2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
19 * Ville Nuorvala: Fixed routing subtrees.
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
32 #include <linux/proc_fs.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #define RT6_TRACE(x...) do { ; } while (0)
50 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
54 #ifdef CONFIG_IPV6_SUBTREES
65 struct fib6_walker_t w
;
67 int (*func
)(struct rt6_info
*, void *arg
);
71 static DEFINE_RWLOCK(fib6_walker_lock
);
73 #ifdef CONFIG_IPV6_SUBTREES
74 #define FWS_INIT FWS_S
76 #define FWS_INIT FWS_L
79 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
81 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
82 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
83 static int fib6_walk(struct fib6_walker_t
*w
);
84 static int fib6_walk_continue(struct fib6_walker_t
*w
);
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
93 static __u32 rt_sernum
;
95 static void fib6_gc_timer_cb(unsigned long arg
);
97 static LIST_HEAD(fib6_walkers
);
98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
100 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
102 write_lock_bh(&fib6_walker_lock
);
103 list_add(&w
->lh
, &fib6_walkers
);
104 write_unlock_bh(&fib6_walker_lock
);
107 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
109 write_lock_bh(&fib6_walker_lock
);
111 write_unlock_bh(&fib6_walker_lock
);
113 static __inline__ u32
fib6_new_sernum(void)
122 * Auxiliary address test functions for the radix tree.
124 * These assume a 32bit processor (although it will work on
131 #if defined(__LITTLE_ENDIAN)
132 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
134 # define BITOP_BE32_SWIZZLE 0
137 static __inline__ __be32
addr_bit_set(void *token
, int fn_bit
)
139 __be32
*addr
= token
;
142 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
143 * is optimized version of
144 * htonl(1 << ((~fn_bit)&0x1F))
145 * See include/asm-generic/bitops/le.h.
147 return (__force __be32
)(1 << ((~fn_bit
^ BITOP_BE32_SWIZZLE
) & 0x1f)) &
151 static __inline__
struct fib6_node
* node_alloc(void)
153 struct fib6_node
*fn
;
155 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
160 static __inline__
void node_free(struct fib6_node
* fn
)
162 kmem_cache_free(fib6_node_kmem
, fn
);
165 static __inline__
void rt6_release(struct rt6_info
*rt
)
167 if (atomic_dec_and_test(&rt
->rt6i_ref
))
171 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
176 * Initialize table lock at a single place to give lockdep a key,
177 * tables aren't visible prior to being linked to the list.
179 rwlock_init(&tb
->tb6_lock
);
181 h
= tb
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1);
184 * No protection necessary, this is the only list mutatation
185 * operation, tables never disappear once they exist.
187 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
190 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
192 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
194 struct fib6_table
*table
;
196 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
199 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
200 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
206 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
208 struct fib6_table
*tb
;
212 tb
= fib6_get_table(net
, id
);
216 tb
= fib6_alloc_table(net
, id
);
218 fib6_link_table(net
, tb
);
223 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
225 struct fib6_table
*tb
;
226 struct hlist_head
*head
;
227 struct hlist_node
*node
;
232 h
= id
& (FIB6_TABLE_HASHSZ
- 1);
234 head
= &net
->ipv6
.fib_table_hash
[h
];
235 hlist_for_each_entry_rcu(tb
, node
, head
, tb6_hlist
) {
236 if (tb
->tb6_id
== id
) {
246 static void __net_init
fib6_tables_init(struct net
*net
)
248 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
249 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
253 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
255 return fib6_get_table(net
, id
);
258 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
260 return net
->ipv6
.fib6_main_tbl
;
263 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi
*fl
,
264 int flags
, pol_lookup_t lookup
)
266 return (struct dst_entry
*) lookup(net
, net
->ipv6
.fib6_main_tbl
, fl
, flags
);
269 static void __net_init
fib6_tables_init(struct net
*net
)
271 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
276 static int fib6_dump_node(struct fib6_walker_t
*w
)
281 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
282 res
= rt6_dump_route(rt
, w
->args
);
284 /* Frame is full, suspend walking */
294 static void fib6_dump_end(struct netlink_callback
*cb
)
296 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
301 fib6_walker_unlink(w
);
306 cb
->done
= (void*)cb
->args
[3];
310 static int fib6_dump_done(struct netlink_callback
*cb
)
313 return cb
->done
? cb
->done(cb
) : 0;
316 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
317 struct netlink_callback
*cb
)
319 struct fib6_walker_t
*w
;
322 w
= (void *)cb
->args
[2];
323 w
->root
= &table
->tb6_root
;
325 if (cb
->args
[4] == 0) {
329 read_lock_bh(&table
->tb6_lock
);
331 read_unlock_bh(&table
->tb6_lock
);
334 cb
->args
[5] = w
->root
->fn_sernum
;
337 if (cb
->args
[5] != w
->root
->fn_sernum
) {
338 /* Begin at the root if the tree changed */
339 cb
->args
[5] = w
->root
->fn_sernum
;
346 read_lock_bh(&table
->tb6_lock
);
347 res
= fib6_walk_continue(w
);
348 read_unlock_bh(&table
->tb6_lock
);
350 fib6_walker_unlink(w
);
358 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
360 struct net
*net
= sock_net(skb
->sk
);
362 unsigned int e
= 0, s_e
;
363 struct rt6_rtnl_dump_arg arg
;
364 struct fib6_walker_t
*w
;
365 struct fib6_table
*tb
;
366 struct hlist_node
*node
;
367 struct hlist_head
*head
;
373 w
= (void *)cb
->args
[2];
377 * 1. hook callback destructor.
