2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptable semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/stop_machine.h>
31 * Check the RCU kernel configuration parameters and print informative
32 * messages about anything out of the ordinary. If you like #ifdef, you
33 * will love this function.
35 static void __init
rcu_bootup_announce_oddness(void)
37 #ifdef CONFIG_RCU_TRACE
38 printk(KERN_INFO
"\tRCU debugfs-based tracing is enabled.\n");
40 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
41 printk(KERN_INFO
"\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
44 #ifdef CONFIG_RCU_FANOUT_EXACT
45 printk(KERN_INFO
"\tHierarchical RCU autobalancing is disabled.\n");
47 #ifdef CONFIG_RCU_FAST_NO_HZ
49 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
51 #ifdef CONFIG_PROVE_RCU
52 printk(KERN_INFO
"\tRCU lockdep checking is enabled.\n");
54 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
55 printk(KERN_INFO
"\tRCU torture testing starts during boot.\n");
57 #ifndef CONFIG_RCU_CPU_STALL_DETECTOR
59 "\tRCU-based detection of stalled CPUs is disabled.\n");
61 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
62 printk(KERN_INFO
"\tVerbose stalled-CPUs detection is disabled.\n");
64 #if NUM_RCU_LVL_4 != 0
65 printk(KERN_INFO
"\tExperimental four-level hierarchy is enabled.\n");
69 #ifdef CONFIG_TREE_PREEMPT_RCU
71 struct rcu_state rcu_preempt_state
= RCU_STATE_INITIALIZER(rcu_preempt_state
);
72 DEFINE_PER_CPU(struct rcu_data
, rcu_preempt_data
);
74 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
77 * Tell them what RCU they are running.
79 static void __init
rcu_bootup_announce(void)
81 printk(KERN_INFO
"Preemptable hierarchical RCU implementation.\n");
82 rcu_bootup_announce_oddness();
86 * Return the number of RCU-preempt batches processed thus far
87 * for debug and statistics.
89 long rcu_batches_completed_preempt(void)
91 return rcu_preempt_state
.completed
;
93 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
96 * Return the number of RCU batches processed thus far for debug & stats.
98 long rcu_batches_completed(void)
100 return rcu_batches_completed_preempt();
102 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
105 * Force a quiescent state for preemptible RCU.
107 void rcu_force_quiescent_state(void)
109 force_quiescent_state(&rcu_preempt_state
, 0);
111 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
114 * Record a preemptable-RCU quiescent state for the specified CPU. Note
115 * that this just means that the task currently running on the CPU is
116 * not in a quiescent state. There might be any number of tasks blocked
117 * while in an RCU read-side critical section.
119 * Unlike the other rcu_*_qs() functions, callers to this function
120 * must disable irqs in order to protect the assignment to
121 * ->rcu_read_unlock_special.
123 static void rcu_preempt_qs(int cpu
)
125 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
127 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
129 rdp
->passed_quiesc
= 1;
130 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
134 * We have entered the scheduler, and the current task might soon be
135 * context-switched away from. If this task is in an RCU read-side
136 * critical section, we will no longer be able to rely on the CPU to
137 * record that fact, so we enqueue the task on the appropriate entry
138 * of the blocked_tasks[] array. The task will dequeue itself when
139 * it exits the outermost enclosing RCU read-side critical section.
140 * Therefore, the current grace period cannot be permitted to complete
141 * until the blocked_tasks[] entry indexed by the low-order bit of
142 * rnp->gpnum empties.
144 * Caller must disable preemption.
146 static void rcu_preempt_note_context_switch(int cpu
)
148 struct task_struct
*t
= current
;
151 struct rcu_data
*rdp
;
152 struct rcu_node
*rnp
;
154 if (t
->rcu_read_lock_nesting
&&
155 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
157 /* Possibly blocking in an RCU read-side critical section. */
158 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
160 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
161 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
162 t
->rcu_blocked_node
= rnp
;
165 * If this CPU has already checked in, then this task
166 * will hold up the next grace period rather than the
167 * current grace period. Queue the task accordingly.
