ACPI: thinkpad-acpi: register with the device model
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / vmx.c
blob54c35c0b31815670dd56cbc54b18826e1ea6f80d
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <asm/io.h>
26 #include <asm/desc.h>
28 #include "segment_descriptor.h"
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
79 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
81 static inline int is_page_fault(u32 intr_info)
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
88 static inline int is_external_interrupt(u32 intr_info)
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
96 int i;
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return 0;
104 static void vmcs_clear(struct vmcs *vmcs)
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
117 static void __vcpu_clear(void *arg)
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = raw_smp_processor_id();
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
128 static unsigned long vmcs_readl(unsigned long field)
130 unsigned long value;
132 asm volatile (ASM_VMX_VMREAD_RDX_RAX
133 : "=a"(value) : "d"(field) : "cc");
134 return value;
137 static u16 vmcs_read16(unsigned long field)
139 return vmcs_readl(field);
142 static u32 vmcs_read32(unsigned long field)
144 return vmcs_readl(field);
147 static u64 vmcs_read64(unsigned long field)
149 #ifdef CONFIG_X86_64
150 return vmcs_readl(field);
151 #else
152 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
153 #endif
156 static noinline void vmwrite_error(unsigned long field, unsigned long value)
158 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
159 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
160 dump_stack();
163 static void vmcs_writel(unsigned long field, unsigned long value)
165 u8 error;
167 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
168 : "=q"(error) : "a"(value), "d"(field) : "cc" );
169 if (unlikely(error))
170 vmwrite_error(field, value);
173 static void vmcs_write16(unsigned long field, u16 value)
175 vmcs_writel(field, value);
178 static void vmcs_write32(unsigned long field, u32 value)
180 vmcs_writel(field, value);
183 static void vmcs_write64(unsigned long field, u64 value)
185 #ifdef CONFIG_X86_64
186 vmcs_writel(field, value);
187 #else
188 vmcs_writel(field, value);
189 asm volatile ("");
190 vmcs_writel(field+1, value >> 32);
191 #endif
195 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
196 * vcpu mutex is already taken.
198 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
200 u64 phys_addr = __pa(vcpu->vmcs);
201 int cpu;
203 cpu = get_cpu();
205 if (vcpu->cpu != cpu) {
206 smp_call_function(__vcpu_clear, vcpu, 0, 1);
207 vcpu->launched = 0;
210 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
211 u8 error;
213 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
214 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
215 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
216 : "cc");
217 if (error)
218 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
219 vcpu->vmcs, phys_addr);
222 if (vcpu->cpu != cpu) {
223 struct descriptor_table dt;
224 unsigned long sysenter_esp;
226 vcpu->cpu = cpu;
228 * Linux uses per-cpu TSS and GDT, so set these when switching
229 * processors.
231 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
232 get_gdt(&dt);
233 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
235 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
236 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
238 return vcpu;
241 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
243 put_cpu();
246 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
248 return vmcs_readl(GUEST_RFLAGS);
251 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
253 vmcs_writel(GUEST_RFLAGS, rflags);
256 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
258 unsigned long rip;
259 u32 interruptibility;
261 rip = vmcs_readl(GUEST_RIP);
262 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
263 vmcs_writel(GUEST_RIP, rip);
266 * We emulated an instruction, so temporary interrupt blocking
267 * should be removed, if set.
269 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
270 if (interruptibility & 3)
271 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
272 interruptibility & ~3);
273 vcpu->interrupt_window_open = 1;
276 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
278 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
279 vmcs_readl(GUEST_RIP));
280 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
281 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
282 GP_VECTOR |
283 INTR_TYPE_EXCEPTION |
284 INTR_INFO_DELIEVER_CODE_MASK |
285 INTR_INFO_VALID_MASK);
289 * reads and returns guest's timestamp counter "register"
290 * guest_tsc = host_tsc + tsc_offset -- 21.3
292 static u64 guest_read_tsc(void)
294 u64 host_tsc, tsc_offset;
296 rdtscll(host_tsc);
297 tsc_offset = vmcs_read64(TSC_OFFSET);
298 return host_tsc + tsc_offset;
302 * writes 'guest_tsc' into guest's timestamp counter "register"
303 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
305 static void guest_write_tsc(u64 guest_tsc)
307 u64 host_tsc;
309 rdtscll(host_tsc);
310 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
313 static void reload_tss(void)
315 #ifndef CONFIG_X86_64
318 * VT restores TR but not its size. Useless.
320 struct descriptor_table gdt;
321 struct segment_descriptor *descs;
323 get_gdt(&gdt);
324 descs = (void *)gdt.base;
325 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
326 load_TR_desc();
327 #endif
331 * Reads an msr value (of 'msr_index') into 'pdata'.
332 * Returns 0 on success, non-0 otherwise.
333 * Assumes vcpu_load() was already called.
335 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
337 u64 data;
338 struct vmx_msr_entry *msr;
340 if (!pdata) {
341 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
342 return -EINVAL;
345 switch (msr_index) {
346 #ifdef CONFIG_X86_64
347 case MSR_FS_BASE:
348 data = vmcs_readl(GUEST_FS_BASE);
349 break;
350 case MSR_GS_BASE:
351 data = vmcs_readl(GUEST_GS_BASE);
352 break;
353 case MSR_EFER:
354 return kvm_get_msr_common(vcpu, msr_index, pdata);
355 #endif
356 case MSR_IA32_TIME_STAMP_COUNTER:
357 data = guest_read_tsc();
358 break;
359 case MSR_IA32_SYSENTER_CS:
360 data = vmcs_read32(GUEST_SYSENTER_CS);
361 break;
362 case MSR_IA32_SYSENTER_EIP:
363 data = vmcs_read32(GUEST_SYSENTER_EIP);
364 break;
365 case MSR_IA32_SYSENTER_ESP:
366 data = vmcs_read32(GUEST_SYSENTER_ESP);
367 break;
368 default:
369 msr = find_msr_entry(vcpu, msr_index);
370 if (msr) {
371 data = msr->data;
372 break;
374 return kvm_get_msr_common(vcpu, msr_index, pdata);
377 *pdata = data;
378 return 0;
382 * Writes msr value into into the appropriate "register".
