1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
32 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
33 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
36 static struct lock_class_key socket_class
;
40 static void queue_con(struct ceph_connection
*con
);
41 static void con_work(struct work_struct
*);
42 static void ceph_fault(struct ceph_connection
*con
);
45 * nicely render a sockaddr as a string.
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str
[MAX_ADDR_STR
][MAX_ADDR_STR_LEN
];
50 static DEFINE_SPINLOCK(addr_str_lock
);
51 static int last_addr_str
;
53 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
57 struct sockaddr_in
*in4
= (void *)ss
;
58 struct sockaddr_in6
*in6
= (void *)ss
;
60 spin_lock(&addr_str_lock
);
62 if (last_addr_str
== MAX_ADDR_STR
)
64 spin_unlock(&addr_str_lock
);
67 switch (ss
->ss_family
) {
69 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%u", &in4
->sin_addr
,
70 (unsigned int)ntohs(in4
->sin_port
));
74 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%u", &in6
->sin6_addr
,
75 (unsigned int)ntohs(in6
->sin6_port
));
79 sprintf(s
, "(unknown sockaddr family %d)", (int)ss
->ss_family
);
84 EXPORT_SYMBOL(ceph_pr_addr
);
86 static void encode_my_addr(struct ceph_messenger
*msgr
)
88 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
89 ceph_encode_addr(&msgr
->my_enc_addr
);
93 * work queue for all reading and writing to/from the socket.
95 struct workqueue_struct
*ceph_msgr_wq
;
97 int ceph_msgr_init(void)
99 ceph_msgr_wq
= create_workqueue("ceph-msgr");
100 if (IS_ERR(ceph_msgr_wq
)) {
101 int ret
= PTR_ERR(ceph_msgr_wq
);
102 pr_err("msgr_init failed to create workqueue: %d\n", ret
);
108 EXPORT_SYMBOL(ceph_msgr_init
);
110 void ceph_msgr_exit(void)
112 destroy_workqueue(ceph_msgr_wq
);
114 EXPORT_SYMBOL(ceph_msgr_exit
);
116 void ceph_msgr_flush(void)
118 flush_workqueue(ceph_msgr_wq
);
120 EXPORT_SYMBOL(ceph_msgr_flush
);
124 * socket callback functions
127 /* data available on socket, or listen socket received a connect */
128 static void ceph_data_ready(struct sock
*sk
, int count_unused
)
130 struct ceph_connection
*con
=
131 (struct ceph_connection
*)sk
->sk_user_data
;
132 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
133 dout("ceph_data_ready on %p state = %lu, queueing work\n",
139 /* socket has buffer space for writing */
140 static void ceph_write_space(struct sock
*sk
)
142 struct ceph_connection
*con
=
143 (struct ceph_connection
*)sk
->sk_user_data
;
145 /* only queue to workqueue if there is data we want to write. */
146 if (test_bit(WRITE_PENDING
, &con
->state
)) {
147 dout("ceph_write_space %p queueing write work\n", con
);
150 dout("ceph_write_space %p nothing to write\n", con
);
153 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
154 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
157 /* socket's state has changed */
158 static void ceph_state_change(struct sock
*sk
)
160 struct ceph_connection
*con
=
161 (struct ceph_connection
*)sk
->sk_user_data
;
163 dout("ceph_state_change %p state = %lu sk_state = %u\n",
164 con
, con
->state
, sk
->sk_state
);
166 if (test_bit(CLOSED
, &con
->state
))
169 switch (sk
->sk_state
) {
171 dout("ceph_state_change TCP_CLOSE\n");
173 dout("ceph_state_change TCP_CLOSE_WAIT\n");
174 if (test_and_set_bit(SOCK_CLOSED
, &con
->state
) == 0) {
175 if (test_bit(CONNECTING
, &con
->state
))
176 con
->error_msg
= "connection failed";
178 con
->error_msg
= "socket closed";
182 case TCP_ESTABLISHED
:
183 dout("ceph_state_change TCP_ESTABLISHED\n");
190 * set up socket callbacks
192 static void set_sock_callbacks(struct socket
*sock
,
193 struct ceph_connection
*con
)
195 struct sock
*sk
= sock
->sk
;
196 sk
->sk_user_data
= (void *)con
;
197 sk
->sk_data_ready
= ceph_data_ready
;
198 sk
->sk_write_space
= ceph_write_space
;
199 sk
->sk_state_change
= ceph_state_change
;
208 * initiate connection to a remote socket.
210 static struct socket
*ceph_tcp_connect(struct ceph_connection
*con
)
212 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
217 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
222 sock
->sk
->sk_allocation
= GFP_NOFS
;
224 #ifdef CONFIG_LOCKDEP
225 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
228 set_sock_callbacks(sock
, con
);
230 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
232 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
234 if (ret
== -EINPROGRESS
) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 ceph_pr_addr(&con
->peer_addr
.in_addr
),
241 pr_err("connect %s error %d\n",
242 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
245 con
->error_msg
= "connect error";
253 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
255 struct kvec iov
= {buf
, len
};
256 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
258 return kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
262 * write something. @more is true if caller will be sending more data
265 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
266 size_t kvlen
, size_t len
, int more
)
268 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
271 msg
.msg_flags
|= MSG_MORE
;
273 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
275 return kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
280 * Shutdown/close the socket for the given connection.
282 static int con_close_socket(struct ceph_connection
*con
)
286 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
289 set_bit(SOCK_CLOSED
, &con
->state
);
290 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
291 sock_release(con
->sock
);
293 clear_bit(SOCK_CLOSED
, &con
->state
);
298 * Reset a connection. Discard all incoming and outgoing messages
299 * and clear *_seq state.
301 static void ceph_msg_remove(struct ceph_msg
*msg
)
303 list_del_init(&msg
->list_head
);
306 static void ceph_msg_remove_list(struct list_head
*head
)
308 while (!list_empty(head
)) {
309 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
311 ceph_msg_remove(msg
);
315 static void reset_connection(struct ceph_connection
*con
)
317 /* reset connection, out_queue, msg_ and connect_seq */
318 /* discard existing out_queue and msg_seq */
319 ceph_msg_remove_list(&con
->out_queue
);
320 ceph_msg_remove_list(&con
->out_sent
);
323 ceph_msg_put(con
->in_msg
);
327 con
->connect_seq
= 0;
330 ceph_msg_put(con
->out_msg
);
333 con
->out_keepalive_pending
= false;
335 con
->in_seq_acked
= 0;
339 * mark a peer down. drop any open connections.
341 void ceph_con_close(struct ceph_connection
*con
)
343 dout("con_close %p peer %s\n", con
,
344 ceph_pr_addr(&con
->peer_addr
.in_addr
));
345 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
346 clear_bit(STANDBY
, &con
->state
); /* avoid connect_seq bump */
347 clear_bit(LOSSYTX
, &con
->state
); /* so we retry next connect */
348 clear_bit(KEEPALIVE_PENDING
, &con
->state
);
349 clear_bit(WRITE_PENDING
, &con
->state
);
350 mutex_lock(&con
->mutex
);
351 reset_connection(con
);
352 con
->peer_global_seq
= 0;
353 cancel_delayed_work(&con
->work
);
354 mutex_unlock(&con
->mutex
);
357 EXPORT_SYMBOL(ceph_con_close
);
360 * Reopen a closed connection, with a new peer address.