168 * If the task is queued for the current grace period
169 * (i.e., this CPU has not yet passed through a quiescent
170 * state for the current grace period), then as long
171 * as that task remains queued, the current grace period
174 * But first, note that the current CPU must still be
177 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
178 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
179 phase
= (rnp
->gpnum
+ !(rnp
->qsmask
& rdp
->grpmask
)) & 0x1;
180 list_add(&t
->rcu_node_entry
, &rnp
->blocked_tasks
[phase
]);
181 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
185 * Either we were not in an RCU read-side critical section to
186 * begin with, or we have now recorded that critical section
187 * globally. Either way, we can now note a quiescent state
188 * for this CPU. Again, if we were in an RCU read-side critical
189 * section, and if that critical section was blocking the current
190 * grace period, then the fact that the task has been enqueued
191 * means that we continue to block the current grace period.
193 local_irq_save(flags
);
195 local_irq_restore(flags
);
199 * Tree-preemptable RCU implementation for rcu_read_lock().
200 * Just increment ->rcu_read_lock_nesting, shared state will be updated
203 void __rcu_read_lock(void)
205 current
->rcu_read_lock_nesting
++;
206 barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
208 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
211 * Check for preempted RCU readers blocking the current grace period
212 * for the specified rcu_node structure. If the caller needs a reliable
213 * answer, it must hold the rcu_node's ->lock.
215 static int rcu_preempted_readers(struct rcu_node
*rnp
)
217 int phase
= rnp
->gpnum
& 0x1;
219 return !list_empty(&rnp
->blocked_tasks
[phase
]) ||
220 !list_empty(&rnp
->blocked_tasks
[phase
+ 2]);
224 * Record a quiescent state for all tasks that were previously queued
225 * on the specified rcu_node structure and that were blocking the current
226 * RCU grace period. The caller must hold the specified rnp->lock with
227 * irqs disabled, and this lock is released upon return, but irqs remain
230 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
231 __releases(rnp
->lock
)
234 struct rcu_node
*rnp_p
;
236 if (rnp
->qsmask
!= 0 || rcu_preempted_readers(rnp
)) {
237 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
238 return; /* Still need more quiescent states! */
244 * Either there is only one rcu_node in the tree,
245 * or tasks were kicked up to root rcu_node due to
246 * CPUs going offline.
248 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
252 /* Report up the rest of the hierarchy. */
254 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
255 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
256 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
260 * Handle special cases during rcu_read_unlock(), such as needing to
261 * notify RCU core processing or task having blocked during the RCU
262 * read-side critical section.
264 static void rcu_read_unlock_special(struct task_struct
*t
)
269 struct rcu_node
*rnp
;
272 /* NMI handlers cannot block and cannot safely manipulate state. */
276 local_irq_save(flags
);
279 * If RCU core is waiting for this CPU to exit critical section,
280 * let it know that we have done so.
282 special
= t
->rcu_read_unlock_special
;
283 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
284 rcu_preempt_qs(smp_processor_id());
287 /* Hardware IRQ handlers cannot block. */
289 local_irq_restore(flags
);
293 /* Clean up if blocked during RCU read-side critical section. */
294 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
295 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
298 * Remove this task from the list it blocked on. The
299 * task can migrate while we acquire the lock, but at
300 * most one time. So at most two passes through loop.
303 rnp
= t
->rcu_blocked_node
;
304 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
305 if (rnp
== t
->rcu_blocked_node
)
307 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
309 empty
= !rcu_preempted_readers(rnp
);
310 empty_exp
= !rcu_preempted_readers_exp(rnp
);
311 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
312 list_del_init(&t
->rcu_node_entry
);
313 t
->rcu_blocked_node
= NULL
;
316 * If this was the last task on the current list, and if
317 * we aren't waiting on any CPUs, report the quiescent state.
318 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock.
321 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
323 rcu_report_unblock_qs_rnp(rnp
, flags
);
326 * If this was the last task on the expedited lists,
327 * then we need to report up the rcu_node hierarchy.
329 if (!empty_exp
&& !rcu_preempted_readers_exp(rnp
))
330 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
);
332 local_irq_restore(flags
);
337 * Tree-preemptable RCU implementation for rcu_read_unlock().
338 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
339 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
340 * invoke rcu_read_unlock_special() to clean up after a context switch
341 * in an RCU read-side critical section and other special cases.