383 * Returns 0 on success, non-0 otherwise.
384 * Assumes vcpu_load() was already called.
386 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
388 struct vmx_msr_entry *msr;
389 switch (msr_index) {
390 #ifdef CONFIG_X86_64
391 case MSR_EFER:
392 return kvm_set_msr_common(vcpu, msr_index, data);
393 case MSR_FS_BASE:
394 vmcs_writel(GUEST_FS_BASE, data);
395 break;
396 case MSR_GS_BASE:
397 vmcs_writel(GUEST_GS_BASE, data);
398 break;
399 #endif
400 case MSR_IA32_SYSENTER_CS:
401 vmcs_write32(GUEST_SYSENTER_CS, data);
402 break;
403 case MSR_IA32_SYSENTER_EIP:
404 vmcs_write32(GUEST_SYSENTER_EIP, data);
405 break;
406 case MSR_IA32_SYSENTER_ESP:
407 vmcs_write32(GUEST_SYSENTER_ESP, data);
408 break;
409 case MSR_IA32_TIME_STAMP_COUNTER: {
410 guest_write_tsc(data);
411 break;
413 default:
414 msr = find_msr_entry(vcpu, msr_index);
415 if (msr) {
416 msr->data = data;
417 break;
419 return kvm_set_msr_common(vcpu, msr_index, data);
420 msr->data = data;
421 break;
424 return 0;
428 * Sync the rsp and rip registers into the vcpu structure. This allows
429 * registers to be accessed by indexing vcpu->regs.
431 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
433 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
434 vcpu->rip = vmcs_readl(GUEST_RIP);
438 * Syncs rsp and rip back into the vmcs. Should be called after possible
439 * modification.
441 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
443 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
444 vmcs_writel(GUEST_RIP, vcpu->rip);
447 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
449 unsigned long dr7 = 0x400;
450 u32 exception_bitmap;
451 int old_singlestep;
453 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
454 old_singlestep = vcpu->guest_debug.singlestep;
456 vcpu->guest_debug.enabled = dbg->enabled;
457 if (vcpu->guest_debug.enabled) {
458 int i;
460 dr7 |= 0x200; /* exact */
461 for (i = 0; i < 4; ++i) {
462 if (!dbg->breakpoints[i].enabled)
463 continue;
464 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
465 dr7 |= 2 << (i*2); /* global enable */
466 dr7 |= 0 << (i*4+16); /* execution breakpoint */
469 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
471 vcpu->guest_debug.singlestep = dbg->singlestep;
472 } else {
473 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
474 vcpu->guest_debug.singlestep = 0;
477 if (old_singlestep && !vcpu->guest_debug.singlestep) {
478 unsigned long flags;
480 flags = vmcs_readl(GUEST_RFLAGS);
481 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
482 vmcs_writel(GUEST_RFLAGS, flags);
485 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
486 vmcs_writel(GUEST_DR7, dr7);
488 return 0;
491 static __init int cpu_has_kvm_support(void)
493 unsigned long ecx = cpuid_ecx(1);
494 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
497 static __init int vmx_disabled_by_bios(void)
499 u64 msr;
501 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
502 return (msr & 5) == 1; /* locked but not enabled */
505 static __init void hardware_enable(void *garbage)
507 int cpu = raw_smp_processor_id();
508 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
509 u64 old;
511 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
512 if ((old & 5) != 5)
513 /* enable and lock */
514 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
515 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
516 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
517 : "memory", "cc");
520 static void hardware_disable(void *garbage)
522 asm volatile (ASM_VMX_VMXOFF : : : "cc");
525 static __init void setup_vmcs_descriptor(void)
527 u32 vmx_msr_low, vmx_msr_high;
529 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
530 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
531 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
532 vmcs_descriptor.revision_id = vmx_msr_low;
535 static struct vmcs *alloc_vmcs_cpu(int cpu)
537 int node = cpu_to_node(cpu);
538 struct page *pages;
539 struct vmcs *vmcs;
541 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
542 if (!pages)
543 return NULL;
544 vmcs = page_address(pages);
545 memset(vmcs, 0, vmcs_descriptor.size);
546 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
547 return vmcs;
550 static struct vmcs *alloc_vmcs(void)
552 return alloc_vmcs_cpu(raw_smp_processor_id());
555 static void free_vmcs(struct vmcs *vmcs)
557 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
560 static __exit void free_kvm_area(void)
562 int cpu;
564 for_each_online_cpu(cpu)
565 free_vmcs(per_cpu(vmxarea, cpu));
568 extern struct vmcs *alloc_vmcs_cpu(int cpu);
570 static __init int alloc_kvm_area(void)
572 int cpu;
574 for_each_online_cpu(cpu) {
575 struct vmcs *vmcs;
577 vmcs = alloc_vmcs_cpu(cpu);
578 if (!vmcs) {
579 free_kvm_area();
580 return -ENOMEM;
583 per_cpu(vmxarea, cpu) = vmcs;
585 return 0;
588 static __init int hardware_setup(void)
590 setup_vmcs_descriptor();
591 return alloc_kvm_area();
594 static __exit void hardware_unsetup(void)
596 free_kvm_area();
599 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
601 if (vcpu->rmode.active)
602 vmcs_write32(EXCEPTION_BITMAP, ~0);
603 else
604 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
607 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
609 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
611 if (vmcs_readl(sf->base) == save->base) {
612 vmcs_write16(sf->selector, save->selector);
613 vmcs_writel(sf->base, save->base);
614 vmcs_write32(sf->limit, save->limit);
615 vmcs_write32(sf->ar_bytes, save->ar);
616 } else {
617 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
618 << AR_DPL_SHIFT;
619 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
623 static void enter_pmode(struct kvm_vcpu *vcpu)
625 unsigned long flags;
627 vcpu->rmode.active = 0;
629 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
630 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
631 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
633 flags = vmcs_readl(GUEST_RFLAGS);
634 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
635 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
636 vmcs_writel(GUEST_RFLAGS, flags);
638 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
639 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
641 update_exception_bitmap(vcpu);
643 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
644 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
645 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
646 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
648 vmcs_write16(GUEST_SS_SELECTOR, 0);
649 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
651 vmcs_write16(GUEST_CS_SELECTOR,
652 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
653 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
656 static int rmode_tss_base(struct kvm* kvm)
658 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
659 return base_gfn << PAGE_SHIFT;
662 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
664 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
666 save->selector = vmcs_read16(sf->selector);
