ux500: rename MOP board Kconfig
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree_plugin.h
bloba3638710dc67f4627f5cdb88e1cafb43b500d24a
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
35 static void __init rcu_bootup_announce_oddness(void)
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
39 #endif
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
42 CONFIG_RCU_FANOUT);
43 #endif
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
46 #endif
47 #ifdef CONFIG_RCU_FAST_NO_HZ
48 printk(KERN_INFO
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
50 #endif
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
53 #endif
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
56 #endif
57 #ifndef CONFIG_RCU_CPU_STALL_DETECTOR
58 printk(KERN_INFO
59 "\tRCU-based detection of stalled CPUs is disabled.\n");
60 #endif
61 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
62 printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
63 #endif
64 #if NUM_RCU_LVL_4 != 0
65 printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
66 #endif
69 #ifdef CONFIG_TREE_PREEMPT_RCU
71 struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
72 DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
74 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
77 * Tell them what RCU they are running.
79 static void __init rcu_bootup_announce(void)
81 printk(KERN_INFO "Preemptable hierarchical RCU implementation.\n");
82 rcu_bootup_announce_oddness();
86 * Return the number of RCU-preempt batches processed thus far
87 * for debug and statistics.
89 long rcu_batches_completed_preempt(void)
91 return rcu_preempt_state.completed;
93 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
96 * Return the number of RCU batches processed thus far for debug & stats.
98 long rcu_batches_completed(void)
100 return rcu_batches_completed_preempt();
102 EXPORT_SYMBOL_GPL(rcu_batches_completed);
105 * Force a quiescent state for preemptible RCU.
107 void rcu_force_quiescent_state(void)
109 force_quiescent_state(&rcu_preempt_state, 0);
111 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
114 * Record a preemptable-RCU quiescent state for the specified CPU. Note
115 * that this just means that the task currently running on the CPU is
116 * not in a quiescent state. There might be any number of tasks blocked
117 * while in an RCU read-side critical section.
119 * Unlike the other rcu_*_qs() functions, callers to this function
120 * must disable irqs in order to protect the assignment to
121 * ->rcu_read_unlock_special.
123 static void rcu_preempt_qs(int cpu)
125 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
127 rdp->passed_quiesc_completed = rdp->gpnum - 1;
128 barrier();
129 rdp->passed_quiesc = 1;
130 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
134 * We have entered the scheduler, and the current task might soon be
135 * context-switched away from. If this task is in an RCU read-side
136 * critical section, we will no longer be able to rely on the CPU to
137 * record that fact, so we enqueue the task on the appropriate entry
138 * of the blocked_tasks[] array. The task will dequeue itself when
139 * it exits the outermost enclosing RCU read-side critical section.
140 * Therefore, the current grace period cannot be permitted to complete
141 * until the blocked_tasks[] entry indexed by the low-order bit of
142 * rnp->gpnum empties.
144 * Caller must disable preemption.
146 static void rcu_preempt_note_context_switch(int cpu)
148 struct task_struct *t = current;
149 unsigned long flags;
150 int phase;
151 struct rcu_data *rdp;
152 struct rcu_node *rnp;
154 if (t->rcu_read_lock_nesting &&
155 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
157 /* Possibly blocking in an RCU read-side critical section. */
158 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
159 rnp = rdp->mynode;
160 raw_spin_lock_irqsave(&rnp->lock, flags);
161 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
162 t->rcu_blocked_node = rnp;
165 * If this CPU has already checked in, then this task
166 * will hold up the next grace period rather than the
167 * current grace period. Queue the task accordingly.
168 * If the task is queued for the current grace period
169 * (i.e., this CPU has not yet passed through a quiescent
170 * state for the current grace period), then as long
171 * as that task remains queued, the current grace period
172 * cannot end.
174 * But first, note that the current CPU must still be
175 * on line!
177 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
178 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
179 phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
180 list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
181 raw_spin_unlock_irqrestore(&rnp->lock, flags);
185 * Either we were not in an RCU read-side critical section to
186 * begin with, or we have now recorded that critical section
187 * globally. Either way, we can now note a quiescent state
188 * for this CPU. Again, if we were in an RCU read-side critical
189 * section, and if that critical section was blocking the current
190 * grace period, then the fact that the task has been enqueued
191 * means that we continue to block the current grace period.