362 void ceph_con_open(struct ceph_connection
*con
, struct ceph_entity_addr
*addr
)
364 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
365 set_bit(OPENING
, &con
->state
);
366 clear_bit(CLOSED
, &con
->state
);
367 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
368 con
->delay
= 0; /* reset backoff memory */
371 EXPORT_SYMBOL(ceph_con_open
);
374 * return true if this connection ever successfully opened
376 bool ceph_con_opened(struct ceph_connection
*con
)
378 return con
->connect_seq
> 0;
384 struct ceph_connection
*ceph_con_get(struct ceph_connection
*con
)
386 dout("con_get %p nref = %d -> %d\n", con
,
387 atomic_read(&con
->nref
), atomic_read(&con
->nref
) + 1);
388 if (atomic_inc_not_zero(&con
->nref
))
393 void ceph_con_put(struct ceph_connection
*con
)
395 dout("con_put %p nref = %d -> %d\n", con
,
396 atomic_read(&con
->nref
), atomic_read(&con
->nref
) - 1);
397 BUG_ON(atomic_read(&con
->nref
) == 0);
398 if (atomic_dec_and_test(&con
->nref
)) {
405 * initialize a new connection.
407 void ceph_con_init(struct ceph_messenger
*msgr
, struct ceph_connection
*con
)
409 dout("con_init %p\n", con
);
410 memset(con
, 0, sizeof(*con
));
411 atomic_set(&con
->nref
, 1);
413 mutex_init(&con
->mutex
);
414 INIT_LIST_HEAD(&con
->out_queue
);
415 INIT_LIST_HEAD(&con
->out_sent
);
416 INIT_DELAYED_WORK(&con
->work
, con_work
);
418 EXPORT_SYMBOL(ceph_con_init
);
422 * We maintain a global counter to order connection attempts. Get
423 * a unique seq greater than @gt.
425 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
429 spin_lock(&msgr
->global_seq_lock
);
430 if (msgr
->global_seq
< gt
)
431 msgr
->global_seq
= gt
;
432 ret
= ++msgr
->global_seq
;
433 spin_unlock(&msgr
->global_seq_lock
);
439 * Prepare footer for currently outgoing message, and finish things
440 * off. Assumes out_kvec* are already valid.. we just add on to the end.
442 static void prepare_write_message_footer(struct ceph_connection
*con
, int v
)
444 struct ceph_msg
*m
= con
->out_msg
;
446 dout("prepare_write_message_footer %p\n", con
);
447 con
->out_kvec_is_msg
= true;
448 con
->out_kvec
[v
].iov_base
= &m
->footer
;
449 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
450 con
->out_kvec_bytes
+= sizeof(m
->footer
);
451 con
->out_kvec_left
++;
452 con
->out_more
= m
->more_to_follow
;
453 con
->out_msg_done
= true;
457 * Prepare headers for the next outgoing message.
459 static void prepare_write_message(struct ceph_connection
*con
)
464 con
->out_kvec_bytes
= 0;
465 con
->out_kvec_is_msg
= true;
466 con
->out_msg_done
= false;
468 /* Sneak an ack in there first? If we can get it into the same
469 * TCP packet that's a good thing. */
470 if (con
->in_seq
> con
->in_seq_acked
) {
471 con
->in_seq_acked
= con
->in_seq
;
472 con
->out_kvec
[v
].iov_base
= &tag_ack
;
473 con
->out_kvec
[v
++].iov_len
= 1;
474 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
475 con
->out_kvec
[v
].iov_base
= &con
->out_temp_ack
;
476 con
->out_kvec
[v
++].iov_len
= sizeof(con
->out_temp_ack
);
477 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
480 m
= list_first_entry(&con
->out_queue
,
481 struct ceph_msg
, list_head
);
483 if (test_bit(LOSSYTX
, &con
->state
)) {
484 list_del_init(&m
->list_head
);
486 /* put message on sent list */
488 list_move_tail(&m
->list_head
, &con
->out_sent
);
492 * only assign outgoing seq # if we haven't sent this message
493 * yet. if it is requeued, resend with it's original seq.
495 if (m
->needs_out_seq
) {
496 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
497 m
->needs_out_seq
= false;
500 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
501 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
502 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
503 le32_to_cpu(m
->hdr
.data_len
),
505 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
507 /* tag + hdr + front + middle */
508 con
->out_kvec
[v
].iov_base
= &tag_msg
;
509 con
->out_kvec
[v
++].iov_len
= 1;
510 con
->out_kvec
[v
].iov_base
= &m
->hdr
;
511 con
->out_kvec
[v
++].iov_len
= sizeof(m
->hdr
);
512 con
->out_kvec
[v
++] = m
->front
;
514 con
->out_kvec
[v
++] = m
->middle
->vec
;
515 con
->out_kvec_left
= v
;
516 con
->out_kvec_bytes
+= 1 + sizeof(m
->hdr
) + m
->front
.iov_len
+
517 (m
->middle
? m
->middle
->vec
.iov_len
: 0);
518 con
->out_kvec_cur
= con
->out_kvec
;
520 /* fill in crc (except data pages), footer */
521 con
->out_msg
->hdr
.crc
=
522 cpu_to_le32(crc32c(0, (void *)&m
->hdr
,
523 sizeof(m
->hdr
) - sizeof(m
->hdr
.crc
)));
524 con
->out_msg
->footer
.flags
= CEPH_MSG_FOOTER_COMPLETE
;
525 con
->out_msg
->footer
.front_crc
=
526 cpu_to_le32(crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
));
528 con
->out_msg
->footer
.middle_crc
=
529 cpu_to_le32(crc32c(0, m
->middle
->vec
.iov_base
,
530 m
->middle
->vec
.iov_len
));
532 con
->out_msg
->footer
.middle_crc
= 0;
533 con
->out_msg
->footer
.data_crc
= 0;
534 dout("prepare_write_message front_crc %u data_crc %u\n",
535 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
536 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
538 /* is there a data payload? */
539 if (le32_to_cpu(m
->hdr
.data_len
) > 0) {
540 /* initialize page iterator */
541 con
->out_msg_pos
.page
= 0;
543 con
->out_msg_pos
.page_pos
=
544 le16_to_cpu(m
->hdr
.data_off
) & ~PAGE_MASK
;
546 con
->out_msg_pos
.page_pos
= 0;
547 con
->out_msg_pos
.data_pos
= 0;
548 con
->out_msg_pos
.did_page_crc
= 0;
549 con
->out_more
= 1; /* data + footer will follow */
551 /* no, queue up footer too and be done */
552 prepare_write_message_footer(con
, v
);
555 set_bit(WRITE_PENDING
, &con
->state
);
561 static void prepare_write_ack(struct ceph_connection
*con
)
563 dout("prepare_write_ack %p %llu -> %llu\n", con
,
564 con
->in_seq_acked
, con
->in_seq
);
565 con
->in_seq_acked
= con
->in_seq
;
567 con
->out_kvec
[0].iov_base
= &tag_ack
;
568 con
->out_kvec
[0].iov_len
= 1;
569 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
570 con
->out_kvec
[1].iov_base
= &con
->out_temp_ack
;
571 con
->out_kvec
[1].iov_len
= sizeof(con
->out_temp_ack
);
572 con
->out_kvec_left
= 2;
573 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
574 con
->out_kvec_cur
= con
->out_kvec
;
575 con
->out_more
= 1; /* more will follow.. eventually.. */
576 set_bit(WRITE_PENDING
, &con
->state
);
580 * Prepare to write keepalive byte.
582 static void prepare_write_keepalive(struct ceph_connection
*con
)
584 dout("prepare_write_keepalive %p\n", con
);
585 con
->out_kvec
[0].iov_base
= &tag_keepalive
;
586 con
->out_kvec
[0].iov_len
= 1;
587 con
->out_kvec_left
= 1;
588 con
->out_kvec_bytes
= 1;
589 con
->out_kvec_cur
= con
->out_kvec
;
590 set_bit(WRITE_PENDING
, &con
->state
);
594 * Connection negotiation.