379 cb
->args
[3] = (long)cb
->done
;
380 cb
->done
= fib6_dump_done
;
383 * 2. allocate and initialize walker.
385 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
388 w
->func
= fib6_dump_node
;
389 cb
->args
[2] = (long)w
;
397 for (h
= s_h
; h
< FIB6_TABLE_HASHSZ
; h
++, s_e
= 0) {
399 head
= &net
->ipv6
.fib_table_hash
[h
];
400 hlist_for_each_entry(tb
, node
, head
, tb6_hlist
) {
403 res
= fib6_dump_table(tb
, skb
, cb
);
414 res
= res
< 0 ? res
: skb
->len
;
423 * return the appropriate node for a routing tree "add" operation
424 * by either creating and inserting or by returning an existing
428 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
429 int addrlen
, int plen
,
432 struct fib6_node
*fn
, *in
, *ln
;
433 struct fib6_node
*pn
= NULL
;
437 __u32 sernum
= fib6_new_sernum();
439 RT6_TRACE("fib6_add_1\n");
441 /* insert node in tree */
446 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
451 if (plen
< fn
->fn_bit
||
452 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
459 if (plen
== fn
->fn_bit
) {
460 /* clean up an intermediate node */
461 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
462 rt6_release(fn
->leaf
);
466 fn
->fn_sernum
= sernum
;
472 * We have more bits to go
475 /* Try to walk down on tree. */
476 fn
->fn_sernum
= sernum
;
477 dir
= addr_bit_set(addr
, fn
->fn_bit
);
479 fn
= dir
? fn
->right
: fn
->left
;
483 * We walked to the bottom of tree.
484 * Create new leaf node without children.
494 ln
->fn_sernum
= sernum
;
506 * split since we don't have a common prefix anymore or
507 * we have a less significant route.
508 * we've to insert an intermediate node on the list
509 * this new node will point to the one we need to create
515 /* find 1st bit in difference between the 2 addrs.
517 See comment in __ipv6_addr_diff: bit may be an invalid value,
518 but if it is >= plen, the value is ignored in any case.
521 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
526 * (new leaf node)[ln] (old node)[fn]
532 if (in
== NULL
|| ln
== NULL
) {
541 * new intermediate node.
543 * be off since that an address that chooses one of
544 * the branches would not match less specific routes
545 * in the other branch
552 atomic_inc(&in
->leaf
->rt6i_ref
);
554 in
->fn_sernum
= sernum
;
556 /* update parent pointer */
567 ln
->fn_sernum
= sernum
;
569 if (addr_bit_set(addr
, bit
)) {
576 } else { /* plen <= bit */
579 * (new leaf node)[ln]
581 * (old node)[fn] NULL
593 ln
->fn_sernum
= sernum
;
600 if (addr_bit_set(&key
->addr
, plen
))
611 * Insert routing information in a node.