343 void __rcu_read_unlock(void)
345 struct task_struct
*t
= current
;
347 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
348 --t
->rcu_read_lock_nesting
;
349 barrier(); /* decrement before load of ->rcu_read_unlock_special */
350 if (t
->rcu_read_lock_nesting
== 0 &&
351 unlikely(ACCESS_ONCE(t
->rcu_read_unlock_special
)))
352 rcu_read_unlock_special(t
);
353 #ifdef CONFIG_PROVE_LOCKING
354 WARN_ON_ONCE(ACCESS_ONCE(t
->rcu_read_lock_nesting
) < 0);
355 #endif /* #ifdef CONFIG_PROVE_LOCKING */
357 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
359 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
361 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
364 * Dump detailed information for all tasks blocking the current RCU
365 * grace period on the specified rcu_node structure.
367 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
370 struct list_head
*lp
;
372 struct task_struct
*t
;
374 if (rcu_preempted_readers(rnp
)) {
375 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
376 phase
= rnp
->gpnum
& 0x1;
377 lp
= &rnp
->blocked_tasks
[phase
];
378 list_for_each_entry(t
, lp
, rcu_node_entry
)
380 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
385 * Dump detailed information for all tasks blocking the current RCU
388 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
390 struct rcu_node
*rnp
= rcu_get_root(rsp
);
392 rcu_print_detail_task_stall_rnp(rnp
);
393 rcu_for_each_leaf_node(rsp
, rnp
)
394 rcu_print_detail_task_stall_rnp(rnp
);
397 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
399 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
403 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
406 * Scan the current list of tasks blocked within RCU read-side critical
407 * sections, printing out the tid of each.
409 static void rcu_print_task_stall(struct rcu_node
*rnp
)
411 struct list_head
*lp
;
413 struct task_struct
*t
;
415 if (rcu_preempted_readers(rnp
)) {
416 phase
= rnp
->gpnum
& 0x1;
417 lp
= &rnp
->blocked_tasks
[phase
];
418 list_for_each_entry(t
, lp
, rcu_node_entry
)
419 printk(" P%d", t
->pid
);
424 * Suppress preemptible RCU's CPU stall warnings by pushing the
425 * time of the next stall-warning message comfortably far into the
428 static void rcu_preempt_stall_reset(void)
430 rcu_preempt_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
433 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
436 * Check that the list of blocked tasks for the newly completed grace
437 * period is in fact empty. It is a serious bug to complete a grace
438 * period that still has RCU readers blocked! This function must be
439 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
440 * must be held by the caller.
442 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
444 WARN_ON_ONCE(rcu_preempted_readers(rnp
));
445 WARN_ON_ONCE(rnp
->qsmask
);
448 #ifdef CONFIG_HOTPLUG_CPU
451 * Handle tasklist migration for case in which all CPUs covered by the
452 * specified rcu_node have gone offline. Move them up to the root
453 * rcu_node. The reason for not just moving them to the immediate
454 * parent is to remove the need for rcu_read_unlock_special() to
455 * make more than two attempts to acquire the target rcu_node's lock.
456 * Returns true if there were tasks blocking the current RCU grace
459 * Returns 1 if there was previously a task blocking the current grace
460 * period on the specified rcu_node structure.
462 * The caller must hold rnp->lock with irqs disabled.
464 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
465 struct rcu_node
*rnp
,
466 struct rcu_data
*rdp
)
469 struct list_head
*lp
;
470 struct list_head
*lp_root
;
472 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
473 struct task_struct
*tp
;
475 if (rnp
== rnp_root
) {
476 WARN_ONCE(1, "Last CPU thought to be offlined?");
477 return 0; /* Shouldn't happen: at least one CPU online. */
479 WARN_ON_ONCE(rnp
!= rdp
->mynode
&&
480 (!list_empty(&rnp
->blocked_tasks
[0]) ||
481 !list_empty(&rnp
->blocked_tasks
[1]) ||
482 !list_empty(&rnp
->blocked_tasks
[2]) ||
483 !list_empty(&rnp
->blocked_tasks
[3])));
486 * Move tasks up to root rcu_node. Rely on the fact that the
487 * root rcu_node can be at most one ahead of the rest of the
488 * rcu_nodes in terms of gp_num value. This fact allows us to
489 * move the blocked_tasks[] array directly, element by element.