597 static void prepare_connect_authorizer(struct ceph_connection
*con
)
601 int auth_protocol
= 0;
603 mutex_unlock(&con
->mutex
);
604 if (con
->ops
->get_authorizer
)
605 con
->ops
->get_authorizer(con
, &auth_buf
, &auth_len
,
606 &auth_protocol
, &con
->auth_reply_buf
,
607 &con
->auth_reply_buf_len
,
609 mutex_lock(&con
->mutex
);
611 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_protocol
);
612 con
->out_connect
.authorizer_len
= cpu_to_le32(auth_len
);
614 con
->out_kvec
[con
->out_kvec_left
].iov_base
= auth_buf
;
615 con
->out_kvec
[con
->out_kvec_left
].iov_len
= auth_len
;
616 con
->out_kvec_left
++;
617 con
->out_kvec_bytes
+= auth_len
;
621 * We connected to a peer and are saying hello.
623 static void prepare_write_banner(struct ceph_messenger
*msgr
,
624 struct ceph_connection
*con
)
626 int len
= strlen(CEPH_BANNER
);
628 con
->out_kvec
[0].iov_base
= CEPH_BANNER
;
629 con
->out_kvec
[0].iov_len
= len
;
630 con
->out_kvec
[1].iov_base
= &msgr
->my_enc_addr
;
631 con
->out_kvec
[1].iov_len
= sizeof(msgr
->my_enc_addr
);
632 con
->out_kvec_left
= 2;
633 con
->out_kvec_bytes
= len
+ sizeof(msgr
->my_enc_addr
);
634 con
->out_kvec_cur
= con
->out_kvec
;
636 set_bit(WRITE_PENDING
, &con
->state
);
639 static void prepare_write_connect(struct ceph_messenger
*msgr
,
640 struct ceph_connection
*con
,
643 unsigned global_seq
= get_global_seq(con
->msgr
, 0);
646 switch (con
->peer_name
.type
) {
647 case CEPH_ENTITY_TYPE_MON
:
648 proto
= CEPH_MONC_PROTOCOL
;
650 case CEPH_ENTITY_TYPE_OSD
:
651 proto
= CEPH_OSDC_PROTOCOL
;
653 case CEPH_ENTITY_TYPE_MDS
:
654 proto
= CEPH_MDSC_PROTOCOL
;
660 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
661 con
->connect_seq
, global_seq
, proto
);
663 con
->out_connect
.features
= cpu_to_le64(msgr
->supported_features
);
664 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
665 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
666 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
667 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
668 con
->out_connect
.flags
= 0;
671 con
->out_kvec_left
= 0;
672 con
->out_kvec_bytes
= 0;
674 con
->out_kvec
[con
->out_kvec_left
].iov_base
= &con
->out_connect
;
675 con
->out_kvec
[con
->out_kvec_left
].iov_len
= sizeof(con
->out_connect
);
676 con
->out_kvec_left
++;
677 con
->out_kvec_bytes
+= sizeof(con
->out_connect
);
678 con
->out_kvec_cur
= con
->out_kvec
;
680 set_bit(WRITE_PENDING
, &con
->state
);
682 prepare_connect_authorizer(con
);
687 * write as much of pending kvecs to the socket as we can.
689 * 0 -> socket full, but more to do
692 static int write_partial_kvec(struct ceph_connection
*con
)
696 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
697 while (con
->out_kvec_bytes
> 0) {
698 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
699 con
->out_kvec_left
, con
->out_kvec_bytes
,
703 con
->out_kvec_bytes
-= ret
;
704 if (con
->out_kvec_bytes
== 0)
707 if (ret
>= con
->out_kvec_cur
->iov_len
) {
708 ret
-= con
->out_kvec_cur
->iov_len
;
710 con
->out_kvec_left
--;
712 con
->out_kvec_cur
->iov_len
-= ret
;
713 con
->out_kvec_cur
->iov_base
+= ret
;
719 con
->out_kvec_left
= 0;
720 con
->out_kvec_is_msg
= false;
723 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
724 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
725 return ret
; /* done! */
729 static void init_bio_iter(struct bio
*bio
, struct bio
**iter
, int *seg
)
740 static void iter_bio_next(struct bio
**bio_iter
, int *seg
)
742 if (*bio_iter
== NULL
)
745 BUG_ON(*seg
>= (*bio_iter
)->bi_vcnt
);
748 if (*seg
== (*bio_iter
)->bi_vcnt
)
749 init_bio_iter((*bio_iter
)->bi_next
, bio_iter
, seg
);
754 * Write as much message data payload as we can. If we finish, queue
756 * 1 -> done, footer is now queued in out_kvec[].
757 * 0 -> socket full, but more to do
760 static int write_partial_msg_pages(struct ceph_connection
*con
)
762 struct ceph_msg
*msg
= con
->out_msg
;
763 unsigned data_len
= le32_to_cpu(msg
->hdr
.data_len
);
765 int crc
= con
->msgr
->nocrc
;
769 size_t trail_len
= (msg
->trail
? msg
->trail
->length
: 0);
771 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
772 con
, con
->out_msg
, con
->out_msg_pos
.page
, con
->out_msg
->nr_pages
,
773 con
->out_msg_pos
.page_pos
);
776 if (msg
->bio
&& !msg
->bio_iter
)
777 init_bio_iter(msg
->bio
, &msg
->bio_iter
, &msg
->bio_seg
);
780 while (data_len
> con
->out_msg_pos
.data_pos
) {
781 struct page
*page
= NULL
;
783 int max_write
= PAGE_SIZE
;
786 total_max_write
= data_len
- trail_len
-
787 con
->out_msg_pos
.data_pos
;
790 * if we are calculating the data crc (the default), we need
791 * to map the page. if our pages[] has been revoked, use the
795 /* have we reached the trail part of the data? */
796 if (con
->out_msg_pos
.data_pos
>= data_len
- trail_len
) {
799 total_max_write
= data_len
- con
->out_msg_pos
.data_pos
;
801 page
= list_first_entry(&msg
->trail
->head
,
805 max_write
= PAGE_SIZE
;
806 } else if (msg
->pages
) {
807 page
= msg
->pages
[con
->out_msg_pos
.page
];
810 } else if (msg
->pagelist
) {
811 page
= list_first_entry(&msg
->pagelist
->head
,
816 } else if (msg
->bio
) {
819 bv
= bio_iovec_idx(msg
->bio_iter
, msg
->bio_seg
);
821 page_shift
= bv
->bv_offset
;
823 kaddr
= kmap(page
) + page_shift
;
824 max_write
= bv
->bv_len
;
827 page
= con
->msgr
->zero_page
;
829 kaddr
= page_address(con
->msgr
->zero_page
);
831 len
= min_t(int, max_write
- con
->out_msg_pos
.page_pos
,
834 if (crc
&& !con
->out_msg_pos
.did_page_crc
) {
835 void *base
= kaddr
+ con
->out_msg_pos
.page_pos
;
836 u32 tmpcrc
= le32_to_cpu(con
->out_msg
->footer
.data_crc
);
838 BUG_ON(kaddr
== NULL
);
839 con
->out_msg
->footer
.data_crc
=
840 cpu_to_le32(crc32c(tmpcrc
, base
, len
));
841 con
->out_msg_pos
.did_page_crc
= 1;
843 ret
= kernel_sendpage(con
->sock
, page
,
844 con
->out_msg_pos
.page_pos
+ page_shift
,
846 MSG_DONTWAIT
| MSG_NOSIGNAL
|
850 (msg
->pages
|| msg
->pagelist
|| msg
->bio
|| in_trail
))
856 con
->out_msg_pos
.data_pos
+= ret
;
857 con
->out_msg_pos
.page_pos
+= ret
;
859 con
->out_msg_pos
.page_pos
= 0;
860 con
->out_msg_pos
.page
++;
861 con
->out_msg_pos
.did_page_crc
= 0;
863 list_move_tail(&page
->lru
,
865 else if (msg
->pagelist
)
866 list_move_tail(&page
->lru
,
867 &msg
->pagelist
->head
);
870 iter_bio_next(&msg
->bio_iter
, &msg
->bio_seg
);
875 dout("write_partial_msg_pages %p msg %p done\n", con
, msg
);
877 /* prepare and queue up footer, too */
879 con
->out_msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
880 con
->out_kvec_bytes
= 0;
881 con
->out_kvec_left
= 0;
882 con
->out_kvec_cur
= con
->out_kvec
;
883 prepare_write_message_footer(con
, 0);
892 static int write_partial_skip(struct ceph_connection
*con
)
896 while (con
->out_skip
> 0) {
898 .iov_base
= page_address(con
->msgr
->zero_page
),
899 .iov_len
= min(con
->out_skip
, (int)PAGE_CACHE_SIZE
)
902 ret
= ceph_tcp_sendmsg(con
->sock
, &iov
, 1, iov
.iov_len
, 1);
905 con
->out_skip
-= ret
;
913 * Prepare to read connection handshake, or an ack.