667 save->base = vmcs_readl(sf->base);
668 save->limit = vmcs_read32(sf->limit);
669 save->ar = vmcs_read32(sf->ar_bytes);
670 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
671 vmcs_write32(sf->limit, 0xffff);
672 vmcs_write32(sf->ar_bytes, 0xf3);
675 static void enter_rmode(struct kvm_vcpu *vcpu)
677 unsigned long flags;
679 vcpu->rmode.active = 1;
681 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
682 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
684 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
685 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
687 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
688 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
690 flags = vmcs_readl(GUEST_RFLAGS);
691 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
693 flags |= IOPL_MASK | X86_EFLAGS_VM;
695 vmcs_writel(GUEST_RFLAGS, flags);
696 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
697 update_exception_bitmap(vcpu);
699 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
700 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
701 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
703 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
704 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
705 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
707 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
708 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
709 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
710 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
713 #ifdef CONFIG_X86_64
715 static void enter_lmode(struct kvm_vcpu *vcpu)
717 u32 guest_tr_ar;
719 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
720 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
721 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
722 __FUNCTION__);
723 vmcs_write32(GUEST_TR_AR_BYTES,
724 (guest_tr_ar & ~AR_TYPE_MASK)
725 | AR_TYPE_BUSY_64_TSS);
728 vcpu->shadow_efer |= EFER_LMA;
730 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
731 vmcs_write32(VM_ENTRY_CONTROLS,
732 vmcs_read32(VM_ENTRY_CONTROLS)
733 | VM_ENTRY_CONTROLS_IA32E_MASK);
736 static void exit_lmode(struct kvm_vcpu *vcpu)
738 vcpu->shadow_efer &= ~EFER_LMA;
740 vmcs_write32(VM_ENTRY_CONTROLS,
741 vmcs_read32(VM_ENTRY_CONTROLS)
742 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
745 #endif
747 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
749 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
750 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
752 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
753 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
756 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
758 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
759 enter_pmode(vcpu);
761 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
762 enter_rmode(vcpu);
764 #ifdef CONFIG_X86_64
765 if (vcpu->shadow_efer & EFER_LME) {
766 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
767 enter_lmode(vcpu);
768 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
769 exit_lmode(vcpu);
771 #endif
773 vmcs_writel(CR0_READ_SHADOW, cr0);
774 vmcs_writel(GUEST_CR0,
775 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
776 vcpu->cr0 = cr0;
780 * Used when restoring the VM to avoid corrupting segment registers
782 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
784 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
785 update_exception_bitmap(vcpu);
786 vmcs_writel(CR0_READ_SHADOW, cr0);
787 vmcs_writel(GUEST_CR0,
788 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
789 vcpu->cr0 = cr0;
792 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
794 vmcs_writel(GUEST_CR3, cr3);
797 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
799 vmcs_writel(CR4_READ_SHADOW, cr4);
800 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
801 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
802 vcpu->cr4 = cr4;
805 #ifdef CONFIG_X86_64
807 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
811 vcpu->shadow_efer = efer;
812 if (efer & EFER_LMA) {
813 vmcs_write32(VM_ENTRY_CONTROLS,
814 vmcs_read32(VM_ENTRY_CONTROLS) |
815 VM_ENTRY_CONTROLS_IA32E_MASK);
816 msr->data = efer;
818 } else {
819 vmcs_write32(VM_ENTRY_CONTROLS,
820 vmcs_read32(VM_ENTRY_CONTROLS) &
821 ~VM_ENTRY_CONTROLS_IA32E_MASK);
823 msr->data = efer & ~EFER_LME;
827 #endif
829 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
831 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
833 return vmcs_readl(sf->base);
836 static void vmx_get_segment(struct kvm_vcpu *vcpu,
837 struct kvm_segment *var, int seg)
839 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
840 u32 ar;
842 var->base = vmcs_readl(sf->base);
843 var->limit = vmcs_read32(sf->limit);
844 var->selector = vmcs_read16(sf->selector);
845 ar = vmcs_read32(sf->ar_bytes);
846 if (ar & AR_UNUSABLE_MASK)
847 ar = 0;
848 var->type = ar & 15;
849 var->s = (ar >> 4) & 1;
850 var->dpl = (ar >> 5) & 3;
851 var->present = (ar >> 7) & 1;
852 var->avl = (ar >> 12) & 1;
853 var->l = (ar >> 13) & 1;
854 var->db = (ar >> 14) & 1;
855 var->g = (ar >> 15) & 1;
856 var->unusable = (ar >> 16) & 1;
859 static void vmx_set_segment(struct kvm_vcpu *vcpu,
860 struct kvm_segment *var, int seg)
862 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
863 u32 ar;
865 vmcs_writel(sf->base, var->base);
866 vmcs_write32(sf->limit, var->limit);
867 vmcs_write16(sf->selector, var->selector);
868 if (var->unusable)
869 ar = 1 << 16;
870 else {
871 ar = var->type & 15;
872 ar |= (var->s & 1) << 4;
873 ar |= (var->dpl & 3) << 5;
874 ar |= (var->present & 1) << 7;
875 ar |= (var->avl & 1) << 12;
876 ar |= (var->l & 1) << 13;
877 ar |= (var->db & 1) << 14;
878 ar |= (var->g & 1) << 15;
880 if (ar == 0) /* a 0 value means unusable */
881 ar = AR_UNUSABLE_MASK;
882 vmcs_write32(sf->ar_bytes, ar);
885 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
887 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
889 *db = (ar >> 14) & 1;
890 *l = (ar >> 13) & 1;
893 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
895 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
896 dt->base = vmcs_readl(GUEST_IDTR_BASE);
899 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
901 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
902 vmcs_writel(GUEST_IDTR_BASE, dt->base);
905 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
907 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
908 dt->base = vmcs_readl(GUEST_GDTR_BASE);
911 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
913 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
914 vmcs_writel(GUEST_GDTR_BASE, dt->base);
917 static int init_rmode_tss(struct kvm* kvm)
919 struct page *p1, *p2, *p3;
920 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
921 char *page;
923 p1 = _gfn_to_page(kvm, fn++);
924 p2 = _gfn_to_page(kvm, fn++);
925 p3 = _gfn_to_page(kvm, fn);
927 if (!p1 || !p2 || !p3) {
928 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
929 return 0;
932 page = kmap_atomic(p1, KM_USER0);