193 local_irq_save(flags);
194 rcu_preempt_qs(cpu);
195 local_irq_restore(flags);
199 * Tree-preemptable RCU implementation for rcu_read_lock().
200 * Just increment ->rcu_read_lock_nesting, shared state will be updated
201 * if we block.
203 void __rcu_read_lock(void)
205 current->rcu_read_lock_nesting++;
206 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
208 EXPORT_SYMBOL_GPL(__rcu_read_lock);
211 * Check for preempted RCU readers blocking the current grace period
212 * for the specified rcu_node structure. If the caller needs a reliable
213 * answer, it must hold the rcu_node's ->lock.
215 static int rcu_preempted_readers(struct rcu_node *rnp)
217 int phase = rnp->gpnum & 0x1;
219 return !list_empty(&rnp->blocked_tasks[phase]) ||
220 !list_empty(&rnp->blocked_tasks[phase + 2]);
224 * Record a quiescent state for all tasks that were previously queued
225 * on the specified rcu_node structure and that were blocking the current
226 * RCU grace period. The caller must hold the specified rnp->lock with
227 * irqs disabled, and this lock is released upon return, but irqs remain
228 * disabled.
230 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
231 __releases(rnp->lock)
233 unsigned long mask;
234 struct rcu_node *rnp_p;
236 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
237 raw_spin_unlock_irqrestore(&rnp->lock, flags);
238 return; /* Still need more quiescent states! */
241 rnp_p = rnp->parent;
242 if (rnp_p == NULL) {
244 * Either there is only one rcu_node in the tree,
245 * or tasks were kicked up to root rcu_node due to
246 * CPUs going offline.
248 rcu_report_qs_rsp(&rcu_preempt_state, flags);
249 return;
252 /* Report up the rest of the hierarchy. */
253 mask = rnp->grpmask;
254 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
255 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
256 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
260 * Handle special cases during rcu_read_unlock(), such as needing to
261 * notify RCU core processing or task having blocked during the RCU
262 * read-side critical section.
264 static void rcu_read_unlock_special(struct task_struct *t)
266 int empty;
267 int empty_exp;
268 unsigned long flags;
269 struct rcu_node *rnp;
270 int special;
272 /* NMI handlers cannot block and cannot safely manipulate state. */
273 if (in_nmi())
274 return;
276 local_irq_save(flags);
279 * If RCU core is waiting for this CPU to exit critical section,
280 * let it know that we have done so.
282 special = t->rcu_read_unlock_special;
283 if (special & RCU_READ_UNLOCK_NEED_QS) {
284 rcu_preempt_qs(smp_processor_id());
287 /* Hardware IRQ handlers cannot block. */
288 if (in_irq()) {
289 local_irq_restore(flags);
290 return;
293 /* Clean up if blocked during RCU read-side critical section. */
294 if (special & RCU_READ_UNLOCK_BLOCKED) {
295 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
298 * Remove this task from the list it blocked on. The
299 * task can migrate while we acquire the lock, but at
300 * most one time. So at most two passes through loop.
302 for (;;) {
303 rnp = t->rcu_blocked_node;
304 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
305 if (rnp == t->rcu_blocked_node)
306 break;
307 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
309 empty = !rcu_preempted_readers(rnp);
310 empty_exp = !rcu_preempted_readers_exp(rnp);
311 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
312 list_del_init(&t->rcu_node_entry);
313 t->rcu_blocked_node = NULL;
316 * If this was the last task on the current list, and if
317 * we aren't waiting on any CPUs, report the quiescent state.
318 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
320 if (empty)
321 raw_spin_unlock_irqrestore(&rnp->lock, flags);
322 else
323 rcu_report_unblock_qs_rnp(rnp, flags);
326 * If this was the last task on the expedited lists,
327 * then we need to report up the rcu_node hierarchy.
329 if (!empty_exp && !rcu_preempted_readers_exp(rnp))
330 rcu_report_exp_rnp(&rcu_preempt_state, rnp);
331 } else {
332 local_irq_restore(flags);
337 * Tree-preemptable RCU implementation for rcu_read_unlock().
338 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
339 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
340 * invoke rcu_read_unlock_special() to clean up after a context switch
341 * in an RCU read-side critical section and other special cases.
