thinkpad-acpi: support the second fan on the X61
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sh / kernel / time_32.c
blob23ca711c27d2af9e6e15106a17bcdb8e92bea47c
1 /*
2 * arch/sh/kernel/time_32.c
4 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
5 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
6 * Copyright (C) 2002 - 2008 Paul Mundt
7 * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org>
9 * Some code taken from i386 version.
10 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/profile.h>
16 #include <linux/timex.h>
17 #include <linux/sched.h>
18 #include <linux/clockchips.h>
19 #include <linux/mc146818rtc.h> /* for rtc_lock */
20 #include <linux/smp.h>
21 #include <asm/clock.h>
22 #include <asm/rtc.h>
23 #include <asm/timer.h>
24 #include <asm/kgdb.h>
26 struct sys_timer *sys_timer;
28 /* Move this somewhere more sensible.. */
29 DEFINE_SPINLOCK(rtc_lock);
30 EXPORT_SYMBOL(rtc_lock);
32 /* Dummy RTC ops */
33 static void null_rtc_get_time(struct timespec *tv)
35 tv->tv_sec = mktime(2000, 1, 1, 0, 0, 0);
36 tv->tv_nsec = 0;
39 static int null_rtc_set_time(const time_t secs)
41 return 0;
45 * Null high precision timer functions for systems lacking one.
47 static cycle_t null_hpt_read(void)
49 return 0;
52 void (*rtc_sh_get_time)(struct timespec *) = null_rtc_get_time;
53 int (*rtc_sh_set_time)(const time_t) = null_rtc_set_time;
55 #ifndef CONFIG_GENERIC_TIME
56 void do_gettimeofday(struct timeval *tv)
58 unsigned long flags;
59 unsigned long seq;
60 unsigned long usec, sec;
62 do {
64 * Turn off IRQs when grabbing xtime_lock, so that
65 * the sys_timer get_offset code doesn't have to handle it.
67 seq = read_seqbegin_irqsave(&xtime_lock, flags);
68 usec = get_timer_offset();
69 sec = xtime.tv_sec;
70 usec += xtime.tv_nsec / NSEC_PER_USEC;
71 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
73 while (usec >= 1000000) {
74 usec -= 1000000;
75 sec++;
78 tv->tv_sec = sec;
79 tv->tv_usec = usec;
81 EXPORT_SYMBOL(do_gettimeofday);
83 int do_settimeofday(struct timespec *tv)
85 time_t wtm_sec, sec = tv->tv_sec;
86 long wtm_nsec, nsec = tv->tv_nsec;
88 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
89 return -EINVAL;
91 write_seqlock_irq(&xtime_lock);
93 * This is revolting. We need to set "xtime" correctly. However, the
94 * value in this location is the value at the most recent update of
95 * wall time. Discover what correction gettimeofday() would have
96 * made, and then undo it!
98 nsec -= get_timer_offset() * NSEC_PER_USEC;
100 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
101 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
103 set_normalized_timespec(&xtime, sec, nsec);
104 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
106 ntp_clear();
107 write_sequnlock_irq(&xtime_lock);
108 clock_was_set();
110 return 0;
112 EXPORT_SYMBOL(do_settimeofday);
113 #endif /* !CONFIG_GENERIC_TIME */
115 #ifndef CONFIG_GENERIC_CLOCKEVENTS
116 /* last time the RTC clock got updated */
117 static long last_rtc_update;
120 * handle_timer_tick() needs to keep up the real-time clock,
121 * as well as call the "do_timer()" routine every clocktick
123 void handle_timer_tick(void)
125 if (current->pid)
126 profile_tick(CPU_PROFILING);
128 #ifdef CONFIG_HEARTBEAT
129 if (sh_mv.mv_heartbeat != NULL)
130 sh_mv.mv_heartbeat();
131 #endif
134 * Here we are in the timer irq handler. We just have irqs locally
135 * disabled but we don't know if the timer_bh is running on the other
136 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
137 * the irq version of write_lock because as just said we have irq
138 * locally disabled. -arca
140 write_seqlock(&xtime_lock);
141 do_timer(1);
144 * If we have an externally synchronized Linux clock, then update
145 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
146 * called as close as possible to 500 ms before the new second starts.
