xen: rework pgd_walk to deal with 32/64 bit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / mmu.c
blob046c1f23dd6e02ea01795b8269ba827a8caadf56
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/mmu_context.h>
49 #include <asm/paravirt.h>
50 #include <asm/linkage.h>
52 #include <asm/xen/hypercall.h>
53 #include <asm/xen/hypervisor.h>
55 #include <xen/page.h>
56 #include <xen/interface/xen.h>
58 #include "multicalls.h"
59 #include "mmu.h"
61 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
62 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
64 /* Placeholder for holes in the address space */
65 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
66 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
68 /* Array of pointers to pages containing p2m entries */
69 static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
70 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
72 /* Arrays of p2m arrays expressed in mfns used for save/restore */
73 static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
75 static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
76 __page_aligned_bss;
78 static inline unsigned p2m_top_index(unsigned long pfn)
80 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
81 return pfn / P2M_ENTRIES_PER_PAGE;
84 static inline unsigned p2m_index(unsigned long pfn)
86 return pfn % P2M_ENTRIES_PER_PAGE;
89 /* Build the parallel p2m_top_mfn structures */
90 void xen_setup_mfn_list_list(void)
92 unsigned pfn, idx;
94 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
95 unsigned topidx = p2m_top_index(pfn);
97 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
100 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
101 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
102 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
105 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
107 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
108 virt_to_mfn(p2m_top_mfn_list);
109 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
112 /* Set up p2m_top to point to the domain-builder provided p2m pages */
113 void __init xen_build_dynamic_phys_to_machine(void)
115 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
116 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
117 unsigned pfn;
119 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
120 unsigned topidx = p2m_top_index(pfn);
122 p2m_top[topidx] = &mfn_list[pfn];
126 unsigned long get_phys_to_machine(unsigned long pfn)
128 unsigned topidx, idx;
130 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
131 return INVALID_P2M_ENTRY;
133 topidx = p2m_top_index(pfn);
134 idx = p2m_index(pfn);
135 return p2m_top[topidx][idx];
137 EXPORT_SYMBOL_GPL(get_phys_to_machine);
139 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
141 unsigned long *p;
142 unsigned i;
144 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
145 BUG_ON(p == NULL);
147 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
148 p[i] = INVALID_P2M_ENTRY;
150 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
151 free_page((unsigned long)p);
152 else
153 *mfnp = virt_to_mfn(p);
156 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
158 unsigned topidx, idx;
160 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
161 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
162 return;
165 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
166 BUG_ON(mfn != INVALID_P2M_ENTRY);
167 return;
170 topidx = p2m_top_index(pfn);
171 if (p2m_top[topidx] == p2m_missing) {
172 /* no need to allocate a page to store an invalid entry */
173 if (mfn == INVALID_P2M_ENTRY)
174 return;
175 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
178 idx = p2m_index(pfn);
179 p2m_top[topidx][idx] = mfn;
182 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
184 unsigned long address = (unsigned long)vaddr;
185 unsigned int level;
186 pte_t *pte = lookup_address(address, &level);
187 unsigned offset = address & ~PAGE_MASK;
189 BUG_ON(pte == NULL);
191 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
194 void make_lowmem_page_readonly(void *vaddr)
196 pte_t *pte, ptev;
197 unsigned long address = (unsigned long)vaddr;
198 unsigned int level;
200 pte = lookup_address(address, &level);
201 BUG_ON(pte == NULL);
203 ptev = pte_wrprotect(*pte);
205 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
206 BUG();
209 void make_lowmem_page_readwrite(void *vaddr)
211 pte_t *pte, ptev;
212 unsigned long address = (unsigned long)vaddr;
213 unsigned int level;
215 pte = lookup_address(address, &level);
216 BUG_ON(pte == NULL);
218 ptev = pte_mkwrite(*pte);
220 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
221 BUG();
225 static bool page_pinned(void *ptr)
227 struct page *page = virt_to_page(ptr);
229 return PagePinned(page);
232 static void extend_mmu_update(const struct mmu_update *update)
234 struct multicall_space mcs;
235 struct mmu_update *u;
237 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
239 if (mcs.mc != NULL)
240 mcs.mc->args[1]++;
241 else {
242 mcs = __xen_mc_entry(sizeof(*u));
243 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 u = mcs.args;
247 *u = *update;
250 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
252 struct mmu_update u;
254 preempt_disable();
256 xen_mc_batch();
258 /* ptr may be ioremapped for 64-bit pagetable setup */
259 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 extend_mmu_update(&u);
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
265 preempt_enable();
268 void xen_set_pmd(pmd_t *ptr, pmd_t val)
270 /* If page is not pinned, we can just update the entry
271 directly */
272 if (!page_pinned(ptr)) {
273 *ptr = val;
274 return;
277 xen_set_pmd_hyper(ptr, val);
281 * Associate a virtual page frame with a given physical page frame
282 * and protection flags for that frame.