343 void __rcu_read_unlock(void)
345 struct task_struct *t = current;
347 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
348 --t->rcu_read_lock_nesting;
349 barrier(); /* decrement before load of ->rcu_read_unlock_special */
350 if (t->rcu_read_lock_nesting == 0 &&
351 unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
352 rcu_read_unlock_special(t);
353 #ifdef CONFIG_PROVE_LOCKING
354 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0);
355 #endif /* #ifdef CONFIG_PROVE_LOCKING */
357 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
359 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
361 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
364 * Dump detailed information for all tasks blocking the current RCU
365 * grace period on the specified rcu_node structure.
367 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
369 unsigned long flags;
370 struct list_head *lp;
371 int phase;
372 struct task_struct *t;
374 if (rcu_preempted_readers(rnp)) {
375 raw_spin_lock_irqsave(&rnp->lock, flags);
376 phase = rnp->gpnum & 0x1;
377 lp = &rnp->blocked_tasks[phase];
378 list_for_each_entry(t, lp, rcu_node_entry)
379 sched_show_task(t);
380 raw_spin_unlock_irqrestore(&rnp->lock, flags);
385 * Dump detailed information for all tasks blocking the current RCU
386 * grace period.
388 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
390 struct rcu_node *rnp = rcu_get_root(rsp);
392 rcu_print_detail_task_stall_rnp(rnp);
393 rcu_for_each_leaf_node(rsp, rnp)
394 rcu_print_detail_task_stall_rnp(rnp);
397 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
399 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
403 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
406 * Scan the current list of tasks blocked within RCU read-side critical
407 * sections, printing out the tid of each.
409 static void rcu_print_task_stall(struct rcu_node *rnp)
411 struct list_head *lp;
412 int phase;
413 struct task_struct *t;
415 if (rcu_preempted_readers(rnp)) {
416 phase = rnp->gpnum & 0x1;
417 lp = &rnp->blocked_tasks[phase];
418 list_for_each_entry(t, lp, rcu_node_entry)
419 printk(" P%d", t->pid);
424 * Suppress preemptible RCU's CPU stall warnings by pushing the
425 * time of the next stall-warning message comfortably far into the
426 * future.
428 static void rcu_preempt_stall_reset(void)
430 rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
433 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
436 * Check that the list of blocked tasks for the newly completed grace
437 * period is in fact empty. It is a serious bug to complete a grace
438 * period that still has RCU readers blocked! This function must be
439 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
440 * must be held by the caller.
442 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
444 WARN_ON_ONCE(rcu_preempted_readers(rnp));
445 WARN_ON_ONCE(rnp->qsmask);
448 #ifdef CONFIG_HOTPLUG_CPU
451 * Handle tasklist migration for case in which all CPUs covered by the
452 * specified rcu_node have gone offline. Move them up to the root
453 * rcu_node. The reason for not just moving them to the immediate
454 * parent is to remove the need for rcu_read_unlock_special() to
455 * make more than two attempts to acquire the target rcu_node's lock.
456 * Returns true if there were tasks blocking the current RCU grace
457 * period.
459 * Returns 1 if there was previously a task blocking the current grace
460 * period on the specified rcu_node structure.
462 * The caller must hold rnp->lock with irqs disabled.
464 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
465 struct rcu_node *rnp,
466 struct rcu_data *rdp)
468 int i;
469 struct list_head *lp;
470 struct list_head *lp_root;
471 int retval = 0;
472 struct rcu_node *rnp_root = rcu_get_root(rsp);
473 struct task_struct *tp;
475 if (rnp == rnp_root) {
476 WARN_ONCE(1, "Last CPU thought to be offlined?");
477 return 0; /* Shouldn't happen: at least one CPU online. */
479 WARN_ON_ONCE(rnp != rdp->mynode &&
480 (!list_empty(&rnp->blocked_tasks[0]) ||
481 !list_empty(&rnp->blocked_tasks[1]) ||
482 !list_empty(&rnp->blocked_tasks[2]) ||
483 !list_empty(&rnp->blocked_tasks[3])));
486 * Move tasks up to root rcu_node. Rely on the fact that the
487 * root rcu_node can be at most one ahead of the rest of the
488 * rcu_nodes in terms of gp_num value. This fact allows us to
489 * move the blocked_tasks[] array directly, element by element.