148 if (ntp_synced() &&
149 xtime.tv_sec > last_rtc_update + 660 &&
150 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
151 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
152 if (rtc_sh_set_time(xtime.tv_sec) == 0)
153 last_rtc_update = xtime.tv_sec;
154 else
155 /* do it again in 60s */
156 last_rtc_update = xtime.tv_sec - 600;
158 write_sequnlock(&xtime_lock);
160 #ifndef CONFIG_SMP
161 update_process_times(user_mode(get_irq_regs()));
162 #endif
164 #endif /* !CONFIG_GENERIC_CLOCKEVENTS */
166 #ifdef CONFIG_PM
167 int timer_suspend(struct sys_device *dev, pm_message_t state)
169 struct sys_timer *sys_timer = container_of(dev, struct sys_timer, dev);
171 sys_timer->ops->stop();
173 return 0;
176 int timer_resume(struct sys_device *dev)
178 struct sys_timer *sys_timer = container_of(dev, struct sys_timer, dev);
180 sys_timer->ops->start();
182 return 0;
184 #else
185 #define timer_suspend NULL
186 #define timer_resume NULL
187 #endif
189 static struct sysdev_class timer_sysclass = {
190 .name = "timer",
191 .suspend = timer_suspend,
192 .resume = timer_resume,
195 static int __init timer_init_sysfs(void)
197 int ret = sysdev_class_register(&timer_sysclass);
198 if (ret != 0)
199 return ret;
201 sys_timer->dev.cls = &timer_sysclass;
202 return sysdev_register(&sys_timer->dev);
204 device_initcall(timer_init_sysfs);
206 void (*board_time_init)(void);
209 * Shamelessly based on the MIPS and Sparc64 work.
211 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
212 unsigned long sh_hpt_frequency = 0;
214 #define NSEC_PER_CYC_SHIFT 10
216 static struct clocksource clocksource_sh = {
217 .name = "SuperH",
218 .rating = 200,
219 .mask = CLOCKSOURCE_MASK(32),
220 .read = null_hpt_read,
221 .shift = 16,
222 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
225 static void __init init_sh_clocksource(void)
227 if (!sh_hpt_frequency || clocksource_sh.read == null_hpt_read)
228 return;
230 clocksource_sh.mult = clocksource_hz2mult(sh_hpt_frequency,
231 clocksource_sh.shift);
233 timer_ticks_per_nsec_quotient =
234 clocksource_hz2mult(sh_hpt_frequency, NSEC_PER_CYC_SHIFT);
236 clocksource_register(&clocksource_sh);
239 #ifdef CONFIG_GENERIC_TIME
240 unsigned long long sched_clock(void)
242 unsigned long long ticks = clocksource_sh.read();
243 return (ticks * timer_ticks_per_nsec_quotient) >> NSEC_PER_CYC_SHIFT;
245 #endif
247 void __init time_init(void)
249 if (board_time_init)
250 board_time_init();
252 clk_init();
254 rtc_sh_get_time(&xtime);
255 set_normalized_timespec(&wall_to_monotonic,
256 -xtime.tv_sec, -xtime.tv_nsec);
258 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
259 local_timer_setup(smp_processor_id());
260 #endif
263 * Find the timer to use as the system timer, it will be
264 * initialized for us.
266 sys_timer = get_sys_timer();
267 printk(KERN_INFO "Using %s for system timer\n", sys_timer->name);
270 if (sys_timer->ops->read)
271 clocksource_sh.read = sys_timer->ops->read;
273 init_sh_clocksource();
275 if (sh_hpt_frequency)
276 printk("Using %lu.%03lu MHz high precision timer.\n",
277 ((sh_hpt_frequency + 500) / 1000) / 1000,
278 ((sh_hpt_frequency + 500) / 1000) % 1000);
280 #if defined(CONFIG_SH_KGDB)
282 * Set up kgdb as requested. We do it here because the serial
283 * init uses the timer vars we just set up for figuring baud.
285 kgdb_init();
286 #endif