614 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
615 struct nl_info
*info
)
617 struct rt6_info
*iter
= NULL
;
618 struct rt6_info
**ins
;
622 for (iter
= fn
->leaf
; iter
; iter
=iter
->dst
.rt6_next
) {
624 * Search for duplicates
627 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
629 * Same priority level
632 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
633 iter
->rt6i_idev
== rt
->rt6i_idev
&&
634 ipv6_addr_equal(&iter
->rt6i_gateway
,
635 &rt
->rt6i_gateway
)) {
636 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
638 iter
->rt6i_expires
= rt
->rt6i_expires
;
639 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
640 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
641 iter
->rt6i_expires
= 0;
647 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
650 ins
= &iter
->dst
.rt6_next
;
653 /* Reset round-robin state, if necessary */
654 if (ins
== &fn
->leaf
)
661 rt
->dst
.rt6_next
= iter
;
664 atomic_inc(&rt
->rt6i_ref
);
665 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
666 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
668 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
669 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
670 fn
->fn_flags
|= RTN_RTINFO
;
676 static __inline__
void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
678 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
679 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
680 mod_timer(&net
->ipv6
.ip6_fib_timer
,
681 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
684 void fib6_force_start_gc(struct net
*net
)
686 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
687 mod_timer(&net
->ipv6
.ip6_fib_timer
,
688 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
692 * Add routing information to the routing tree.
693 * <destination addr>/<source addr>
694 * with source addr info in sub-trees
697 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
699 struct fib6_node
*fn
, *pn
= NULL
;
702 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
703 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
710 #ifdef CONFIG_IPV6_SUBTREES
711 if (rt
->rt6i_src
.plen
) {
712 struct fib6_node
*sn
;
714 if (fn
->subtree
== NULL
) {
715 struct fib6_node
*sfn
;
727 /* Create subtree root node */
732 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
733 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
734 sfn
->fn_flags
= RTN_ROOT
;
735 sfn
->fn_sernum
= fib6_new_sernum();
737 /* Now add the first leaf node to new subtree */
739 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
740 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
741 offsetof(struct rt6_info
, rt6i_src
));
744 /* If it is failed, discard just allocated
745 root, and then (in st_failure) stale node
752 /* Now link new subtree to main tree */
756 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
757 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
758 offsetof(struct rt6_info
, rt6i_src
));
764 if (fn
->leaf
== NULL
) {
766 atomic_inc(&rt
->rt6i_ref
);
772 err
= fib6_add_rt2node(fn
, rt
, info
);
775 fib6_start_gc(info
->nl_net
, rt
);
776 if (!(rt
->rt6i_flags
&RTF_CACHE
))
777 fib6_prune_clones(info
->nl_net
, pn
, rt
);
782 #ifdef CONFIG_IPV6_SUBTREES
784 * If fib6_add_1 has cleared the old leaf pointer in the
785 * super-tree leaf node we have to find a new one for it.
787 if (pn
!= fn
&& pn
->leaf
== rt
) {
789 atomic_dec(&rt
->rt6i_ref
);
791 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
792 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
795 WARN_ON(pn
->leaf
== NULL
);
796 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
799 atomic_inc(&pn
->leaf
->rt6i_ref
);
806 #ifdef CONFIG_IPV6_SUBTREES
807 /* Subtree creation failed, probably main tree node
808 is orphan. If it is, shoot it.
811 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
812 fib6_repair_tree(info
->nl_net
, fn
);
819 * Routing tree lookup
824 int offset
; /* key offset on rt6_info */
825 struct in6_addr
*addr
; /* search key */
828 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
829 struct lookup_args
*args
)
831 struct fib6_node
*fn
;
834 if (unlikely(args
->offset
== 0))
844 struct fib6_node
*next
;
846 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
848 next
= dir
? fn
->right
: fn
->left
;
859 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
862 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
865 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
866 #ifdef CONFIG_IPV6_SUBTREES
868 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
870 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
875 if (fn
->fn_flags
& RTN_ROOT
)
884 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
885 struct in6_addr
*saddr
)
887 struct fib6_node
*fn
;
888 struct lookup_args args
[] = {
890 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
893 #ifdef CONFIG_IPV6_SUBTREES
895 .offset
= offsetof(struct rt6_info
, rt6i_src
),
900 .offset
= 0, /* sentinel */
904 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
906 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
913 * Get node with specified destination prefix (and source prefix,
914 * if subtrees are used)
918 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
919 struct in6_addr
*addr
,
920 int plen
, int offset
)
922 struct fib6_node
*fn
;
924 for (fn
= root
; fn
; ) {
925 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
930 if (plen
< fn
->fn_bit
||
931 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
934 if (plen
== fn
->fn_bit
)
938 * We have more bits to go
940 if (addr_bit_set(addr
, fn
->fn_bit
))
948 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
949 struct in6_addr
*daddr
, int dst_len
,
950 struct in6_addr
*saddr
, int src_len
)
952 struct fib6_node
*fn
;
954 fn
= fib6_locate_1(root
, daddr
, dst_len
,
955 offsetof(struct rt6_info
, rt6i_dst
));
957 #ifdef CONFIG_IPV6_SUBTREES
959 WARN_ON(saddr
== NULL
);
960 if (fn
&& fn
->subtree
)
961 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
962 offsetof(struct rt6_info
, rt6i_src
));
966 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
978 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
980 if (fn
->fn_flags
&RTN_ROOT
)
981 return net
->ipv6
.ip6_null_entry
;
985 return fn
->left
->leaf
;
988 return fn
->right
->leaf
;
990 fn
= FIB6_SUBTREE(fn
);
996 * Called to trim the tree of intermediate nodes when possible. "fn"
997 * is the node we want to try and remove.