491 if (rcu_preempted_readers(rnp
))
492 retval
|= RCU_OFL_TASKS_NORM_GP
;
493 if (rcu_preempted_readers_exp(rnp
))
494 retval
|= RCU_OFL_TASKS_EXP_GP
;
495 for (i
= 0; i
< 4; i
++) {
496 lp
= &rnp
->blocked_tasks
[i
];
497 lp_root
= &rnp_root
->blocked_tasks
[i
];
498 while (!list_empty(lp
)) {
499 tp
= list_entry(lp
->next
, typeof(*tp
), rcu_node_entry
);
500 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
501 list_del(&tp
->rcu_node_entry
);
502 tp
->rcu_blocked_node
= rnp_root
;
503 list_add(&tp
->rcu_node_entry
, lp_root
);
504 raw_spin_unlock(&rnp_root
->lock
); /* irqs remain disabled */
511 * Do CPU-offline processing for preemptable RCU.
513 static void rcu_preempt_offline_cpu(int cpu
)
515 __rcu_offline_cpu(cpu
, &rcu_preempt_state
);
518 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
521 * Check for a quiescent state from the current CPU. When a task blocks,
522 * the task is recorded in the corresponding CPU's rcu_node structure,
523 * which is checked elsewhere.
525 * Caller must disable hard irqs.
527 static void rcu_preempt_check_callbacks(int cpu
)
529 struct task_struct
*t
= current
;
531 if (t
->rcu_read_lock_nesting
== 0) {
535 if (per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
536 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
540 * Process callbacks for preemptable RCU.
542 static void rcu_preempt_process_callbacks(void)
544 __rcu_process_callbacks(&rcu_preempt_state
,
545 &__get_cpu_var(rcu_preempt_data
));
549 * Queue a preemptable-RCU callback for invocation after a grace period.
551 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
553 __call_rcu(head
, func
, &rcu_preempt_state
);
555 EXPORT_SYMBOL_GPL(call_rcu
);
558 * synchronize_rcu - wait until a grace period has elapsed.
560 * Control will return to the caller some time after a full grace
561 * period has elapsed, in other words after all currently executing RCU
562 * read-side critical sections have completed. Note, however, that
563 * upon return from synchronize_rcu(), the caller might well be executing
564 * concurrently with new RCU read-side critical sections that began while
565 * synchronize_rcu() was waiting. RCU read-side critical sections are
566 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
568 void synchronize_rcu(void)
570 struct rcu_synchronize rcu
;
572 if (!rcu_scheduler_active
)
575 init_rcu_head_on_stack(&rcu
.head
);
576 init_completion(&rcu
.completion
);
577 /* Will wake me after RCU finished. */
578 call_rcu(&rcu
.head
, wakeme_after_rcu
);
580 wait_for_completion(&rcu
.completion
);
581 destroy_rcu_head_on_stack(&rcu
.head
);
583 EXPORT_SYMBOL_GPL(synchronize_rcu
);
585 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
586 static long sync_rcu_preempt_exp_count
;
587 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
590 * Return non-zero if there are any tasks in RCU read-side critical
591 * sections blocking the current preemptible-RCU expedited grace period.
592 * If there is no preemptible-RCU expedited grace period currently in
593 * progress, returns zero unconditionally.
595 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
597 return !list_empty(&rnp
->blocked_tasks
[2]) ||
598 !list_empty(&rnp
->blocked_tasks
[3]);
602 * return non-zero if there is no RCU expedited grace period in progress
603 * for the specified rcu_node structure, in other words, if all CPUs and
604 * tasks covered by the specified rcu_node structure have done their bit
605 * for the current expedited grace period. Works only for preemptible
606 * RCU -- other RCU implementation use other means.
608 * Caller must hold sync_rcu_preempt_exp_mutex.
610 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
612 return !rcu_preempted_readers_exp(rnp
) &&
613 ACCESS_ONCE(rnp
->expmask
) == 0;
617 * Report the exit from RCU read-side critical section for the last task
618 * that queued itself during or before the current expedited preemptible-RCU
619 * grace period. This event is reported either to the rcu_node structure on
620 * which the task was queued or to one of that rcu_node structure's ancestors,
621 * recursively up the tree. (Calm down, calm down, we do the recursion
624 * Caller must hold sync_rcu_preempt_exp_mutex.