915 static void prepare_read_banner(struct ceph_connection
*con
)
917 dout("prepare_read_banner %p\n", con
);
918 con
->in_base_pos
= 0;
921 static void prepare_read_connect(struct ceph_connection
*con
)
923 dout("prepare_read_connect %p\n", con
);
924 con
->in_base_pos
= 0;
927 static void prepare_read_ack(struct ceph_connection
*con
)
929 dout("prepare_read_ack %p\n", con
);
930 con
->in_base_pos
= 0;
933 static void prepare_read_tag(struct ceph_connection
*con
)
935 dout("prepare_read_tag %p\n", con
);
936 con
->in_base_pos
= 0;
937 con
->in_tag
= CEPH_MSGR_TAG_READY
;
941 * Prepare to read a message.
943 static int prepare_read_message(struct ceph_connection
*con
)
945 dout("prepare_read_message %p\n", con
);
946 BUG_ON(con
->in_msg
!= NULL
);
947 con
->in_base_pos
= 0;
948 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
953 static int read_partial(struct ceph_connection
*con
,
954 int *to
, int size
, void *object
)
957 while (con
->in_base_pos
< *to
) {
958 int left
= *to
- con
->in_base_pos
;
959 int have
= size
- left
;
960 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
963 con
->in_base_pos
+= ret
;
970 * Read all or part of the connect-side handshake on a new connection
972 static int read_partial_banner(struct ceph_connection
*con
)
976 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
979 ret
= read_partial(con
, &to
, strlen(CEPH_BANNER
), con
->in_banner
);
982 ret
= read_partial(con
, &to
, sizeof(con
->actual_peer_addr
),
983 &con
->actual_peer_addr
);
986 ret
= read_partial(con
, &to
, sizeof(con
->peer_addr_for_me
),
987 &con
->peer_addr_for_me
);
994 static int read_partial_connect(struct ceph_connection
*con
)
998 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1000 ret
= read_partial(con
, &to
, sizeof(con
->in_reply
), &con
->in_reply
);
1003 ret
= read_partial(con
, &to
, le32_to_cpu(con
->in_reply
.authorizer_len
),
1004 con
->auth_reply_buf
);
1008 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1009 con
, (int)con
->in_reply
.tag
,
1010 le32_to_cpu(con
->in_reply
.connect_seq
),
1011 le32_to_cpu(con
->in_reply
.global_seq
));
1018 * Verify the hello banner looks okay.
1020 static int verify_hello(struct ceph_connection
*con
)
1022 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1023 pr_err("connect to %s got bad banner\n",
1024 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1025 con
->error_msg
= "protocol error, bad banner";
1031 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1033 switch (ss
->ss_family
) {
1035 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1038 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1039 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1040 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1041 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1046 static int addr_port(struct sockaddr_storage
*ss
)
1048 switch (ss
->ss_family
) {
1050 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1052 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1057 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1059 switch (ss
->ss_family
) {
1061 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1063 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1068 * Parse an ip[:port] list into an addr array. Use the default
1069 * monitor port if a port isn't specified.
1071 int ceph_parse_ips(const char *c
, const char *end
,
1072 struct ceph_entity_addr
*addr
,
1073 int max_count
, int *count
)
1078 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1079 for (i
= 0; i
< max_count
; i
++) {
1081 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1082 struct sockaddr_in
*in4
= (void *)ss
;
1083 struct sockaddr_in6
*in6
= (void *)ss
;
1092 memset(ss
, 0, sizeof(*ss
));
1093 if (in4_pton(p
, end
- p
, (u8
*)&in4
->sin_addr
.s_addr
,
1095 ss
->ss_family
= AF_INET
;
1096 else if (in6_pton(p
, end
- p
, (u8
*)&in6
->sin6_addr
.s6_addr
,
1098 ss
->ss_family
= AF_INET6
;
1105 dout("missing matching ']'\n");
1112 if (p
< end
&& *p
== ':') {
1115 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1116 port
= (port
* 10) + (*p
- '0');
1119 if (port
> 65535 || port
== 0)
1122 port
= CEPH_MON_PORT
;
1125 addr_set_port(ss
, port
);
1127 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1144 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1147 EXPORT_SYMBOL(ceph_parse_ips
);
1149 static int process_banner(struct ceph_connection
*con
)
1151 dout("process_banner on %p\n", con
);
1153 if (verify_hello(con
) < 0)
1156 ceph_decode_addr(&con
->actual_peer_addr
);
1157 ceph_decode_addr(&con
->peer_addr_for_me
);
1160 * Make sure the other end is who we wanted. note that the other
1161 * end may not yet know their ip address, so if it's 0.0.0.0, give
1162 * them the benefit of the doubt.
1164 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1165 sizeof(con
->peer_addr
)) != 0 &&
1166 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1167 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1168 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1169 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1170 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1171 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1172 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1173 con
->error_msg
= "wrong peer at address";
1178 * did we learn our address?