933 memset(page, 0, PAGE_SIZE);
934 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
935 kunmap_atomic(page, KM_USER0);
937 page = kmap_atomic(p2, KM_USER0);
938 memset(page, 0, PAGE_SIZE);
939 kunmap_atomic(page, KM_USER0);
941 page = kmap_atomic(p3, KM_USER0);
942 memset(page, 0, PAGE_SIZE);
943 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
944 kunmap_atomic(page, KM_USER0);
946 return 1;
949 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
951 u32 msr_high, msr_low;
953 rdmsr(msr, msr_low, msr_high);
955 val &= msr_high;
956 val |= msr_low;
957 vmcs_write32(vmcs_field, val);
960 static void seg_setup(int seg)
962 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
964 vmcs_write16(sf->selector, 0);
965 vmcs_writel(sf->base, 0);
966 vmcs_write32(sf->limit, 0xffff);
967 vmcs_write32(sf->ar_bytes, 0x93);
971 * Sets up the vmcs for emulated real mode.
973 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
975 u32 host_sysenter_cs;
976 u32 junk;
977 unsigned long a;
978 struct descriptor_table dt;
979 int i;
980 int ret = 0;
981 int nr_good_msrs;
982 extern asmlinkage void kvm_vmx_return(void);
984 if (!init_rmode_tss(vcpu->kvm)) {
985 ret = -ENOMEM;
986 goto out;
989 memset(vcpu->regs, 0, sizeof(vcpu->regs));
990 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
991 vcpu->cr8 = 0;
992 vcpu->apic_base = 0xfee00000 |
993 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
994 MSR_IA32_APICBASE_ENABLE;
996 fx_init(vcpu);
999 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1000 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1002 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1003 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1004 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1005 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1007 seg_setup(VCPU_SREG_DS);
1008 seg_setup(VCPU_SREG_ES);
1009 seg_setup(VCPU_SREG_FS);
1010 seg_setup(VCPU_SREG_GS);
1011 seg_setup(VCPU_SREG_SS);
1013 vmcs_write16(GUEST_TR_SELECTOR, 0);
1014 vmcs_writel(GUEST_TR_BASE, 0);
1015 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1016 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1018 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1019 vmcs_writel(GUEST_LDTR_BASE, 0);
1020 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1021 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1023 vmcs_write32(GUEST_SYSENTER_CS, 0);
1024 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1025 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1027 vmcs_writel(GUEST_RFLAGS, 0x02);
1028 vmcs_writel(GUEST_RIP, 0xfff0);
1029 vmcs_writel(GUEST_RSP, 0);
1031 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1032 vmcs_writel(GUEST_DR7, 0x400);
1034 vmcs_writel(GUEST_GDTR_BASE, 0);
1035 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1037 vmcs_writel(GUEST_IDTR_BASE, 0);
1038 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1040 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1041 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1042 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1044 /* I/O */
1045 vmcs_write64(IO_BITMAP_A, 0);
1046 vmcs_write64(IO_BITMAP_B, 0);
1048 guest_write_tsc(0);
1050 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1052 /* Special registers */
1053 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1055 /* Control */
1056 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1057 PIN_BASED_VM_EXEC_CONTROL,
1058 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1059 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1061 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1062 CPU_BASED_VM_EXEC_CONTROL,
1063 CPU_BASED_HLT_EXITING /* 20.6.2 */
1064 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1065 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1066 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1067 | CPU_BASED_MOV_DR_EXITING
1068 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1071 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1072 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1073 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1074 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1076 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1077 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1078 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1080 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1081 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1082 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1083 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1084 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1085 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1086 #ifdef CONFIG_X86_64
1087 rdmsrl(MSR_FS_BASE, a);
1088 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1089 rdmsrl(MSR_GS_BASE, a);
1090 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1091 #else
1092 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1093 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1094 #endif
1096 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1098 get_idt(&dt);
1099 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1102 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1104 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1105 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1106 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1107 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1108 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1109 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1111 for (i = 0; i < NR_VMX_MSR; ++i) {
1112 u32 index = vmx_msr_index[i];
1113 u32 data_low, data_high;
1114 u64 data;
1115 int j = vcpu->nmsrs;
1117 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1118 continue;
1119 if (wrmsr_safe(index, data_low, data_high) < 0)
1120 continue;
1121 data = data_low | ((u64)data_high << 32);
1122 vcpu->host_msrs[j].index = index;
1123 vcpu->host_msrs[j].reserved = 0;
1124 vcpu->host_msrs[j].data = data;
1125 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1126 ++vcpu->nmsrs;
1128 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1130 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1131 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1132 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1133 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1134 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1135 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1136 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1137 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1138 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1139 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1140 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1141 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1144 /* 22.2.1, 20.8.1 */
1145 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1146 VM_ENTRY_CONTROLS, 0);
1147 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1149 #ifdef CONFIG_X86_64