491 if (rcu_preempted_readers(rnp))
492 retval |= RCU_OFL_TASKS_NORM_GP;
493 if (rcu_preempted_readers_exp(rnp))
494 retval |= RCU_OFL_TASKS_EXP_GP;
495 for (i = 0; i < 4; i++) {
496 lp = &rnp->blocked_tasks[i];
497 lp_root = &rnp_root->blocked_tasks[i];
498 while (!list_empty(lp)) {
499 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
500 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
501 list_del(&tp->rcu_node_entry);
502 tp->rcu_blocked_node = rnp_root;
503 list_add(&tp->rcu_node_entry, lp_root);
504 raw_spin_unlock(&rnp_root->lock); /* irqs remain disabled */
507 return retval;
511 * Do CPU-offline processing for preemptable RCU.
513 static void rcu_preempt_offline_cpu(int cpu)
515 __rcu_offline_cpu(cpu, &rcu_preempt_state);
518 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
521 * Check for a quiescent state from the current CPU. When a task blocks,
522 * the task is recorded in the corresponding CPU's rcu_node structure,
523 * which is checked elsewhere.
525 * Caller must disable hard irqs.
527 static void rcu_preempt_check_callbacks(int cpu)
529 struct task_struct *t = current;
531 if (t->rcu_read_lock_nesting == 0) {
532 rcu_preempt_qs(cpu);
533 return;
535 if (per_cpu(rcu_preempt_data, cpu).qs_pending)
536 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
540 * Process callbacks for preemptable RCU.
542 static void rcu_preempt_process_callbacks(void)
544 __rcu_process_callbacks(&rcu_preempt_state,
545 &__get_cpu_var(rcu_preempt_data));
549 * Queue a preemptable-RCU callback for invocation after a grace period.
551 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
553 __call_rcu(head, func, &rcu_preempt_state);
555 EXPORT_SYMBOL_GPL(call_rcu);
558 * synchronize_rcu - wait until a grace period has elapsed.
560 * Control will return to the caller some time after a full grace
561 * period has elapsed, in other words after all currently executing RCU
562 * read-side critical sections have completed. Note, however, that
563 * upon return from synchronize_rcu(), the caller might well be executing
564 * concurrently with new RCU read-side critical sections that began while
565 * synchronize_rcu() was waiting. RCU read-side critical sections are
566 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
568 void synchronize_rcu(void)
570 struct rcu_synchronize rcu;
572 if (!rcu_scheduler_active)
573 return;
575 init_rcu_head_on_stack(&rcu.head);
576 init_completion(&rcu.completion);
577 /* Will wake me after RCU finished. */
578 call_rcu(&rcu.head, wakeme_after_rcu);
579 /* Wait for it. */
580 wait_for_completion(&rcu.completion);
581 destroy_rcu_head_on_stack(&rcu.head);
583 EXPORT_SYMBOL_GPL(synchronize_rcu);
585 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
586 static long sync_rcu_preempt_exp_count;
587 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
590 * Return non-zero if there are any tasks in RCU read-side critical
591 * sections blocking the current preemptible-RCU expedited grace period.
592 * If there is no preemptible-RCU expedited grace period currently in
593 * progress, returns zero unconditionally.
595 static int rcu_preempted_readers_exp(struct rcu_node *rnp)
597 return !list_empty(&rnp->blocked_tasks[2]) ||
598 !list_empty(&rnp->blocked_tasks[3]);
602 * return non-zero if there is no RCU expedited grace period in progress
603 * for the specified rcu_node structure, in other words, if all CPUs and
604 * tasks covered by the specified rcu_node structure have done their bit
605 * for the current expedited grace period. Works only for preemptible
606 * RCU -- other RCU implementation use other means.
608 * Caller must hold sync_rcu_preempt_exp_mutex.
610 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
612 return !rcu_preempted_readers_exp(rnp) &&
613 ACCESS_ONCE(rnp->expmask) == 0;
617 * Report the exit from RCU read-side critical section for the last task
618 * that queued itself during or before the current expedited preemptible-RCU
619 * grace period. This event is reported either to the rcu_node structure on
620 * which the task was queued or to one of that rcu_node structure's ancestors,
621 * recursively up the tree. (Calm down, calm down, we do the recursion
622 * iteratively!)