1180 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1181 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1183 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1184 &con
->peer_addr_for_me
.in_addr
,
1185 sizeof(con
->peer_addr_for_me
.in_addr
));
1186 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1187 encode_my_addr(con
->msgr
);
1188 dout("process_banner learned my addr is %s\n",
1189 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1192 set_bit(NEGOTIATING
, &con
->state
);
1193 prepare_read_connect(con
);
1197 static void fail_protocol(struct ceph_connection
*con
)
1199 reset_connection(con
);
1200 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
1202 mutex_unlock(&con
->mutex
);
1203 if (con
->ops
->bad_proto
)
1204 con
->ops
->bad_proto(con
);
1205 mutex_lock(&con
->mutex
);
1208 static int process_connect(struct ceph_connection
*con
)
1210 u64 sup_feat
= con
->msgr
->supported_features
;
1211 u64 req_feat
= con
->msgr
->required_features
;
1212 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1214 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1216 switch (con
->in_reply
.tag
) {
1217 case CEPH_MSGR_TAG_FEATURES
:
1218 pr_err("%s%lld %s feature set mismatch,"
1219 " my %llx < server's %llx, missing %llx\n",
1220 ENTITY_NAME(con
->peer_name
),
1221 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1222 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1223 con
->error_msg
= "missing required protocol features";
1227 case CEPH_MSGR_TAG_BADPROTOVER
:
1228 pr_err("%s%lld %s protocol version mismatch,"
1229 " my %d != server's %d\n",
1230 ENTITY_NAME(con
->peer_name
),
1231 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1232 le32_to_cpu(con
->out_connect
.protocol_version
),
1233 le32_to_cpu(con
->in_reply
.protocol_version
));
1234 con
->error_msg
= "protocol version mismatch";
1238 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1240 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1242 if (con
->auth_retry
== 2) {
1243 con
->error_msg
= "connect authorization failure";
1244 reset_connection(con
);
1245 set_bit(CLOSED
, &con
->state
);
1248 con
->auth_retry
= 1;
1249 prepare_write_connect(con
->msgr
, con
, 0);
1250 prepare_read_connect(con
);
1253 case CEPH_MSGR_TAG_RESETSESSION
:
1255 * If we connected with a large connect_seq but the peer
1256 * has no record of a session with us (no connection, or
1257 * connect_seq == 0), they will send RESETSESION to indicate
1258 * that they must have reset their session, and may have
1261 dout("process_connect got RESET peer seq %u\n",
1262 le32_to_cpu(con
->in_connect
.connect_seq
));
1263 pr_err("%s%lld %s connection reset\n",
1264 ENTITY_NAME(con
->peer_name
),
1265 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1266 reset_connection(con
);
1267 prepare_write_connect(con
->msgr
, con
, 0);
1268 prepare_read_connect(con
);
1270 /* Tell ceph about it. */
1271 mutex_unlock(&con
->mutex
);
1272 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
1273 if (con
->ops
->peer_reset
)
1274 con
->ops
->peer_reset(con
);
1275 mutex_lock(&con
->mutex
);
1278 case CEPH_MSGR_TAG_RETRY_SESSION
:
1280 * If we sent a smaller connect_seq than the peer has, try
1281 * again with a larger value.
1283 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1284 le32_to_cpu(con
->out_connect
.connect_seq
),
1285 le32_to_cpu(con
->in_connect
.connect_seq
));
1286 con
->connect_seq
= le32_to_cpu(con
->in_connect
.connect_seq
);
1287 prepare_write_connect(con
->msgr
, con
, 0);
1288 prepare_read_connect(con
);
1291 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
1293 * If we sent a smaller global_seq than the peer has, try
1294 * again with a larger value.
1296 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1297 con
->peer_global_seq
,
1298 le32_to_cpu(con
->in_connect
.global_seq
));
1299 get_global_seq(con
->msgr
,
1300 le32_to_cpu(con
->in_connect
.global_seq
));
1301 prepare_write_connect(con
->msgr
, con
, 0);
1302 prepare_read_connect(con
);
1305 case CEPH_MSGR_TAG_READY
:
1306 if (req_feat
& ~server_feat
) {
1307 pr_err("%s%lld %s protocol feature mismatch,"
1308 " my required %llx > server's %llx, need %llx\n",
1309 ENTITY_NAME(con
->peer_name
),
1310 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1311 req_feat
, server_feat
, req_feat
& ~server_feat
);
1312 con
->error_msg
= "missing required protocol features";
1316 clear_bit(CONNECTING
, &con
->state
);
1317 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
1319 con
->peer_features
= server_feat
;
1320 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1321 con
->peer_global_seq
,
1322 le32_to_cpu(con
->in_reply
.connect_seq
),
1324 WARN_ON(con
->connect_seq
!=
1325 le32_to_cpu(con
->in_reply
.connect_seq
));
1327 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
1328 set_bit(LOSSYTX
, &con
->state
);
1330 prepare_read_tag(con
);
1333 case CEPH_MSGR_TAG_WAIT
:
1335 * If there is a connection race (we are opening
1336 * connections to each other), one of us may just have
1337 * to WAIT. This shouldn't happen if we are the
1340 pr_err("process_connect peer connecting WAIT\n");
1343 pr_err("connect protocol error, will retry\n");
1344 con
->error_msg
= "protocol error, garbage tag during connect";
1352 * read (part of) an ack
1354 static int read_partial_ack(struct ceph_connection
*con
)
1358 return read_partial(con
, &to
, sizeof(con
->in_temp_ack
),
1364 * We can finally discard anything that's been acked.
1366 static void process_ack(struct ceph_connection
*con
)
1369 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
1372 while (!list_empty(&con
->out_sent
)) {
1373 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
1375 seq
= le64_to_cpu(m
->hdr
.seq
);
1378 dout("got ack for seq %llu type %d at %p\n", seq
,
1379 le16_to_cpu(m
->hdr
.type
), m
);
1382 prepare_read_tag(con
);
1388 static int read_partial_message_section(struct ceph_connection
*con
,
1389 struct kvec
*section
,
1390 unsigned int sec_len
, u32
*crc
)
1396 while (section
->iov_len
< sec_len
) {
1397 BUG_ON(section
->iov_base
== NULL
);
1398 left
= sec_len
- section
->iov_len
;
1399 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
1400 section
->iov_len
, left
);
1403 section
->iov_len
+= ret
;
1404 if (section
->iov_len
== sec_len
)
1405 *crc
= crc32c(0, section
->iov_base
,
1412 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
1413 struct ceph_msg_header
*hdr
,
1417 static int read_partial_message_pages(struct ceph_connection
*con
,
1418 struct page
**pages
,
1419 unsigned data_len
, int datacrc
)
1425 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1426 (int)(PAGE_SIZE
- con
->in_msg_pos
.page_pos
));
1428 BUG_ON(pages
== NULL
);
1429 p
= kmap(pages
[con
->in_msg_pos
.page
]);
1430 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1432 if (ret
> 0 && datacrc
)
1434 crc32c(con
->in_data_crc
,
1435 p
+ con
->in_msg_pos
.page_pos
, ret
);
1436 kunmap(pages
[con
->in_msg_pos
.page
]);
1439 con
->in_msg_pos
.data_pos
+= ret
;
1440 con
->in_msg_pos
.page_pos
+= ret
;
1441 if (con
->in_msg_pos
.page_pos
== PAGE_SIZE
) {
1442 con
->in_msg_pos
.page_pos
= 0;
1443 con
->in_msg_pos
.page
++;
1450 static int read_partial_message_bio(struct ceph_connection
*con
,
1451 struct bio
**bio_iter
, int *bio_seg
,
1452 unsigned data_len
, int datacrc
)
1454 struct bio_vec
*bv
= bio_iovec_idx(*bio_iter
, *bio_seg
);
1461 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1462 (int)(bv
->bv_len
- con
->in_msg_pos
.page_pos
));
1464 p
= kmap(bv
->bv_page
) + bv
->bv_offset
;
1466 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1468 if (ret
> 0 && datacrc
)
1470 crc32c(con
->in_data_crc
,
1471 p
+ con
->in_msg_pos
.page_pos
, ret
);
1472 kunmap(bv
->bv_page
);
1475 con
->in_msg_pos
.data_pos
+= ret
;
1476 con
->in_msg_pos
.page_pos
+= ret
;
1477 if (con
->in_msg_pos
.page_pos
== bv
->bv_len
) {
1478 con
->in_msg_pos
.page_pos
= 0;
1479 iter_bio_next(bio_iter
, bio_seg
);
1487 * read (part of) a message.