1000 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
1001 struct fib6_node
*fn
)
1005 struct fib6_node
*child
, *pn
;
1006 struct fib6_walker_t
*w
;
1010 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1013 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1014 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1015 WARN_ON(fn
->leaf
!= NULL
);
1019 if (fn
->right
) child
= fn
->right
, children
|= 1;
1020 if (fn
->left
) child
= fn
->left
, children
|= 2;
1022 if (children
== 3 || FIB6_SUBTREE(fn
)
1023 #ifdef CONFIG_IPV6_SUBTREES
1024 /* Subtree root (i.e. fn) may have one child */
1025 || (children
&& fn
->fn_flags
&RTN_ROOT
)
1028 fn
->leaf
= fib6_find_prefix(net
, fn
);
1030 if (fn
->leaf
==NULL
) {
1032 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1035 atomic_inc(&fn
->leaf
->rt6i_ref
);
1040 #ifdef CONFIG_IPV6_SUBTREES
1041 if (FIB6_SUBTREE(pn
) == fn
) {
1042 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1043 FIB6_SUBTREE(pn
) = NULL
;
1046 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1048 if (pn
->right
== fn
) pn
->right
= child
;
1049 else if (pn
->left
== fn
) pn
->left
= child
;
1057 #ifdef CONFIG_IPV6_SUBTREES
1061 read_lock(&fib6_walker_lock
);
1063 if (child
== NULL
) {
1064 if (w
->root
== fn
) {
1065 w
->root
= w
->node
= NULL
;
1066 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1067 } else if (w
->node
== fn
) {
1068 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1073 if (w
->root
== fn
) {
1075 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1077 if (w
->node
== fn
) {
1080 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1081 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1083 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1084 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1089 read_unlock(&fib6_walker_lock
);
1092 if (pn
->fn_flags
&RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1095 rt6_release(pn
->leaf
);
1101 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1102 struct nl_info
*info
)
1104 struct fib6_walker_t
*w
;
1105 struct rt6_info
*rt
= *rtp
;
1106 struct net
*net
= info
->nl_net
;
1108 RT6_TRACE("fib6_del_route\n");
1111 *rtp
= rt
->dst
.rt6_next
;
1112 rt
->rt6i_node
= NULL
;
1113 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1114 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1116 /* Reset round-robin state, if necessary */
1117 if (fn
->rr_ptr
== rt
)
1120 /* Adjust walkers */
1121 read_lock(&fib6_walker_lock
);
1123 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1124 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1125 w
->leaf
= rt
->dst
.rt6_next
;
1126 if (w
->leaf
== NULL
)
1130 read_unlock(&fib6_walker_lock
);
1132 rt
->dst
.rt6_next
= NULL
;
1134 /* If it was last route, expunge its radix tree node */
1135 if (fn
->leaf
== NULL
) {
1136 fn
->fn_flags
&= ~RTN_RTINFO
;
1137 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1138 fn
= fib6_repair_tree(net
, fn
);
1141 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1142 /* This route is used as dummy address holder in some split
1143 * nodes. It is not leaked, but it still holds other resources,
1144 * which must be released in time. So, scan ascendant nodes
1145 * and replace dummy references to this route with references
1146 * to still alive ones.