626 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
631 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
633 if (!sync_rcu_preempt_exp_done(rnp
))
635 if (rnp
->parent
== NULL
) {
636 wake_up(&sync_rcu_preempt_exp_wq
);
640 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
642 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
643 rnp
->expmask
&= ~mask
;
645 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
649 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
650 * grace period for the specified rcu_node structure. If there are no such
651 * tasks, report it up the rcu_node hierarchy.
653 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
656 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
660 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
661 list_splice_init(&rnp
->blocked_tasks
[0], &rnp
->blocked_tasks
[2]);
662 list_splice_init(&rnp
->blocked_tasks
[1], &rnp
->blocked_tasks
[3]);
663 must_wait
= rcu_preempted_readers_exp(rnp
);
664 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
666 rcu_report_exp_rnp(rsp
, rnp
);
670 * Wait for an rcu-preempt grace period, but expedite it. The basic idea
671 * is to invoke synchronize_sched_expedited() to push all the tasks to
672 * the ->blocked_tasks[] lists, move all entries from the first set of
673 * ->blocked_tasks[] lists to the second set, and finally wait for this
674 * second set to drain.
676 void synchronize_rcu_expedited(void)
679 struct rcu_node
*rnp
;
680 struct rcu_state
*rsp
= &rcu_preempt_state
;
684 smp_mb(); /* Caller's modifications seen first by other CPUs. */
685 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
686 smp_mb(); /* Above access cannot bleed into critical section. */
689 * Acquire lock, falling back to synchronize_rcu() if too many
690 * lock-acquisition failures. Of course, if someone does the
691 * expedited grace period for us, just leave.
693 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
695 udelay(trycount
* num_online_cpus());
700 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
701 goto mb_ret
; /* Others did our work for us. */
703 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count
) - snap
) > 0)
704 goto unlock_mb_ret
; /* Others did our work for us. */
706 /* force all RCU readers onto blocked_tasks[]. */
707 synchronize_sched_expedited();
709 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
711 /* Initialize ->expmask for all non-leaf rcu_node structures. */
712 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
713 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
714 rnp
->expmask
= rnp
->qsmaskinit
;
715 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
718 /* Snapshot current state of ->blocked_tasks[] lists. */
719 rcu_for_each_leaf_node(rsp
, rnp
)
720 sync_rcu_preempt_exp_init(rsp
, rnp
);
721 if (NUM_RCU_NODES
> 1)
722 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
724 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
726 /* Wait for snapshotted ->blocked_tasks[] lists to drain. */
727 rnp
= rcu_get_root(rsp
);
728 wait_event(sync_rcu_preempt_exp_wq
,
729 sync_rcu_preempt_exp_done(rnp
));
731 /* Clean up and exit. */
732 smp_mb(); /* ensure expedited GP seen before counter increment. */
733 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
735 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
737 smp_mb(); /* ensure subsequent action seen after grace period. */
739 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
742 * Check to see if there is any immediate preemptable-RCU-related work
745 static int rcu_preempt_pending(int cpu
)
747 return __rcu_pending(&rcu_preempt_state
,
748 &per_cpu(rcu_preempt_data
, cpu
));
752 * Does preemptable RCU need the CPU to stay out of dynticks mode?
754 static int rcu_preempt_needs_cpu(int cpu
)
756 return !!per_cpu(rcu_preempt_data
, cpu
).nxtlist
;
760 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
762 void rcu_barrier(void)
764 _rcu_barrier(&rcu_preempt_state
, call_rcu
);
766 EXPORT_SYMBOL_GPL(rcu_barrier
);
769 * Initialize preemptable RCU's per-CPU data.
771 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
773 rcu_init_percpu_data(cpu
, &rcu_preempt_state
, 1);
777 * Move preemptable RCU's callbacks from dying CPU to other online CPU.
779 static void rcu_preempt_send_cbs_to_online(void)
781 rcu_send_cbs_to_online(&rcu_preempt_state
);
785 * Initialize preemptable RCU's state structures.
787 static void __init
__rcu_init_preempt(void)
789 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
793 * Check for a task exiting while in a preemptable-RCU read-side
794 * critical section, clean up if so. No need to issue warnings,
795 * as debug_check_no_locks_held() already does this if lockdep
800 struct task_struct
*t
= current
;
802 if (t
->rcu_read_lock_nesting
== 0)
804 t
->rcu_read_lock_nesting
= 1;
808 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
811 * Tell them what RCU they are running.