284 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
286 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
289 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pteval)
292 /* updates to init_mm may be done without lock */
293 if (mm == &init_mm)
294 preempt_disable();
296 if (mm == current->mm || mm == &init_mm) {
297 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
298 struct multicall_space mcs;
299 mcs = xen_mc_entry(0);
301 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
302 xen_mc_issue(PARAVIRT_LAZY_MMU);
303 goto out;
304 } else
305 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
306 goto out;
308 xen_set_pte(ptep, pteval);
310 out:
311 if (mm == &init_mm)
312 preempt_enable();
315 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
317 /* Just return the pte as-is. We preserve the bits on commit */
318 return *ptep;
321 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
322 pte_t *ptep, pte_t pte)
324 struct mmu_update u;
326 xen_mc_batch();
328 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
329 u.val = pte_val_ma(pte);
330 extend_mmu_update(&u);
332 xen_mc_issue(PARAVIRT_LAZY_MMU);
335 /* Assume pteval_t is equivalent to all the other *val_t types. */
336 static pteval_t pte_mfn_to_pfn(pteval_t val)
338 if (val & _PAGE_PRESENT) {
339 unsigned long mfn = (val & PTE_MASK) >> PAGE_SHIFT;
340 pteval_t flags = val & ~PTE_MASK;
341 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
344 return val;
347 static pteval_t pte_pfn_to_mfn(pteval_t val)
349 if (val & _PAGE_PRESENT) {
350 unsigned long pfn = (val & PTE_MASK) >> PAGE_SHIFT;
351 pteval_t flags = val & ~PTE_MASK;
352 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
355 return val;
358 pteval_t xen_pte_val(pte_t pte)
360 return pte_mfn_to_pfn(pte.pte);
363 pgdval_t xen_pgd_val(pgd_t pgd)
365 return pte_mfn_to_pfn(pgd.pgd);
368 pte_t xen_make_pte(pteval_t pte)
370 pte = pte_pfn_to_mfn(pte);
371 return native_make_pte(pte);
374 pgd_t xen_make_pgd(pgdval_t pgd)
376 pgd = pte_pfn_to_mfn(pgd);
377 return native_make_pgd(pgd);
380 pmdval_t xen_pmd_val(pmd_t pmd)
382 return pte_mfn_to_pfn(pmd.pmd);
385 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
387 struct mmu_update u;
389 preempt_disable();
391 xen_mc_batch();
393 /* ptr may be ioremapped for 64-bit pagetable setup */
394 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
395 u.val = pud_val_ma(val);
396 extend_mmu_update(&u);
398 xen_mc_issue(PARAVIRT_LAZY_MMU);
400 preempt_enable();
403 void xen_set_pud(pud_t *ptr, pud_t val)
405 /* If page is not pinned, we can just update the entry
406 directly */
407 if (!page_pinned(ptr)) {
408 *ptr = val;
409 return;
412 xen_set_pud_hyper(ptr, val);
415 void xen_set_pte(pte_t *ptep, pte_t pte)
417 #ifdef CONFIG_X86_PAE
418 ptep->pte_high = pte.pte_high;
419 smp_wmb();
420 ptep->pte_low = pte.pte_low;
421 #else
422 *ptep = pte;
423 #endif
426 #ifdef CONFIG_X86_PAE
427 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
429 set_64bit((u64 *)ptep, native_pte_val(pte));
432 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
434 ptep->pte_low = 0;
435 smp_wmb(); /* make sure low gets written first */
436 ptep->pte_high = 0;
439 void xen_pmd_clear(pmd_t *pmdp)
441 set_pmd(pmdp, __pmd(0));
443 #endif /* CONFIG_X86_PAE */
445 pmd_t xen_make_pmd(pmdval_t pmd)
447 pmd = pte_pfn_to_mfn(pmd);
448 return native_make_pmd(pmd);
451 #if PAGETABLE_LEVELS == 4
452 pudval_t xen_pud_val(pud_t pud)
454 return pte_mfn_to_pfn(pud.pud);
457 pud_t xen_make_pud(pudval_t pud)
459 pud = pte_pfn_to_mfn(pud);
461 return native_make_pud(pud);
464 void xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
466 struct mmu_update u;
468 preempt_disable();
470 xen_mc_batch();