1149 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
1150 fn
->leaf
= fib6_find_prefix(net
, fn
);
1151 atomic_inc(&fn
->leaf
->rt6i_ref
);
1156 /* No more references are possible at this point. */
1157 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
1160 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1164 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1166 struct net
*net
= info
->nl_net
;
1167 struct fib6_node
*fn
= rt
->rt6i_node
;
1168 struct rt6_info
**rtp
;
1171 if (rt
->dst
.obsolete
>0) {
1172 WARN_ON(fn
!= NULL
);
1176 if (fn
== NULL
|| rt
== net
->ipv6
.ip6_null_entry
)
1179 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1181 if (!(rt
->rt6i_flags
&RTF_CACHE
)) {
1182 struct fib6_node
*pn
= fn
;
1183 #ifdef CONFIG_IPV6_SUBTREES
1184 /* clones of this route might be in another subtree */
1185 if (rt
->rt6i_src
.plen
) {
1186 while (!(pn
->fn_flags
&RTN_ROOT
))
1191 fib6_prune_clones(info
->nl_net
, pn
, rt
);
1195 * Walk the leaf entries looking for ourself
1198 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->dst
.rt6_next
) {
1200 fib6_del_route(fn
, rtp
, info
);
1208 * Tree traversal function.
1210 * Certainly, it is not interrupt safe.
1211 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1212 * It means, that we can modify tree during walking
1213 * and use this function for garbage collection, clone pruning,
1214 * cleaning tree when a device goes down etc. etc.
1216 * It guarantees that every node will be traversed,
1217 * and that it will be traversed only once.
1219 * Callback function w->func may return:
1220 * 0 -> continue walking.
1221 * positive value -> walking is suspended (used by tree dumps,
1222 * and probably by gc, if it will be split to several slices)
1223 * negative value -> terminate walking.
1225 * The function itself returns:
1226 * 0 -> walk is complete.
1227 * >0 -> walk is incomplete (i.e. suspended)
1228 * <0 -> walk is terminated by an error.
1231 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1233 struct fib6_node
*fn
, *pn
;
1240 if (w
->prune
&& fn
!= w
->root
&&
1241 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
1246 #ifdef CONFIG_IPV6_SUBTREES
1248 if (FIB6_SUBTREE(fn
)) {
1249 w
->node
= FIB6_SUBTREE(fn
);
1257 w
->state
= FWS_INIT
;
1263 w
->node
= fn
->right
;
1264 w
->state
= FWS_INIT
;
1270 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1273 if (w
->count
< w
->skip
) {
1291 #ifdef CONFIG_IPV6_SUBTREES
1292 if (FIB6_SUBTREE(pn
) == fn
) {
1293 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1298 if (pn
->left
== fn
) {
1302 if (pn
->right
== fn
) {
1304 w
->leaf
= w
->node
->leaf
;
1314 static int fib6_walk(struct fib6_walker_t
*w
)
1318 w
->state
= FWS_INIT
;
1321 fib6_walker_link(w
);
1322 res
= fib6_walk_continue(w
);
1324 fib6_walker_unlink(w
);
1328 static int fib6_clean_node(struct fib6_walker_t
*w
)
1331 struct rt6_info
*rt
;
1332 struct fib6_cleaner_t
*c
= container_of(w
, struct fib6_cleaner_t
, w
);
1333 struct nl_info info
= {
1337 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
1338 res
= c
->func(rt
, c
->arg
);
1341 res
= fib6_del(rt
, &info
);
1344 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1357 * Convenient frontend to tree walker.
1359 * func is called on each route.
1360 * It may return -1 -> delete this route.
1361 * 0 -> continue walking
1363 * prune==1 -> only immediate children of node (certainly,
1364 * ignoring pure split nodes) will be scanned.
1367 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1368 int (*func
)(struct rt6_info
*, void *arg
),
1369 int prune
, void *arg
)
1371 struct fib6_cleaner_t c
;
1374 c
.w
.func
= fib6_clean_node
;
1385 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1386 int prune
, void *arg
)
1388 struct fib6_table
*table
;
1389 struct hlist_node
*node
;
1390 struct hlist_head
*head
;
1394 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1395 head
= &net
->ipv6
.fib_table_hash
[h
];
1396 hlist_for_each_entry_rcu(table
, node
, head
, tb6_hlist
) {
1397 write_lock_bh(&table
->tb6_lock
);
1398 fib6_clean_tree(net
, &table
->tb6_root
,
1400 write_unlock_bh(&table
->tb6_lock
);
1406 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1408 if (rt
->rt6i_flags
& RTF_CACHE
) {
1409 RT6_TRACE("pruning clone %p\n", rt
);
1416 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
1417 struct rt6_info
*rt
)
1419 fib6_clean_tree(net
, fn
, fib6_prune_clone
, 1, rt
);
1423 * Garbage collection
1426 static struct fib6_gc_args
1432 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1434 unsigned long now
= jiffies
;
1437 * check addrconf expiration here.