1489 static int read_partial_message(struct ceph_connection
*con
)
1491 struct ceph_msg
*m
= con
->in_msg
;
1494 unsigned front_len
, middle_len
, data_len
, data_off
;
1495 int datacrc
= con
->msgr
->nocrc
;
1499 dout("read_partial_message con %p msg %p\n", con
, m
);
1502 while (con
->in_base_pos
< sizeof(con
->in_hdr
)) {
1503 left
= sizeof(con
->in_hdr
) - con
->in_base_pos
;
1504 ret
= ceph_tcp_recvmsg(con
->sock
,
1505 (char *)&con
->in_hdr
+ con
->in_base_pos
,
1509 con
->in_base_pos
+= ret
;
1510 if (con
->in_base_pos
== sizeof(con
->in_hdr
)) {
1511 u32 crc
= crc32c(0, (void *)&con
->in_hdr
,
1512 sizeof(con
->in_hdr
) - sizeof(con
->in_hdr
.crc
));
1513 if (crc
!= le32_to_cpu(con
->in_hdr
.crc
)) {
1514 pr_err("read_partial_message bad hdr "
1515 " crc %u != expected %u\n",
1516 crc
, con
->in_hdr
.crc
);
1521 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
1522 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
1524 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
1525 if (middle_len
> CEPH_MSG_MAX_DATA_LEN
)
1527 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
1528 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
1530 data_off
= le16_to_cpu(con
->in_hdr
.data_off
);
1533 seq
= le64_to_cpu(con
->in_hdr
.seq
);
1534 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
1535 pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1536 ENTITY_NAME(con
->peer_name
),
1537 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1538 seq
, con
->in_seq
+ 1);
1539 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1541 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1544 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
1545 pr_err("read_partial_message bad seq %lld expected %lld\n",
1546 seq
, con
->in_seq
+ 1);
1547 con
->error_msg
= "bad message sequence # for incoming message";
1551 /* allocate message? */
1553 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
1554 con
->in_hdr
.front_len
, con
->in_hdr
.data_len
);
1556 con
->in_msg
= ceph_alloc_msg(con
, &con
->in_hdr
, &skip
);
1558 /* skip this message */
1559 dout("alloc_msg said skip message\n");
1560 BUG_ON(con
->in_msg
);
1561 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1563 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1569 "error allocating memory for incoming message";
1573 m
->front
.iov_len
= 0; /* haven't read it yet */
1575 m
->middle
->vec
.iov_len
= 0;
1577 con
->in_msg_pos
.page
= 0;
1579 con
->in_msg_pos
.page_pos
= data_off
& ~PAGE_MASK
;
1581 con
->in_msg_pos
.page_pos
= 0;
1582 con
->in_msg_pos
.data_pos
= 0;
1586 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
1587 &con
->in_front_crc
);
1593 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
1595 &con
->in_middle_crc
);
1600 if (m
->bio
&& !m
->bio_iter
)
1601 init_bio_iter(m
->bio
, &m
->bio_iter
, &m
->bio_seg
);
1605 while (con
->in_msg_pos
.data_pos
< data_len
) {
1607 ret
= read_partial_message_pages(con
, m
->pages
,
1612 } else if (m
->bio
) {
1614 ret
= read_partial_message_bio(con
,
1615 &m
->bio_iter
, &m
->bio_seg
,
1626 to
= sizeof(m
->hdr
) + sizeof(m
->footer
);
1627 while (con
->in_base_pos
< to
) {
1628 left
= to
- con
->in_base_pos
;
1629 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)&m
->footer
+
1630 (con
->in_base_pos
- sizeof(m
->hdr
)),
1634 con
->in_base_pos
+= ret
;
1636 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1637 m
, front_len
, m
->footer
.front_crc
, middle_len
,
1638 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
1641 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
1642 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1643 m
, con
->in_front_crc
, m
->footer
.front_crc
);
1646 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
1647 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1648 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
1652 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
1653 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
1654 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
1655 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
1659 return 1; /* done! */
1663 * Process message. This happens in the worker thread. The callback should
1664 * be careful not to do anything that waits on other incoming messages or it
1667 static void process_message(struct ceph_connection
*con
)
1669 struct ceph_msg
*msg
;
1674 /* if first message, set peer_name */
1675 if (con
->peer_name
.type
== 0)
1676 con
->peer_name
= msg
->hdr
.src
;
1679 mutex_unlock(&con
->mutex
);
1681 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1682 msg
, le64_to_cpu(msg
->hdr
.seq
),
1683 ENTITY_NAME(msg
->hdr
.src
),
1684 le16_to_cpu(msg
->hdr
.type
),
1685 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1686 le32_to_cpu(msg
->hdr
.front_len
),
1687 le32_to_cpu(msg
->hdr
.data_len
),
1688 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1689 con
->ops
->dispatch(con
, msg
);
1691 mutex_lock(&con
->mutex
);
1692 prepare_read_tag(con
);
1697 * Write something to the socket. Called in a worker thread when the
1698 * socket appears to be writeable and we have something ready to send.
1700 static int try_write(struct ceph_connection
*con
)
1702 struct ceph_messenger
*msgr
= con
->msgr
;
1705 dout("try_write start %p state %lu nref %d\n", con
, con
->state
,
1706 atomic_read(&con
->nref
));
1709 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
1711 /* open the socket first? */
1712 if (con
->sock
== NULL
) {
1714 * if we were STANDBY and are reconnecting _this_
1715 * connection, bump connect_seq now. Always bump
1718 if (test_and_clear_bit(STANDBY
, &con
->state
))
1721 prepare_write_banner(msgr
, con
);
1722 prepare_write_connect(msgr
, con
, 1);
1723 prepare_read_banner(con
);
1724 set_bit(CONNECTING
, &con
->state
);
1725 clear_bit(NEGOTIATING
, &con
->state
);
1727 BUG_ON(con
->in_msg
);
1728 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1729 dout("try_write initiating connect on %p new state %lu\n",
1731 con
->sock
= ceph_tcp_connect(con
);
1732 if (IS_ERR(con
->sock
)) {
1734 con
->error_msg
= "connect error";
1741 /* kvec data queued? */
1742 if (con
->out_skip
) {
1743 ret
= write_partial_skip(con
);
1747 dout("try_write write_partial_skip err %d\n", ret
);
1751 if (con
->out_kvec_left
) {
1752 ret
= write_partial_kvec(con
);
1759 if (con
->out_msg_done
) {
1760 ceph_msg_put(con
->out_msg
);
1761 con
->out_msg
= NULL
; /* we're done with this one */
1765 ret
= write_partial_msg_pages(con
);
1767 goto more_kvec
; /* we need to send the footer, too! */
1771 dout("try_write write_partial_msg_pages err %d\n",
1778 if (!test_bit(CONNECTING
, &con
->state
)) {
1779 /* is anything else pending? */
1780 if (!list_empty(&con
->out_queue
)) {
1781 prepare_write_message(con
);
1784 if (con
->in_seq
> con
->in_seq_acked
) {
1785 prepare_write_ack(con
);
1788 if (test_and_clear_bit(KEEPALIVE_PENDING
, &con
->state
)) {
1789 prepare_write_keepalive(con
);
1794 /* Nothing to do! */
1795 clear_bit(WRITE_PENDING
, &con
->state
);
1796 dout("try_write nothing else to write.\n");
1800 dout("try_write done on %p\n", con
);
1807 * Read what we can from the socket.