472 u.ptr = virt_to_machine(ptr).maddr;
473 u.val = pgd_val_ma(val);
474 extend_mmu_update(&u);
476 xen_mc_issue(PARAVIRT_LAZY_MMU);
478 preempt_enable();
481 void xen_set_pgd(pgd_t *ptr, pgd_t val)
483 /* If page is not pinned, we can just update the entry
484 directly */
485 if (!page_pinned(ptr)) {
486 *ptr = val;
487 return;
490 xen_set_pgd_hyper(ptr, val);
492 #endif /* PAGETABLE_LEVELS == 4 */
495 * (Yet another) pagetable walker. This one is intended for pinning a
496 * pagetable. This means that it walks a pagetable and calls the
497 * callback function on each page it finds making up the page table,
498 * at every level. It walks the entire pagetable, but it only bothers
499 * pinning pte pages which are below limit. In the normal case this
500 * will be STACK_TOP_MAX, but at boot we need to pin up to
501 * FIXADDR_TOP.
503 * For 32-bit the important bit is that we don't pin beyond there,
504 * because then we start getting into Xen's ptes.
506 * For 64-bit, we must skip the Xen hole in the middle of the address
507 * space, just after the big x86-64 virtual hole.
509 static int pgd_walk(pgd_t *pgd, int (*func)(struct page *, enum pt_level),
510 unsigned long limit)
512 int flush = 0;
513 unsigned hole_low, hole_high;
514 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
515 unsigned pgdidx, pudidx, pmdidx;
517 /* The limit is the last byte to be touched */
518 limit--;
519 BUG_ON(limit >= FIXADDR_TOP);
521 if (xen_feature(XENFEAT_auto_translated_physmap))
522 return 0;
525 * 64-bit has a great big hole in the middle of the address
526 * space, which contains the Xen mappings. On 32-bit these
527 * will end up making a zero-sized hole and so is a no-op.
529 hole_low = pgd_index(STACK_TOP_MAX + PGDIR_SIZE - 1);
530 hole_high = pgd_index(PAGE_OFFSET);
532 pgdidx_limit = pgd_index(limit);
533 #if PTRS_PER_PUD > 1
534 pudidx_limit = pud_index(limit);
535 #else
536 pudidx_limit = 0;
537 #endif
538 #if PTRS_PER_PMD > 1
539 pmdidx_limit = pmd_index(limit);
540 #else
541 pmdidx_limit = 0;
542 #endif
544 flush |= (*func)(virt_to_page(pgd), PT_PGD);
546 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
547 pud_t *pud;
549 if (pgdidx >= hole_low && pgdidx < hole_high)
550 continue;
552 if (!pgd_val(pgd[pgdidx]))
553 continue;
555 pud = pud_offset(&pgd[pgdidx], 0);
557 if (PTRS_PER_PUD > 1) /* not folded */
558 flush |= (*func)(virt_to_page(pud), PT_PUD);
560 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
561 pmd_t *pmd;
563 if (pgdidx == pgdidx_limit &&
564 pudidx > pudidx_limit)
565 goto out;
567 if (pud_none(pud[pudidx]))
568 continue;
570 pmd = pmd_offset(&pud[pudidx], 0);
572 if (PTRS_PER_PMD > 1) /* not folded */
573 flush |= (*func)(virt_to_page(pmd), PT_PMD);
575 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
576 struct page *pte;
578 if (pgdidx == pgdidx_limit &&
579 pudidx == pudidx_limit &&
580 pmdidx > pmdidx_limit)
581 goto out;
583 if (pmd_none(pmd[pmdidx]))
584 continue;
586 pte = pmd_page(pmd[pmdidx]);
587 flush |= (*func)(pte, PT_PTE);
591 out:
593 return flush;
596 static spinlock_t *lock_pte(struct page *page)
598 spinlock_t *ptl = NULL;
600 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
601 ptl = __pte_lockptr(page);
602 spin_lock(ptl);
603 #endif
605 return ptl;
608 static void do_unlock(void *v)
610 spinlock_t *ptl = v;
611 spin_unlock(ptl);
614 static void xen_do_pin(unsigned level, unsigned long pfn)
616 struct mmuext_op *op;
617 struct multicall_space mcs;
619 mcs = __xen_mc_entry(sizeof(*op));
620 op = mcs.args;
621 op->cmd = level;
622 op->arg1.mfn = pfn_to_mfn(pfn);
623 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
626 static int pin_page(struct page *page, enum pt_level level)
628 unsigned pgfl = TestSetPagePinned(page);
629 int flush;
631 if (pgfl)
632 flush = 0; /* already pinned */
633 else if (PageHighMem(page))
634 /* kmaps need flushing if we found an unpinned
635 highpage */
636 flush = 1;
637 else {
638 void *pt = lowmem_page_address(page);
639 unsigned long pfn = page_to_pfn(page);
640 struct multicall_space mcs = __xen_mc_entry(0);
641 spinlock_t *ptl;
643 flush = 0;
645 ptl = NULL;
646 if (level == PT_PTE)
647 ptl = lock_pte(page);
649 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
650 pfn_pte(pfn, PAGE_KERNEL_RO),
651 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
653 if (level == PT_PTE)
654 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
656 if (ptl) {
657 /* Queue a deferred unlock for when this batch
658 is completed. */
659 xen_mc_callback(do_unlock, ptl);
663 return flush;
666 /* This is called just after a mm has been created, but it has not
667 been used yet. We need to make sure that its pagetable is all
668 read-only, and can be pinned. */
669 void xen_pgd_pin(pgd_t *pgd)
671 xen_mc_batch();
673 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
674 /* re-enable interrupts for kmap_flush_unused */
675 xen_mc_issue(0);
676 kmap_flush_unused();
677 xen_mc_batch();
680 #ifdef CONFIG_X86_PAE
681 /* Need to make sure unshared kernel PMD is pinnable */
682 pin_page(virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])), PT_PMD);
683 #endif
685 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
686 xen_mc_issue(0);
690 * On save, we need to pin all pagetables to make sure they get their
691 * mfns turned into pfns. Search the list for any unpinned pgds and pin
692 * them (unpinned pgds are not currently in use, probably because the
693 * process is under construction or destruction).
695 void xen_mm_pin_all(void)
697 unsigned long flags;
698 struct page *page;
700 spin_lock_irqsave(&pgd_lock, flags);
702 list_for_each_entry(page, &pgd_list, lru) {
703 if (!PagePinned(page)) {
704 xen_pgd_pin((pgd_t *)page_address(page));
705 SetPageSavePinned(page);
709 spin_unlock_irqrestore(&pgd_lock, flags);
713 * The init_mm pagetable is really pinned as soon as its created, but
714 * that's before we have page structures to store the bits. So do all
715 * the book-keeping now.
717 static __init int mark_pinned(struct page *page, enum pt_level level)
719 SetPagePinned(page);
720 return 0;
723 void __init xen_mark_init_mm_pinned(void)
725 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
728 static int unpin_page(struct page *page, enum pt_level level)
730 unsigned pgfl = TestClearPagePinned(page);
732 if (pgfl && !PageHighMem(page)) {
733 void *pt = lowmem_page_address(page);
734 unsigned long pfn = page_to_pfn(page);
735 spinlock_t *ptl = NULL;
736 struct multicall_space mcs;
738 if (level == PT_PTE) {
739 ptl = lock_pte(page);
741 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
744 mcs = __xen_mc_entry(0);
746 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
747 pfn_pte(pfn, PAGE_KERNEL),
748 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
750 if (ptl) {
751 /* unlock when batch completed */
752 xen_mc_callback(do_unlock, ptl);
756 return 0; /* never need to flush on unpin */
759 /* Release a pagetables pages back as normal RW */
760 static void xen_pgd_unpin(pgd_t *pgd)
762 xen_mc_batch();
764 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
766 #ifdef CONFIG_X86_PAE
767 /* Need to make sure unshared kernel PMD is unpinned */
768 pin_page(virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])), PT_PMD);
769 #endif
770 pgd_walk(pgd, unpin_page, TASK_SIZE);
772 xen_mc_issue(0);
776 * On resume, undo any pinning done at save, so that the rest of the
777 * kernel doesn't see any unexpected pinned pagetables.
779 void xen_mm_unpin_all(void)
781 unsigned long flags;
782 struct page *page;
784 spin_lock_irqsave(&pgd_lock, flags);
786 list_for_each_entry(page, &pgd_list, lru) {
787 if (PageSavePinned(page)) {
788 BUG_ON(!PagePinned(page));
789 xen_pgd_unpin((pgd_t *)page_address(page));
790 ClearPageSavePinned(page);
794 spin_unlock_irqrestore(&pgd_lock, flags);
797 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
799 spin_lock(&next->page_table_lock);
800 xen_pgd_pin(next->pgd);
801 spin_unlock(&next->page_table_lock);
804 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
806 spin_lock(&mm->page_table_lock);
807 xen_pgd_pin(mm->pgd);
808 spin_unlock(&mm->page_table_lock);
812 #ifdef CONFIG_SMP
813 /* Another cpu may still have their %cr3 pointing at the pagetable, so
814 we need to repoint it somewhere else before we can unpin it. */
815 static void drop_other_mm_ref(void *info)
817 struct mm_struct *mm = info;
818 struct mm_struct *active_mm;
820 #ifdef CONFIG_X86_64
821 active_mm = read_pda(active_mm);
822 #else
823 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
824 #endif
826 if (active_mm == mm)
827 leave_mm(smp_processor_id());
829 /* If this cpu still has a stale cr3 reference, then make sure
830 it has been flushed. */
831 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
832 load_cr3(swapper_pg_dir);
833 arch_flush_lazy_cpu_mode();
837 static void drop_mm_ref(struct mm_struct *mm)
839 cpumask_t mask;
840 unsigned cpu;
842 if (current->active_mm == mm) {
843 if (current->mm == mm)
844 load_cr3(swapper_pg_dir);
845 else
846 leave_mm(smp_processor_id());
847 arch_flush_lazy_cpu_mode();
850 /* Get the "official" set of cpus referring to our pagetable. */
851 mask = mm->cpu_vm_mask;
853 /* It's possible that a vcpu may have a stale reference to our
854 cr3, because its in lazy mode, and it hasn't yet flushed
855 its set of pending hypercalls yet. In this case, we can
856 look at its actual current cr3 value, and force it to flush
857 if needed. */
858 for_each_online_cpu(cpu) {
859 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
860 cpu_set(cpu, mask);
863 if (!cpus_empty(mask))
864 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
866 #else
867 static void drop_mm_ref(struct mm_struct *mm)
869 if (current->active_mm == mm)
870 load_cr3(swapper_pg_dir);
872 #endif
875 * While a process runs, Xen pins its pagetables, which means that the
876 * hypervisor forces it to be read-only, and it controls all updates
877 * to it. This means that all pagetable updates have to go via the
878 * hypervisor, which is moderately expensive.
880 * Since we're pulling the pagetable down, we switch to use init_mm,
881 * unpin old process pagetable and mark it all read-write, which
882 * allows further operations on it to be simple memory accesses.
884 * The only subtle point is that another CPU may be still using the
885 * pagetable because of lazy tlb flushing. This means we need need to
886 * switch all CPUs off this pagetable before we can unpin it.
888 void xen_exit_mmap(struct mm_struct *mm)
890 get_cpu(); /* make sure we don't move around */
891 drop_mm_ref(mm);
892 put_cpu();
894 spin_lock(&mm->page_table_lock);
896 /* pgd may not be pinned in the error exit path of execve */
897 if (page_pinned(mm->pgd))
898 xen_pgd_unpin(mm->pgd);
900 spin_unlock(&mm->page_table_lock);