1438 * Routes are expired even if they are in use.
1440 * Also age clones. Note, that clones are aged out
1441 * only if they are not in use now.
1444 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1445 if (time_after(now
, rt
->rt6i_expires
)) {
1446 RT6_TRACE("expiring %p\n", rt
);
1450 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1451 if (atomic_read(&rt
->dst
.__refcnt
) == 0 &&
1452 time_after_eq(now
, rt
->dst
.lastuse
+ gc_args
.timeout
)) {
1453 RT6_TRACE("aging clone %p\n", rt
);
1455 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1456 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1457 RT6_TRACE("purging route %p via non-router but gateway\n",
1467 static DEFINE_SPINLOCK(fib6_gc_lock
);
1469 void fib6_run_gc(unsigned long expires
, struct net
*net
)
1471 if (expires
!= ~0UL) {
1472 spin_lock_bh(&fib6_gc_lock
);
1473 gc_args
.timeout
= expires
? (int)expires
:
1474 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1476 if (!spin_trylock_bh(&fib6_gc_lock
)) {
1477 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1480 gc_args
.timeout
= net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1483 gc_args
.more
= icmp6_dst_gc();
1485 fib6_clean_all(net
, fib6_age
, 0, NULL
);
1488 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1489 round_jiffies(jiffies
1490 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1492 del_timer(&net
->ipv6
.ip6_fib_timer
);
1493 spin_unlock_bh(&fib6_gc_lock
);
1496 static void fib6_gc_timer_cb(unsigned long arg
)
1498 fib6_run_gc(0, (struct net
*)arg
);
1501 static int __net_init
fib6_net_init(struct net
*net
)
1503 size_t size
= sizeof(struct hlist_head
) * FIB6_TABLE_HASHSZ
;
1505 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1507 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1508 if (!net
->ipv6
.rt6_stats
)
1511 /* Avoid false sharing : Use at least a full cache line */
1512 size
= max_t(size_t, size
, L1_CACHE_BYTES
);
1514 net
->ipv6
.fib_table_hash
= kzalloc(size
, GFP_KERNEL
);
1515 if (!net
->ipv6
.fib_table_hash
)
1518 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1520 if (!net
->ipv6
.fib6_main_tbl
)
1521 goto out_fib_table_hash
;
1523 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1524 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1525 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1526 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1528 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1529 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1531 if (!net
->ipv6
.fib6_local_tbl
)
1532 goto out_fib6_main_tbl
;
1533 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1534 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1535 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1536 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1538 fib6_tables_init(net
);
1542 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1544 kfree(net
->ipv6
.fib6_main_tbl
);
1547 kfree(net
->ipv6
.fib_table_hash
);
1549 kfree(net
->ipv6
.rt6_stats
);
1554 static void fib6_net_exit(struct net
*net
)
1556 rt6_ifdown(net
, NULL
);
1557 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1559 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1560 kfree(net
->ipv6
.fib6_local_tbl
);
1562 kfree(net
->ipv6
.fib6_main_tbl
);
1563 kfree(net
->ipv6
.fib_table_hash
);
1564 kfree(net
->ipv6
.rt6_stats
);
1567 static struct pernet_operations fib6_net_ops
= {
1568 .init
= fib6_net_init
,
1569 .exit
= fib6_net_exit
,
1572 int __init
fib6_init(void)
1576 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1577 sizeof(struct fib6_node
),
1578 0, SLAB_HWCACHE_ALIGN
,
1580 if (!fib6_node_kmem
)
1583 ret
= register_pernet_subsys(&fib6_net_ops
);
1585 goto out_kmem_cache_create
;
1587 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
);
1589 goto out_unregister_subsys
;
1593 out_unregister_subsys
:
1594 unregister_pernet_subsys(&fib6_net_ops
);
1595 out_kmem_cache_create
:
1596 kmem_cache_destroy(fib6_node_kmem
);
1600 void fib6_gc_cleanup(void)
1602 unregister_pernet_subsys(&fib6_net_ops
);
1603 kmem_cache_destroy(fib6_node_kmem
);