813 static void __init
rcu_bootup_announce(void)
815 printk(KERN_INFO
"Hierarchical RCU implementation.\n");
816 rcu_bootup_announce_oddness();
820 * Return the number of RCU batches processed thus far for debug & stats.
822 long rcu_batches_completed(void)
824 return rcu_batches_completed_sched();
826 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
829 * Force a quiescent state for RCU, which, because there is no preemptible
830 * RCU, becomes the same as rcu-sched.
832 void rcu_force_quiescent_state(void)
834 rcu_sched_force_quiescent_state();
836 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
839 * Because preemptable RCU does not exist, we never have to check for
840 * CPUs being in quiescent states.
842 static void rcu_preempt_note_context_switch(int cpu
)
847 * Because preemptable RCU does not exist, there are never any preempted
850 static int rcu_preempted_readers(struct rcu_node
*rnp
)
855 #ifdef CONFIG_HOTPLUG_CPU
857 /* Because preemptible RCU does not exist, no quieting of tasks. */
858 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
860 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
863 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
865 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
868 * Because preemptable RCU does not exist, we never have to check for
869 * tasks blocked within RCU read-side critical sections.
871 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
876 * Because preemptable RCU does not exist, we never have to check for
877 * tasks blocked within RCU read-side critical sections.
879 static void rcu_print_task_stall(struct rcu_node
*rnp
)
884 * Because preemptible RCU does not exist, there is no need to suppress
885 * its CPU stall warnings.
887 static void rcu_preempt_stall_reset(void)
891 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
894 * Because there is no preemptable RCU, there can be no readers blocked,
895 * so there is no need to check for blocked tasks. So check only for
896 * bogus qsmask values.
898 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
900 WARN_ON_ONCE(rnp
->qsmask
);
903 #ifdef CONFIG_HOTPLUG_CPU
906 * Because preemptable RCU does not exist, it never needs to migrate
907 * tasks that were blocked within RCU read-side critical sections, and
908 * such non-existent tasks cannot possibly have been blocking the current
911 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
912 struct rcu_node
*rnp
,
913 struct rcu_data
*rdp
)
919 * Because preemptable RCU does not exist, it never needs CPU-offline
922 static void rcu_preempt_offline_cpu(int cpu
)
926 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
929 * Because preemptable RCU does not exist, it never has any callbacks
932 static void rcu_preempt_check_callbacks(int cpu
)
937 * Because preemptable RCU does not exist, it never has any callbacks
940 static void rcu_preempt_process_callbacks(void)
945 * Wait for an rcu-preempt grace period, but make it happen quickly.
946 * But because preemptable RCU does not exist, map to rcu-sched.
948 void synchronize_rcu_expedited(void)
950 synchronize_sched_expedited();
952 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
954 #ifdef CONFIG_HOTPLUG_CPU
957 * Because preemptable RCU does not exist, there is never any need to
958 * report on tasks preempted in RCU read-side critical sections during
959 * expedited RCU grace periods.
961 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
966 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
969 * Because preemptable RCU does not exist, it never has any work to do.
971 static int rcu_preempt_pending(int cpu
)
977 * Because preemptable RCU does not exist, it never needs any CPU.
979 static int rcu_preempt_needs_cpu(int cpu
)
985 * Because preemptable RCU does not exist, rcu_barrier() is just
986 * another name for rcu_barrier_sched().
988 void rcu_barrier(void)
992 EXPORT_SYMBOL_GPL(rcu_barrier
);
995 * Because preemptable RCU does not exist, there is no per-CPU
996 * data to initialize.
998 static void __cpuinit
rcu_preempt_init_percpu_data(int cpu
)
1003 * Because there is no preemptable RCU, there are no callbacks to move.
1005 static void rcu_preempt_send_cbs_to_online(void)
1010 * Because preemptable RCU does not exist, it need not be initialized.
1012 static void __init
__rcu_init_preempt(void)
1016 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1020 void synchronize_sched_expedited(void)
1024 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
1026 #else /* #ifndef CONFIG_SMP */
1028 static atomic_t sync_sched_expedited_started
= ATOMIC_INIT(0);
1029 static atomic_t sync_sched_expedited_done
= ATOMIC_INIT(0);
1031 static int synchronize_sched_expedited_cpu_stop(void *data
)
1034 * There must be a full memory barrier on each affected CPU
1035 * between the time that try_stop_cpus() is called and the
1036 * time that it returns.