624 * Caller must hold sync_rcu_preempt_exp_mutex.
626 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
628 unsigned long flags;
629 unsigned long mask;
631 raw_spin_lock_irqsave(&rnp->lock, flags);
632 for (;;) {
633 if (!sync_rcu_preempt_exp_done(rnp))
634 break;
635 if (rnp->parent == NULL) {
636 wake_up(&sync_rcu_preempt_exp_wq);
637 break;
639 mask = rnp->grpmask;
640 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
641 rnp = rnp->parent;
642 raw_spin_lock(&rnp->lock); /* irqs already disabled */
643 rnp->expmask &= ~mask;
645 raw_spin_unlock_irqrestore(&rnp->lock, flags);
649 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
650 * grace period for the specified rcu_node structure. If there are no such
651 * tasks, report it up the rcu_node hierarchy.
653 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
655 static void
656 sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
658 int must_wait;
660 raw_spin_lock(&rnp->lock); /* irqs already disabled */
661 list_splice_init(&rnp->blocked_tasks[0], &rnp->blocked_tasks[2]);
662 list_splice_init(&rnp->blocked_tasks[1], &rnp->blocked_tasks[3]);
663 must_wait = rcu_preempted_readers_exp(rnp);
664 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
665 if (!must_wait)
666 rcu_report_exp_rnp(rsp, rnp);
670 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
671 * is to invoke synchronize_sched_expedited() to push all the tasks to
672 * the ->blocked_tasks[] lists, move all entries from the first set of
673 * ->blocked_tasks[] lists to the second set, and finally wait for this
674 * second set to drain.
676 void synchronize_rcu_expedited(void)
678 unsigned long flags;
679 struct rcu_node *rnp;
680 struct rcu_state *rsp = &rcu_preempt_state;
681 long snap;
682 int trycount = 0;
684 smp_mb(); /* Caller's modifications seen first by other CPUs. */
685 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
686 smp_mb(); /* Above access cannot bleed into critical section. */
689 * Acquire lock, falling back to synchronize_rcu() if too many
690 * lock-acquisition failures. Of course, if someone does the
691 * expedited grace period for us, just leave.
693 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
694 if (trycount++ < 10)
695 udelay(trycount * num_online_cpus());
696 else {
697 synchronize_rcu();
698 return;
700 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
701 goto mb_ret; /* Others did our work for us. */
703 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
704 goto unlock_mb_ret; /* Others did our work for us. */
706 /* force all RCU readers onto blocked_tasks[]. */
707 synchronize_sched_expedited();
709 raw_spin_lock_irqsave(&rsp->onofflock, flags);
711 /* Initialize ->expmask for all non-leaf rcu_node structures. */
712 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
713 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
714 rnp->expmask = rnp->qsmaskinit;
715 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
718 /* Snapshot current state of ->blocked_tasks[] lists. */
719 rcu_for_each_leaf_node(rsp, rnp)
720 sync_rcu_preempt_exp_init(rsp, rnp);
721 if (NUM_RCU_NODES > 1)
722 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
724 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
726 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
727 rnp = rcu_get_root(rsp);
728 wait_event(sync_rcu_preempt_exp_wq,
729 sync_rcu_preempt_exp_done(rnp));
731 /* Clean up and exit. */
732 smp_mb(); /* ensure expedited GP seen before counter increment. */
733 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
734 unlock_mb_ret:
735 mutex_unlock(&sync_rcu_preempt_exp_mutex);
736 mb_ret:
737 smp_mb(); /* ensure subsequent action seen after grace period. */
739 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
742 * Check to see if there is any immediate preemptable-RCU-related work
743 * to be done.
745 static int rcu_preempt_pending(int cpu)
747 return __rcu_pending(&rcu_preempt_state,
748 &per_cpu(rcu_preempt_data, cpu));
752 * Does preemptable RCU need the CPU to stay out of dynticks mode?
754 static int rcu_preempt_needs_cpu(int cpu)
756 return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
760 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
762 void rcu_barrier(void)
764 _rcu_barrier(&rcu_preempt_state, call_rcu);
766 EXPORT_SYMBOL_GPL(rcu_barrier);
769 * Initialize preemptable RCU's per-CPU data.
771 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
773 rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
777 * Move preemptable RCU's callbacks from dying CPU to other online CPU.