1150 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1151 vmcs_writel(TPR_THRESHOLD, 0);
1152 #endif
1154 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1155 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1157 vcpu->cr0 = 0x60000010;
1158 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1159 vmx_set_cr4(vcpu, 0);
1160 #ifdef CONFIG_X86_64
1161 vmx_set_efer(vcpu, 0);
1162 #endif
1164 return 0;
1166 out:
1167 return ret;
1170 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1172 u16 ent[2];
1173 u16 cs;
1174 u16 ip;
1175 unsigned long flags;
1176 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1177 u16 sp = vmcs_readl(GUEST_RSP);
1178 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1180 if (sp > ss_limit || sp - 6 > sp) {
1181 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1182 __FUNCTION__,
1183 vmcs_readl(GUEST_RSP),
1184 vmcs_readl(GUEST_SS_BASE),
1185 vmcs_read32(GUEST_SS_LIMIT));
1186 return;
1189 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1190 sizeof(ent)) {
1191 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1192 return;
1195 flags = vmcs_readl(GUEST_RFLAGS);
1196 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1197 ip = vmcs_readl(GUEST_RIP);
1200 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1201 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1202 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1203 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1204 return;
1207 vmcs_writel(GUEST_RFLAGS, flags &
1208 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1209 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1210 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1211 vmcs_writel(GUEST_RIP, ent[0]);
1212 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1215 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1217 int word_index = __ffs(vcpu->irq_summary);
1218 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1219 int irq = word_index * BITS_PER_LONG + bit_index;
1221 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1222 if (!vcpu->irq_pending[word_index])
1223 clear_bit(word_index, &vcpu->irq_summary);
1225 if (vcpu->rmode.active) {
1226 inject_rmode_irq(vcpu, irq);
1227 return;
1229 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1230 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1234 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1235 struct kvm_run *kvm_run)
1237 u32 cpu_based_vm_exec_control;
1239 vcpu->interrupt_window_open =
1240 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1241 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1243 if (vcpu->interrupt_window_open &&
1244 vcpu->irq_summary &&
1245 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1247 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1249 kvm_do_inject_irq(vcpu);
1251 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1252 if (!vcpu->interrupt_window_open &&
1253 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1255 * Interrupts blocked. Wait for unblock.
1257 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1258 else
1259 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1260 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1263 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1265 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1267 set_debugreg(dbg->bp[0], 0);
1268 set_debugreg(dbg->bp[1], 1);
1269 set_debugreg(dbg->bp[2], 2);
1270 set_debugreg(dbg->bp[3], 3);
1272 if (dbg->singlestep) {
1273 unsigned long flags;
1275 flags = vmcs_readl(GUEST_RFLAGS);
1276 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1277 vmcs_writel(GUEST_RFLAGS, flags);
1281 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1282 int vec, u32 err_code)
1284 if (!vcpu->rmode.active)
1285 return 0;
1287 if (vec == GP_VECTOR && err_code == 0)
1288 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1289 return 1;
1290 return 0;
1293 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1295 u32 intr_info, error_code;
1296 unsigned long cr2, rip;
1297 u32 vect_info;
1298 enum emulation_result er;
1299 int r;
1301 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1302 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1304 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1305 !is_page_fault(intr_info)) {
1306 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1307 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1310 if (is_external_interrupt(vect_info)) {
1311 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1312 set_bit(irq, vcpu->irq_pending);
1313 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1316 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1317 asm ("int $2");
1318 return 1;
1320 error_code = 0;
1321 rip = vmcs_readl(GUEST_RIP);
1322 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1323 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1324 if (is_page_fault(intr_info)) {
1325 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1327 spin_lock(&vcpu->kvm->lock);
1328 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1329 if (r < 0) {
1330 spin_unlock(&vcpu->kvm->lock);
1331 return r;
1333 if (!r) {
1334 spin_unlock(&vcpu->kvm->lock);
1335 return 1;
1338 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1339 spin_unlock(&vcpu->kvm->lock);
1341 switch (er) {
1342 case EMULATE_DONE:
1343 return 1;
1344 case EMULATE_DO_MMIO:
1345 ++kvm_stat.mmio_exits;
1346 kvm_run->exit_reason = KVM_EXIT_MMIO;
1347 return 0;
1348 case EMULATE_FAIL:
1349 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1350 break;
1351 default:
1352 BUG();
1356 if (vcpu->rmode.active &&
1357 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1358 error_code))
1359 return 1;
1361 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1362 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1363 return 0;
1365 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1366 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1367 kvm_run->ex.error_code = error_code;
1368 return 0;
1371 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1372 struct kvm_run *kvm_run)
1374 ++kvm_stat.irq_exits;
1375 return 1;
1379 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1381 u64 inst;
1382 gva_t rip;
1383 int countr_size;
1384 int i, n;
1386 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1387 countr_size = 2;
1388 } else {
1389 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1391 countr_size = (cs_ar & AR_L_MASK) ? 8:
1392 (cs_ar & AR_DB_MASK) ? 4: 2;
1395 rip = vmcs_readl(GUEST_RIP);
1396 if (countr_size != 8)
1397 rip += vmcs_readl(GUEST_CS_BASE);
1399 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1401 for (i = 0; i < n; i++) {
1402 switch (((u8*)&inst)[i]) {
1403 case 0xf0:
1404 case 0xf2:
1405 case 0xf3:
1406 case 0x2e:
1407 case 0x36:
1408 case 0x3e:
1409 case 0x26:
1410 case 0x64:
1411 case 0x65:
1412 case 0x66:
1413 break;
1414 case 0x67:
1415 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1416 default:
1417 goto done;
1420 return 0;
1421 done:
1422 countr_size *= 8;
1423 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1424 return 1;
1427 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1429 u64 exit_qualification;
1431 ++kvm_stat.io_exits;
1432 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1433 kvm_run->exit_reason = KVM_EXIT_IO;
1434 if (exit_qualification & 8)
1435 kvm_run->io.direction = KVM_EXIT_IO_IN;
1436 else
1437 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1438 kvm_run->io.size = (exit_qualification & 7) + 1;
1439 kvm_run->io.string = (exit_qualification & 16) != 0;
1440 kvm_run->io.string_down
1441 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1442 kvm_run->io.rep = (exit_qualification & 32) != 0;
1443 kvm_run->io.port = exit_qualification >> 16;
1444 if (kvm_run->io.string) {
1445 if (!get_io_count(vcpu, &kvm_run->io.count))
1446 return 1;
1447 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1448 } else
1449 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1450 return 0;
1453 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1455 u64 exit_qualification;
1456 int cr;
1457 int reg;
1459 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1460 cr = exit_qualification & 15;
1461 reg = (exit_qualification >> 8) & 15;
1462 switch ((exit_qualification >> 4) & 3) {
1463 case 0: /* mov to cr */
1464 switch (cr) {
1465 case 0:
1466 vcpu_load_rsp_rip(vcpu);
1467 set_cr0(vcpu, vcpu->regs[reg]);
1468 skip_emulated_instruction(vcpu);
1469 return 1;
1470 case 3:
1471 vcpu_load_rsp_rip(vcpu);
1472 set_cr3(vcpu, vcpu->regs[reg]);
1473 skip_emulated_instruction(vcpu);
1474 return 1;
1475 case 4:
1476 vcpu_load_rsp_rip(vcpu);
1477 set_cr4(vcpu, vcpu->regs[reg]);
1478 skip_emulated_instruction(vcpu);
1479 return 1;
1480 case 8:
1481 vcpu_load_rsp_rip(vcpu);
1482 set_cr8(vcpu, vcpu->regs[reg]);
1483 skip_emulated_instruction(vcpu);
1484 return 1;
1486 break;
1487 case 1: /*mov from cr*/
1488 switch (cr) {
1489 case 3:
1490 vcpu_load_rsp_rip(vcpu);
1491 vcpu->regs[reg] = vcpu->cr3;
1492 vcpu_put_rsp_rip(vcpu);
1493 skip_emulated_instruction(vcpu);
1494 return 1;
1495 case 8:
1496 printk(KERN_DEBUG "handle_cr: read CR8 "
1497 "cpu erratum AA15\n");
1498 vcpu_load_rsp_rip(vcpu);
1499 vcpu->regs[reg] = vcpu->cr8;
1500 vcpu_put_rsp_rip(vcpu);
1501 skip_emulated_instruction(vcpu);
1502 return 1;
1504 break;
1505 case 3: /* lmsw */
1506 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1508 skip_emulated_instruction(vcpu);
1509 return 1;
1510 default:
1511 break;
1513 kvm_run->exit_reason = 0;
1514 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1515 (int)(exit_qualification >> 4) & 3, cr);
1516 return 0;
1519 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1521 u64 exit_qualification;
1522 unsigned long val;
1523 int dr, reg;
1526 * FIXME: this code assumes the host is debugging the guest.
1527 * need to deal with guest debugging itself too.
1529 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1530 dr = exit_qualification & 7;
1531 reg = (exit_qualification >> 8) & 15;
1532 vcpu_load_rsp_rip(vcpu);
1533 if (exit_qualification & 16) {
1534 /* mov from dr */
1535 switch (dr) {
1536 case 6:
1537 val = 0xffff0ff0;
1538 break;
1539 case 7:
1540 val = 0x400;
1541 break;
1542 default:
1543 val = 0;
1545 vcpu->regs[reg] = val;
1546 } else {
1547 /* mov to dr */
1549 vcpu_put_rsp_rip(vcpu);
1550 skip_emulated_instruction(vcpu);
1551 return 1;
1554 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1556 kvm_run->exit_reason = KVM_EXIT_CPUID;
1557 return 0;
1560 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1562 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1563 u64 data;
1565 if (vmx_get_msr(vcpu, ecx, &data)) {
1566 vmx_inject_gp(vcpu, 0);
1567 return 1;
1570 /* FIXME: handling of bits 32:63 of rax, rdx */
1571 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1572 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1573 skip_emulated_instruction(vcpu);
1574 return 1;
1577 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1579 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1580 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1581 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1583 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1584 vmx_inject_gp(vcpu, 0);
1585 return 1;
1588 skip_emulated_instruction(vcpu);
1589 return 1;
1592 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1593 struct kvm_run *kvm_run)
1595 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1596 kvm_run->cr8 = vcpu->cr8;
1597 kvm_run->apic_base = vcpu->apic_base;
1598 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1599 vcpu->irq_summary == 0);
1602 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1603 struct kvm_run *kvm_run)
1606 * If the user space waits to inject interrupts, exit as soon as
1607 * possible
1609 if (kvm_run->request_interrupt_window &&
1610 !vcpu->irq_summary) {
1611 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1612 ++kvm_stat.irq_window_exits;
1613 return 0;
1615 return 1;
1618 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1620 skip_emulated_instruction(vcpu);
1621 if (vcpu->irq_summary)
1622 return 1;
1624 kvm_run->exit_reason = KVM_EXIT_HLT;
1625 ++kvm_stat.halt_exits;
1626 return 0;
1630 * The exit handlers return 1 if the exit was handled fully and guest execution
1631 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1632 * to be done to userspace and return 0.
1634 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1635 struct kvm_run *kvm_run) = {
1636 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1637 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1638 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1639 [EXIT_REASON_CR_ACCESS] = handle_cr,
1640 [EXIT_REASON_DR_ACCESS] = handle_dr,
1641 [EXIT_REASON_CPUID] = handle_cpuid,
1642 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1643 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1644 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1645 [EXIT_REASON_HLT] = handle_halt,
1648 static const int kvm_vmx_max_exit_handlers =
1649 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1652 * The guest has exited. See if we can fix it or if we need userspace
1653 * assistance.
1655 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1657 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1658 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1660 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1661 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1662 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1663 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1664 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1665 if (exit_reason < kvm_vmx_max_exit_handlers
1666 && kvm_vmx_exit_handlers[exit_reason])
1667 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1668 else {
1669 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1670 kvm_run->hw.hardware_exit_reason = exit_reason;
1672 return 0;
1676 * Check if userspace requested an interrupt window, and that the
1677 * interrupt window is open.
1679 * No need to exit to userspace if we already have an interrupt queued.
1681 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1682 struct kvm_run *kvm_run)
1684 return (!vcpu->irq_summary &&
1685 kvm_run->request_interrupt_window &&
1686 vcpu->interrupt_window_open &&
1687 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1690 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1692 u8 fail;
1693 u16 fs_sel, gs_sel, ldt_sel;
1694 int fs_gs_ldt_reload_needed;
1695 int r;
1697 again:
1699 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1700 * allow segment selectors with cpl > 0 or ti == 1.
1702 fs_sel = read_fs();
1703 gs_sel = read_gs();
1704 ldt_sel = read_ldt();
1705 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1706 if (!fs_gs_ldt_reload_needed) {
1707 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1708 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1709 } else {
1710 vmcs_write16(HOST_FS_SELECTOR, 0);
1711 vmcs_write16(HOST_GS_SELECTOR, 0);
1714 #ifdef CONFIG_X86_64
1715 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1716 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1717 #else
1718 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1719 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1720 #endif
1722 if (!vcpu->mmio_read_completed)
1723 do_interrupt_requests(vcpu, kvm_run);
1725 if (vcpu->guest_debug.enabled)
1726 kvm_guest_debug_pre(vcpu);
1728 fx_save(vcpu->host_fx_image);
1729 fx_restore(vcpu->guest_fx_image);
1731 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1732 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1734 asm (
1735 /* Store host registers */
1736 "pushf \n\t"
1737 #ifdef CONFIG_X86_64
1738 "push %%rax; push %%rbx; push %%rdx;"
1739 "push %%rsi; push %%rdi; push %%rbp;"
1740 "push %%r8; push %%r9; push %%r10; push %%r11;"
1741 "push %%r12; push %%r13; push %%r14; push %%r15;"
1742 "push %%rcx \n\t"
1743 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1744 #else
1745 "pusha; push %%ecx \n\t"
1746 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1747 #endif
1748 /* Check if vmlaunch of vmresume is needed */
1749 "cmp $0, %1 \n\t"
1750 /* Load guest registers. Don't clobber flags. */
1751 #ifdef CONFIG_X86_64
1752 "mov %c[cr2](%3), %%rax \n\t"
1753 "mov %%rax, %%cr2 \n\t"
1754 "mov %c[rax](%3), %%rax \n\t"
1755 "mov %c[rbx](%3), %%rbx \n\t"
1756 "mov %c[rdx](%3), %%rdx \n\t"
1757 "mov %c[rsi](%3), %%rsi \n\t"
1758 "mov %c[rdi](%3), %%rdi \n\t"
1759 "mov %c[rbp](%3), %%rbp \n\t"
1760 "mov %c[r8](%3), %%r8 \n\t"
1761 "mov %c[r9](%3), %%r9 \n\t"
1762 "mov %c[r10](%3), %%r10 \n\t"
1763 "mov %c[r11](%3), %%r11 \n\t"
1764 "mov %c[r12](%3), %%r12 \n\t"
1765 "mov %c[r13](%3), %%r13 \n\t"
1766 "mov %c[r14](%3), %%r14 \n\t"
1767 "mov %c[r15](%3), %%r15 \n\t"
1768 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1769 #else
1770 "mov %c[cr2](%3), %%eax \n\t"
1771 "mov %%eax, %%cr2 \n\t"
1772 "mov %c[rax](%3), %%eax \n\t"
1773 "mov %c[rbx](%3), %%ebx \n\t"
1774 "mov %c[rdx](%3), %%edx \n\t"
1775 "mov %c[rsi](%3), %%esi \n\t"
1776 "mov %c[rdi](%3), %%edi \n\t"
1777 "mov %c[rbp](%3), %%ebp \n\t"
1778 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1779 #endif
1780 /* Enter guest mode */
1781 "jne launched \n\t"
1782 ASM_VMX_VMLAUNCH "\n\t"
1783 "jmp kvm_vmx_return \n\t"
1784 "launched: " ASM_VMX_VMRESUME "\n\t"
1785 ".globl kvm_vmx_return \n\t"
1786 "kvm_vmx_return: "
1787 /* Save guest registers, load host registers, keep flags */
1788 #ifdef CONFIG_X86_64
1789 "xchg %3, 0(%%rsp) \n\t"
1790 "mov %%rax, %c[rax](%3) \n\t"
1791 "mov %%rbx, %c[rbx](%3) \n\t"
1792 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1793 "mov %%rdx, %c[rdx](%3) \n\t"
1794 "mov %%rsi, %c[rsi](%3) \n\t"
1795 "mov %%rdi, %c[rdi](%3) \n\t"
1796 "mov %%rbp, %c[rbp](%3) \n\t"
1797 "mov %%r8, %c[r8](%3) \n\t"
1798 "mov %%r9, %c[r9](%3) \n\t"
1799 "mov %%r10, %c[r10](%3) \n\t"
1800 "mov %%r11, %c[r11](%3) \n\t"
1801 "mov %%r12, %c[r12](%3) \n\t"
1802 "mov %%r13, %c[r13](%3) \n\t"
1803 "mov %%r14, %c[r14](%3) \n\t"
1804 "mov %%r15, %c[r15](%3) \n\t"
1805 "mov %%cr2, %%rax \n\t"
1806 "mov %%rax, %c[cr2](%3) \n\t"
1807 "mov 0(%%rsp), %3 \n\t"
1809 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1810 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1811 "pop %%rbp; pop %%rdi; pop %%rsi;"
1812 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1813 #else
1814 "xchg %3, 0(%%esp) \n\t"
1815 "mov %%eax, %c[rax](%3) \n\t"
1816 "mov %%ebx, %c[rbx](%3) \n\t"
1817 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1818 "mov %%edx, %c[rdx](%3) \n\t"
1819 "mov %%esi, %c[rsi](%3) \n\t"
1820 "mov %%edi, %c[rdi](%3) \n\t"
1821 "mov %%ebp, %c[rbp](%3) \n\t"
1822 "mov %%cr2, %%eax \n\t"
1823 "mov %%eax, %c[cr2](%3) \n\t"
1824 "mov 0(%%esp), %3 \n\t"
1826 "pop %%ecx; popa \n\t"
1827 #endif
1828 "setbe %0 \n\t"
1829 "popf \n\t"
1830 : "=q" (fail)
1831 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1832 "c"(vcpu),
1833 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1834 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1835 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1836 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1837 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1838 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1839 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1840 #ifdef CONFIG_X86_64
1841 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1842 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1843 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1844 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1845 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1846 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1847 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1848 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1849 #endif
1850 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1851 : "cc", "memory" );
1853 ++kvm_stat.exits;
1855 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1856 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1858 fx_save(vcpu->guest_fx_image);
1859 fx_restore(vcpu->host_fx_image);
1860 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1862 #ifndef CONFIG_X86_64
1863 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1864 #endif
1867 * Profile KVM exit RIPs:
1869 if (unlikely(prof_on == KVM_PROFILING))
1870 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1872 kvm_run->exit_type = 0;
1873 if (fail) {
1874 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1875 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1876 r = 0;
1877 } else {
1878 if (fs_gs_ldt_reload_needed) {
1879 load_ldt(ldt_sel);
1880 load_fs(fs_sel);
1882 * If we have to reload gs, we must take care to
1883 * preserve our gs base.
1885 local_irq_disable();
1886 load_gs(gs_sel);
1887 #ifdef CONFIG_X86_64
1888 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1889 #endif
1890 local_irq_enable();
1892 reload_tss();
1894 vcpu->launched = 1;
1895 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1896 r = kvm_handle_exit(kvm_run, vcpu);
1897 if (r > 0) {
1898 /* Give scheduler a change to reschedule. */
1899 if (signal_pending(current)) {
1900 ++kvm_stat.signal_exits;
1901 post_kvm_run_save(vcpu, kvm_run);
1902 return -EINTR;
1905 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1906 ++kvm_stat.request_irq_exits;
1907 post_kvm_run_save(vcpu, kvm_run);
1908 return -EINTR;
1911 kvm_resched(vcpu);
1912 goto again;
1916 post_kvm_run_save(vcpu, kvm_run);
1917 return r;
1920 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1922 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1925 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1926 unsigned long addr,
1927 u32 err_code)
1929 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1931 ++kvm_stat.pf_guest;
1933 if (is_page_fault(vect_info)) {
1934 printk(KERN_DEBUG "inject_page_fault: "
1935 "double fault 0x%lx @ 0x%lx\n",
1936 addr, vmcs_readl(GUEST_RIP));
1937 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1938 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1939 DF_VECTOR |
1940 INTR_TYPE_EXCEPTION |
1941 INTR_INFO_DELIEVER_CODE_MASK |
1942 INTR_INFO_VALID_MASK);
1943 return;
1945 vcpu->cr2 = addr;
1946 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1947 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1948 PF_VECTOR |
1949 INTR_TYPE_EXCEPTION |
1950 INTR_INFO_DELIEVER_CODE_MASK |
1951 INTR_INFO_VALID_MASK);
1955 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1957 if (vcpu->vmcs) {
1958 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1959 free_vmcs(vcpu->vmcs);
1960 vcpu->vmcs = NULL;
1964 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1966 vmx_free_vmcs(vcpu);
1969 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1971 struct vmcs *vmcs;
1973 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1974 if (!vcpu->guest_msrs)
1975 return -ENOMEM;
1977 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1978 if (!vcpu->host_msrs)
1979 goto out_free_guest_msrs;
1981 vmcs = alloc_vmcs();
1982 if (!vmcs)
1983 goto out_free_msrs;
1985 vmcs_clear(vmcs);
1986 vcpu->vmcs = vmcs;
1987 vcpu->launched = 0;
1989 return 0;
1991 out_free_msrs:
1992 kfree(vcpu->host_msrs);
1993 vcpu->host_msrs = NULL;
1995 out_free_guest_msrs:
1996 kfree(vcpu->guest_msrs);
1997 vcpu->guest_msrs = NULL;
1999 return -ENOMEM;
2002 static struct kvm_arch_ops vmx_arch_ops = {
2003 .cpu_has_kvm_support = cpu_has_kvm_support,
2004 .disabled_by_bios = vmx_disabled_by_bios,
2005 .hardware_setup = hardware_setup,
2006 .hardware_unsetup = hardware_unsetup,
2007 .hardware_enable = hardware_enable,
2008 .hardware_disable = hardware_disable,
2010 .vcpu_create = vmx_create_vcpu,
2011 .vcpu_free = vmx_free_vcpu,
2013 .vcpu_load = vmx_vcpu_load,
2014 .vcpu_put = vmx_vcpu_put,
2016 .set_guest_debug = set_guest_debug,
2017 .get_msr = vmx_get_msr,
2018 .set_msr = vmx_set_msr,
2019 .get_segment_base = vmx_get_segment_base,
2020 .get_segment = vmx_get_segment,
2021 .set_segment = vmx_set_segment,
2022 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2023 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2024 .set_cr0 = vmx_set_cr0,
2025 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2026 .set_cr3 = vmx_set_cr3,
2027 .set_cr4 = vmx_set_cr4,
2028 #ifdef CONFIG_X86_64
2029 .set_efer = vmx_set_efer,
2030 #endif
2031 .get_idt = vmx_get_idt,
2032 .set_idt = vmx_set_idt,
2033 .get_gdt = vmx_get_gdt,
2034 .set_gdt = vmx_set_gdt,
2035 .cache_regs = vcpu_load_rsp_rip,
2036 .decache_regs = vcpu_put_rsp_rip,
2037 .get_rflags = vmx_get_rflags,
2038 .set_rflags = vmx_set_rflags,
2040 .tlb_flush = vmx_flush_tlb,
2041 .inject_page_fault = vmx_inject_page_fault,
2043 .inject_gp = vmx_inject_gp,
2045 .run = vmx_vcpu_run,
2046 .skip_emulated_instruction = skip_emulated_instruction,
2047 .vcpu_setup = vmx_vcpu_setup,
2050 static int __init vmx_init(void)
2052 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2055 static void __exit vmx_exit(void)
2057 kvm_exit_arch();
2060 module_init(vmx_init)
2061 module_exit(vmx_exit)