1809 static int try_read(struct ceph_connection
*con
)
1816 if (test_bit(STANDBY
, &con
->state
))
1819 dout("try_read start on %p\n", con
);
1822 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
1824 if (test_bit(CONNECTING
, &con
->state
)) {
1825 if (!test_bit(NEGOTIATING
, &con
->state
)) {
1826 dout("try_read connecting\n");
1827 ret
= read_partial_banner(con
);
1830 if (process_banner(con
) < 0) {
1835 ret
= read_partial_connect(con
);
1838 if (process_connect(con
) < 0) {
1845 if (con
->in_base_pos
< 0) {
1847 * skipping + discarding content.
1849 * FIXME: there must be a better way to do this!
1851 static char buf
[1024];
1852 int skip
= min(1024, -con
->in_base_pos
);
1853 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
1854 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
1857 con
->in_base_pos
+= ret
;
1858 if (con
->in_base_pos
)
1861 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
1865 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
1868 dout("try_read got tag %d\n", (int)con
->in_tag
);
1869 switch (con
->in_tag
) {
1870 case CEPH_MSGR_TAG_MSG
:
1871 prepare_read_message(con
);
1873 case CEPH_MSGR_TAG_ACK
:
1874 prepare_read_ack(con
);
1876 case CEPH_MSGR_TAG_CLOSE
:
1877 set_bit(CLOSED
, &con
->state
); /* fixme */
1883 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
1884 ret
= read_partial_message(con
);
1888 con
->error_msg
= "bad crc";
1892 con
->error_msg
= "io error";
1898 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
1900 process_message(con
);
1903 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
) {
1904 ret
= read_partial_ack(con
);
1914 dout("try_read done on %p\n", con
);
1918 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
1919 con
->error_msg
= "protocol error, garbage tag";
1926 * Atomically queue work on a connection. Bump @con reference to
1927 * avoid races with connection teardown.
1929 * There is some trickery going on with QUEUED and BUSY because we
1930 * only want a _single_ thread operating on each connection at any
1931 * point in time, but we want to use all available CPUs.
1933 * The worker thread only proceeds if it can atomically set BUSY. It
1934 * clears QUEUED and does it's thing. When it thinks it's done, it
1935 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1936 * (tries again to set BUSY).
1938 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1939 * try to queue work. If that fails (work is already queued, or BUSY)
1940 * we give up (work also already being done or is queued) but leave QUEUED
1941 * set so that the worker thread will loop if necessary.
1943 static void queue_con(struct ceph_connection
*con
)
1945 if (test_bit(DEAD
, &con
->state
)) {
1946 dout("queue_con %p ignoring: DEAD\n",
1951 if (!con
->ops
->get(con
)) {
1952 dout("queue_con %p ref count 0\n", con
);
1956 set_bit(QUEUED
, &con
->state
);
1957 if (test_bit(BUSY
, &con
->state
)) {
1958 dout("queue_con %p - already BUSY\n", con
);
1960 } else if (!queue_work(ceph_msgr_wq
, &con
->work
.work
)) {
1961 dout("queue_con %p - already queued\n", con
);
1964 dout("queue_con %p\n", con
);
1969 * Do some work on a connection. Drop a connection ref when we're done.
1971 static void con_work(struct work_struct
*work
)
1973 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
1978 if (test_and_set_bit(BUSY
, &con
->state
) != 0) {
1979 dout("con_work %p BUSY already set\n", con
);
1982 dout("con_work %p start, clearing QUEUED\n", con
);
1983 clear_bit(QUEUED
, &con
->state
);
1985 mutex_lock(&con
->mutex
);
1987 if (test_bit(CLOSED
, &con
->state
)) { /* e.g. if we are replaced */
1988 dout("con_work CLOSED\n");
1989 con_close_socket(con
);
1992 if (test_and_clear_bit(OPENING
, &con
->state
)) {
1993 /* reopen w/ new peer */
1994 dout("con_work OPENING\n");
1995 con_close_socket(con
);
1998 if (test_and_clear_bit(SOCK_CLOSED
, &con
->state
) ||
1999 try_read(con
) < 0 ||
2000 try_write(con
) < 0) {
2001 mutex_unlock(&con
->mutex
);
2003 ceph_fault(con
); /* error/fault path */
2008 mutex_unlock(&con
->mutex
);
2011 clear_bit(BUSY
, &con
->state
);
2012 dout("con->state=%lu\n", con
->state
);
2013 if (test_bit(QUEUED
, &con
->state
)) {
2014 if (!backoff
|| test_bit(OPENING
, &con
->state
)) {
2015 dout("con_work %p QUEUED reset, looping\n", con
);
2018 dout("con_work %p QUEUED reset, but just faulted\n", con
);
2019 clear_bit(QUEUED
, &con
->state
);
2021 dout("con_work %p done\n", con
);
2029 * Generic error/fault handler. A retry mechanism is used with
2030 * exponential backoff
2032 static void ceph_fault(struct ceph_connection
*con
)
2034 pr_err("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2035 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2036 dout("fault %p state %lu to peer %s\n",
2037 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2039 if (test_bit(LOSSYTX
, &con
->state
)) {
2040 dout("fault on LOSSYTX channel\n");
2044 mutex_lock(&con
->mutex
);
2045 if (test_bit(CLOSED
, &con
->state
))
2048 con_close_socket(con
);
2051 ceph_msg_put(con
->in_msg
);
2055 /* Requeue anything that hasn't been acked */
2056 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2058 /* If there are no messages in the queue, place the connection
2059 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2060 if (list_empty(&con
->out_queue
) && !con
->out_keepalive_pending
) {
2061 dout("fault setting STANDBY\n");
2062 set_bit(STANDBY
, &con
->state
);
2064 /* retry after a delay. */
2065 if (con
->delay
== 0)
2066 con
->delay
= BASE_DELAY_INTERVAL
;
2067 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2069 dout("fault queueing %p delay %lu\n", con
, con
->delay
);
2071 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2072 round_jiffies_relative(con
->delay
)) == 0)
2077 mutex_unlock(&con
->mutex
);
2080 * in case we faulted due to authentication, invalidate our
2081 * current tickets so that we can get new ones.
2083 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2084 dout("calling invalidate_authorizer()\n");
2085 con
->ops
->invalidate_authorizer(con
);
2088 if (con
->ops
->fault
)
2089 con
->ops
->fault(con
);
2095 * create a new messenger instance
2097 struct ceph_messenger
*ceph_messenger_create(struct ceph_entity_addr
*myaddr
,
2098 u32 supported_features
,
2099 u32 required_features
)
2101 struct ceph_messenger
*msgr
;
2103 msgr
= kzalloc(sizeof(*msgr
), GFP_KERNEL
);
2105 return ERR_PTR(-ENOMEM
);
2107 msgr
->supported_features
= supported_features
;
2108 msgr
->required_features
= required_features
;
2110 spin_lock_init(&msgr
->global_seq_lock
);
2112 /* the zero page is needed if a request is "canceled" while the message
2113 * is being written over the socket */
2114 msgr
->zero_page
= __page_cache_alloc(GFP_KERNEL
| __GFP_ZERO
);
2115 if (!msgr
->zero_page
) {
2117 return ERR_PTR(-ENOMEM
);
2119 kmap(msgr
->zero_page
);
2122 msgr
->inst
.addr
= *myaddr
;
2124 /* select a random nonce */
2125 msgr
->inst
.addr
.type
= 0;
2126 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2127 encode_my_addr(msgr
);
2129 dout("messenger_create %p\n", msgr
);
2132 EXPORT_SYMBOL(ceph_messenger_create
);
2134 void ceph_messenger_destroy(struct ceph_messenger
*msgr
)
2136 dout("destroy %p\n", msgr
);
2137 kunmap(msgr
->zero_page
);
2138 __free_page(msgr
->zero_page
);
2140 dout("destroyed messenger %p\n", msgr
);
2142 EXPORT_SYMBOL(ceph_messenger_destroy
);
2145 * Queue up an outgoing message on the given connection.