779 static void rcu_preempt_send_cbs_to_online(void)
781 rcu_send_cbs_to_online(&rcu_preempt_state);
785 * Initialize preemptable RCU's state structures.
787 static void __init __rcu_init_preempt(void)
789 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
793 * Check for a task exiting while in a preemptable-RCU read-side
794 * critical section, clean up if so. No need to issue warnings,
795 * as debug_check_no_locks_held() already does this if lockdep
796 * is enabled.
798 void exit_rcu(void)
800 struct task_struct *t = current;
802 if (t->rcu_read_lock_nesting == 0)
803 return;
804 t->rcu_read_lock_nesting = 1;
805 rcu_read_unlock();
808 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
811 * Tell them what RCU they are running.
813 static void __init rcu_bootup_announce(void)
815 printk(KERN_INFO "Hierarchical RCU implementation.\n");
816 rcu_bootup_announce_oddness();
820 * Return the number of RCU batches processed thus far for debug & stats.
822 long rcu_batches_completed(void)
824 return rcu_batches_completed_sched();
826 EXPORT_SYMBOL_GPL(rcu_batches_completed);
829 * Force a quiescent state for RCU, which, because there is no preemptible
830 * RCU, becomes the same as rcu-sched.
832 void rcu_force_quiescent_state(void)
834 rcu_sched_force_quiescent_state();
836 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
839 * Because preemptable RCU does not exist, we never have to check for
840 * CPUs being in quiescent states.
842 static void rcu_preempt_note_context_switch(int cpu)
847 * Because preemptable RCU does not exist, there are never any preempted
848 * RCU readers.
850 static int rcu_preempted_readers(struct rcu_node *rnp)
852 return 0;
855 #ifdef CONFIG_HOTPLUG_CPU
857 /* Because preemptible RCU does not exist, no quieting of tasks. */
858 static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
860 raw_spin_unlock_irqrestore(&rnp->lock, flags);
863 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
865 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
868 * Because preemptable RCU does not exist, we never have to check for
869 * tasks blocked within RCU read-side critical sections.
871 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
876 * Because preemptable RCU does not exist, we never have to check for
877 * tasks blocked within RCU read-side critical sections.
879 static void rcu_print_task_stall(struct rcu_node *rnp)
884 * Because preemptible RCU does not exist, there is no need to suppress
885 * its CPU stall warnings.
887 static void rcu_preempt_stall_reset(void)
891 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
894 * Because there is no preemptable RCU, there can be no readers blocked,
895 * so there is no need to check for blocked tasks. So check only for
896 * bogus qsmask values.
898 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
900 WARN_ON_ONCE(rnp->qsmask);
903 #ifdef CONFIG_HOTPLUG_CPU
906 * Because preemptable RCU does not exist, it never needs to migrate
907 * tasks that were blocked within RCU read-side critical sections, and
908 * such non-existent tasks cannot possibly have been blocking the current
909 * grace period.
911 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
912 struct rcu_node *rnp,
913 struct rcu_data *rdp)
915 return 0;
919 * Because preemptable RCU does not exist, it never needs CPU-offline
920 * processing.
922 static void rcu_preempt_offline_cpu(int cpu)
926 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
929 * Because preemptable RCU does not exist, it never has any callbacks
930 * to check.
932 static void rcu_preempt_check_callbacks(int cpu)
937 * Because preemptable RCU does not exist, it never has any callbacks
938 * to process.
940 static void rcu_preempt_process_callbacks(void)
945 * Wait for an rcu-preempt grace period, but make it happen quickly.
946 * But because preemptable RCU does not exist, map to rcu-sched.
948 void synchronize_rcu_expedited(void)
950 synchronize_sched_expedited();
952 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
954 #ifdef CONFIG_HOTPLUG_CPU
957 * Because preemptable RCU does not exist, there is never any need to
958 * report on tasks preempted in RCU read-side critical sections during
959 * expedited RCU grace periods.
961 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp)
963 return;
966 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
969 * Because preemptable RCU does not exist, it never has any work to do.
971 static int rcu_preempt_pending(int cpu)
973 return 0;
977 * Because preemptable RCU does not exist, it never needs any CPU.
979 static int rcu_preempt_needs_cpu(int cpu)
981 return 0;
985 * Because preemptable RCU does not exist, rcu_barrier() is just
986 * another name for rcu_barrier_sched().
