * when the caller is running on the CPU being monitored by the session.
3129 * It does not have to be the owner (ctx_task) of the context per se.
3131 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3132 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3133 return -EBUSY;
3135 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3137 expert_mode = pfm_sysctl.expert_mode;
3139 for (i = 0; i < count; i++, req++) {
3141 cnum = req->reg_num;
3142 value = req->reg_value;
3144 if (!PMD_IS_IMPL(cnum)) {
3145 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3146 goto abort_mission;
3148 is_counting = PMD_IS_COUNTING(cnum);
3149 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3152 * execute write checker, if any
3154 if (unlikely(expert_mode == 0 && wr_func)) {
3155 unsigned long v = value;
3157 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3158 if (ret) goto abort_mission;
3160 value = v;
3161 ret = -EINVAL;
3165 * no error on this register
3167 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3170 * now commit changes to software state
3172 hw_value = value;
3175 * update virtualized (64bits) counter
3177 if (is_counting) {
3179 * write context state
3181 ctx->ctx_pmds[cnum].lval = value;
3184 * when context is load we use the split value
3186 if (is_loaded) {
3187 hw_value = value & ovfl_mask;
3188 value = value & ~ovfl_mask;
3192 * update reset values (not just for counters)
3194 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3195 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3198 * update randomization parameters (not just for counters)
3200 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3201 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3204 * update context value
3206 ctx->ctx_pmds[cnum].val = value;
3209 * Keep track of what we use
3211 * We do not keep track of PMC because we have to
3212 * systematically restore ALL of them.
3214 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3217 * mark this PMD register used as well
3219 CTX_USED_PMD(ctx, RDEP(cnum));
3222 * make sure we do not try to reset on
3223 * restart because we have established new values
3225 if (is_counting && state == PFM_CTX_MASKED) {
3226 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3229 if (is_loaded) {
3231 * write thread state
3233 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3236 * write hardware register if we can
3238 if (can_access_pmu) {
3239 ia64_set_pmd(cnum, hw_value);
3240 } else {
3241 #ifdef CONFIG_SMP
3243 * we are guaranteed that the task is not running on the other CPU,
3244 * we indicate that this PMD will need to be reloaded if the task
3245 * is rescheduled on the CPU it ran last on.
3247 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3248 #endif
3252 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3253 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3254 cnum,
3255 value,
3256 is_loaded,
3257 can_access_pmu,
3258 hw_value,
3259 ctx->ctx_pmds[cnum].val,
3260 ctx->ctx_pmds[cnum].short_reset,
3261 ctx->ctx_pmds[cnum].long_reset,
3262 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3263 ctx->ctx_pmds[cnum].seed,
3264 ctx->ctx_pmds[cnum].mask,
3265 ctx->ctx_used_pmds[0],
3266 ctx->ctx_pmds[cnum].reset_pmds[0],
3267 ctx->ctx_reload_pmds[0],
3268 ctx->ctx_all_pmds[0],
3269 ctx->ctx_ovfl_regs[0]));
3273 * make changes visible
3275 if (can_access_pmu) ia64_srlz_d();
3277 return 0;
3279 abort_mission:
3281 * for now, we have only one possibility for error
3283 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3284 return ret;
3288 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3289 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3290 * interrupt is delivered during the call, it will be kept pending until we leave, making
3291 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3292 * guaranteed to return consistent data to the user, it may simply be old. It is not
3293 * trivial to treat the overflow while inside the call because you may end up in
3294 * some module sampling buffer code causing deadlocks.
3296 static int
3297 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3299 struct task_struct *task;
3300 unsigned long val = 0UL, lval, ovfl_mask, sval;
3301 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3302 unsigned int cnum, reg_flags = 0;
3303 int i, can_access_pmu = 0, state;
3304 int is_loaded, is_system, is_counting, expert_mode;
3305 int ret = -EINVAL;
3306 pfm_reg_check_t rd_func;
3309 * access is possible when loaded only for
3310 * self-monitoring tasks or in UP mode
3313 state = ctx->ctx_state;
3314 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3315 is_system = ctx->ctx_fl_system;
3316 ovfl_mask = pmu_conf->ovfl_val;
3317 task = ctx->ctx_task;
3319 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3321 if (likely(is_loaded)) {
3323 * In system wide and when the context is loaded, access can only happen
3324 * when the caller is running on the CPU being monitored by the session.
3325 * It does not have to be the owner (ctx_task) of the context per se.
3327 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3328 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3329 return -EBUSY;
3332 * this can be true when not self-monitoring only in UP
3334 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3336 if (can_access_pmu) ia64_srlz_d();
3338 expert_mode = pfm_sysctl.expert_mode;
3340 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3341 is_loaded,
3342 can_access_pmu,
3343 state));
3346 * on both UP and SMP, we can only read the PMD from the hardware register when
3347 * the task is the owner of the local PMU.
3350 for (i = 0; i < count; i++, req++) {
3352 cnum = req->reg_num;
3353 reg_flags = req->reg_flags;
3355 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3357 * we can only read the register that we use. That includes
3358 * the one we explicitely initialize AND the one we want included
3359 * in the sampling buffer (smpl_regs).
3361 * Having this restriction allows optimization in the ctxsw routine
3362 * without compromising security (leaks)
3364 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3366 sval = ctx->ctx_pmds[cnum].val;
3367 lval = ctx->ctx_pmds[cnum].lval;
3368 is_counting = PMD_IS_COUNTING(cnum);
3371 * If the task is not the current one, then we check if the
3372 * PMU state is still in the local live register due to lazy ctxsw.
3373 * If true, then we read directly from the registers.
3375 if (can_access_pmu){
3376 val = ia64_get_pmd(cnum);
3377 } else {
3379 * context has been saved
3380 * if context is zombie, then task does not exist anymore.
3381 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3383 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3385 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3387 if (is_counting) {
3389 * XXX: need to check for overflow when loaded
3391 val &= ovfl_mask;
3392 val += sval;
3396 * execute read checker, if any
3398 if (unlikely(expert_mode == 0 && rd_func)) {
3399 unsigned long v = val;
3400 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3401 if (ret) goto error;
3402 val = v;
3403 ret = -EINVAL;
3406 PFM_REG_RETFLAG_SET(reg_flags, 0);
3408 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3411 * update register return value, abort all if problem during copy.
3412 * we only modify the reg_flags field. no check mode is fine because
3413 * access has been verified upfront in sys_perfmonctl().
3415 req->reg_value = val;
3416 req->reg_flags = reg_flags;
3417 req->reg_last_reset_val = lval;
3420 return 0;
3422 error:
3423 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3424 return ret;
3428 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430 pfm_context_t *ctx;
3432 if (req == NULL) return -EINVAL;
3434 ctx = GET_PMU_CTX();
3436 if (ctx == NULL) return -EINVAL;
3439 * for now limit to current task, which is enough when calling
3440 * from overflow handler
3442 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444 return pfm_write_pmcs(ctx, req, nreq, regs);
3446 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3449 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3451 pfm_context_t *ctx;
3453 if (req == NULL) return -EINVAL;
3455 ctx = GET_PMU_CTX();
3457 if (ctx == NULL) return -EINVAL;
3460 * for now limit to current task, which is enough when calling
3461 * from overflow handler
3463 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3465 return pfm_read_pmds(ctx, req, nreq, regs);
3467 EXPORT_SYMBOL(pfm_mod_read_pmds);
3470 * Only call this function when a process it trying to
3471 * write the debug registers (reading is always allowed)
3474 pfm_use_debug_registers(struct task_struct *task)
3476 pfm_context_t *ctx = task->thread.pfm_context;
3477 unsigned long flags;
3478 int ret = 0;
3480 if (pmu_conf->use_rr_dbregs == 0) return 0;
3482 DPRINT(("called for [%d]\n", task->pid));
3485 * do it only once
3487 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3490 * Even on SMP, we do not need to use an atomic here because
3491 * the only way in is via ptrace() and this is possible only when the
3492 * process is stopped. Even in the case where the ctxsw out is not totally
3493 * completed by the time we come here, there is no way the 'stopped' process
3494 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3495 * So this is always safe.
3497 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3499 LOCK_PFS(flags);
3502 * We cannot allow setting breakpoints when system wide monitoring
3503 * sessions are using the debug registers.
3505 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3506 ret = -1;
3507 else
3508 pfm_sessions.pfs_ptrace_use_dbregs++;
3510 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3511 pfm_sessions.pfs_ptrace_use_dbregs,
3512 pfm_sessions.pfs_sys_use_dbregs,
3513 task->pid, ret));
3515 UNLOCK_PFS(flags);
3517 return ret;
3521 * This function is called for every task that exits with the
3522 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3523 * able to use the debug registers for debugging purposes via
3524 * ptrace(). Therefore we know it was not using them for
3525 * perfmormance monitoring, so we only decrement the number
3526 * of "ptraced" debug register users to keep the count up to date
3529 pfm_release_debug_registers(struct task_struct *task)
3531 unsigned long flags;
3532 int ret;
3534 if (pmu_conf->use_rr_dbregs == 0) return 0;
3536 LOCK_PFS(flags);
3537 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3538 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3539 ret = -1;
3540 } else {
3541 pfm_sessions.pfs_ptrace_use_dbregs--;
3542 ret = 0;
3544 UNLOCK_PFS(flags);
3546 return ret;
3549 static int
3550 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3552 struct task_struct *task;
3553 pfm_buffer_fmt_t *fmt;
3554 pfm_ovfl_ctrl_t rst_ctrl;
3555 int state, is_system;
3556 int ret = 0;
3558 state = ctx->ctx_state;
3559 fmt = ctx->ctx_buf_fmt;
3560 is_system = ctx->ctx_fl_system;
3561 task = PFM_CTX_TASK(ctx);
3563 switch(state) {
3564 case PFM_CTX_MASKED:
3565 break;
3566 case PFM_CTX_LOADED:
3567 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3568 /* fall through */
3569 case PFM_CTX_UNLOADED:
3570 case PFM_CTX_ZOMBIE:
3571 DPRINT(("invalid state=%d\n", state));
3572 return -EBUSY;
3573 default:
3574 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3575 return -EINVAL;
3579 * In system wide and when the context is loaded, access can only happen
3580 * when the caller is running on the CPU being monitored by the session.
3581 * It does not have to be the owner (ctx_task) of the context per se.