2147 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2149 if (test_bit(CLOSED
, &con
->state
)) {
2150 dout("con_send %p closed, dropping %p\n", con
, msg
);
2156 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2158 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2160 msg
->needs_out_seq
= true;
2163 mutex_lock(&con
->mutex
);
2164 BUG_ON(!list_empty(&msg
->list_head
));
2165 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2166 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2167 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2168 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2169 le32_to_cpu(msg
->hdr
.front_len
),
2170 le32_to_cpu(msg
->hdr
.middle_len
),
2171 le32_to_cpu(msg
->hdr
.data_len
));
2172 mutex_unlock(&con
->mutex
);
2174 /* if there wasn't anything waiting to send before, queue
2176 if (test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2179 EXPORT_SYMBOL(ceph_con_send
);
2182 * Revoke a message that was previously queued for send
2184 void ceph_con_revoke(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2186 mutex_lock(&con
->mutex
);
2187 if (!list_empty(&msg
->list_head
)) {
2188 dout("con_revoke %p msg %p - was on queue\n", con
, msg
);
2189 list_del_init(&msg
->list_head
);
2193 if (con
->out_msg
== msg
) {
2194 dout("con_revoke %p msg %p - was sending\n", con
, msg
);
2195 con
->out_msg
= NULL
;
2196 if (con
->out_kvec_is_msg
) {
2197 con
->out_skip
= con
->out_kvec_bytes
;
2198 con
->out_kvec_is_msg
= false;
2203 mutex_unlock(&con
->mutex
);
2207 * Revoke a message that we may be reading data into
2209 void ceph_con_revoke_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2211 mutex_lock(&con
->mutex
);
2212 if (con
->in_msg
&& con
->in_msg
== msg
) {
2213 unsigned front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2214 unsigned middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2215 unsigned data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2217 /* skip rest of message */
2218 dout("con_revoke_pages %p msg %p revoked\n", con
, msg
);
2219 con
->in_base_pos
= con
->in_base_pos
-
2220 sizeof(struct ceph_msg_header
) -
2224 sizeof(struct ceph_msg_footer
);
2225 ceph_msg_put(con
->in_msg
);
2227 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2230 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2231 con
, con
->in_msg
, msg
);
2233 mutex_unlock(&con
->mutex
);
2237 * Queue a keepalive byte to ensure the tcp connection is alive.
2239 void ceph_con_keepalive(struct ceph_connection
*con
)
2241 if (test_and_set_bit(KEEPALIVE_PENDING
, &con
->state
) == 0 &&
2242 test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2245 EXPORT_SYMBOL(ceph_con_keepalive
);
2249 * construct a new message with given type, size
2250 * the new msg has a ref count of 1.
2252 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
)
2256 m
= kmalloc(sizeof(*m
), flags
);
2259 kref_init(&m
->kref
);
2260 INIT_LIST_HEAD(&m
->list_head
);
2263 m
->hdr
.type
= cpu_to_le16(type
);
2264 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
2266 m
->hdr
.front_len
= cpu_to_le32(front_len
);
2267 m
->hdr
.middle_len
= 0;
2268 m
->hdr
.data_len
= 0;
2269 m
->hdr
.data_off
= 0;
2270 m
->hdr
.reserved
= 0;
2271 m
->footer
.front_crc
= 0;
2272 m
->footer
.middle_crc
= 0;
2273 m
->footer
.data_crc
= 0;
2274 m
->footer
.flags
= 0;
2275 m
->front_max
= front_len
;
2276 m
->front_is_vmalloc
= false;
2277 m
->more_to_follow
= false;
2282 if (front_len
> PAGE_CACHE_SIZE
) {
2283 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
2285 m
->front_is_vmalloc
= true;
2287 m
->front
.iov_base
= kmalloc(front_len
, flags
);
2289 if (m
->front
.iov_base
== NULL
) {
2290 pr_err("msg_new can't allocate %d bytes\n",
2295 m
->front
.iov_base
= NULL
;
2297 m
->front
.iov_len
= front_len
;
2311 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2317 pr_err("msg_new can't create type %d front %d\n", type
, front_len
);
2320 EXPORT_SYMBOL(ceph_msg_new
);
2323 * Allocate "middle" portion of a message, if it is needed and wasn't
2324 * allocated by alloc_msg. This allows us to read a small fixed-size
2325 * per-type header in the front and then gracefully fail (i.e.,
2326 * propagate the error to the caller based on info in the front) when
2327 * the middle is too large.
2329 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2331 int type
= le16_to_cpu(msg
->hdr
.type
);
2332 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2334 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2335 ceph_msg_type_name(type
), middle_len
);
2336 BUG_ON(!middle_len
);
2337 BUG_ON(msg
->middle
);
2339 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2346 * Generic message allocator, for incoming messages.
2348 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
2349 struct ceph_msg_header
*hdr
,
2352 int type
= le16_to_cpu(hdr
->type
);
2353 int front_len
= le32_to_cpu(hdr
->front_len
);
2354 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2355 struct ceph_msg
*msg
= NULL
;
2358 if (con
->ops
->alloc_msg
) {
2359 mutex_unlock(&con
->mutex
);
2360 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2361 mutex_lock(&con
->mutex
);
2367 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
);
2369 pr_err("unable to allocate msg type %d len %d\n",
2374 memcpy(&msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
2376 if (middle_len
&& !msg
->middle
) {
2377 ret
= ceph_alloc_middle(con
, msg
);
2389 * Free a generically kmalloc'd message.
2391 void ceph_msg_kfree(struct ceph_msg
*m
)
2393 dout("msg_kfree %p\n", m
);
2394 if (m
->front_is_vmalloc
)
2395 vfree(m
->front
.iov_base
);
2397 kfree(m
->front
.iov_base
);
2402 * Drop a msg ref. Destroy as needed.
2404 void ceph_msg_last_put(struct kref
*kref
)
2406 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2408 dout("ceph_msg_put last one on %p\n", m
);
2409 WARN_ON(!list_empty(&m
->list_head
));
2411 /* drop middle, data, if any */
2413 ceph_buffer_put(m
->middle
);
2420 ceph_pagelist_release(m
->pagelist
);
2428 ceph_msgpool_put(m
->pool
, m
);
2432 EXPORT_SYMBOL(ceph_msg_last_put
);
2434 void ceph_msg_dump(struct ceph_msg
*msg
)
2436 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg
,
2437 msg
->front_max
, msg
->nr_pages
);
2438 print_hex_dump(KERN_DEBUG
, "header: ",
2439 DUMP_PREFIX_OFFSET
, 16, 1,
2440 &msg
->hdr
, sizeof(msg
->hdr
), true);
2441 print_hex_dump(KERN_DEBUG
, " front: ",
2442 DUMP_PREFIX_OFFSET
, 16, 1,
2443 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2445 print_hex_dump(KERN_DEBUG
, "middle: ",
2446 DUMP_PREFIX_OFFSET
, 16, 1,
2447 msg
->middle
->vec
.iov_base
,
2448 msg
->middle
->vec
.iov_len
, true);
2449 print_hex_dump(KERN_DEBUG
, "footer: ",
2450 DUMP_PREFIX_OFFSET
, 16, 1,
2451 &msg
->footer
, sizeof(msg
->footer
), true);
2453 EXPORT_SYMBOL(ceph_msg_dump
);