1038 * In the current initial implementation of cpu_stop, the
1039 * above condition is already met when the control reaches
1040 * this point and the following smp_mb() is not strictly
1041 * necessary. Do smp_mb() anyway for documentation and
1042 * robustness against future implementation changes.
1044 smp_mb(); /* See above comment block. */
1049 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
1050 * approach to force grace period to end quickly. This consumes
1051 * significant time on all CPUs, and is thus not recommended for
1052 * any sort of common-case code.
1054 * Note that it is illegal to call this function while holding any
1055 * lock that is acquired by a CPU-hotplug notifier. Failing to
1056 * observe this restriction will result in deadlock.
1058 * This implementation can be thought of as an application of ticket
1059 * locking to RCU, with sync_sched_expedited_started and
1060 * sync_sched_expedited_done taking on the roles of the halves
1061 * of the ticket-lock word. Each task atomically increments
1062 * sync_sched_expedited_started upon entry, snapshotting the old value,
1063 * then attempts to stop all the CPUs. If this succeeds, then each
1064 * CPU will have executed a context switch, resulting in an RCU-sched
1065 * grace period. We are then done, so we use atomic_cmpxchg() to
1066 * update sync_sched_expedited_done to match our snapshot -- but
1067 * only if someone else has not already advanced past our snapshot.
1069 * On the other hand, if try_stop_cpus() fails, we check the value
1070 * of sync_sched_expedited_done. If it has advanced past our
1071 * initial snapshot, then someone else must have forced a grace period
1072 * some time after we took our snapshot. In this case, our work is
1073 * done for us, and we can simply return. Otherwise, we try again,
1074 * but keep our initial snapshot for purposes of checking for someone
1075 * doing our work for us.
1077 * If we fail too many times in a row, we fall back to synchronize_sched().
1079 void synchronize_sched_expedited(void)
1081 int firstsnap
, s
, snap
, trycount
= 0;
1083 /* Note that atomic_inc_return() implies full memory barrier. */
1084 firstsnap
= snap
= atomic_inc_return(&sync_sched_expedited_started
);
1088 * Each pass through the following loop attempts to force a
1089 * context switch on each CPU.
1091 while (try_stop_cpus(cpu_online_mask
,
1092 synchronize_sched_expedited_cpu_stop
,
1096 /* No joy, try again later. Or just synchronize_sched(). */
1097 if (trycount
++ < 10)
1098 udelay(trycount
* num_online_cpus());
1100 synchronize_sched();
1104 /* Check to see if someone else did our work for us. */
1105 s
= atomic_read(&sync_sched_expedited_done
);
1106 if (UINT_CMP_GE((unsigned)s
, (unsigned)firstsnap
)) {
1107 smp_mb(); /* ensure test happens before caller kfree */
1112 * Refetching sync_sched_expedited_started allows later
1113 * callers to piggyback on our grace period. We subtract
1114 * 1 to get the same token that the last incrementer got.
1115 * We retry after they started, so our grace period works
1116 * for them, and they started after our first try, so their
1117 * grace period works for us.
1120 snap
= atomic_read(&sync_sched_expedited_started
) - 1;
1121 smp_mb(); /* ensure read is before try_stop_cpus(). */
1125 * Everyone up to our most recent fetch is covered by our grace
1126 * period. Update the counter, but only if our work is still
1127 * relevant -- which it won't be if someone who started later
1128 * than we did beat us to the punch.
1131 s
= atomic_read(&sync_sched_expedited_done
);
1132 if (UINT_CMP_GE((unsigned)s
, (unsigned)snap
)) {
1133 smp_mb(); /* ensure test happens before caller kfree */
1136 } while (atomic_cmpxchg(&sync_sched_expedited_done
, s
, snap
) != s
);
1140 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
1142 #endif /* #else #ifndef CONFIG_SMP */
1144 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1147 * Check to see if any future RCU-related work will need to be done
1148 * by the current CPU, even if none need be done immediately, returning
1149 * 1 if so. This function is part of the RCU implementation; it is -not-
1150 * an exported member of the RCU API.