3583 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3584 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3585 return -EBUSY;
3588 /* sanity check */
3589 if (unlikely(task == NULL)) {
3590 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3591 return -EINVAL;
3594 if (task == current || is_system) {
3596 fmt = ctx->ctx_buf_fmt;
3598 DPRINT(("restarting self %d ovfl=0x%lx\n",
3599 task->pid,
3600 ctx->ctx_ovfl_regs[0]));
3602 if (CTX_HAS_SMPL(ctx)) {
3604 prefetch(ctx->ctx_smpl_hdr);
3606 rst_ctrl.bits.mask_monitoring = 0;
3607 rst_ctrl.bits.reset_ovfl_pmds = 0;
3609 if (state == PFM_CTX_LOADED)
3610 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3611 else
3612 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3613 } else {
3614 rst_ctrl.bits.mask_monitoring = 0;
3615 rst_ctrl.bits.reset_ovfl_pmds = 1;
3618 if (ret == 0) {
3619 if (rst_ctrl.bits.reset_ovfl_pmds)
3620 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3622 if (rst_ctrl.bits.mask_monitoring == 0) {
3623 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3625 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3626 } else {
3627 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3629 // cannot use pfm_stop_monitoring(task, regs);
3633 * clear overflowed PMD mask to remove any stale information
3635 ctx->ctx_ovfl_regs[0] = 0UL;
3638 * back to LOADED state
3640 ctx->ctx_state = PFM_CTX_LOADED;
3643 * XXX: not really useful for self monitoring
3645 ctx->ctx_fl_can_restart = 0;
3647 return 0;
3651 * restart another task
3655 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3656 * one is seen by the task.
3658 if (state == PFM_CTX_MASKED) {
3659 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3661 * will prevent subsequent restart before this one is
3662 * seen by other task
3664 ctx->ctx_fl_can_restart = 0;
3668 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3669 * the task is blocked or on its way to block. That's the normal
3670 * restart path. If the monitoring is not masked, then the task
3671 * can be actively monitoring and we cannot directly intervene.
3672 * Therefore we use the trap mechanism to catch the task and
3673 * force it to reset the buffer/reset PMDs.
3675 * if non-blocking, then we ensure that the task will go into
3676 * pfm_handle_work() before returning to user mode.
3678 * We cannot explicitely reset another task, it MUST always
3679 * be done by the task itself. This works for system wide because
3680 * the tool that is controlling the session is logically doing
3681 * "self-monitoring".
3683 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3684 DPRINT(("unblocking [%d] \n", task->pid));
3685 complete(&ctx->ctx_restart_done);
3686 } else {
3687 DPRINT(("[%d] armed exit trap\n", task->pid));
3689 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3691 PFM_SET_WORK_PENDING(task, 1);
3693 pfm_set_task_notify(task);
3696 * XXX: send reschedule if task runs on another CPU
3699 return 0;
3702 static int
3703 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705 unsigned int m = *(unsigned int *)arg;
3707 pfm_sysctl.debug = m == 0 ? 0 : 1;
3709 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3711 if (m == 0) {
3712 memset(pfm_stats, 0, sizeof(pfm_stats));
3713 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3715 return 0;
3719 * arg can be NULL and count can be zero for this function
3721 static int
3722 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3724 struct thread_struct *thread = NULL;
3725 struct task_struct *task;
3726 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3727 unsigned long flags;
3728 dbreg_t dbreg;
3729 unsigned int rnum;
3730 int first_time;
3731 int ret = 0, state;
3732 int i, can_access_pmu = 0;
3733 int is_system, is_loaded;
3735 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3737 state = ctx->ctx_state;
3738 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3739 is_system = ctx->ctx_fl_system;
3740 task = ctx->ctx_task;
3742 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3745 * on both UP and SMP, we can only write to the PMC when the task is
3746 * the owner of the local PMU.
3748 if (is_loaded) {
3749 thread = &task->thread;
3751 * In system wide and when the context is loaded, access can only happen
3752 * when the caller is running on the CPU being monitored by the session.
3753 * It does not have to be the owner (ctx_task) of the context per se.
3755 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3756 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3757 return -EBUSY;
3759 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3763 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3764 * ensuring that no real breakpoint can be installed via this call.
3766 * IMPORTANT: regs can be NULL in this function
3769 first_time = ctx->ctx_fl_using_dbreg == 0;
3772 * don't bother if we are loaded and task is being debugged
3774 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3775 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3776 return -EBUSY;
3780 * check for debug registers in system wide mode
3782 * If though a check is done in pfm_context_load(),
3783 * we must repeat it here, in case the registers are
3784 * written after the context is loaded
3786 if (is_loaded) {
3787 LOCK_PFS(flags);
3789 if (first_time && is_system) {
3790 if (pfm_sessions.pfs_ptrace_use_dbregs)
3791 ret = -EBUSY;
3792 else
3793 pfm_sessions.pfs_sys_use_dbregs++;
3795 UNLOCK_PFS(flags);
3798 if (ret != 0) return ret;
3801 * mark ourself as user of the debug registers for
3802 * perfmon purposes.
3804 ctx->ctx_fl_using_dbreg = 1;
3807 * clear hardware registers to make sure we don't
3808 * pick up stale state.
3810 * for a system wide session, we do not use
3811 * thread.dbr, thread.ibr because this process
3812 * never leaves the current CPU and the state
3813 * is shared by all processes running on it
3815 if (first_time && can_access_pmu) {
3816 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3817 for (i=0; i < pmu_conf->num_ibrs; i++) {
3818 ia64_set_ibr(i, 0UL);
3819 ia64_dv_serialize_instruction();
3821 ia64_srlz_i();
3822 for (i=0; i < pmu_conf->num_dbrs; i++) {
3823 ia64_set_dbr(i, 0UL);
3824 ia64_dv_serialize_data();
3826 ia64_srlz_d();
3830 * Now install the values into the registers
3832 for (i = 0; i < count; i++, req++) {
3834 rnum = req->dbreg_num;
3835 dbreg.val = req->dbreg_value;
3837 ret = -EINVAL;
3839 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3840 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3841 rnum, dbreg.val, mode, i, count));
3843 goto abort_mission;
3847 * make sure we do not install enabled breakpoint
3849 if (rnum & 0x1) {
3850 if (mode == PFM_CODE_RR)
3851 dbreg.ibr.ibr_x = 0;
3852 else
3853 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3856 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3859 * Debug registers, just like PMC, can only be modified
3860 * by a kernel call. Moreover, perfmon() access to those
3861 * registers are centralized in this routine. The hardware
3862 * does not modify the value of these registers, therefore,
3863 * if we save them as they are written, we can avoid having
3864 * to save them on context switch out. This is made possible
3865 * by the fact that when perfmon uses debug registers, ptrace()
3866 * won't be able to modify them concurrently.
3868 if (mode == PFM_CODE_RR) {
3869 CTX_USED_IBR(ctx, rnum);
3871 if (can_access_pmu) {
3872 ia64_set_ibr(rnum, dbreg.val);
3873 ia64_dv_serialize_instruction();
3876 ctx->ctx_ibrs[rnum] = dbreg.val;
3878 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3879 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3880 } else {
3881 CTX_USED_DBR(ctx, rnum);
3883 if (can_access_pmu) {
3884 ia64_set_dbr(rnum, dbreg.val);
3885 ia64_dv_serialize_data();
3887 ctx->ctx_dbrs[rnum] = dbreg.val;
3889 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3890 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3894 return 0;
3896 abort_mission:
3898 * in case it was our first attempt, we undo the global modifications
3900 if (first_time) {
3901 LOCK_PFS(flags);
3902 if (ctx->ctx_fl_system) {
3903 pfm_sessions.pfs_sys_use_dbregs--;
3905 UNLOCK_PFS(flags);
3906 ctx->ctx_fl_using_dbreg = 0;
3909 * install error return flag
3911 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3913 return ret;
3916 static int
3917 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3919 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3922 static int
3923 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3929 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931 pfm_context_t *ctx;
3933 if (req == NULL) return -EINVAL;
3935 ctx = GET_PMU_CTX();
3937 if (ctx == NULL) return -EINVAL;
3940 * for now limit to current task, which is enough when calling
3941 * from overflow handler
3943 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945 return pfm_write_ibrs(ctx, req, nreq, regs);
3947 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3950 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3952 pfm_context_t *ctx;
3954 if (req == NULL) return -EINVAL;
3956 ctx = GET_PMU_CTX();
3958 if (ctx == NULL) return -EINVAL;
3961 * for now limit to current task, which is enough when calling
3962 * from overflow handler
3964 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3966 return pfm_write_dbrs(ctx, req, nreq, regs);
3968 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3971 static int
3972 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3974 pfarg_features_t *req = (pfarg_features_t *)arg;
3976 req->ft_version = PFM_VERSION;
3977 return 0;
3980 static int
3981 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3983 struct pt_regs *tregs;
3984 struct task_struct *task = PFM_CTX_TASK(ctx);
3985 int state, is_system;
3987 state = ctx->ctx_state;
3988 is_system = ctx->ctx_fl_system;
3991 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3993 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3996 * In system wide and when the context is loaded, access can only happen
3997 * when the caller is running on the CPU being monitored by the session.
3998 * It does not have to be the owner (ctx_task) of the context per se.
4000 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4001 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4002 return -EBUSY;
4004 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4005 PFM_CTX_TASK(ctx)->pid,
4006 state,
4007 is_system));
4009 * in system mode, we need to update the PMU directly
4010 * and the user level state of the caller, which may not
4011 * necessarily be the creator of the context.
4013 if (is_system) {
4015 * Update local PMU first
4017 * disable dcr pp
4019 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4020 ia64_srlz_i();
4023 * update local cpuinfo
4025 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4028 * stop monitoring, does srlz.i
4030 pfm_clear_psr_pp();
4033 * stop monitoring in the caller
4035 ia64_psr(regs)->pp = 0;
4037 return 0;
4040 * per-task mode
4043 if (task == current) {
4044 /* stop monitoring at kernel level */
4045 pfm_clear_psr_up();
4048 * stop monitoring at the user level
4050 ia64_psr(regs)->up = 0;
4051 } else {
4052 tregs = task_pt_regs(task);
4055 * stop monitoring at the user level
4057 ia64_psr(tregs)->up = 0;
4060 * monitoring disabled in kernel at next reschedule
4062 ctx->ctx_saved_psr_up = 0;
4063 DPRINT(("task=[%d]\n", task->pid));
4065 return 0;
4069 static int
4070 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4072 struct pt_regs *tregs;
4073 int state, is_system;
4075 state = ctx->ctx_state;
4076 is_system = ctx->ctx_fl_system;
4078 if (state != PFM_CTX_LOADED) return -EINVAL;
4081 * In system wide and when the context is loaded, access can only happen
4082 * when the caller is running on the CPU being monitored by the session.
4083 * It does not have to be the owner (ctx_task) of the context per se.
4085 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4086 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4087 return -EBUSY;
4091 * in system mode, we need to update the PMU directly
4092 * and the user level state of the caller, which may not
4093 * necessarily be the creator of the context.
4095 if (is_system) {
4098 * set user level psr.pp for the caller
4100 ia64_psr(regs)->pp = 1;
4103 * now update the local PMU and cpuinfo
4105 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4108 * start monitoring at kernel level
4110 pfm_set_psr_pp();
4112 /* enable dcr pp */
4113 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4114 ia64_srlz_i();
4116 return 0;
4120 * per-process mode
4123 if (ctx->ctx_task == current) {
4125 /* start monitoring at kernel level */
4126 pfm_set_psr_up();
4129 * activate monitoring at user level
4131 ia64_psr(regs)->up = 1;
4133 } else {
4134 tregs = task_pt_regs(ctx->ctx_task);
4137 * start monitoring at the kernel level the next
4138 * time the task is scheduled
4140 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4143 * activate monitoring at user level
4145 ia64_psr(tregs)->up = 1;
4147 return 0;
4150 static int
4151 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4153 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4154 unsigned int cnum;
4155 int i;
4156 int ret = -EINVAL;
4158 for (i = 0; i < count; i++, req++) {
4160 cnum = req->reg_num;
4162 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4164 req->reg_value = PMC_DFL_VAL(cnum);
4166 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4168 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4170 return 0;
4172 abort_mission:
4173 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4174 return ret;
4177 static int
4178 pfm_check_task_exist(pfm_context_t *ctx)
4180 struct task_struct *g, *t;
4181 int ret = -ESRCH;
4183 read_lock(&tasklist_lock);
4185 do_each_thread (g, t) {
4186 if (t->thread.pfm_context == ctx) {
4187 ret = 0;
4188 break;
4190 } while_each_thread (g, t);
4192 read_unlock(&tasklist_lock);
4194 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4196 return ret;
4199 static int
4200 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4202 struct task_struct *task;
4203 struct thread_struct *thread;
4204 struct pfm_context_t *old;
4205 unsigned long flags;
4206 #ifndef CONFIG_SMP
4207 struct task_struct *owner_task = NULL;
4208 #endif
4209 pfarg_load_t *req = (pfarg_load_t *)arg;
4210 unsigned long *pmcs_source, *pmds_source;
4211 int the_cpu;
4212 int ret = 0;
4213 int state, is_system, set_dbregs = 0;
4215 state = ctx->ctx_state;
4216 is_system = ctx->ctx_fl_system;
4218 * can only load from unloaded or terminated state
4220 if (state != PFM_CTX_UNLOADED) {
4221 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4222 req->load_pid,
4223 ctx->ctx_state));
4224 return -EBUSY;
4227 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4229 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4230 DPRINT(("cannot use blocking mode on self\n"));
4231 return -EINVAL;
4234 ret = pfm_get_task(ctx, req->load_pid, &task);
4235 if (ret) {
4236 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4237 return ret;
4240 ret = -EINVAL;
4243 * system wide is self monitoring only
4245 if (is_system && task != current) {
4246 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4247 req->load_pid));
4248 goto error;
4251 thread = &task->thread;
4253 ret = 0;
4255 * cannot load a context which is using range restrictions,
4256 * into a task that is being debugged.
4258 if (ctx->ctx_fl_using_dbreg) {
4259 if (thread->flags & IA64_THREAD_DBG_VALID) {
4260 ret = -EBUSY;
4261 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4262 goto error;
4264 LOCK_PFS(flags);
4266 if (is_system) {
4267 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4268 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4269 ret = -EBUSY;
4270 } else {
4271 pfm_sessions.pfs_sys_use_dbregs++;
4272 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4273 set_dbregs = 1;
4277 UNLOCK_PFS(flags);
4279 if (ret) goto error;
4283 * SMP system-wide monitoring implies self-monitoring.
4285 * The programming model expects the task to
4286 * be pinned on a CPU throughout the session.
4287 * Here we take note of the current CPU at the
4288 * time the context is loaded. No call from
4289 * another CPU will be allowed.
4291 * The pinning via shed_setaffinity()
4292 * must be done by the calling task prior
4293 * to this call.
4295 * systemwide: keep track of CPU this session is supposed to run on
4297 the_cpu = ctx->ctx_cpu = smp_processor_id();
4299 ret = -EBUSY;
4301 * now reserve the session
4303 ret = pfm_reserve_session(current, is_system, the_cpu);
4304 if (ret) goto error;
4307 * task is necessarily stopped at this point.
4309 * If the previous context was zombie, then it got removed in
4310 * pfm_save_regs(). Therefore we should not see it here.
4311 * If we see a context, then this is an active context
4313 * XXX: needs to be atomic
4315 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4316 thread->pfm_context, ctx));
4318 ret = -EBUSY;
4319 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4320 if (old != NULL) {
4321 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4322 goto error_unres;
4325 pfm_reset_msgq(ctx);
4327 ctx->ctx_state = PFM_CTX_LOADED;
4330 * link context to task
4332 ctx->ctx_task = task;
4334 if (is_system) {
4336 * we load as stopped
4338 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4339 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4341 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4342 } else {
4343 thread->flags |= IA64_THREAD_PM_VALID;
4347 * propagate into thread-state
4349 pfm_copy_pmds(task, ctx);
4350 pfm_copy_pmcs(task, ctx);
4352 pmcs_source = ctx->th_pmcs;
4353 pmds_source = ctx->th_pmds;
4356 * always the case for system-wide
4358 if (task == current) {
4360 if (is_system == 0) {
4362 /* allow user level control */
4363 ia64_psr(regs)->sp = 0;
4364 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4366 SET_LAST_CPU(ctx, smp_processor_id());
4367 INC_ACTIVATION();
4368 SET_ACTIVATION(ctx);
4369 #ifndef CONFIG_SMP
4371 * push the other task out, if any
4373 owner_task = GET_PMU_OWNER();
4374 if (owner_task) pfm_lazy_save_regs(owner_task);
4375 #endif
4378 * load all PMD from ctx to PMU (as opposed to thread state)
4379 * restore all PMC from ctx to PMU
4381 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4382 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4384 ctx->ctx_reload_pmcs[0] = 0UL;
4385 ctx->ctx_reload_pmds[0] = 0UL;
4388 * guaranteed safe by earlier check against DBG_VALID
4390 if (ctx->ctx_fl_using_dbreg) {
4391 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4392 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4395 * set new ownership
4397 SET_PMU_OWNER(task, ctx);
4399 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4400 } else {
4402 * when not current, task MUST be stopped, so this is safe
4404 regs = task_pt_regs(task);
4406 /* force a full reload */
4407 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4408 SET_LAST_CPU(ctx, -1);
4410 /* initial saved psr (stopped) */
4411 ctx->ctx_saved_psr_up = 0UL;
4412 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4415 ret = 0;
4417 error_unres:
4418 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4419 error:
4421 * we must undo the dbregs setting (for system-wide)
4423 if (ret && set_dbregs) {
4424 LOCK_PFS(flags);
4425 pfm_sessions.pfs_sys_use_dbregs--;
4426 UNLOCK_PFS(flags);
4429 * release task, there is now a link with the context
4431 if (is_system == 0 && task != current) {
4432 pfm_put_task(task);
4434 if (ret == 0) {
4435 ret = pfm_check_task_exist(ctx);
4436 if (ret) {
4437 ctx->ctx_state = PFM_CTX_UNLOADED;
4438 ctx->ctx_task = NULL;
4442 return ret;
4446 * in this function, we do not need to increase the use count
4447 * for the task via get_task_struct(), because we hold the
4448 * context lock. If the task were to disappear while having
4449 * a context attached, it would go through pfm_exit_thread()
4450 * which also grabs the context lock and would therefore be blocked
4451 * until we are here.
4453 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4455 static int
4456 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4458 struct task_struct *task = PFM_CTX_TASK(ctx);
4459 struct pt_regs *tregs;
4460 int prev_state, is_system;
4461 int ret;
4463 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4465 prev_state = ctx->ctx_state;
4466 is_system = ctx->ctx_fl_system;
4469 * unload only when necessary
4471 if (prev_state == PFM_CTX_UNLOADED) {
4472 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4473 return 0;
4477 * clear psr and dcr bits
4479 ret = pfm_stop(ctx, NULL, 0, regs);
4480 if (ret) return ret;
4482 ctx->ctx_state = PFM_CTX_UNLOADED;
4485 * in system mode, we need to update the PMU directly
4486 * and the user level state of the caller, which may not
4487 * necessarily be the creator of the context.
4489 if (is_system) {
4492 * Update cpuinfo
4494 * local PMU is taken care of in pfm_stop()
4496 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4497 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4500 * save PMDs in context
4501 * release ownership
4503 pfm_flush_pmds(current, ctx);
4506 * at this point we are done with the PMU
4507 * so we can unreserve the resource.
4509 if (prev_state != PFM_CTX_ZOMBIE)
4510 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4513 * disconnect context from task
4515 task->thread.pfm_context = NULL;
4517 * disconnect task from context
4519 ctx->ctx_task = NULL;
4522 * There is nothing more to cleanup here.
4524 return 0;
4528 * per-task mode
4530 tregs = task == current ? regs : task_pt_regs(task);
4532 if (task == current) {
4534 * cancel user level control
4536 ia64_psr(regs)->sp = 1;
4538 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4541 * save PMDs to context
4542 * release ownership
4544 pfm_flush_pmds(task, ctx);
4547 * at this point we are done with the PMU
4548 * so we can unreserve the resource.
4550 * when state was ZOMBIE, we have already unreserved.
4552 if (prev_state != PFM_CTX_ZOMBIE)
4553 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4556 * reset activation counter and psr
4558 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4559 SET_LAST_CPU(ctx, -1);
4562 * PMU state will not be restored
4564 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4567 * break links between context and task
4569 task->thread.pfm_context = NULL;
4570 ctx->ctx_task = NULL;
4572 PFM_SET_WORK_PENDING(task, 0);
4574 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4575 ctx->ctx_fl_can_restart = 0;
4576 ctx->ctx_fl_going_zombie = 0;
4578 DPRINT(("disconnected [%d] from context\n", task->pid));
4580 return 0;
4585 * called only from exit_thread(): task == current
4586 * we come here only if current has a context attached (loaded or masked)
4588 void
4589 pfm_exit_thread(struct task_struct *task)
4591 pfm_context_t *ctx;
4592 unsigned long flags;
4593 struct pt_regs *regs = task_pt_regs(task);
4594 int ret, state;
4595 int free_ok = 0;
4597 ctx = PFM_GET_CTX(task);
4599 PROTECT_CTX(ctx, flags);
4601 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4603 state = ctx->ctx_state;
4604 switch(state) {
4605 case PFM_CTX_UNLOADED:
4607 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4608 * be in unloaded state
4610 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4611 break;
4612 case PFM_CTX_LOADED:
4613 case PFM_CTX_MASKED:
4614 ret = pfm_context_unload(ctx, NULL, 0, regs);
4615 if (ret) {
4616 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4618 DPRINT(("ctx unloaded for current state was %d\n", state));
4620 pfm_end_notify_user(ctx);
4621 break;
4622 case PFM_CTX_ZOMBIE:
4623 ret = pfm_context_unload(ctx, NULL, 0, regs);
4624 if (ret) {
4625 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4627 free_ok = 1;
4628 break;
4629 default:
4630 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4631 break;
4633 UNPROTECT_CTX(ctx, flags);
4635 { u64 psr = pfm_get_psr();
4636 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4637 BUG_ON(GET_PMU_OWNER());
4638 BUG_ON(ia64_psr(regs)->up);
4639 BUG_ON(ia64_psr(regs)->pp);
4643 * All memory free operations (especially for vmalloc'ed memory)
4644 * MUST be done with interrupts ENABLED.
4646 if (free_ok) pfm_context_free(ctx);
4650 * functions MUST be listed in the increasing order of their index (see permfon.h)
4652 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4653 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4654 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4655 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4656 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4658 static pfm_cmd_desc_t pfm_cmd_tab[]={
4659 /* 0 */PFM_CMD_NONE,
4660 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4661 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4662 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4664 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4665 /* 6 */PFM_CMD_NONE,
4666 /* 7 */PFM_CMD_NONE,
4667 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4668 /* 9 */PFM_CMD_NONE,
4669 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4670 /* 11 */PFM_CMD_NONE,
4671 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4672 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4673 /* 14 */PFM_CMD_NONE,
4674 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4675 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4676 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4677 /* 18 */PFM_CMD_NONE,
4678 /* 19 */PFM_CMD_NONE,
4679 /* 20 */PFM_CMD_NONE,
4680 /* 21 */PFM_CMD_NONE,
4681 /* 22 */PFM_CMD_NONE,
4682 /* 23 */PFM_CMD_NONE,
4683 /* 24 */PFM_CMD_NONE,
4684 /* 25 */PFM_CMD_NONE,
4685 /* 26 */PFM_CMD_NONE,
4686 /* 27 */PFM_CMD_NONE,
4687 /* 28 */PFM_CMD_NONE,
4688 /* 29 */PFM_CMD_NONE,
4689 /* 30 */PFM_CMD_NONE,
4690 /* 31 */PFM_CMD_NONE,
4691 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4692 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4694 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4696 static int
4697 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4699 struct task_struct *task;
4700 int state, old_state;
4702 recheck:
4703 state = ctx->ctx_state;
4704 task = ctx->ctx_task;
4706 if (task == NULL) {
4707 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4708 return 0;
4711 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4712 ctx->ctx_fd,
4713 state,
4714 task->pid,
4715 task->state, PFM_CMD_STOPPED(cmd)));
4718 * self-monitoring always ok.
4720 * for system-wide the caller can either be the creator of the
4721 * context (to one to which the context is attached to) OR
4722 * a task running on the same CPU as the session.
4724 if (task == current || ctx->ctx_fl_system) return 0;
4727 * we are monitoring another thread
4729 switch(state) {
4730 case PFM_CTX_UNLOADED:
4732 * if context is UNLOADED we are safe to go
4734 return 0;
4735 case PFM_CTX_ZOMBIE:
4737 * no command can operate on a zombie context
4739 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4740 return -EINVAL;
4741 case PFM_CTX_MASKED:
4743 * PMU state has been saved to software even though
4744 * the thread may still be running.
4746 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4750 * context is LOADED or MASKED. Some commands may need to have
4751 * the task stopped.
4753 * We could lift this restriction for UP but it would mean that
4754 * the user has no guarantee the task would not run between
4755 * two successive calls to perfmonctl(). That's probably OK.
4756 * If this user wants to ensure the task does not run, then
4757 * the task must be stopped.
4759 if (PFM_CMD_STOPPED(cmd)) {
4760 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4761 DPRINT(("[%d] task not in stopped state\n", task->pid));
4762 return -EBUSY;
4765 * task is now stopped, wait for ctxsw out
4767 * This is an interesting point in the code.
4768 * We need to unprotect the context because
4769 * the pfm_save_regs() routines needs to grab
4770 * the same lock. There are danger in doing
4771 * this because it leaves a window open for
4772 * another task to get access to the context
4773 * and possibly change its state. The one thing
4774 * that is not possible is for the context to disappear
4775 * because we are protected by the VFS layer, i.e.,
4776 * get_fd()/put_fd().
4778 old_state = state;
4780 UNPROTECT_CTX(ctx, flags);
4782 wait_task_inactive(task);
4784 PROTECT_CTX(ctx, flags);
4787 * we must recheck to verify if state has changed
4789 if (ctx->ctx_state != old_state) {
4790 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4791 goto recheck;
4794 return 0;
4798 * system-call entry point (must return long)
4800 asmlinkage long
4801 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4803 struct file *file = NULL;
4804 pfm_context_t *ctx = NULL;
4805 unsigned long flags = 0UL;
4806 void *args_k = NULL;
4807 long ret; /* will expand int return types */
4808 size_t base_sz, sz, xtra_sz = 0;
4809 int narg, completed_args = 0, call_made = 0, cmd_flags;
4810 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4811 int (*getsize)(void *arg, size_t *sz);
4812 #define PFM_MAX_ARGSIZE 4096
4815 * reject any call if perfmon was disabled at initialization
4817 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4819 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4820 DPRINT(("invalid cmd=%d\n", cmd));
4821 return -EINVAL;
4824 func = pfm_cmd_tab[cmd].cmd_func;
4825 narg = pfm_cmd_tab[cmd].cmd_narg;
4826 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4827 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4828 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4830 if (unlikely(func == NULL)) {
4831 DPRINT(("invalid cmd=%d\n", cmd));
4832 return -EINVAL;
4835 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4836 PFM_CMD_NAME(cmd),
4837 cmd,
4838 narg,
4839 base_sz,
4840 count));
4843 * check if number of arguments matches what the command expects
4845 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4846 return -EINVAL;
4848 restart_args:
4849 sz = xtra_sz + base_sz*count;
4851 * limit abuse to min page size
4853 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4854 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4855 return -E2BIG;
4859 * allocate default-sized argument buffer
4861 if (likely(count && args_k == NULL)) {
4862 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4863 if (args_k == NULL) return -ENOMEM;
4866 ret = -EFAULT;
4869 * copy arguments
4871 * assume sz = 0 for command without parameters
4873 if (sz && copy_from_user(args_k, arg, sz)) {
4874 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4875 goto error_args;
4879 * check if command supports extra parameters
4881 if (completed_args == 0 && getsize) {
4883 * get extra parameters size (based on main argument)
4885 ret = (*getsize)(args_k, &xtra_sz);
4886 if (ret) goto error_args;
4888 completed_args = 1;
4890 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4892 /* retry if necessary */
4893 if (likely(xtra_sz)) goto restart_args;
4896 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4898 ret = -EBADF;
4900 file = fget(fd);
4901 if (unlikely(file == NULL)) {
4902 DPRINT(("invalid fd %d\n", fd));
4903 goto error_args;
4905 if (unlikely(PFM_IS_FILE(file) == 0)) {
4906 DPRINT(("fd %d not related to perfmon\n", fd));
4907 goto error_args;
4910 ctx = (pfm_context_t *)file->private_data;
4911 if (unlikely(ctx == NULL)) {
4912 DPRINT(("no context for fd %d\n", fd));
4913 goto error_args;
4915 prefetch(&ctx->ctx_state);
4917 PROTECT_CTX(ctx, flags);
4920 * check task is stopped
4922 ret = pfm_check_task_state(ctx, cmd, flags);
4923 if (unlikely(ret)) goto abort_locked;
4925 skip_fd:
4926 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4928 call_made = 1;
4930 abort_locked:
4931 if (likely(ctx)) {
4932 DPRINT(("context unlocked\n"));
4933 UNPROTECT_CTX(ctx, flags);
4936 /* copy argument back to user, if needed */
4937 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4939 error_args:
4940 if (file)
4941 fput(file);
4943 kfree(args_k);
4945 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4947 return ret;
4950 static void
4951 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4953 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4954 pfm_ovfl_ctrl_t rst_ctrl;
4955 int state;
4956 int ret = 0;
4958 state = ctx->ctx_state;
4960 * Unlock sampling buffer and reset index atomically
4961 * XXX: not really needed when blocking
4963 if (CTX_HAS_SMPL(ctx)) {
4965 rst_ctrl.bits.mask_monitoring = 0;
4966 rst_ctrl.bits.reset_ovfl_pmds = 0;
4968 if (state == PFM_CTX_LOADED)
4969 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4970 else
4971 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972 } else {
4973 rst_ctrl.bits.mask_monitoring = 0;
4974 rst_ctrl.bits.reset_ovfl_pmds = 1;
4977 if (ret == 0) {
4978 if (rst_ctrl.bits.reset_ovfl_pmds) {
4979 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4981 if (rst_ctrl.bits.mask_monitoring == 0) {
4982 DPRINT(("resuming monitoring\n"));
4983 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4984 } else {
4985 DPRINT(("stopping monitoring\n"));
4986 //pfm_stop_monitoring(current, regs);
4988 ctx->ctx_state = PFM_CTX_LOADED;
4993 * context MUST BE LOCKED when calling
4994 * can only be called for current
4996 static void
4997 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4999 int ret;
5001 DPRINT(("entering for [%d]\n", current->pid));
5003 ret = pfm_context_unload(ctx, NULL, 0, regs);
5004 if (ret) {
5005 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5009 * and wakeup controlling task, indicating we are now disconnected
5011 wake_up_interruptible(&ctx->ctx_zombieq);
5014 * given that context is still locked, the controlling
5015 * task will only get access when we return from
5016 * pfm_handle_work().
5020 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5022 * pfm_handle_work() can be called with interrupts enabled
5023 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5024 * call may sleep, therefore we must re-enable interrupts
5025 * to avoid deadlocks. It is safe to do so because this function
5026 * is called ONLY when returning to user level (PUStk=1), in which case
5027 * there is no risk of kernel stack overflow due to deep
5028 * interrupt nesting.
5030 void
5031 pfm_handle_work(void)
5033 pfm_context_t *ctx;
5034 struct pt_regs *regs;
5035 unsigned long flags, dummy_flags;
5036 unsigned long ovfl_regs;
5037 unsigned int reason;
5038 int ret;
5040 ctx = PFM_GET_CTX(current);
5041 if (ctx == NULL) {
5042 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5043 return;
5046 PROTECT_CTX(ctx, flags);
5048 PFM_SET_WORK_PENDING(current, 0);
5050 pfm_clear_task_notify();
5052 regs = task_pt_regs(current);
5055 * extract reason for being here and clear
5057 reason = ctx->ctx_fl_trap_reason;
5058 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5059 ovfl_regs = ctx->ctx_ovfl_regs[0];
5061 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5064 * must be done before we check for simple-reset mode
5066 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5069 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5070 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5073 * restore interrupt mask to what it was on entry.
5074 * Could be enabled/diasbled.
5076 UNPROTECT_CTX(ctx, flags);
5079 * force interrupt enable because of down_interruptible()
5081 local_irq_enable();
5083 DPRINT(("before block sleeping\n"));
5086 * may go through without blocking on SMP systems
5087 * if restart has been received already by the time we call down()
5089 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5091 DPRINT(("after block sleeping ret=%d\n", ret));
5094 * lock context and mask interrupts again
5095 * We save flags into a dummy because we may have
5096 * altered interrupts mask compared to entry in this
5097 * function.
5099 PROTECT_CTX(ctx, dummy_flags);
5102 * we need to read the ovfl_regs only after wake-up
5103 * because we may have had pfm_write_pmds() in between
5104 * and that can changed PMD values and therefore
5105 * ovfl_regs is reset for these new PMD values.
5107 ovfl_regs = ctx->ctx_ovfl_regs[0];
5109 if (ctx->ctx_fl_going_zombie) {
5110 do_zombie:
5111 DPRINT(("context is zombie, bailing out\n"));
5112 pfm_context_force_terminate(ctx, regs);
5113 goto nothing_to_do;
5116 * in case of interruption of down() we don't restart anything
5118 if (ret < 0) goto nothing_to_do;
5120 skip_blocking:
5121 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5122 ctx->ctx_ovfl_regs[0] = 0UL;
5124 nothing_to_do:
5126 * restore flags as they were upon entry
5128 UNPROTECT_CTX(ctx, flags);
5131 static int
5132 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5134 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5135 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5136 return 0;
5139 DPRINT(("waking up somebody\n"));
5141 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5144 * safe, we are not in intr handler, nor in ctxsw when
5145 * we come here
5147 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5149 return 0;
5152 static int
5153 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5155 pfm_msg_t *msg = NULL;
5157 if (ctx->ctx_fl_no_msg == 0) {
5158 msg = pfm_get_new_msg(ctx);
5159 if (msg == NULL) {
5160 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5161 return -1;
5164 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5165 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5166 msg->pfm_ovfl_msg.msg_active_set = 0;
5167 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5171 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5174 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5175 msg,
5176 ctx->ctx_fl_no_msg,
5177 ctx->ctx_fd,
5178 ovfl_pmds));
5180 return pfm_notify_user(ctx, msg);
5183 static int
5184 pfm_end_notify_user(pfm_context_t *ctx)
5186 pfm_msg_t *msg;
5188 msg = pfm_get_new_msg(ctx);
5189 if (msg == NULL) {
5190 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5191 return -1;
5193 /* no leak */
5194 memset(msg, 0, sizeof(*msg));
5196 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5197 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5198 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5200 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5201 msg,
5202 ctx->ctx_fl_no_msg,
5203 ctx->ctx_fd));
5205 return pfm_notify_user(ctx, msg);
5209 * main overflow processing routine.
5210 * it can be called from the interrupt path or explicitely during the context switch code
5212 static void
5213 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5215 pfm_ovfl_arg_t *ovfl_arg;
5216 unsigned long mask;
5217 unsigned long old_val, ovfl_val, new_val;
5218 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5219 unsigned long tstamp;
5220 pfm_ovfl_ctrl_t ovfl_ctrl;
5221 unsigned int i, has_smpl;
5222 int must_notify = 0;
5224 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5227 * sanity test. Should never happen
5229 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5231 tstamp = ia64_get_itc();
5232 mask = pmc0 >> PMU_FIRST_COUNTER;
5233 ovfl_val = pmu_conf->ovfl_val;
5234 has_smpl = CTX_HAS_SMPL(ctx);
5236 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5237 "used_pmds=0x%lx\n",
5238 pmc0,
5239 task ? task->pid: -1,
5240 (regs ? regs->cr_iip : 0),
5241 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5242 ctx->ctx_used_pmds[0]));
5246 * first we update the virtual counters
5247 * assume there was a prior ia64_srlz_d() issued
5249 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5251 /* skip pmd which did not overflow */
5252 if ((mask & 0x1) == 0) continue;
5255 * Note that the pmd is not necessarily 0 at this point as qualified events
5256 * may have happened before the PMU was frozen. The residual count is not
5257 * taken into consideration here but will be with any read of the pmd via
5258 * pfm_read_pmds().
5260 old_val = new_val = ctx->ctx_pmds[i].val;
5261 new_val += 1 + ovfl_val;
5262 ctx->ctx_pmds[i].val = new_val;
5265 * check for overflow condition
5267 if (likely(old_val > new_val)) {
5268 ovfl_pmds |= 1UL << i;
5269 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5272 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5274 new_val,
5275 old_val,
5276 ia64_get_pmd(i) & ovfl_val,
5277 ovfl_pmds,
5278 ovfl_notify));
5282 * there was no 64-bit overflow, nothing else to do
5284 if (ovfl_pmds == 0UL) return;
5287 * reset all control bits
5289 ovfl_ctrl.val = 0;
5290 reset_pmds = 0UL;
5293 * if a sampling format module exists, then we "cache" the overflow by
5294 * calling the module's handler() routine.
5296 if (has_smpl) {
5297 unsigned long start_cycles, end_cycles;
5298 unsigned long pmd_mask;
5299 int j, k, ret = 0;
5300 int this_cpu = smp_processor_id();
5302 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5303 ovfl_arg = &ctx->ctx_ovfl_arg;
5305 prefetch(ctx->ctx_smpl_hdr);
5307 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5309 mask = 1UL << i;
5311 if ((pmd_mask & 0x1) == 0) continue;
5313 ovfl_arg->ovfl_pmd = (unsigned char )i;
5314 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5315 ovfl_arg->active_set = 0;
5316 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5317 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5319 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5320 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5321 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5324 * copy values of pmds of interest. Sampling format may copy them
5325 * into sampling buffer.
5327 if (smpl_pmds) {
5328 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5329 if ((smpl_pmds & 0x1) == 0) continue;
5330 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5331 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5335 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5337 start_cycles = ia64_get_itc();
5340 * call custom buffer format record (handler) routine
5342 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5344 end_cycles = ia64_get_itc();
5347 * For those controls, we take the union because they have
5348 * an all or nothing behavior.
5350 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5351 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5352 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5354 * build the bitmask of pmds to reset now
5356 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5358 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5361 * when the module cannot handle the rest of the overflows, we abort right here
5363 if (ret && pmd_mask) {
5364 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5365 pmd_mask<<PMU_FIRST_COUNTER));
5368 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5370 ovfl_pmds &= ~reset_pmds;
5371 } else {
5373 * when no sampling module is used, then the default
5374 * is to notify on overflow if requested by user
5376 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5377 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5378 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5379 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5381 * if needed, we reset all overflowed pmds
5383 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5386 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5389 * reset the requested PMD registers using the short reset values
5391 if (reset_pmds) {
5392 unsigned long bm = reset_pmds;
5393 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5396 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5398 * keep track of what to reset when unblocking
5400 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5403 * check for blocking context
5405 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5407 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5410 * set the perfmon specific checking pending work for the task
5412 PFM_SET_WORK_PENDING(task, 1);
5415 * when coming from ctxsw, current still points to the
5416 * previous task, therefore we must work with task and not current.
5418 pfm_set_task_notify(task);
5421 * defer until state is changed (shorten spin window). the context is locked
5422 * anyway, so the signal receiver would come spin for nothing.
5424 must_notify = 1;
5427 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5428 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5429 PFM_GET_WORK_PENDING(task),
5430 ctx->ctx_fl_trap_reason,
5431 ovfl_pmds,
5432 ovfl_notify,
5433 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5435 * in case monitoring must be stopped, we toggle the psr bits
5437 if (ovfl_ctrl.bits.mask_monitoring) {
5438 pfm_mask_monitoring(task);
5439 ctx->ctx_state = PFM_CTX_MASKED;
5440 ctx->ctx_fl_can_restart = 1;
5444 * send notification now
5446 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5448 return;
5450 sanity_check:
5451 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5452 smp_processor_id(),
5453 task ? task->pid : -1,
5454 pmc0);
5455 return;
5457 stop_monitoring:
5459 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5460 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5461 * come here as zombie only if the task is the current task. In which case, we
5462 * can access the PMU hardware directly.
5464 * Note that zombies do have PM_VALID set. So here we do the minimal.
5466 * In case the context was zombified it could not be reclaimed at the time
5467 * the monitoring program exited. At this point, the PMU reservation has been
5468 * returned, the sampiing buffer has been freed. We must convert this call
5469 * into a spurious interrupt. However, we must also avoid infinite overflows
5470 * by stopping monitoring for this task. We can only come here for a per-task
5471 * context. All we need to do is to stop monitoring using the psr bits which
5472 * are always task private. By re-enabling secure montioring, we ensure that
5473 * the monitored task will not be able to re-activate monitoring.
5474 * The task will eventually be context switched out, at which point the context
5475 * will be reclaimed (that includes releasing ownership of the PMU).
5477 * So there might be a window of time where the number of per-task session is zero
5478 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5479 * context. This is safe because if a per-task session comes in, it will push this one
5480 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5481 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5482 * also push our zombie context out.
5484 * Overall pretty hairy stuff....
5486 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5487 pfm_clear_psr_up();
5488 ia64_psr(regs)->up = 0;
5489 ia64_psr(regs)->sp = 1;
5490 return;
5493 static int
5494 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5496 struct task_struct *task;
5497 pfm_context_t *ctx;
5498 unsigned long flags;
5499 u64 pmc0;
5500 int this_cpu = smp_processor_id();
5501 int retval = 0;
5503 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5506 * srlz.d done before arriving here
5508 pmc0 = ia64_get_pmc(0);
5510 task = GET_PMU_OWNER();
5511 ctx = GET_PMU_CTX();
5514 * if we have some pending bits set
5515 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5517 if (PMC0_HAS_OVFL(pmc0) && task) {
5519 * we assume that pmc0.fr is always set here
5522 /* sanity check */
5523 if (!ctx) goto report_spurious1;
5525 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5526 goto report_spurious2;
5528 PROTECT_CTX_NOPRINT(ctx, flags);
5530 pfm_overflow_handler(task, ctx, pmc0, regs);
5532 UNPROTECT_CTX_NOPRINT(ctx, flags);
5534 } else {
5535 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5536 retval = -1;
5539 * keep it unfrozen at all times
5541 pfm_unfreeze_pmu();
5543 return retval;
5545 report_spurious1:
5546 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5547 this_cpu, task->pid);
5548 pfm_unfreeze_pmu();
5549 return -1;
5550 report_spurious2:
5551 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5552 this_cpu,
5553 task->pid);
5554 pfm_unfreeze_pmu();
5555 return -1;
5558 static irqreturn_t
5559 pfm_interrupt_handler(int irq, void *arg)
5561 unsigned long start_cycles, total_cycles;
5562 unsigned long min, max;
5563 int this_cpu;
5564 int ret;
5565 struct pt_regs *regs = get_irq_regs();
5567 this_cpu = get_cpu();
5568 if (likely(!pfm_alt_intr_handler)) {
5569 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5570 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5572 start_cycles = ia64_get_itc();
5574 ret = pfm_do_interrupt_handler(irq, arg, regs);
5576 total_cycles = ia64_get_itc();
5579 * don't measure spurious interrupts
5581 if (likely(ret == 0)) {
5582 total_cycles -= start_cycles;
5584 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5585 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5587 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5590 else {
5591 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5594 put_cpu_no_resched();
5595 return IRQ_HANDLED;
5599 * /proc/perfmon interface, for debug only
5602 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5604 static void *
5605 pfm_proc_start(struct seq_file *m, loff_t *pos)
5607 if (*pos == 0) {
5608 return PFM_PROC_SHOW_HEADER;
5611 while (*pos <= NR_CPUS) {
5612 if (cpu_online(*pos - 1)) {
5613 return (void *)*pos;
5615 ++*pos;
5617 return NULL;
5620 static void *
5621 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5623 ++*pos;
5624 return pfm_proc_start(m, pos);
5627 static void
5628 pfm_proc_stop(struct seq_file *m, void *v)
5632 static void
5633 pfm_proc_show_header(struct seq_file *m)
5635 struct list_head * pos;
5636 pfm_buffer_fmt_t * entry;
5637 unsigned long flags;
5639 seq_printf(m,
5640 "perfmon version : %u.%u\n"
5641 "model : %s\n"
5642 "fastctxsw : %s\n"
5643 "expert mode : %s\n"
5644 "ovfl_mask : 0x%lx\n"
5645 "PMU flags : 0x%x\n",
5646 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5647 pmu_conf->pmu_name,
5648 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5649 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5650 pmu_conf->ovfl_val,
5651 pmu_conf->flags);
5653 LOCK_PFS(flags);
5655 seq_printf(m,
5656 "proc_sessions : %u\n"
5657 "sys_sessions : %u\n"
5658 "sys_use_dbregs : %u\n"
5659 "ptrace_use_dbregs : %u\n",
5660 pfm_sessions.pfs_task_sessions,
5661 pfm_sessions.pfs_sys_sessions,
5662 pfm_sessions.pfs_sys_use_dbregs,
5663 pfm_sessions.pfs_ptrace_use_dbregs);
5665 UNLOCK_PFS(flags);
5667 spin_lock(&pfm_buffer_fmt_lock);
5669 list_for_each(pos, &pfm_buffer_fmt_list) {
5670 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5671 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5672 entry->fmt_uuid[0],
5673 entry->fmt_uuid[1],
5674 entry->fmt_uuid[2],
5675 entry->fmt_uuid[3],
5676 entry->fmt_uuid[4],
5677 entry->fmt_uuid[5],
5678 entry->fmt_uuid[6],
5679 entry->fmt_uuid[7],
5680 entry->fmt_uuid[8],
5681 entry->fmt_uuid[9],
5682 entry->fmt_uuid[10],
5683 entry->fmt_uuid[11],
5684 entry->fmt_uuid[12],
5685 entry->fmt_uuid[13],
5686 entry->fmt_uuid[14],
5687 entry->fmt_uuid[15],
5688 entry->fmt_name);
5690 spin_unlock(&pfm_buffer_fmt_lock);
5694 static int
5695 pfm_proc_show(struct seq_file *m, void *v)
5697 unsigned long psr;
5698 unsigned int i;
5699 int cpu;
5701 if (v == PFM_PROC_SHOW_HEADER) {
5702 pfm_proc_show_header(m);
5703 return 0;
5706 /* show info for CPU (v - 1) */
5708 cpu = (long)v - 1;
5709 seq_printf(m,
5710 "CPU%-2d overflow intrs : %lu\n"
5711 "CPU%-2d overflow cycles : %lu\n"
5712 "CPU%-2d overflow min : %lu\n"
5713 "CPU%-2d overflow max : %lu\n"
5714 "CPU%-2d smpl handler calls : %lu\n"
5715 "CPU%-2d smpl handler cycles : %lu\n"
5716 "CPU%-2d spurious intrs : %lu\n"
5717 "CPU%-2d replay intrs : %lu\n"
5718 "CPU%-2d syst_wide : %d\n"
5719 "CPU%-2d dcr_pp : %d\n"
5720 "CPU%-2d exclude idle : %d\n"
5721 "CPU%-2d owner : %d\n"
5722 "CPU%-2d context : %p\n"
5723 "CPU%-2d activations : %lu\n",
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5728 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5729 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5730 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5731 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5732 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5733 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5736 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5737 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5739 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5741 psr = pfm_get_psr();
5743 ia64_srlz_d();
5745 seq_printf(m,
5746 "CPU%-2d psr : 0x%lx\n"
5747 "CPU%-2d pmc0 : 0x%lx\n",
5748 cpu, psr,
5749 cpu, ia64_get_pmc(0));
5751 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5752 if (PMC_IS_COUNTING(i) == 0) continue;
5753 seq_printf(m,
5754 "CPU%-2d pmc%u : 0x%lx\n"
5755 "CPU%-2d pmd%u : 0x%lx\n",
5756 cpu, i, ia64_get_pmc(i),
5757 cpu, i, ia64_get_pmd(i));
5760 return 0;
5763 struct seq_operations pfm_seq_ops = {
5764 .start = pfm_proc_start,
5765 .next = pfm_proc_next,
5766 .stop = pfm_proc_stop,
5767 .show = pfm_proc_show
5770 static int
5771 pfm_proc_open(struct inode *inode, struct file *file)
5773 return seq_open(file, &pfm_seq_ops);
5778 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5779 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5780 * is active or inactive based on mode. We must rely on the value in
5781 * local_cpu_data->pfm_syst_info
5783 void
5784 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5786 struct pt_regs *regs;
5787 unsigned long dcr;
5788 unsigned long dcr_pp;
5790 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5793 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5794 * on every CPU, so we can rely on the pid to identify the idle task.
5796 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5797 regs = task_pt_regs(task);
5798 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5799 return;
5802 * if monitoring has started
5804 if (dcr_pp) {
5805 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5807 * context switching in?
5809 if (is_ctxswin) {
5810 /* mask monitoring for the idle task */
5811 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5812 pfm_clear_psr_pp();
5813 ia64_srlz_i();
5814 return;
5817 * context switching out
5818 * restore monitoring for next task
5820 * Due to inlining this odd if-then-else construction generates
5821 * better code.
5823 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5824 pfm_set_psr_pp();
5825 ia64_srlz_i();
5829 #ifdef CONFIG_SMP
5831 static void
5832 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5834 struct task_struct *task = ctx->ctx_task;
5836 ia64_psr(regs)->up = 0;
5837 ia64_psr(regs)->sp = 1;
5839 if (GET_PMU_OWNER() == task) {
5840 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5841 SET_PMU_OWNER(NULL, NULL);
5845 * disconnect the task from the context and vice-versa
5847 PFM_SET_WORK_PENDING(task, 0);
5849 task->thread.pfm_context = NULL;
5850 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5852 DPRINT(("force cleanup for [%d]\n", task->pid));
5857 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5859 void
5860 pfm_save_regs(struct task_struct *task)
5862 pfm_context_t *ctx;
5863 unsigned long flags;
5864 u64 psr;
5867 ctx = PFM_GET_CTX(task);
5868 if (ctx == NULL) return;
5871 * we always come here with interrupts ALREADY disabled by
5872 * the scheduler. So we simply need to protect against concurrent
5873 * access, not CPU concurrency.
5875 flags = pfm_protect_ctx_ctxsw(ctx);
5877 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5878 struct pt_regs *regs = task_pt_regs(task);
5880 pfm_clear_psr_up();
5882 pfm_force_cleanup(ctx, regs);
5884 BUG_ON(ctx->ctx_smpl_hdr);
5886 pfm_unprotect_ctx_ctxsw(ctx, flags);
5888 pfm_context_free(ctx);
5889 return;
5893 * save current PSR: needed because we modify it
5895 ia64_srlz_d();
5896 psr = pfm_get_psr();
5898 BUG_ON(psr & (IA64_PSR_I));
5901 * stop monitoring:
5902 * This is the last instruction which may generate an overflow
5904 * We do not need to set psr.sp because, it is irrelevant in kernel.
5905 * It will be restored from ipsr when going back to user level
5907 pfm_clear_psr_up();
5910 * keep a copy of psr.up (for reload)
5912 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5915 * release ownership of this PMU.
5916 * PM interrupts are masked, so nothing
5917 * can happen.
5919 SET_PMU_OWNER(NULL, NULL);
5922 * we systematically save the PMD as we have no
5923 * guarantee we will be schedule at that same
5924 * CPU again.
5926 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5929 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5930 * we will need it on the restore path to check
5931 * for pending overflow.
5933 ctx->th_pmcs[0] = ia64_get_pmc(0);
5936 * unfreeze PMU if had pending overflows
5938 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5941 * finally, allow context access.
5942 * interrupts will still be masked after this call.
5944 pfm_unprotect_ctx_ctxsw(ctx, flags);
5947 #else /* !CONFIG_SMP */
5948 void
5949 pfm_save_regs(struct task_struct *task)
5951 pfm_context_t *ctx;
5952 u64 psr;
5954 ctx = PFM_GET_CTX(task);
5955 if (ctx == NULL) return;
5958 * save current PSR: needed because we modify it
5960 psr = pfm_get_psr();
5962 BUG_ON(psr & (IA64_PSR_I));
5965 * stop monitoring:
5966 * This is the last instruction which may generate an overflow
5968 * We do not need to set psr.sp because, it is irrelevant in kernel.
5969 * It will be restored from ipsr when going back to user level
5971 pfm_clear_psr_up();
5974 * keep a copy of psr.up (for reload)
5976 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5979 static void
5980 pfm_lazy_save_regs (struct task_struct *task)
5982 pfm_context_t *ctx;
5983 unsigned long flags;
5985 { u64 psr = pfm_get_psr();
5986 BUG_ON(psr & IA64_PSR_UP);
5989 ctx = PFM_GET_CTX(task);
5992 * we need to mask PMU overflow here to
5993 * make sure that we maintain pmc0 until
5994 * we save it. overflow interrupts are
5995 * treated as spurious if there is no
5996 * owner.
5998 * XXX: I don't think this is necessary
6000 PROTECT_CTX(ctx,flags);
6003 * release ownership of this PMU.
6004 * must be done before we save the registers.
6006 * after this call any PMU interrupt is treated
6007 * as spurious.
6009 SET_PMU_OWNER(NULL, NULL);
6012 * save all the pmds we use
6014 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6017 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6018 * it is needed to check for pended overflow
6019 * on the restore path
6021 ctx->th_pmcs[0] = ia64_get_pmc(0);
6024 * unfreeze PMU if had pending overflows
6026 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6029 * now get can unmask PMU interrupts, they will
6030 * be treated as purely spurious and we will not
6031 * lose any information
6033 UNPROTECT_CTX(ctx,flags);
6035 #endif /* CONFIG_SMP */
6037 #ifdef CONFIG_SMP
6039 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6041 void
6042 pfm_load_regs (struct task_struct *task)
6044 pfm_context_t *ctx;
6045 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6046 unsigned long flags;
6047 u64 psr, psr_up;
6048 int need_irq_resend;
6050 ctx = PFM_GET_CTX(task);
6051 if (unlikely(ctx == NULL)) return;
6053 BUG_ON(GET_PMU_OWNER());
6056 * possible on unload
6058 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6061 * we always come here with interrupts ALREADY disabled by
6062 * the scheduler. So we simply need to protect against concurrent
6063 * access, not CPU concurrency.
6065 flags = pfm_protect_ctx_ctxsw(ctx);
6066 psr = pfm_get_psr();
6068 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6070 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6071 BUG_ON(psr & IA64_PSR_I);
6073 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6074 struct pt_regs *regs = task_pt_regs(task);
6076 BUG_ON(ctx->ctx_smpl_hdr);
6078 pfm_force_cleanup(ctx, regs);
6080 pfm_unprotect_ctx_ctxsw(ctx, flags);
6083 * this one (kmalloc'ed) is fine with interrupts disabled
6085 pfm_context_free(ctx);
6087 return;
6091 * we restore ALL the debug registers to avoid picking up
6092 * stale state.
6094 if (ctx->ctx_fl_using_dbreg) {
6095 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6096 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6099 * retrieve saved psr.up
6101 psr_up = ctx->ctx_saved_psr_up;
6104 * if we were the last user of the PMU on that CPU,
6105 * then nothing to do except restore psr
6107 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6110 * retrieve partial reload masks (due to user modifications)
6112 pmc_mask = ctx->ctx_reload_pmcs[0];
6113 pmd_mask = ctx->ctx_reload_pmds[0];
6115 } else {
6117 * To avoid leaking information to the user level when psr.sp=0,
6118 * we must reload ALL implemented pmds (even the ones we don't use).
6119 * In the kernel we only allow PFM_READ_PMDS on registers which
6120 * we initialized or requested (sampling) so there is no risk there.
6122 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6125 * ALL accessible PMCs are systematically reloaded, unused registers
6126 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6127 * up stale configuration.
6129 * PMC0 is never in the mask. It is always restored separately.
6131 pmc_mask = ctx->ctx_all_pmcs[0];
6134 * when context is MASKED, we will restore PMC with plm=0
6135 * and PMD with stale information, but that's ok, nothing
6136 * will be captured.
6138 * XXX: optimize here
6140 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6141 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6144 * check for pending overflow at the time the state
6145 * was saved.
6147 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6149 * reload pmc0 with the overflow information
6150 * On McKinley PMU, this will trigger a PMU interrupt
6152 ia64_set_pmc(0, ctx->th_pmcs[0]);
6153 ia64_srlz_d();
6154 ctx->th_pmcs[0] = 0UL;
6157 * will replay the PMU interrupt
6159 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6161 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6165 * we just did a reload, so we reset the partial reload fields
6167 ctx->ctx_reload_pmcs[0] = 0UL;
6168 ctx->ctx_reload_pmds[0] = 0UL;
6170 SET_LAST_CPU(ctx, smp_processor_id());
6173 * dump activation value for this PMU
6175 INC_ACTIVATION();
6177 * record current activation for this context
6179 SET_ACTIVATION(ctx);
6182 * establish new ownership.
6184 SET_PMU_OWNER(task, ctx);
6187 * restore the psr.up bit. measurement
6188 * is active again.
6189 * no PMU interrupt can happen at this point
6190 * because we still have interrupts disabled.
6192 if (likely(psr_up)) pfm_set_psr_up();
6195 * allow concurrent access to context
6197 pfm_unprotect_ctx_ctxsw(ctx, flags);
6199 #else /* !CONFIG_SMP */
6201 * reload PMU state for UP kernels
6202 * in 2.5 we come here with interrupts disabled
6204 void
6205 pfm_load_regs (struct task_struct *task)
6207 pfm_context_t *ctx;
6208 struct task_struct *owner;
6209 unsigned long pmd_mask, pmc_mask;
6210 u64 psr, psr_up;
6211 int need_irq_resend;
6213 owner = GET_PMU_OWNER();
6214 ctx = PFM_GET_CTX(task);
6215 psr = pfm_get_psr();
6217 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6218 BUG_ON(psr & IA64_PSR_I);
6221 * we restore ALL the debug registers to avoid picking up
6222 * stale state.
6224 * This must be done even when the task is still the owner
6225 * as the registers may have been modified via ptrace()
6226 * (not perfmon) by the previous task.
6228 if (ctx->ctx_fl_using_dbreg) {
6229 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6230 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6234 * retrieved saved psr.up
6236 psr_up = ctx->ctx_saved_psr_up;
6237 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6240 * short path, our state is still there, just
6241 * need to restore psr and we go
6243 * we do not touch either PMC nor PMD. the psr is not touched
6244 * by the overflow_handler. So we are safe w.r.t. to interrupt
6245 * concurrency even without interrupt masking.
6247 if (likely(owner == task)) {
6248 if (likely(psr_up)) pfm_set_psr_up();
6249 return;
6253 * someone else is still using the PMU, first push it out and
6254 * then we'll be able to install our stuff !
6256 * Upon return, there will be no owner for the current PMU
6258 if (owner) pfm_lazy_save_regs(owner);
6261 * To avoid leaking information to the user level when psr.sp=0,
6262 * we must reload ALL implemented pmds (even the ones we don't use).
6263 * In the kernel we only allow PFM_READ_PMDS on registers which
6264 * we initialized or requested (sampling) so there is no risk there.
6266 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6269 * ALL accessible PMCs are systematically reloaded, unused registers
6270 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6271 * up stale configuration.
6273 * PMC0 is never in the mask. It is always restored separately
6275 pmc_mask = ctx->ctx_all_pmcs[0];
6277 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6278 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6281 * check for pending overflow at the time the state
6282 * was saved.
6284 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6286 * reload pmc0 with the overflow information
6287 * On McKinley PMU, this will trigger a PMU interrupt
6289 ia64_set_pmc(0, ctx->th_pmcs[0]);
6290 ia64_srlz_d();
6292 ctx->th_pmcs[0] = 0UL;
6295 * will replay the PMU interrupt
6297 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6299 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6303 * establish new ownership.
6305 SET_PMU_OWNER(task, ctx);
6308 * restore the psr.up bit. measurement
6309 * is active again.
6310 * no PMU interrupt can happen at this point
6311 * because we still have interrupts disabled.
6313 if (likely(psr_up)) pfm_set_psr_up();
6315 #endif /* CONFIG_SMP */
6318 * this function assumes monitoring is stopped
6320 static void
6321 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6323 u64 pmc0;
6324 unsigned long mask2, val, pmd_val, ovfl_val;
6325 int i, can_access_pmu = 0;
6326 int is_self;
6329 * is the caller the task being monitored (or which initiated the
6330 * session for system wide measurements)
6332 is_self = ctx->ctx_task == task ? 1 : 0;
6335 * can access PMU is task is the owner of the PMU state on the current CPU
6336 * or if we are running on the CPU bound to the context in system-wide mode
6337 * (that is not necessarily the task the context is attached to in this mode).
6338 * In system-wide we always have can_access_pmu true because a task running on an
6339 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6341 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6342 if (can_access_pmu) {
6344 * Mark the PMU as not owned
6345 * This will cause the interrupt handler to do nothing in case an overflow
6346 * interrupt was in-flight
6347 * This also guarantees that pmc0 will contain the final state
6348 * It virtually gives us full control on overflow processing from that point
6349 * on.
6351 SET_PMU_OWNER(NULL, NULL);
6352 DPRINT(("releasing ownership\n"));
6355 * read current overflow status:
6357 * we are guaranteed to read the final stable state
6359 ia64_srlz_d();
6360 pmc0 = ia64_get_pmc(0); /* slow */
6363 * reset freeze bit, overflow status information destroyed
6365 pfm_unfreeze_pmu();
6366 } else {
6367 pmc0 = ctx->th_pmcs[0];
6369 * clear whatever overflow status bits there were
6371 ctx->th_pmcs[0] = 0;
6373 ovfl_val = pmu_conf->ovfl_val;
6375 * we save all the used pmds
6376 * we take care of overflows for counting PMDs
6378 * XXX: sampling situation is not taken into account here
6380 mask2 = ctx->ctx_used_pmds[0];
6382 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6384 for (i = 0; mask2; i++, mask2>>=1) {
6386 /* skip non used pmds */
6387 if ((mask2 & 0x1) == 0) continue;
6390 * can access PMU always true in system wide mode
6392 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6394 if (PMD_IS_COUNTING(i)) {
6395 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6396 task->pid,
6398 ctx->ctx_pmds[i].val,
6399 val & ovfl_val));
6402 * we rebuild the full 64 bit value of the counter
6404 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6407 * now everything is in ctx_pmds[] and we need
6408 * to clear the saved context from save_regs() such that
6409 * pfm_read_pmds() gets the correct value
6411 pmd_val = 0UL;
6414 * take care of overflow inline
6416 if (pmc0 & (1UL << i)) {
6417 val += 1 + ovfl_val;
6418 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6422 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6424 if (is_self) ctx->th_pmds[i] = pmd_val;
6426 ctx->ctx_pmds[i].val = val;
6430 static struct irqaction perfmon_irqaction = {
6431 .handler = pfm_interrupt_handler,
6432 .flags = IRQF_DISABLED,
6433 .name = "perfmon"
6436 static void
6437 pfm_alt_save_pmu_state(void *data)
6439 struct pt_regs *regs;
6441 regs = task_pt_regs(current);
6443 DPRINT(("called\n"));
6446 * should not be necessary but
6447 * let's take not risk
6449 pfm_clear_psr_up();
6450 pfm_clear_psr_pp();
6451 ia64_psr(regs)->pp = 0;
6454 * This call is required
6455 * May cause a spurious interrupt on some processors
6457 pfm_freeze_pmu();
6459 ia64_srlz_d();
6462 void
6463 pfm_alt_restore_pmu_state(void *data)
6465 struct pt_regs *regs;
6467 regs = task_pt_regs(current);
6469 DPRINT(("called\n"));
6472 * put PMU back in state expected
6473 * by perfmon
6475 pfm_clear_psr_up();
6476 pfm_clear_psr_pp();
6477 ia64_psr(regs)->pp = 0;
6480 * perfmon runs with PMU unfrozen at all times
6482 pfm_unfreeze_pmu();
6484 ia64_srlz_d();
6488 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6490 int ret, i;
6491 int reserve_cpu;
6493 /* some sanity checks */
6494 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6496 /* do the easy test first */
6497 if (pfm_alt_intr_handler) return -EBUSY;
6499 /* one at a time in the install or remove, just fail the others */
6500 if (!spin_trylock(&pfm_alt_install_check)) {
6501 return -EBUSY;
6504 /* reserve our session */
6505 for_each_online_cpu(reserve_cpu) {
6506 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6507 if (ret) goto cleanup_reserve;
6510 /* save the current system wide pmu states */
6511 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6512 if (ret) {
6513 DPRINT(("on_each_cpu() failed: %d\n", ret));
6514 goto cleanup_reserve;
6517 /* officially change to the alternate interrupt handler */
6518 pfm_alt_intr_handler = hdl;
6520 spin_unlock(&pfm_alt_install_check);
6522 return 0;
6524 cleanup_reserve:
6525 for_each_online_cpu(i) {
6526 /* don't unreserve more than we reserved */
6527 if (i >= reserve_cpu) break;
6529 pfm_unreserve_session(NULL, 1, i);
6532 spin_unlock(&pfm_alt_install_check);
6534 return ret;
6536 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6539 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6541 int i;
6542 int ret;
6544 if (hdl == NULL) return -EINVAL;
6546 /* cannot remove someone else's handler! */
6547 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6549 /* one at a time in the install or remove, just fail the others */
6550 if (!spin_trylock(&pfm_alt_install_check)) {
6551 return -EBUSY;
6554 pfm_alt_intr_handler = NULL;
6556 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6557 if (ret) {
6558 DPRINT(("on_each_cpu() failed: %d\n", ret));
6561 for_each_online_cpu(i) {
6562 pfm_unreserve_session(NULL, 1, i);
6565 spin_unlock(&pfm_alt_install_check);
6567 return 0;
6569 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6572 * perfmon initialization routine, called from the initcall() table
6574 static int init_pfm_fs(void);
6576 static int __init
6577 pfm_probe_pmu(void)
6579 pmu_config_t **p;
6580 int family;
6582 family = local_cpu_data->family;
6583 p = pmu_confs;
6585 while(*p) {
6586 if ((*p)->probe) {
6587 if ((*p)->probe() == 0) goto found;
6588 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6589 goto found;
6591 p++;
6593 return -1;
6594 found:
6595 pmu_conf = *p;
6596 return 0;
6599 static const struct file_operations pfm_proc_fops = {
6600 .open = pfm_proc_open,
6601 .read = seq_read,
6602 .llseek = seq_lseek,
6603 .release = seq_release,
6606 int __init
6607 pfm_init(void)
6609 unsigned int n, n_counters, i;
6611 printk("perfmon: version %u.%u IRQ %u\n",
6612 PFM_VERSION_MAJ,
6613 PFM_VERSION_MIN,
6614 IA64_PERFMON_VECTOR);
6616 if (pfm_probe_pmu()) {
6617 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6618 local_cpu_data->family);
6619 return -ENODEV;
6623 * compute the number of implemented PMD/PMC from the
6624 * description tables
6626 n = 0;
6627 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6628 if (PMC_IS_IMPL(i) == 0) continue;
6629 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6630 n++;
6632 pmu_conf->num_pmcs = n;
6634 n = 0; n_counters = 0;
6635 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6636 if (PMD_IS_IMPL(i) == 0) continue;
6637 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6638 n++;
6639 if (PMD_IS_COUNTING(i)) n_counters++;
6641 pmu_conf->num_pmds = n;
6642 pmu_conf->num_counters = n_counters;
6645 * sanity checks on the number of debug registers
6647 if (pmu_conf->use_rr_dbregs) {
6648 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6649 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6650 pmu_conf = NULL;
6651 return -1;
6653 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6654 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6655 pmu_conf = NULL;
6656 return -1;
6660 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6661 pmu_conf->pmu_name,
6662 pmu_conf->num_pmcs,
6663 pmu_conf->num_pmds,
6664 pmu_conf->num_counters,
6665 ffz(pmu_conf->ovfl_val));
6667 /* sanity check */
6668 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6669 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6670 pmu_conf = NULL;
6671 return -1;
6675 * create /proc/perfmon (mostly for debugging purposes)
6677 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6678 if (perfmon_dir == NULL) {
6679 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6680 pmu_conf = NULL;
6681 return -1;
6684 * install customized file operations for /proc/perfmon entry
6686 perfmon_dir->proc_fops = &pfm_proc_fops;
6689 * create /proc/sys/kernel/perfmon (for debugging purposes)
6691 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6694 * initialize all our spinlocks
6696 spin_lock_init(&pfm_sessions.pfs_lock);
6697 spin_lock_init(&pfm_buffer_fmt_lock);
6699 init_pfm_fs();
6701 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6703 return 0;
6706 __initcall(pfm_init);
6709 * this function is called before pfm_init()
6711 void
6712 pfm_init_percpu (void)
6714 static int first_time=1;
6716 * make sure no measurement is active
6717 * (may inherit programmed PMCs from EFI).
6719 pfm_clear_psr_pp();
6720 pfm_clear_psr_up();
6723 * we run with the PMU not frozen at all times
6725 pfm_unfreeze_pmu();
6727 if (first_time) {
6728 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6729 first_time=0;
6732 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6733 ia64_srlz_d();
6737 * used for debug purposes only
6739 void
6740 dump_pmu_state(const char *from)
6742 struct task_struct *task;
6743 struct pt_regs *regs;
6744 pfm_context_t *ctx;
6745 unsigned long psr, dcr, info, flags;
6746 int i, this_cpu;
6748 local_irq_save(flags);
6750 this_cpu = smp_processor_id();
6751 regs = task_pt_regs(current);
6752 info = PFM_CPUINFO_GET();
6753 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6755 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6756 local_irq_restore(flags);
6757 return;
6760 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6761 this_cpu,
6762 from,
6763 current->pid,
6764 regs->cr_iip,
6765 current->comm);
6767 task = GET_PMU_OWNER();
6768 ctx = GET_PMU_CTX();
6770 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6772 psr = pfm_get_psr();
6774 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6775 this_cpu,
6776 ia64_get_pmc(0),
6777 psr & IA64_PSR_PP ? 1 : 0,
6778 psr & IA64_PSR_UP ? 1 : 0,
6779 dcr & IA64_DCR_PP ? 1 : 0,
6780 info,
6781 ia64_psr(regs)->up,
6782 ia64_psr(regs)->pp);
6784 ia64_psr(regs)->up = 0;
6785 ia64_psr(regs)->pp = 0;
6787 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6788 if (PMC_IS_IMPL(i) == 0) continue;
6789 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6792 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6793 if (PMD_IS_IMPL(i) == 0) continue;
6794 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6797 if (ctx) {
6798 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6799 this_cpu,
6800 ctx->ctx_state,
6801 ctx->ctx_smpl_vaddr,
6802 ctx->ctx_smpl_hdr,
6803 ctx->ctx_msgq_head,
6804 ctx->ctx_msgq_tail,
6805 ctx->ctx_saved_psr_up);
6807 local_irq_restore(flags);
6811 * called from process.c:copy_thread(). task is new child.
6813 void
6814 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6816 struct thread_struct *thread;
6818 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6820 thread = &task->thread;
6823 * cut links inherited from parent (current)
6825 thread->pfm_context = NULL;
6827 PFM_SET_WORK_PENDING(task, 0);
6830 * the psr bits are already set properly in copy_threads()
6833 #else /* !CONFIG_PERFMON */
6834 asmlinkage long
6835 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6837 return -ENOSYS;
6839 #endif /* CONFIG_PERFMON */