988 void rcu_barrier(void)
990 rcu_barrier_sched();
992 EXPORT_SYMBOL_GPL(rcu_barrier);
995 * Because preemptable RCU does not exist, there is no per-CPU
996 * data to initialize.
998 static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
1003 * Because there is no preemptable RCU, there are no callbacks to move.
1005 static void rcu_preempt_send_cbs_to_online(void)
1010 * Because preemptable RCU does not exist, it need not be initialized.
1012 static void __init __rcu_init_preempt(void)
1016 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1018 #ifndef CONFIG_SMP
1020 void synchronize_sched_expedited(void)
1022 cond_resched();
1024 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1026 #else /* #ifndef CONFIG_SMP */
1028 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1029 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1031 static int synchronize_sched_expedited_cpu_stop(void *data)
1034 * There must be a full memory barrier on each affected CPU
1035 * between the time that try_stop_cpus() is called and the
1036 * time that it returns.
1038 * In the current initial implementation of cpu_stop, the
1039 * above condition is already met when the control reaches
1040 * this point and the following smp_mb() is not strictly
1041 * necessary. Do smp_mb() anyway for documentation and
1042 * robustness against future implementation changes.
1044 smp_mb(); /* See above comment block. */
1045 return 0;
1049 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1050 * approach to force grace period to end quickly. This consumes
1051 * significant time on all CPUs, and is thus not recommended for
1052 * any sort of common-case code.
1054 * Note that it is illegal to call this function while holding any
1055 * lock that is acquired by a CPU-hotplug notifier. Failing to
1056 * observe this restriction will result in deadlock.
1058 * This implementation can be thought of as an application of ticket
1059 * locking to RCU, with sync_sched_expedited_started and
1060 * sync_sched_expedited_done taking on the roles of the halves
1061 * of the ticket-lock word. Each task atomically increments
1062 * sync_sched_expedited_started upon entry, snapshotting the old value,
1063 * then attempts to stop all the CPUs. If this succeeds, then each
1064 * CPU will have executed a context switch, resulting in an RCU-sched
1065 * grace period. We are then done, so we use atomic_cmpxchg() to
1066 * update sync_sched_expedited_done to match our snapshot -- but
1067 * only if someone else has not already advanced past our snapshot.
1069 * On the other hand, if try_stop_cpus() fails, we check the value
1070 * of sync_sched_expedited_done. If it has advanced past our
1071 * initial snapshot, then someone else must have forced a grace period
1072 * some time after we took our snapshot. In this case, our work is
1073 * done for us, and we can simply return. Otherwise, we try again,
1074 * but keep our initial snapshot for purposes of checking for someone
1075 * doing our work for us.
1077 * If we fail too many times in a row, we fall back to synchronize_sched().
1079 void synchronize_sched_expedited(void)
1081 int firstsnap, s, snap, trycount = 0;
1083 /* Note that atomic_inc_return() implies full memory barrier. */
1084 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1085 get_online_cpus();
1088 * Each pass through the following loop attempts to force a
1089 * context switch on each CPU.
1091 while (try_stop_cpus(cpu_online_mask,
1092 synchronize_sched_expedited_cpu_stop,
1093 NULL) == -EAGAIN) {
1094 put_online_cpus();
1096 /* No joy, try again later. Or just synchronize_sched(). */
1097 if (trycount++ < 10)
1098 udelay(trycount * num_online_cpus());
1099 else {
1100 synchronize_sched();
1101 return;
1104 /* Check to see if someone else did our work for us. */
1105 s = atomic_read(&sync_sched_expedited_done);
1106 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1107 smp_mb(); /* ensure test happens before caller kfree */
1108 return;
1112 * Refetching sync_sched_expedited_started allows later
1113 * callers to piggyback on our grace period. We subtract
1114 * 1 to get the same token that the last incrementer got.
1115 * We retry after they started, so our grace period works
1116 * for them, and they started after our first try, so their
1117 * grace period works for us.
1119 get_online_cpus();
1120 snap = atomic_read(&sync_sched_expedited_started) - 1;
1121 smp_mb(); /* ensure read is before try_stop_cpus(). */
1125 * Everyone up to our most recent fetch is covered by our grace
1126 * period. Update the counter, but only if our work is still
1127 * relevant -- which it won't be if someone who started later
1128 * than we did beat us to the punch.
1130 do {
1131 s = atomic_read(&sync_sched_expedited_done);
1132 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
1133 smp_mb(); /* ensure test happens before caller kfree */
1134 break;
1136 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
1138 put_online_cpus();
1140 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
1142 #endif /* #else #ifndef CONFIG_SMP */
1144 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1147 * Check to see if any future RCU-related work will need to be done
1148 * by the current CPU, even if none need be done immediately, returning
1149 * 1 if so. This function is part of the RCU implementation; it is -not-
1150 * an exported member of the RCU API.
1152 * Because we have preemptible RCU, just check whether this CPU needs
1153 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1154 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1156 int rcu_needs_cpu(int cpu)
1158 return rcu_needs_cpu_quick_check(cpu);
1162 * Check to see if we need to continue a callback-flush operations to
1163 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1164 * entry is not configured, so we never do need to.
1166 static void rcu_needs_cpu_flush(void)
1170 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1172 #define RCU_NEEDS_CPU_FLUSHES 5
1173 static DEFINE_PER_CPU(int, rcu_dyntick_drain);
1174 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
1177 * Check to see if any future RCU-related work will need to be done
1178 * by the current CPU, even if none need be done immediately, returning
1179 * 1 if so. This function is part of the RCU implementation; it is -not-
1180 * an exported member of the RCU API.
1182 * Because we are not supporting preemptible RCU, attempt to accelerate
1183 * any current grace periods so that RCU no longer needs this CPU, but
1184 * only if all other CPUs are already in dynticks-idle mode. This will
1185 * allow the CPU cores to be powered down immediately, as opposed to after
1186 * waiting many milliseconds for grace periods to elapse.
1188 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1189 * disabled, we do one pass of force_quiescent_state(), then do a
1190 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1191 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1193 int rcu_needs_cpu(int cpu)
1195 int c = 0;
1196 int snap;
1197 int snap_nmi;
1198 int thatcpu;
1200 /* Check for being in the holdoff period. */
1201 if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies)
1202 return rcu_needs_cpu_quick_check(cpu);
1204 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1205 for_each_online_cpu(thatcpu) {
1206 if (thatcpu == cpu)
1207 continue;
1208 snap = per_cpu(rcu_dynticks, thatcpu).dynticks;
1209 snap_nmi = per_cpu(rcu_dynticks, thatcpu).dynticks_nmi;
1210 smp_mb(); /* Order sampling of snap with end of grace period. */
1211 if (((snap & 0x1) != 0) || ((snap_nmi & 0x1) != 0)) {
1212 per_cpu(rcu_dyntick_drain, cpu) = 0;
1213 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
1214 return rcu_needs_cpu_quick_check(cpu);
1218 /* Check and update the rcu_dyntick_drain sequencing. */
1219 if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1220 /* First time through, initialize the counter. */
1221 per_cpu(rcu_dyntick_drain, cpu) = RCU_NEEDS_CPU_FLUSHES;
1222 } else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
1223 /* We have hit the limit, so time to give up. */
1224 per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
1225 return rcu_needs_cpu_quick_check(cpu);
1228 /* Do one step pushing remaining RCU callbacks through. */
1229 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
1230 rcu_sched_qs(cpu);
1231 force_quiescent_state(&rcu_sched_state, 0);
1232 c = c || per_cpu(rcu_sched_data, cpu).nxtlist;
1234 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
1235 rcu_bh_qs(cpu);
1236 force_quiescent_state(&rcu_bh_state, 0);
1237 c = c || per_cpu(rcu_bh_data, cpu).nxtlist;
1240 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1241 if (c)
1242 raise_softirq(RCU_SOFTIRQ);
1243 return c;
1247 * Check to see if we need to continue a callback-flush operations to
1248 * allow the last CPU to enter dyntick-idle mode.
1250 static void rcu_needs_cpu_flush(void)
1252 int cpu = smp_processor_id();
1253 unsigned long flags;
1255 if (per_cpu(rcu_dyntick_drain, cpu) <= 0)
1256 return;
1257 local_irq_save(flags);
1258 (void)rcu_needs_cpu(cpu);
1259 local_irq_restore(flags);
1262 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */