2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
73 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
74 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
76 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
77 struct pipe_buffer
*buf
)
82 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
83 struct pipe_buffer
*buf
)
88 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
89 struct pipe_buffer
*buf
)
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
98 .map
= generic_pipe_buf_map
,
99 .unmap
= generic_pipe_buf_unmap
,
100 .confirm
= generic_pipe_buf_confirm
,
101 .release
= sock_pipe_buf_release
,
102 .steal
= sock_pipe_buf_steal
,
103 .get
= sock_pipe_buf_get
,
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
113 * skb_over_panic - private function
118 * Out of line support code for skb_put(). Not user callable.
120 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
122 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
125 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
126 skb
->dev
? skb
->dev
->name
: "<NULL>");
131 * skb_under_panic - private function
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
141 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
144 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
145 skb
->dev
? skb
->dev
->name
: "<NULL>");
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
171 int fclone
, int node
)
173 struct kmem_cache
*cache
;
174 struct skb_shared_info
*shinfo
;
178 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
181 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
186 size
= SKB_DATA_ALIGN(size
);
187 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
191 prefetchw(data
+ size
);
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
198 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
199 skb
->truesize
= size
+ sizeof(struct sk_buff
);
200 atomic_set(&skb
->users
, 1);
203 skb_reset_tail_pointer(skb
);
204 skb
->end
= skb
->tail
+ size
;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 skb
->mac_header
= ~0U;
209 /* make sure we initialize shinfo sequentially */
210 shinfo
= skb_shinfo(skb
);
211 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
212 atomic_set(&shinfo
->dataref
, 1);
215 struct sk_buff
*child
= skb
+ 1;
216 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
218 kmemcheck_annotate_bitfield(child
, flags1
);
219 kmemcheck_annotate_bitfield(child
, flags2
);
220 skb
->fclone
= SKB_FCLONE_ORIG
;
221 atomic_set(fclone_ref
, 1);
223 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
228 kmem_cache_free(cache
, skb
);
232 EXPORT_SYMBOL(__alloc_skb
);
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
245 * %NULL is returned if there is no free memory.
247 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
248 unsigned int length
, gfp_t gfp_mask
)
252 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
254 skb_reserve(skb
, NET_SKB_PAD
);
259 EXPORT_SYMBOL(__netdev_alloc_skb
);
261 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
264 skb_fill_page_desc(skb
, i
, page
, off
, size
);
266 skb
->data_len
+= size
;
267 skb
->truesize
+= size
;
269 EXPORT_SYMBOL(skb_add_rx_frag
);
272 * dev_alloc_skb - allocate an skbuff for receiving
273 * @length: length to allocate
275 * Allocate a new &sk_buff and assign it a usage count of one. The
276 * buffer has unspecified headroom built in. Users should allocate
277 * the headroom they think they need without accounting for the
278 * built in space. The built in space is used for optimisations.
280 * %NULL is returned if there is no free memory. Although this function
281 * allocates memory it can be called from an interrupt.
283 struct sk_buff
*dev_alloc_skb(unsigned int length
)
286 * There is more code here than it seems:
287 * __dev_alloc_skb is an inline
289 return __dev_alloc_skb(length
, GFP_ATOMIC
);
291 EXPORT_SYMBOL(dev_alloc_skb
);
293 static void skb_drop_list(struct sk_buff
**listp
)
295 struct sk_buff
*list
= *listp
;
300 struct sk_buff
*this = list
;
306 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
308 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
311 static void skb_clone_fraglist(struct sk_buff
*skb
)
313 struct sk_buff
*list
;
315 skb_walk_frags(skb
, list
)
319 static void skb_release_data(struct sk_buff
*skb
)
322 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
323 &skb_shinfo(skb
)->dataref
)) {
324 if (skb_shinfo(skb
)->nr_frags
) {
326 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
327 put_page(skb_shinfo(skb
)->frags
[i
].page
);
330 if (skb_has_frag_list(skb
))
331 skb_drop_fraglist(skb
);
338 * Free an skbuff by memory without cleaning the state.
340 static void kfree_skbmem(struct sk_buff
*skb
)
342 struct sk_buff
*other
;
343 atomic_t
*fclone_ref
;
345 switch (skb
->fclone
) {
346 case SKB_FCLONE_UNAVAILABLE
:
347 kmem_cache_free(skbuff_head_cache
, skb
);
350 case SKB_FCLONE_ORIG
:
351 fclone_ref
= (atomic_t
*) (skb
+ 2);
352 if (atomic_dec_and_test(fclone_ref
))
353 kmem_cache_free(skbuff_fclone_cache
, skb
);
356 case SKB_FCLONE_CLONE
:
357 fclone_ref
= (atomic_t
*) (skb
+ 1);
360 /* The clone portion is available for
361 * fast-cloning again.
363 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
365 if (atomic_dec_and_test(fclone_ref
))
366 kmem_cache_free(skbuff_fclone_cache
, other
);
371 static void skb_release_head_state(struct sk_buff
*skb
)
375 secpath_put(skb
->sp
);
377 if (skb
->destructor
) {
379 skb
->destructor(skb
);
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 nf_conntrack_put(skb
->nfct
);
383 nf_conntrack_put_reasm(skb
->nfct_reasm
);
385 #ifdef CONFIG_BRIDGE_NETFILTER
386 nf_bridge_put(skb
->nf_bridge
);
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
391 #ifdef CONFIG_NET_CLS_ACT
397 /* Free everything but the sk_buff shell. */
398 static void skb_release_all(struct sk_buff
*skb
)
400 skb_release_head_state(skb
);
401 skb_release_data(skb
);
405 * __kfree_skb - private function
408 * Free an sk_buff. Release anything attached to the buffer.
409 * Clean the state. This is an internal helper function. Users should
410 * always call kfree_skb
413 void __kfree_skb(struct sk_buff
*skb
)
415 skb_release_all(skb
);
418 EXPORT_SYMBOL(__kfree_skb
);
421 * kfree_skb - free an sk_buff
422 * @skb: buffer to free
424 * Drop a reference to the buffer and free it if the usage count has
427 void kfree_skb(struct sk_buff
*skb
)
431 if (likely(atomic_read(&skb
->users
) == 1))
433 else if (likely(!atomic_dec_and_test(&skb
->users
)))
435 trace_kfree_skb(skb
, __builtin_return_address(0));
438 EXPORT_SYMBOL(kfree_skb
);
441 * consume_skb - free an skbuff
442 * @skb: buffer to free
444 * Drop a ref to the buffer and free it if the usage count has hit zero
445 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
446 * is being dropped after a failure and notes that
448 void consume_skb(struct sk_buff
*skb
)
452 if (likely(atomic_read(&skb
->users
) == 1))
454 else if (likely(!atomic_dec_and_test(&skb
->users
)))
456 trace_consume_skb(skb
);
459 EXPORT_SYMBOL(consume_skb
);
462 * skb_recycle_check - check if skb can be reused for receive
464 * @skb_size: minimum receive buffer size
466 * Checks that the skb passed in is not shared or cloned, and
467 * that it is linear and its head portion at least as large as
468 * skb_size so that it can be recycled as a receive buffer.
469 * If these conditions are met, this function does any necessary
470 * reference count dropping and cleans up the skbuff as if it
471 * just came from __alloc_skb().
473 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
475 struct skb_shared_info
*shinfo
;
480 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
483 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
484 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
487 if (skb_shared(skb
) || skb_cloned(skb
))
490 skb_release_head_state(skb
);
492 shinfo
= skb_shinfo(skb
);
493 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
494 atomic_set(&shinfo
->dataref
, 1);
496 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
497 skb
->data
= skb
->head
+ NET_SKB_PAD
;
498 skb_reset_tail_pointer(skb
);
502 EXPORT_SYMBOL(skb_recycle_check
);
504 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
506 new->tstamp
= old
->tstamp
;
508 new->transport_header
= old
->transport_header
;
509 new->network_header
= old
->network_header
;
510 new->mac_header
= old
->mac_header
;
511 skb_dst_copy(new, old
);
512 new->rxhash
= old
->rxhash
;
514 new->sp
= secpath_get(old
->sp
);
516 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
517 new->csum
= old
->csum
;
518 new->local_df
= old
->local_df
;
519 new->pkt_type
= old
->pkt_type
;
520 new->ip_summed
= old
->ip_summed
;
521 skb_copy_queue_mapping(new, old
);
522 new->priority
= old
->priority
;
523 new->deliver_no_wcard
= old
->deliver_no_wcard
;
524 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
525 new->ipvs_property
= old
->ipvs_property
;
527 new->protocol
= old
->protocol
;
528 new->mark
= old
->mark
;
529 new->skb_iif
= old
->skb_iif
;
531 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
532 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
533 new->nf_trace
= old
->nf_trace
;
535 #ifdef CONFIG_NET_SCHED
536 new->tc_index
= old
->tc_index
;
537 #ifdef CONFIG_NET_CLS_ACT
538 new->tc_verd
= old
->tc_verd
;
541 new->vlan_tci
= old
->vlan_tci
;
543 skb_copy_secmark(new, old
);
547 * You should not add any new code to this function. Add it to
548 * __copy_skb_header above instead.
550 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
552 #define C(x) n->x = skb->x
554 n
->next
= n
->prev
= NULL
;
556 __copy_skb_header(n
, skb
);
561 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
564 n
->destructor
= NULL
;
570 atomic_set(&n
->users
, 1);
572 atomic_inc(&(skb_shinfo(skb
)->dataref
));
580 * skb_morph - morph one skb into another
581 * @dst: the skb to receive the contents
582 * @src: the skb to supply the contents
584 * This is identical to skb_clone except that the target skb is
585 * supplied by the user.
587 * The target skb is returned upon exit.
589 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
591 skb_release_all(dst
);
592 return __skb_clone(dst
, src
);
594 EXPORT_SYMBOL_GPL(skb_morph
);
597 * skb_clone - duplicate an sk_buff
598 * @skb: buffer to clone
599 * @gfp_mask: allocation priority
601 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
602 * copies share the same packet data but not structure. The new
603 * buffer has a reference count of 1. If the allocation fails the
604 * function returns %NULL otherwise the new buffer is returned.
606 * If this function is called from an interrupt gfp_mask() must be
610 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
615 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
616 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
617 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
618 n
->fclone
= SKB_FCLONE_CLONE
;
619 atomic_inc(fclone_ref
);
621 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
625 kmemcheck_annotate_bitfield(n
, flags1
);
626 kmemcheck_annotate_bitfield(n
, flags2
);
627 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
630 return __skb_clone(n
, skb
);
632 EXPORT_SYMBOL(skb_clone
);
634 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
636 #ifndef NET_SKBUFF_DATA_USES_OFFSET
638 * Shift between the two data areas in bytes
640 unsigned long offset
= new->data
- old
->data
;
643 __copy_skb_header(new, old
);
645 #ifndef NET_SKBUFF_DATA_USES_OFFSET
646 /* {transport,network,mac}_header are relative to skb->head */
647 new->transport_header
+= offset
;
648 new->network_header
+= offset
;
649 if (skb_mac_header_was_set(new))
650 new->mac_header
+= offset
;
652 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
653 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
654 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
658 * skb_copy - create private copy of an sk_buff
659 * @skb: buffer to copy
660 * @gfp_mask: allocation priority
662 * Make a copy of both an &sk_buff and its data. This is used when the
663 * caller wishes to modify the data and needs a private copy of the
664 * data to alter. Returns %NULL on failure or the pointer to the buffer
665 * on success. The returned buffer has a reference count of 1.
667 * As by-product this function converts non-linear &sk_buff to linear
668 * one, so that &sk_buff becomes completely private and caller is allowed
669 * to modify all the data of returned buffer. This means that this
670 * function is not recommended for use in circumstances when only
671 * header is going to be modified. Use pskb_copy() instead.
674 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
676 int headerlen
= skb_headroom(skb
);
677 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
678 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
683 /* Set the data pointer */
684 skb_reserve(n
, headerlen
);
685 /* Set the tail pointer and length */
686 skb_put(n
, skb
->len
);
688 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
691 copy_skb_header(n
, skb
);
694 EXPORT_SYMBOL(skb_copy
);
697 * pskb_copy - create copy of an sk_buff with private head.
698 * @skb: buffer to copy
699 * @gfp_mask: allocation priority
701 * Make a copy of both an &sk_buff and part of its data, located
702 * in header. Fragmented data remain shared. This is used when
703 * the caller wishes to modify only header of &sk_buff and needs
704 * private copy of the header to alter. Returns %NULL on failure
705 * or the pointer to the buffer on success.
706 * The returned buffer has a reference count of 1.
709 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
711 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
712 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
717 /* Set the data pointer */
718 skb_reserve(n
, skb_headroom(skb
));
719 /* Set the tail pointer and length */
720 skb_put(n
, skb_headlen(skb
));
722 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
724 n
->truesize
+= skb
->data_len
;
725 n
->data_len
= skb
->data_len
;
728 if (skb_shinfo(skb
)->nr_frags
) {
731 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
732 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
733 get_page(skb_shinfo(n
)->frags
[i
].page
);
735 skb_shinfo(n
)->nr_frags
= i
;
738 if (skb_has_frag_list(skb
)) {
739 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
740 skb_clone_fraglist(n
);
743 copy_skb_header(n
, skb
);
747 EXPORT_SYMBOL(pskb_copy
);
750 * pskb_expand_head - reallocate header of &sk_buff
751 * @skb: buffer to reallocate
752 * @nhead: room to add at head
753 * @ntail: room to add at tail
754 * @gfp_mask: allocation priority
756 * Expands (or creates identical copy, if &nhead and &ntail are zero)
757 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
758 * reference count of 1. Returns zero in the case of success or error,
759 * if expansion failed. In the last case, &sk_buff is not changed.
761 * All the pointers pointing into skb header may change and must be
762 * reloaded after call to this function.
765 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
770 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
779 size
= SKB_DATA_ALIGN(size
);
781 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
785 /* Copy only real data... and, alas, header. This should be
786 * optimized for the cases when header is void.
788 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
790 memcpy((struct skb_shared_info
*)(data
+ size
),
792 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
794 /* Check if we can avoid taking references on fragments if we own
795 * the last reference on skb->head. (see skb_release_data())
800 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
802 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
808 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
809 get_page(skb_shinfo(skb
)->frags
[i
].page
);
811 if (skb_has_frag_list(skb
))
812 skb_clone_fraglist(skb
);
814 skb_release_data(skb
);
816 off
= (data
+ nhead
) - skb
->head
;
820 #ifdef NET_SKBUFF_DATA_USES_OFFSET
824 skb
->end
= skb
->head
+ size
;
826 /* {transport,network,mac}_header and tail are relative to skb->head */
828 skb
->transport_header
+= off
;
829 skb
->network_header
+= off
;
830 if (skb_mac_header_was_set(skb
))
831 skb
->mac_header
+= off
;
832 /* Only adjust this if it actually is csum_start rather than csum */
833 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
834 skb
->csum_start
+= nhead
;
838 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
844 EXPORT_SYMBOL(pskb_expand_head
);
846 /* Make private copy of skb with writable head and some headroom */
848 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
850 struct sk_buff
*skb2
;
851 int delta
= headroom
- skb_headroom(skb
);
854 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
856 skb2
= skb_clone(skb
, GFP_ATOMIC
);
857 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
865 EXPORT_SYMBOL(skb_realloc_headroom
);
868 * skb_copy_expand - copy and expand sk_buff
869 * @skb: buffer to copy
870 * @newheadroom: new free bytes at head
871 * @newtailroom: new free bytes at tail
872 * @gfp_mask: allocation priority
874 * Make a copy of both an &sk_buff and its data and while doing so
875 * allocate additional space.
877 * This is used when the caller wishes to modify the data and needs a
878 * private copy of the data to alter as well as more space for new fields.
879 * Returns %NULL on failure or the pointer to the buffer
880 * on success. The returned buffer has a reference count of 1.
882 * You must pass %GFP_ATOMIC as the allocation priority if this function
883 * is called from an interrupt.
885 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
886 int newheadroom
, int newtailroom
,
890 * Allocate the copy buffer
892 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
894 int oldheadroom
= skb_headroom(skb
);
895 int head_copy_len
, head_copy_off
;
901 skb_reserve(n
, newheadroom
);
903 /* Set the tail pointer and length */
904 skb_put(n
, skb
->len
);
906 head_copy_len
= oldheadroom
;
908 if (newheadroom
<= head_copy_len
)
909 head_copy_len
= newheadroom
;
911 head_copy_off
= newheadroom
- head_copy_len
;
913 /* Copy the linear header and data. */
914 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
915 skb
->len
+ head_copy_len
))
918 copy_skb_header(n
, skb
);
920 off
= newheadroom
- oldheadroom
;
921 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
922 n
->csum_start
+= off
;
923 #ifdef NET_SKBUFF_DATA_USES_OFFSET
924 n
->transport_header
+= off
;
925 n
->network_header
+= off
;
926 if (skb_mac_header_was_set(skb
))
927 n
->mac_header
+= off
;
932 EXPORT_SYMBOL(skb_copy_expand
);
935 * skb_pad - zero pad the tail of an skb
936 * @skb: buffer to pad
939 * Ensure that a buffer is followed by a padding area that is zero
940 * filled. Used by network drivers which may DMA or transfer data
941 * beyond the buffer end onto the wire.
943 * May return error in out of memory cases. The skb is freed on error.
946 int skb_pad(struct sk_buff
*skb
, int pad
)
951 /* If the skbuff is non linear tailroom is always zero.. */
952 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
953 memset(skb
->data
+skb
->len
, 0, pad
);
957 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
958 if (likely(skb_cloned(skb
) || ntail
> 0)) {
959 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
964 /* FIXME: The use of this function with non-linear skb's really needs
967 err
= skb_linearize(skb
);
971 memset(skb
->data
+ skb
->len
, 0, pad
);
978 EXPORT_SYMBOL(skb_pad
);
981 * skb_put - add data to a buffer
982 * @skb: buffer to use
983 * @len: amount of data to add
985 * This function extends the used data area of the buffer. If this would
986 * exceed the total buffer size the kernel will panic. A pointer to the
987 * first byte of the extra data is returned.
989 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
991 unsigned char *tmp
= skb_tail_pointer(skb
);
992 SKB_LINEAR_ASSERT(skb
);
995 if (unlikely(skb
->tail
> skb
->end
))
996 skb_over_panic(skb
, len
, __builtin_return_address(0));
999 EXPORT_SYMBOL(skb_put
);
1002 * skb_push - add data to the start of a buffer
1003 * @skb: buffer to use
1004 * @len: amount of data to add
1006 * This function extends the used data area of the buffer at the buffer
1007 * start. If this would exceed the total buffer headroom the kernel will
1008 * panic. A pointer to the first byte of the extra data is returned.
1010 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1014 if (unlikely(skb
->data
<skb
->head
))
1015 skb_under_panic(skb
, len
, __builtin_return_address(0));
1018 EXPORT_SYMBOL(skb_push
);
1021 * skb_pull - remove data from the start of a buffer
1022 * @skb: buffer to use
1023 * @len: amount of data to remove
1025 * This function removes data from the start of a buffer, returning
1026 * the memory to the headroom. A pointer to the next data in the buffer
1027 * is returned. Once the data has been pulled future pushes will overwrite
1030 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1032 return skb_pull_inline(skb
, len
);
1034 EXPORT_SYMBOL(skb_pull
);
1037 * skb_trim - remove end from a buffer
1038 * @skb: buffer to alter
1041 * Cut the length of a buffer down by removing data from the tail. If
1042 * the buffer is already under the length specified it is not modified.
1043 * The skb must be linear.
1045 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1048 __skb_trim(skb
, len
);
1050 EXPORT_SYMBOL(skb_trim
);
1052 /* Trims skb to length len. It can change skb pointers.
1055 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1057 struct sk_buff
**fragp
;
1058 struct sk_buff
*frag
;
1059 int offset
= skb_headlen(skb
);
1060 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1064 if (skb_cloned(skb
) &&
1065 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1072 for (; i
< nfrags
; i
++) {
1073 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1080 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1083 skb_shinfo(skb
)->nr_frags
= i
;
1085 for (; i
< nfrags
; i
++)
1086 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1088 if (skb_has_frag_list(skb
))
1089 skb_drop_fraglist(skb
);
1093 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1094 fragp
= &frag
->next
) {
1095 int end
= offset
+ frag
->len
;
1097 if (skb_shared(frag
)) {
1098 struct sk_buff
*nfrag
;
1100 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1101 if (unlikely(!nfrag
))
1104 nfrag
->next
= frag
->next
;
1116 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1120 skb_drop_list(&frag
->next
);
1125 if (len
> skb_headlen(skb
)) {
1126 skb
->data_len
-= skb
->len
- len
;
1131 skb_set_tail_pointer(skb
, len
);
1136 EXPORT_SYMBOL(___pskb_trim
);
1139 * __pskb_pull_tail - advance tail of skb header
1140 * @skb: buffer to reallocate
1141 * @delta: number of bytes to advance tail
1143 * The function makes a sense only on a fragmented &sk_buff,
1144 * it expands header moving its tail forward and copying necessary
1145 * data from fragmented part.
1147 * &sk_buff MUST have reference count of 1.
1149 * Returns %NULL (and &sk_buff does not change) if pull failed
1150 * or value of new tail of skb in the case of success.
1152 * All the pointers pointing into skb header may change and must be
1153 * reloaded after call to this function.
1156 /* Moves tail of skb head forward, copying data from fragmented part,
1157 * when it is necessary.
1158 * 1. It may fail due to malloc failure.
1159 * 2. It may change skb pointers.
1161 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1163 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1165 /* If skb has not enough free space at tail, get new one
1166 * plus 128 bytes for future expansions. If we have enough
1167 * room at tail, reallocate without expansion only if skb is cloned.
1169 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1171 if (eat
> 0 || skb_cloned(skb
)) {
1172 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1177 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1180 /* Optimization: no fragments, no reasons to preestimate
1181 * size of pulled pages. Superb.
1183 if (!skb_has_frag_list(skb
))
1186 /* Estimate size of pulled pages. */
1188 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1189 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1191 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1194 /* If we need update frag list, we are in troubles.
1195 * Certainly, it possible to add an offset to skb data,
1196 * but taking into account that pulling is expected to
1197 * be very rare operation, it is worth to fight against
1198 * further bloating skb head and crucify ourselves here instead.
1199 * Pure masohism, indeed. 8)8)
1202 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1203 struct sk_buff
*clone
= NULL
;
1204 struct sk_buff
*insp
= NULL
;
1209 if (list
->len
<= eat
) {
1210 /* Eaten as whole. */
1215 /* Eaten partially. */
1217 if (skb_shared(list
)) {
1218 /* Sucks! We need to fork list. :-( */
1219 clone
= skb_clone(list
, GFP_ATOMIC
);
1225 /* This may be pulled without
1229 if (!pskb_pull(list
, eat
)) {
1237 /* Free pulled out fragments. */
1238 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1239 skb_shinfo(skb
)->frag_list
= list
->next
;
1242 /* And insert new clone at head. */
1245 skb_shinfo(skb
)->frag_list
= clone
;
1248 /* Success! Now we may commit changes to skb data. */
1253 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1254 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1255 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1256 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1258 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1260 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1261 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1267 skb_shinfo(skb
)->nr_frags
= k
;
1270 skb
->data_len
-= delta
;
1272 return skb_tail_pointer(skb
);
1274 EXPORT_SYMBOL(__pskb_pull_tail
);
1276 /* Copy some data bits from skb to kernel buffer. */
1278 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1280 int start
= skb_headlen(skb
);
1281 struct sk_buff
*frag_iter
;
1284 if (offset
> (int)skb
->len
- len
)
1288 if ((copy
= start
- offset
) > 0) {
1291 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1292 if ((len
-= copy
) == 0)
1298 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1301 WARN_ON(start
> offset
+ len
);
1303 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1304 if ((copy
= end
- offset
) > 0) {
1310 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1312 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1313 offset
- start
, copy
);
1314 kunmap_skb_frag(vaddr
);
1316 if ((len
-= copy
) == 0)
1324 skb_walk_frags(skb
, frag_iter
) {
1327 WARN_ON(start
> offset
+ len
);
1329 end
= start
+ frag_iter
->len
;
1330 if ((copy
= end
- offset
) > 0) {
1333 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1335 if ((len
-= copy
) == 0)
1348 EXPORT_SYMBOL(skb_copy_bits
);
1351 * Callback from splice_to_pipe(), if we need to release some pages
1352 * at the end of the spd in case we error'ed out in filling the pipe.
1354 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1356 put_page(spd
->pages
[i
]);
1359 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1360 unsigned int *offset
,
1361 struct sk_buff
*skb
, struct sock
*sk
)
1363 struct page
*p
= sk
->sk_sndmsg_page
;
1368 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1372 off
= sk
->sk_sndmsg_off
= 0;
1373 /* hold one ref to this page until it's full */
1377 off
= sk
->sk_sndmsg_off
;
1378 mlen
= PAGE_SIZE
- off
;
1379 if (mlen
< 64 && mlen
< *len
) {
1384 *len
= min_t(unsigned int, *len
, mlen
);
1387 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1388 sk
->sk_sndmsg_off
+= *len
;
1396 * Fill page/offset/length into spd, if it can hold more pages.
1398 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1399 struct pipe_inode_info
*pipe
, struct page
*page
,
1400 unsigned int *len
, unsigned int offset
,
1401 struct sk_buff
*skb
, int linear
,
1404 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1408 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1414 spd
->pages
[spd
->nr_pages
] = page
;
1415 spd
->partial
[spd
->nr_pages
].len
= *len
;
1416 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1422 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1423 unsigned int *plen
, unsigned int off
)
1428 n
= *poff
/ PAGE_SIZE
;
1430 *page
= nth_page(*page
, n
);
1432 *poff
= *poff
% PAGE_SIZE
;
1436 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1437 unsigned int plen
, unsigned int *off
,
1438 unsigned int *len
, struct sk_buff
*skb
,
1439 struct splice_pipe_desc
*spd
, int linear
,
1441 struct pipe_inode_info
*pipe
)
1446 /* skip this segment if already processed */
1452 /* ignore any bits we already processed */
1454 __segment_seek(&page
, &poff
, &plen
, *off
);
1459 unsigned int flen
= min(*len
, plen
);
1461 /* the linear region may spread across several pages */
1462 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1464 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1467 __segment_seek(&page
, &poff
, &plen
, flen
);
1470 } while (*len
&& plen
);
1476 * Map linear and fragment data from the skb to spd. It reports failure if the
1477 * pipe is full or if we already spliced the requested length.
1479 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1480 unsigned int *offset
, unsigned int *len
,
1481 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1486 * map the linear part
1488 if (__splice_segment(virt_to_page(skb
->data
),
1489 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1491 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1495 * then map the fragments
1497 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1498 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1500 if (__splice_segment(f
->page
, f
->page_offset
, f
->size
,
1501 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1509 * Map data from the skb to a pipe. Should handle both the linear part,
1510 * the fragments, and the frag list. It does NOT handle frag lists within
1511 * the frag list, if such a thing exists. We'd probably need to recurse to
1512 * handle that cleanly.
1514 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1515 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1518 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1519 struct page
*pages
[PIPE_DEF_BUFFERS
];
1520 struct splice_pipe_desc spd
= {
1524 .ops
= &sock_pipe_buf_ops
,
1525 .spd_release
= sock_spd_release
,
1527 struct sk_buff
*frag_iter
;
1528 struct sock
*sk
= skb
->sk
;
1531 if (splice_grow_spd(pipe
, &spd
))
1535 * __skb_splice_bits() only fails if the output has no room left,
1536 * so no point in going over the frag_list for the error case.
1538 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1544 * now see if we have a frag_list to map
1546 skb_walk_frags(skb
, frag_iter
) {
1549 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1556 * Drop the socket lock, otherwise we have reverse
1557 * locking dependencies between sk_lock and i_mutex
1558 * here as compared to sendfile(). We enter here
1559 * with the socket lock held, and splice_to_pipe() will
1560 * grab the pipe inode lock. For sendfile() emulation,
1561 * we call into ->sendpage() with the i_mutex lock held
1562 * and networking will grab the socket lock.
1565 ret
= splice_to_pipe(pipe
, &spd
);
1569 splice_shrink_spd(pipe
, &spd
);
1574 * skb_store_bits - store bits from kernel buffer to skb
1575 * @skb: destination buffer
1576 * @offset: offset in destination
1577 * @from: source buffer
1578 * @len: number of bytes to copy
1580 * Copy the specified number of bytes from the source buffer to the
1581 * destination skb. This function handles all the messy bits of
1582 * traversing fragment lists and such.
1585 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1587 int start
= skb_headlen(skb
);
1588 struct sk_buff
*frag_iter
;
1591 if (offset
> (int)skb
->len
- len
)
1594 if ((copy
= start
- offset
) > 0) {
1597 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1598 if ((len
-= copy
) == 0)
1604 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1605 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1608 WARN_ON(start
> offset
+ len
);
1610 end
= start
+ frag
->size
;
1611 if ((copy
= end
- offset
) > 0) {
1617 vaddr
= kmap_skb_frag(frag
);
1618 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1620 kunmap_skb_frag(vaddr
);
1622 if ((len
-= copy
) == 0)
1630 skb_walk_frags(skb
, frag_iter
) {
1633 WARN_ON(start
> offset
+ len
);
1635 end
= start
+ frag_iter
->len
;
1636 if ((copy
= end
- offset
) > 0) {
1639 if (skb_store_bits(frag_iter
, offset
- start
,
1642 if ((len
-= copy
) == 0)
1655 EXPORT_SYMBOL(skb_store_bits
);
1657 /* Checksum skb data. */
1659 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1660 int len
, __wsum csum
)
1662 int start
= skb_headlen(skb
);
1663 int i
, copy
= start
- offset
;
1664 struct sk_buff
*frag_iter
;
1667 /* Checksum header. */
1671 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1672 if ((len
-= copy
) == 0)
1678 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1681 WARN_ON(start
> offset
+ len
);
1683 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1684 if ((copy
= end
- offset
) > 0) {
1687 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1691 vaddr
= kmap_skb_frag(frag
);
1692 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1693 offset
- start
, copy
, 0);
1694 kunmap_skb_frag(vaddr
);
1695 csum
= csum_block_add(csum
, csum2
, pos
);
1704 skb_walk_frags(skb
, frag_iter
) {
1707 WARN_ON(start
> offset
+ len
);
1709 end
= start
+ frag_iter
->len
;
1710 if ((copy
= end
- offset
) > 0) {
1714 csum2
= skb_checksum(frag_iter
, offset
- start
,
1716 csum
= csum_block_add(csum
, csum2
, pos
);
1717 if ((len
-= copy
) == 0)
1728 EXPORT_SYMBOL(skb_checksum
);
1730 /* Both of above in one bottle. */
1732 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1733 u8
*to
, int len
, __wsum csum
)
1735 int start
= skb_headlen(skb
);
1736 int i
, copy
= start
- offset
;
1737 struct sk_buff
*frag_iter
;
1744 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1746 if ((len
-= copy
) == 0)
1753 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1756 WARN_ON(start
> offset
+ len
);
1758 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1759 if ((copy
= end
- offset
) > 0) {
1762 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1766 vaddr
= kmap_skb_frag(frag
);
1767 csum2
= csum_partial_copy_nocheck(vaddr
+
1771 kunmap_skb_frag(vaddr
);
1772 csum
= csum_block_add(csum
, csum2
, pos
);
1782 skb_walk_frags(skb
, frag_iter
) {
1786 WARN_ON(start
> offset
+ len
);
1788 end
= start
+ frag_iter
->len
;
1789 if ((copy
= end
- offset
) > 0) {
1792 csum2
= skb_copy_and_csum_bits(frag_iter
,
1795 csum
= csum_block_add(csum
, csum2
, pos
);
1796 if ((len
-= copy
) == 0)
1807 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1809 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1814 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1815 csstart
= skb
->csum_start
- skb_headroom(skb
);
1817 csstart
= skb_headlen(skb
);
1819 BUG_ON(csstart
> skb_headlen(skb
));
1821 skb_copy_from_linear_data(skb
, to
, csstart
);
1824 if (csstart
!= skb
->len
)
1825 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1826 skb
->len
- csstart
, 0);
1828 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1829 long csstuff
= csstart
+ skb
->csum_offset
;
1831 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1834 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1837 * skb_dequeue - remove from the head of the queue
1838 * @list: list to dequeue from
1840 * Remove the head of the list. The list lock is taken so the function
1841 * may be used safely with other locking list functions. The head item is
1842 * returned or %NULL if the list is empty.
1845 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1847 unsigned long flags
;
1848 struct sk_buff
*result
;
1850 spin_lock_irqsave(&list
->lock
, flags
);
1851 result
= __skb_dequeue(list
);
1852 spin_unlock_irqrestore(&list
->lock
, flags
);
1855 EXPORT_SYMBOL(skb_dequeue
);
1858 * skb_dequeue_tail - remove from the tail of the queue
1859 * @list: list to dequeue from
1861 * Remove the tail of the list. The list lock is taken so the function
1862 * may be used safely with other locking list functions. The tail item is
1863 * returned or %NULL if the list is empty.
1865 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1867 unsigned long flags
;
1868 struct sk_buff
*result
;
1870 spin_lock_irqsave(&list
->lock
, flags
);
1871 result
= __skb_dequeue_tail(list
);
1872 spin_unlock_irqrestore(&list
->lock
, flags
);
1875 EXPORT_SYMBOL(skb_dequeue_tail
);
1878 * skb_queue_purge - empty a list
1879 * @list: list to empty
1881 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1882 * the list and one reference dropped. This function takes the list
1883 * lock and is atomic with respect to other list locking functions.
1885 void skb_queue_purge(struct sk_buff_head
*list
)
1887 struct sk_buff
*skb
;
1888 while ((skb
= skb_dequeue(list
)) != NULL
)
1891 EXPORT_SYMBOL(skb_queue_purge
);
1894 * skb_queue_head - queue a buffer at the list head
1895 * @list: list to use
1896 * @newsk: buffer to queue
1898 * Queue a buffer at the start of the list. This function takes the
1899 * list lock and can be used safely with other locking &sk_buff functions
1902 * A buffer cannot be placed on two lists at the same time.
1904 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1906 unsigned long flags
;
1908 spin_lock_irqsave(&list
->lock
, flags
);
1909 __skb_queue_head(list
, newsk
);
1910 spin_unlock_irqrestore(&list
->lock
, flags
);
1912 EXPORT_SYMBOL(skb_queue_head
);
1915 * skb_queue_tail - queue a buffer at the list tail
1916 * @list: list to use
1917 * @newsk: buffer to queue
1919 * Queue a buffer at the tail of the list. This function takes the
1920 * list lock and can be used safely with other locking &sk_buff functions
1923 * A buffer cannot be placed on two lists at the same time.
1925 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1927 unsigned long flags
;
1929 spin_lock_irqsave(&list
->lock
, flags
);
1930 __skb_queue_tail(list
, newsk
);
1931 spin_unlock_irqrestore(&list
->lock
, flags
);
1933 EXPORT_SYMBOL(skb_queue_tail
);
1936 * skb_unlink - remove a buffer from a list
1937 * @skb: buffer to remove
1938 * @list: list to use
1940 * Remove a packet from a list. The list locks are taken and this
1941 * function is atomic with respect to other list locked calls
1943 * You must know what list the SKB is on.
1945 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1947 unsigned long flags
;
1949 spin_lock_irqsave(&list
->lock
, flags
);
1950 __skb_unlink(skb
, list
);
1951 spin_unlock_irqrestore(&list
->lock
, flags
);
1953 EXPORT_SYMBOL(skb_unlink
);
1956 * skb_append - append a buffer
1957 * @old: buffer to insert after
1958 * @newsk: buffer to insert
1959 * @list: list to use
1961 * Place a packet after a given packet in a list. The list locks are taken
1962 * and this function is atomic with respect to other list locked calls.
1963 * A buffer cannot be placed on two lists at the same time.
1965 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1967 unsigned long flags
;
1969 spin_lock_irqsave(&list
->lock
, flags
);
1970 __skb_queue_after(list
, old
, newsk
);
1971 spin_unlock_irqrestore(&list
->lock
, flags
);
1973 EXPORT_SYMBOL(skb_append
);
1976 * skb_insert - insert a buffer
1977 * @old: buffer to insert before
1978 * @newsk: buffer to insert
1979 * @list: list to use
1981 * Place a packet before a given packet in a list. The list locks are
1982 * taken and this function is atomic with respect to other list locked
1985 * A buffer cannot be placed on two lists at the same time.
1987 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1989 unsigned long flags
;
1991 spin_lock_irqsave(&list
->lock
, flags
);
1992 __skb_insert(newsk
, old
->prev
, old
, list
);
1993 spin_unlock_irqrestore(&list
->lock
, flags
);
1995 EXPORT_SYMBOL(skb_insert
);
1997 static inline void skb_split_inside_header(struct sk_buff
*skb
,
1998 struct sk_buff
* skb1
,
1999 const u32 len
, const int pos
)
2003 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2005 /* And move data appendix as is. */
2006 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2007 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2009 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2010 skb_shinfo(skb
)->nr_frags
= 0;
2011 skb1
->data_len
= skb
->data_len
;
2012 skb1
->len
+= skb1
->data_len
;
2015 skb_set_tail_pointer(skb
, len
);
2018 static inline void skb_split_no_header(struct sk_buff
*skb
,
2019 struct sk_buff
* skb1
,
2020 const u32 len
, int pos
)
2023 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2025 skb_shinfo(skb
)->nr_frags
= 0;
2026 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2028 skb
->data_len
= len
- pos
;
2030 for (i
= 0; i
< nfrags
; i
++) {
2031 int size
= skb_shinfo(skb
)->frags
[i
].size
;
2033 if (pos
+ size
> len
) {
2034 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2038 * We have two variants in this case:
2039 * 1. Move all the frag to the second
2040 * part, if it is possible. F.e.
2041 * this approach is mandatory for TUX,
2042 * where splitting is expensive.
2043 * 2. Split is accurately. We make this.
2045 get_page(skb_shinfo(skb
)->frags
[i
].page
);
2046 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2047 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
2048 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
2049 skb_shinfo(skb
)->nr_frags
++;
2053 skb_shinfo(skb
)->nr_frags
++;
2056 skb_shinfo(skb1
)->nr_frags
= k
;
2060 * skb_split - Split fragmented skb to two parts at length len.
2061 * @skb: the buffer to split
2062 * @skb1: the buffer to receive the second part
2063 * @len: new length for skb
2065 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2067 int pos
= skb_headlen(skb
);
2069 if (len
< pos
) /* Split line is inside header. */
2070 skb_split_inside_header(skb
, skb1
, len
, pos
);
2071 else /* Second chunk has no header, nothing to copy. */
2072 skb_split_no_header(skb
, skb1
, len
, pos
);
2074 EXPORT_SYMBOL(skb_split
);
2076 /* Shifting from/to a cloned skb is a no-go.
2078 * Caller cannot keep skb_shinfo related pointers past calling here!
2080 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2082 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2086 * skb_shift - Shifts paged data partially from skb to another
2087 * @tgt: buffer into which tail data gets added
2088 * @skb: buffer from which the paged data comes from
2089 * @shiftlen: shift up to this many bytes
2091 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2092 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2093 * It's up to caller to free skb if everything was shifted.
2095 * If @tgt runs out of frags, the whole operation is aborted.
2097 * Skb cannot include anything else but paged data while tgt is allowed
2098 * to have non-paged data as well.
2100 * TODO: full sized shift could be optimized but that would need
2101 * specialized skb free'er to handle frags without up-to-date nr_frags.
2103 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2105 int from
, to
, merge
, todo
;
2106 struct skb_frag_struct
*fragfrom
, *fragto
;
2108 BUG_ON(shiftlen
> skb
->len
);
2109 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2113 to
= skb_shinfo(tgt
)->nr_frags
;
2114 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2116 /* Actual merge is delayed until the point when we know we can
2117 * commit all, so that we don't have to undo partial changes
2120 !skb_can_coalesce(tgt
, to
, fragfrom
->page
, fragfrom
->page_offset
)) {
2125 todo
-= fragfrom
->size
;
2127 if (skb_prepare_for_shift(skb
) ||
2128 skb_prepare_for_shift(tgt
))
2131 /* All previous frag pointers might be stale! */
2132 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2133 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2135 fragto
->size
+= shiftlen
;
2136 fragfrom
->size
-= shiftlen
;
2137 fragfrom
->page_offset
+= shiftlen
;
2145 /* Skip full, not-fitting skb to avoid expensive operations */
2146 if ((shiftlen
== skb
->len
) &&
2147 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2150 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2153 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2154 if (to
== MAX_SKB_FRAGS
)
2157 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2158 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2160 if (todo
>= fragfrom
->size
) {
2161 *fragto
= *fragfrom
;
2162 todo
-= fragfrom
->size
;
2167 get_page(fragfrom
->page
);
2168 fragto
->page
= fragfrom
->page
;
2169 fragto
->page_offset
= fragfrom
->page_offset
;
2170 fragto
->size
= todo
;
2172 fragfrom
->page_offset
+= todo
;
2173 fragfrom
->size
-= todo
;
2181 /* Ready to "commit" this state change to tgt */
2182 skb_shinfo(tgt
)->nr_frags
= to
;
2185 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2186 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2188 fragto
->size
+= fragfrom
->size
;
2189 put_page(fragfrom
->page
);
2192 /* Reposition in the original skb */
2194 while (from
< skb_shinfo(skb
)->nr_frags
)
2195 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2196 skb_shinfo(skb
)->nr_frags
= to
;
2198 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2201 /* Most likely the tgt won't ever need its checksum anymore, skb on
2202 * the other hand might need it if it needs to be resent
2204 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2205 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2207 /* Yak, is it really working this way? Some helper please? */
2208 skb
->len
-= shiftlen
;
2209 skb
->data_len
-= shiftlen
;
2210 skb
->truesize
-= shiftlen
;
2211 tgt
->len
+= shiftlen
;
2212 tgt
->data_len
+= shiftlen
;
2213 tgt
->truesize
+= shiftlen
;
2219 * skb_prepare_seq_read - Prepare a sequential read of skb data
2220 * @skb: the buffer to read
2221 * @from: lower offset of data to be read
2222 * @to: upper offset of data to be read
2223 * @st: state variable
2225 * Initializes the specified state variable. Must be called before
2226 * invoking skb_seq_read() for the first time.
2228 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2229 unsigned int to
, struct skb_seq_state
*st
)
2231 st
->lower_offset
= from
;
2232 st
->upper_offset
= to
;
2233 st
->root_skb
= st
->cur_skb
= skb
;
2234 st
->frag_idx
= st
->stepped_offset
= 0;
2235 st
->frag_data
= NULL
;
2237 EXPORT_SYMBOL(skb_prepare_seq_read
);
2240 * skb_seq_read - Sequentially read skb data
2241 * @consumed: number of bytes consumed by the caller so far
2242 * @data: destination pointer for data to be returned
2243 * @st: state variable
2245 * Reads a block of skb data at &consumed relative to the
2246 * lower offset specified to skb_prepare_seq_read(). Assigns
2247 * the head of the data block to &data and returns the length
2248 * of the block or 0 if the end of the skb data or the upper
2249 * offset has been reached.
2251 * The caller is not required to consume all of the data
2252 * returned, i.e. &consumed is typically set to the number
2253 * of bytes already consumed and the next call to
2254 * skb_seq_read() will return the remaining part of the block.
2256 * Note 1: The size of each block of data returned can be arbitary,
2257 * this limitation is the cost for zerocopy seqeuental
2258 * reads of potentially non linear data.
2260 * Note 2: Fragment lists within fragments are not implemented
2261 * at the moment, state->root_skb could be replaced with
2262 * a stack for this purpose.
2264 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2265 struct skb_seq_state
*st
)
2267 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2270 if (unlikely(abs_offset
>= st
->upper_offset
))
2274 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2276 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2277 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2278 return block_limit
- abs_offset
;
2281 if (st
->frag_idx
== 0 && !st
->frag_data
)
2282 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2284 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2285 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2286 block_limit
= frag
->size
+ st
->stepped_offset
;
2288 if (abs_offset
< block_limit
) {
2290 st
->frag_data
= kmap_skb_frag(frag
);
2292 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2293 (abs_offset
- st
->stepped_offset
);
2295 return block_limit
- abs_offset
;
2298 if (st
->frag_data
) {
2299 kunmap_skb_frag(st
->frag_data
);
2300 st
->frag_data
= NULL
;
2304 st
->stepped_offset
+= frag
->size
;
2307 if (st
->frag_data
) {
2308 kunmap_skb_frag(st
->frag_data
);
2309 st
->frag_data
= NULL
;
2312 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2313 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2316 } else if (st
->cur_skb
->next
) {
2317 st
->cur_skb
= st
->cur_skb
->next
;
2324 EXPORT_SYMBOL(skb_seq_read
);
2327 * skb_abort_seq_read - Abort a sequential read of skb data
2328 * @st: state variable
2330 * Must be called if skb_seq_read() was not called until it
2333 void skb_abort_seq_read(struct skb_seq_state
*st
)
2336 kunmap_skb_frag(st
->frag_data
);
2338 EXPORT_SYMBOL(skb_abort_seq_read
);
2340 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2342 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2343 struct ts_config
*conf
,
2344 struct ts_state
*state
)
2346 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2349 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2351 skb_abort_seq_read(TS_SKB_CB(state
));
2355 * skb_find_text - Find a text pattern in skb data
2356 * @skb: the buffer to look in
2357 * @from: search offset
2359 * @config: textsearch configuration
2360 * @state: uninitialized textsearch state variable
2362 * Finds a pattern in the skb data according to the specified
2363 * textsearch configuration. Use textsearch_next() to retrieve
2364 * subsequent occurrences of the pattern. Returns the offset
2365 * to the first occurrence or UINT_MAX if no match was found.
2367 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2368 unsigned int to
, struct ts_config
*config
,
2369 struct ts_state
*state
)
2373 config
->get_next_block
= skb_ts_get_next_block
;
2374 config
->finish
= skb_ts_finish
;
2376 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2378 ret
= textsearch_find(config
, state
);
2379 return (ret
<= to
- from
? ret
: UINT_MAX
);
2381 EXPORT_SYMBOL(skb_find_text
);
2384 * skb_append_datato_frags: - append the user data to a skb
2385 * @sk: sock structure
2386 * @skb: skb structure to be appened with user data.
2387 * @getfrag: call back function to be used for getting the user data
2388 * @from: pointer to user message iov
2389 * @length: length of the iov message
2391 * Description: This procedure append the user data in the fragment part
2392 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2394 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2395 int (*getfrag
)(void *from
, char *to
, int offset
,
2396 int len
, int odd
, struct sk_buff
*skb
),
2397 void *from
, int length
)
2400 skb_frag_t
*frag
= NULL
;
2401 struct page
*page
= NULL
;
2407 /* Return error if we don't have space for new frag */
2408 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2409 if (frg_cnt
>= MAX_SKB_FRAGS
)
2412 /* allocate a new page for next frag */
2413 page
= alloc_pages(sk
->sk_allocation
, 0);
2415 /* If alloc_page fails just return failure and caller will
2416 * free previous allocated pages by doing kfree_skb()
2421 /* initialize the next frag */
2422 sk
->sk_sndmsg_page
= page
;
2423 sk
->sk_sndmsg_off
= 0;
2424 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2425 skb
->truesize
+= PAGE_SIZE
;
2426 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2428 /* get the new initialized frag */
2429 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2430 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2432 /* copy the user data to page */
2433 left
= PAGE_SIZE
- frag
->page_offset
;
2434 copy
= (length
> left
)? left
: length
;
2436 ret
= getfrag(from
, (page_address(frag
->page
) +
2437 frag
->page_offset
+ frag
->size
),
2438 offset
, copy
, 0, skb
);
2442 /* copy was successful so update the size parameters */
2443 sk
->sk_sndmsg_off
+= copy
;
2446 skb
->data_len
+= copy
;
2450 } while (length
> 0);
2454 EXPORT_SYMBOL(skb_append_datato_frags
);
2457 * skb_pull_rcsum - pull skb and update receive checksum
2458 * @skb: buffer to update
2459 * @len: length of data pulled
2461 * This function performs an skb_pull on the packet and updates
2462 * the CHECKSUM_COMPLETE checksum. It should be used on
2463 * receive path processing instead of skb_pull unless you know
2464 * that the checksum difference is zero (e.g., a valid IP header)
2465 * or you are setting ip_summed to CHECKSUM_NONE.
2467 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2469 BUG_ON(len
> skb
->len
);
2471 BUG_ON(skb
->len
< skb
->data_len
);
2472 skb_postpull_rcsum(skb
, skb
->data
, len
);
2473 return skb
->data
+= len
;
2475 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2478 * skb_segment - Perform protocol segmentation on skb.
2479 * @skb: buffer to segment
2480 * @features: features for the output path (see dev->features)
2482 * This function performs segmentation on the given skb. It returns
2483 * a pointer to the first in a list of new skbs for the segments.
2484 * In case of error it returns ERR_PTR(err).
2486 struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
)
2488 struct sk_buff
*segs
= NULL
;
2489 struct sk_buff
*tail
= NULL
;
2490 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2491 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2492 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2493 unsigned int offset
= doffset
;
2494 unsigned int headroom
;
2496 int sg
= features
& NETIF_F_SG
;
2497 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2502 __skb_push(skb
, doffset
);
2503 headroom
= skb_headroom(skb
);
2504 pos
= skb_headlen(skb
);
2507 struct sk_buff
*nskb
;
2512 len
= skb
->len
- offset
;
2516 hsize
= skb_headlen(skb
) - offset
;
2519 if (hsize
> len
|| !sg
)
2522 if (!hsize
&& i
>= nfrags
) {
2523 BUG_ON(fskb
->len
!= len
);
2526 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2529 if (unlikely(!nskb
))
2532 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2533 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2538 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2540 skb_release_head_state(nskb
);
2541 __skb_push(nskb
, doffset
);
2543 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2546 if (unlikely(!nskb
))
2549 skb_reserve(nskb
, headroom
);
2550 __skb_put(nskb
, doffset
);
2559 __copy_skb_header(nskb
, skb
);
2560 nskb
->mac_len
= skb
->mac_len
;
2562 /* nskb and skb might have different headroom */
2563 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2564 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2566 skb_reset_mac_header(nskb
);
2567 skb_set_network_header(nskb
, skb
->mac_len
);
2568 nskb
->transport_header
= (nskb
->network_header
+
2569 skb_network_header_len(skb
));
2570 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2572 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2576 nskb
->ip_summed
= CHECKSUM_NONE
;
2577 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2583 frag
= skb_shinfo(nskb
)->frags
;
2585 skb_copy_from_linear_data_offset(skb
, offset
,
2586 skb_put(nskb
, hsize
), hsize
);
2588 while (pos
< offset
+ len
&& i
< nfrags
) {
2589 *frag
= skb_shinfo(skb
)->frags
[i
];
2590 get_page(frag
->page
);
2594 frag
->page_offset
+= offset
- pos
;
2595 frag
->size
-= offset
- pos
;
2598 skb_shinfo(nskb
)->nr_frags
++;
2600 if (pos
+ size
<= offset
+ len
) {
2604 frag
->size
-= pos
+ size
- (offset
+ len
);
2611 if (pos
< offset
+ len
) {
2612 struct sk_buff
*fskb2
= fskb
;
2614 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2620 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2626 SKB_FRAG_ASSERT(nskb
);
2627 skb_shinfo(nskb
)->frag_list
= fskb2
;
2631 nskb
->data_len
= len
- hsize
;
2632 nskb
->len
+= nskb
->data_len
;
2633 nskb
->truesize
+= nskb
->data_len
;
2634 } while ((offset
+= len
) < skb
->len
);
2639 while ((skb
= segs
)) {
2643 return ERR_PTR(err
);
2645 EXPORT_SYMBOL_GPL(skb_segment
);
2647 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2649 struct sk_buff
*p
= *head
;
2650 struct sk_buff
*nskb
;
2651 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2652 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2653 unsigned int headroom
;
2654 unsigned int len
= skb_gro_len(skb
);
2655 unsigned int offset
= skb_gro_offset(skb
);
2656 unsigned int headlen
= skb_headlen(skb
);
2658 if (p
->len
+ len
>= 65536)
2661 if (pinfo
->frag_list
)
2663 else if (headlen
<= offset
) {
2666 int i
= skbinfo
->nr_frags
;
2667 int nr_frags
= pinfo
->nr_frags
+ i
;
2671 if (nr_frags
> MAX_SKB_FRAGS
)
2674 pinfo
->nr_frags
= nr_frags
;
2675 skbinfo
->nr_frags
= 0;
2677 frag
= pinfo
->frags
+ nr_frags
;
2678 frag2
= skbinfo
->frags
+ i
;
2683 frag
->page_offset
+= offset
;
2684 frag
->size
-= offset
;
2686 skb
->truesize
-= skb
->data_len
;
2687 skb
->len
-= skb
->data_len
;
2690 NAPI_GRO_CB(skb
)->free
= 1;
2692 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2695 headroom
= skb_headroom(p
);
2696 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2697 if (unlikely(!nskb
))
2700 __copy_skb_header(nskb
, p
);
2701 nskb
->mac_len
= p
->mac_len
;
2703 skb_reserve(nskb
, headroom
);
2704 __skb_put(nskb
, skb_gro_offset(p
));
2706 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2707 skb_set_network_header(nskb
, skb_network_offset(p
));
2708 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2710 __skb_pull(p
, skb_gro_offset(p
));
2711 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2712 p
->data
- skb_mac_header(p
));
2714 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2715 skb_shinfo(nskb
)->frag_list
= p
;
2716 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2717 pinfo
->gso_size
= 0;
2718 skb_header_release(p
);
2721 nskb
->data_len
+= p
->len
;
2722 nskb
->truesize
+= p
->len
;
2723 nskb
->len
+= p
->len
;
2726 nskb
->next
= p
->next
;
2732 if (offset
> headlen
) {
2733 skbinfo
->frags
[0].page_offset
+= offset
- headlen
;
2734 skbinfo
->frags
[0].size
-= offset
- headlen
;
2738 __skb_pull(skb
, offset
);
2740 p
->prev
->next
= skb
;
2742 skb_header_release(skb
);
2745 NAPI_GRO_CB(p
)->count
++;
2750 NAPI_GRO_CB(skb
)->same_flow
= 1;
2753 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2755 void __init
skb_init(void)
2757 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2758 sizeof(struct sk_buff
),
2760 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2762 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2763 (2*sizeof(struct sk_buff
)) +
2766 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2771 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2772 * @skb: Socket buffer containing the buffers to be mapped
2773 * @sg: The scatter-gather list to map into
2774 * @offset: The offset into the buffer's contents to start mapping
2775 * @len: Length of buffer space to be mapped
2777 * Fill the specified scatter-gather list with mappings/pointers into a
2778 * region of the buffer space attached to a socket buffer.
2781 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2783 int start
= skb_headlen(skb
);
2784 int i
, copy
= start
- offset
;
2785 struct sk_buff
*frag_iter
;
2791 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2793 if ((len
-= copy
) == 0)
2798 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2801 WARN_ON(start
> offset
+ len
);
2803 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2804 if ((copy
= end
- offset
) > 0) {
2805 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2809 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2810 frag
->page_offset
+offset
-start
);
2819 skb_walk_frags(skb
, frag_iter
) {
2822 WARN_ON(start
> offset
+ len
);
2824 end
= start
+ frag_iter
->len
;
2825 if ((copy
= end
- offset
) > 0) {
2828 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2830 if ((len
-= copy
) == 0)
2840 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2842 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2844 sg_mark_end(&sg
[nsg
- 1]);
2848 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2851 * skb_cow_data - Check that a socket buffer's data buffers are writable
2852 * @skb: The socket buffer to check.
2853 * @tailbits: Amount of trailing space to be added
2854 * @trailer: Returned pointer to the skb where the @tailbits space begins
2856 * Make sure that the data buffers attached to a socket buffer are
2857 * writable. If they are not, private copies are made of the data buffers
2858 * and the socket buffer is set to use these instead.
2860 * If @tailbits is given, make sure that there is space to write @tailbits
2861 * bytes of data beyond current end of socket buffer. @trailer will be
2862 * set to point to the skb in which this space begins.
2864 * The number of scatterlist elements required to completely map the
2865 * COW'd and extended socket buffer will be returned.
2867 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2871 struct sk_buff
*skb1
, **skb_p
;
2873 /* If skb is cloned or its head is paged, reallocate
2874 * head pulling out all the pages (pages are considered not writable
2875 * at the moment even if they are anonymous).
2877 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2878 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2881 /* Easy case. Most of packets will go this way. */
2882 if (!skb_has_frag_list(skb
)) {
2883 /* A little of trouble, not enough of space for trailer.
2884 * This should not happen, when stack is tuned to generate
2885 * good frames. OK, on miss we reallocate and reserve even more
2886 * space, 128 bytes is fair. */
2888 if (skb_tailroom(skb
) < tailbits
&&
2889 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
2897 /* Misery. We are in troubles, going to mincer fragments... */
2900 skb_p
= &skb_shinfo(skb
)->frag_list
;
2903 while ((skb1
= *skb_p
) != NULL
) {
2906 /* The fragment is partially pulled by someone,
2907 * this can happen on input. Copy it and everything
2910 if (skb_shared(skb1
))
2913 /* If the skb is the last, worry about trailer. */
2915 if (skb1
->next
== NULL
&& tailbits
) {
2916 if (skb_shinfo(skb1
)->nr_frags
||
2917 skb_has_frag_list(skb1
) ||
2918 skb_tailroom(skb1
) < tailbits
)
2919 ntail
= tailbits
+ 128;
2925 skb_shinfo(skb1
)->nr_frags
||
2926 skb_has_frag_list(skb1
)) {
2927 struct sk_buff
*skb2
;
2929 /* Fuck, we are miserable poor guys... */
2931 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
2933 skb2
= skb_copy_expand(skb1
,
2937 if (unlikely(skb2
== NULL
))
2941 skb_set_owner_w(skb2
, skb1
->sk
);
2943 /* Looking around. Are we still alive?
2944 * OK, link new skb, drop old one */
2946 skb2
->next
= skb1
->next
;
2953 skb_p
= &skb1
->next
;
2958 EXPORT_SYMBOL_GPL(skb_cow_data
);
2960 static void sock_rmem_free(struct sk_buff
*skb
)
2962 struct sock
*sk
= skb
->sk
;
2964 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
2968 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2970 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
2972 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
2973 (unsigned)sk
->sk_rcvbuf
)
2978 skb
->destructor
= sock_rmem_free
;
2979 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
2981 skb_queue_tail(&sk
->sk_error_queue
, skb
);
2982 if (!sock_flag(sk
, SOCK_DEAD
))
2983 sk
->sk_data_ready(sk
, skb
->len
);
2986 EXPORT_SYMBOL(sock_queue_err_skb
);
2988 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
2989 struct skb_shared_hwtstamps
*hwtstamps
)
2991 struct sock
*sk
= orig_skb
->sk
;
2992 struct sock_exterr_skb
*serr
;
2993 struct sk_buff
*skb
;
2999 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3004 *skb_hwtstamps(skb
) =
3008 * no hardware time stamps available,
3009 * so keep the shared tx_flags and only
3010 * store software time stamp
3012 skb
->tstamp
= ktime_get_real();
3015 serr
= SKB_EXT_ERR(skb
);
3016 memset(serr
, 0, sizeof(*serr
));
3017 serr
->ee
.ee_errno
= ENOMSG
;
3018 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3020 err
= sock_queue_err_skb(sk
, skb
);
3025 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3029 * skb_partial_csum_set - set up and verify partial csum values for packet
3030 * @skb: the skb to set
3031 * @start: the number of bytes after skb->data to start checksumming.
3032 * @off: the offset from start to place the checksum.
3034 * For untrusted partially-checksummed packets, we need to make sure the values
3035 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3037 * This function checks and sets those values and skb->ip_summed: if this
3038 * returns false you should drop the packet.
3040 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3042 if (unlikely(start
> skb_headlen(skb
)) ||
3043 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3044 if (net_ratelimit())
3046 "bad partial csum: csum=%u/%u len=%u\n",
3047 start
, off
, skb_headlen(skb
));
3050 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3051 skb
->csum_start
= skb_headroom(skb
) + start
;
3052 skb
->csum_offset
= off
;
3055 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3057 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3059 if (net_ratelimit())
3060 pr_warning("%s: received packets cannot be forwarded"
3061 " while LRO is enabled\n", skb
->dev
->name
);
3063 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);