1152 * Because we have preemptible RCU, just check whether this CPU needs
1153 * any flavor of RCU. Do not chew up lots of CPU cycles with preemption
1154 * disabled in a most-likely vain attempt to cause RCU not to need this CPU.
1156 int rcu_needs_cpu(int cpu
)
1158 return rcu_needs_cpu_quick_check(cpu
);
1162 * Check to see if we need to continue a callback-flush operations to
1163 * allow the last CPU to enter dyntick-idle mode. But fast dyntick-idle
1164 * entry is not configured, so we never do need to.
1166 static void rcu_needs_cpu_flush(void)
1170 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1172 #define RCU_NEEDS_CPU_FLUSHES 5
1173 static DEFINE_PER_CPU(int, rcu_dyntick_drain
);
1174 static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff
);
1177 * Check to see if any future RCU-related work will need to be done
1178 * by the current CPU, even if none need be done immediately, returning
1179 * 1 if so. This function is part of the RCU implementation; it is -not-
1180 * an exported member of the RCU API.
1182 * Because we are not supporting preemptible RCU, attempt to accelerate
1183 * any current grace periods so that RCU no longer needs this CPU, but
1184 * only if all other CPUs are already in dynticks-idle mode. This will
1185 * allow the CPU cores to be powered down immediately, as opposed to after
1186 * waiting many milliseconds for grace periods to elapse.
1188 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1189 * disabled, we do one pass of force_quiescent_state(), then do a
1190 * raise_softirq() to cause rcu_process_callbacks() to be invoked later.
1191 * The per-cpu rcu_dyntick_drain variable controls the sequencing.
1193 int rcu_needs_cpu(int cpu
)
1200 /* Check for being in the holdoff period. */
1201 if (per_cpu(rcu_dyntick_holdoff
, cpu
) == jiffies
)
1202 return rcu_needs_cpu_quick_check(cpu
);
1204 /* Don't bother unless we are the last non-dyntick-idle CPU. */
1205 for_each_online_cpu(thatcpu
) {
1208 snap
= per_cpu(rcu_dynticks
, thatcpu
).dynticks
;
1209 snap_nmi
= per_cpu(rcu_dynticks
, thatcpu
).dynticks_nmi
;
1210 smp_mb(); /* Order sampling of snap with end of grace period. */
1211 if (((snap
& 0x1) != 0) || ((snap_nmi
& 0x1) != 0)) {
1212 per_cpu(rcu_dyntick_drain
, cpu
) = 0;
1213 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
- 1;
1214 return rcu_needs_cpu_quick_check(cpu
);
1218 /* Check and update the rcu_dyntick_drain sequencing. */
1219 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1220 /* First time through, initialize the counter. */
1221 per_cpu(rcu_dyntick_drain
, cpu
) = RCU_NEEDS_CPU_FLUSHES
;
1222 } else if (--per_cpu(rcu_dyntick_drain
, cpu
) <= 0) {
1223 /* We have hit the limit, so time to give up. */
1224 per_cpu(rcu_dyntick_holdoff
, cpu
) = jiffies
;
1225 return rcu_needs_cpu_quick_check(cpu
);
1228 /* Do one step pushing remaining RCU callbacks through. */
1229 if (per_cpu(rcu_sched_data
, cpu
).nxtlist
) {
1231 force_quiescent_state(&rcu_sched_state
, 0);
1232 c
= c
|| per_cpu(rcu_sched_data
, cpu
).nxtlist
;
1234 if (per_cpu(rcu_bh_data
, cpu
).nxtlist
) {
1236 force_quiescent_state(&rcu_bh_state
, 0);
1237 c
= c
|| per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1240 /* If RCU callbacks are still pending, RCU still needs this CPU. */
1242 raise_softirq(RCU_SOFTIRQ
);
1247 * Check to see if we need to continue a callback-flush operations to
1248 * allow the last CPU to enter dyntick-idle mode.
1250 static void rcu_needs_cpu_flush(void)
1252 int cpu
= smp_processor_id();
1253 unsigned long flags
;
1255 if (per_cpu(rcu_dyntick_drain
, cpu
) <= 0)
1257 local_irq_save(flags
);
1258 (void)rcu_needs_cpu(cpu
);
1259 local_irq_restore(flags
);
1262 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */