2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
72 unsigned long address
;
84 * Priority Inheritance state:
86 struct futex_pi_state
{
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list
;
96 struct rt_mutex pi_mutex
;
98 struct task_struct
*owner
;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
114 struct list_head list
;
115 wait_queue_head_t waiters
;
117 /* Which hash list lock to use: */
118 spinlock_t
*lock_ptr
;
120 /* Key which the futex is hashed on: */
123 /* For fd, sigio sent using these: */
127 /* Optional priority inheritance state: */
128 struct futex_pi_state
*pi_state
;
129 struct task_struct
*task
;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket
{
137 struct list_head chain
;
140 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount
*futex_mnt
;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
150 u32 hash
= jhash2((u32
*)&key
->both
.word
,
151 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
153 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
161 return (key1
->both
.word
== key2
->both
.word
162 && key1
->both
.ptr
== key2
->both
.ptr
163 && key1
->both
.offset
== key2
->both
.offset
);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user
*uaddr
, union futex_key
*key
)
180 unsigned long address
= (unsigned long)uaddr
;
181 struct mm_struct
*mm
= current
->mm
;
182 struct vm_area_struct
*vma
;
187 * The futex address must be "naturally" aligned.
189 key
->both
.offset
= address
% PAGE_SIZE
;
190 if (unlikely((key
->both
.offset
% sizeof(u32
)) != 0))
192 address
-= key
->both
.offset
;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma
= find_extend_vma(mm
, address
);
205 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
206 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
218 key
->private.mm
= mm
;
219 key
->private.address
= address
;
224 * Linear file mappings are also simple.
226 key
->shared
.inode
= vma
->vm_file
->f_dentry
->d_inode
;
227 key
->both
.offset
++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
229 key
->shared
.pgoff
= (((address
- vma
->vm_start
) >> PAGE_SHIFT
)
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err
= get_user_pages(current
, mm
, address
, 1, 0, 0, &page
, NULL
);
243 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key
*key
)
259 if (key
->both
.ptr
!= 0) {
260 if (key
->both
.offset
& 1)
261 atomic_inc(&key
->shared
.inode
->i_count
);
263 atomic_inc(&key
->private.mm
->mm_count
);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key
*key
)
273 if (key
->both
.ptr
!= 0) {
274 if (key
->both
.offset
& 1)
275 iput(key
->shared
.inode
);
277 mmdrop(key
->private.mm
);
281 static inline int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
286 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
289 return ret
? -EFAULT
: 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address
, int attempt
)
297 struct vm_area_struct
* vma
;
298 struct mm_struct
*mm
= current
->mm
;
300 if (attempt
>= 2 || !(vma
= find_vma(mm
, address
)) ||
301 vma
->vm_start
> address
|| !(vma
->vm_flags
& VM_WRITE
))
304 switch (handle_mm_fault(mm
, vma
, address
, 1)) {
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state
*pi_state
;
324 if (likely(current
->pi_state_cache
))
327 pi_state
= kmalloc(sizeof(*pi_state
), GFP_KERNEL
);
332 memset(pi_state
, 0, sizeof(*pi_state
));
333 INIT_LIST_HEAD(&pi_state
->list
);
334 /* pi_mutex gets initialized later */
335 pi_state
->owner
= NULL
;
336 atomic_set(&pi_state
->refcount
, 1);
338 current
->pi_state_cache
= pi_state
;
343 static struct futex_pi_state
* alloc_pi_state(void)
345 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
348 current
->pi_state_cache
= NULL
;
353 static void free_pi_state(struct futex_pi_state
*pi_state
)
355 if (!atomic_dec_and_test(&pi_state
->refcount
))
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
362 if (pi_state
->owner
) {
363 spin_lock_irq(&pi_state
->owner
->pi_lock
);
364 list_del_init(&pi_state
->list
);
365 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
367 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
370 if (current
->pi_state_cache
)
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
378 pi_state
->owner
= NULL
;
379 atomic_set(&pi_state
->refcount
, 1);
380 current
->pi_state_cache
= pi_state
;
385 * Look up the task based on what TID userspace gave us.
388 static struct task_struct
* futex_find_get_task(pid_t pid
)
390 struct task_struct
*p
;
392 read_lock(&tasklist_lock
);
393 p
= find_task_by_pid(pid
);
396 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
)) {
400 if (p
->state
== EXIT_ZOMBIE
|| p
->exit_state
== EXIT_ZOMBIE
) {
406 read_unlock(&tasklist_lock
);
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
416 void exit_pi_state_list(struct task_struct
*curr
)
418 struct futex_hash_bucket
*hb
;
419 struct list_head
*next
, *head
= &curr
->pi_state_list
;
420 struct futex_pi_state
*pi_state
;
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
428 spin_lock_irq(&curr
->pi_lock
);
429 while (!list_empty(head
)) {
432 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
434 spin_unlock_irq(&curr
->pi_lock
);
436 hb
= hash_futex(&key
);
437 spin_lock(&hb
->lock
);
439 spin_lock_irq(&curr
->pi_lock
);
440 if (head
->next
!= next
) {
441 spin_unlock(&hb
->lock
);
445 list_del_init(&pi_state
->list
);
447 WARN_ON(pi_state
->owner
!= curr
);
449 pi_state
->owner
= NULL
;
450 spin_unlock_irq(&curr
->pi_lock
);
452 rt_mutex_unlock(&pi_state
->pi_mutex
);
454 spin_unlock(&hb
->lock
);
456 spin_lock_irq(&curr
->pi_lock
);
458 spin_unlock_irq(&curr
->pi_lock
);
462 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
, struct futex_q
*me
)
464 struct futex_pi_state
*pi_state
= NULL
;
465 struct futex_q
*this, *next
;
466 struct list_head
*head
;
467 struct task_struct
*p
;
472 list_for_each_entry_safe(this, next
, head
, list
) {
473 if (match_futex (&this->key
, &me
->key
)) {
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
478 pi_state
= this->pi_state
;
480 * Userspace might have messed up non PI and PI futexes
482 if (unlikely(!pi_state
))
485 atomic_inc(&pi_state
->refcount
);
486 me
->pi_state
= pi_state
;
493 * We are the first waiter - try to look up the real owner and
494 * attach the new pi_state to it:
496 pid
= uval
& FUTEX_TID_MASK
;
497 p
= futex_find_get_task(pid
);
501 pi_state
= alloc_pi_state();
504 * Initialize the pi_mutex in locked state and make 'p'
507 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
509 /* Store the key for possible exit cleanups: */
510 pi_state
->key
= me
->key
;
512 spin_lock_irq(&p
->pi_lock
);
513 list_add(&pi_state
->list
, &p
->pi_state_list
);
515 spin_unlock_irq(&p
->pi_lock
);
519 me
->pi_state
= pi_state
;
525 * The hash bucket lock must be held when this is called.
526 * Afterwards, the futex_q must not be accessed.
528 static void wake_futex(struct futex_q
*q
)
530 list_del_init(&q
->list
);
532 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
534 * The lock in wake_up_all() is a crucial memory barrier after the
535 * list_del_init() and also before assigning to q->lock_ptr.
537 wake_up_all(&q
->waiters
);
539 * The waiting task can free the futex_q as soon as this is written,
540 * without taking any locks. This must come last.
542 * A memory barrier is required here to prevent the following store
543 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
544 * at the end of wake_up_all() does not prevent this store from
551 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
553 struct task_struct
*new_owner
;
554 struct futex_pi_state
*pi_state
= this->pi_state
;
560 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
563 * This happens when we have stolen the lock and the original
564 * pending owner did not enqueue itself back on the rt_mutex.
565 * Thats not a tragedy. We know that way, that a lock waiter
566 * is on the fly. We make the futex_q waiter the pending owner.
569 new_owner
= this->task
;
572 * We pass it to the next owner. (The WAITERS bit is always
573 * kept enabled while there is PI state around. We must also
574 * preserve the owner died bit.)
576 newval
= (uval
& FUTEX_OWNER_DIED
) | FUTEX_WAITERS
| new_owner
->pid
;
579 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
582 if (curval
== -EFAULT
)
587 list_del_init(&pi_state
->owner
->pi_state_list
);
588 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
589 pi_state
->owner
= new_owner
;
590 rt_mutex_unlock(&pi_state
->pi_mutex
);
595 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
600 * There is no waiter, so we unlock the futex. The owner died
601 * bit has not to be preserved here. We are the owner:
604 oldval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, 0);
607 if (oldval
== -EFAULT
)
616 * Express the locking dependencies for lockdep:
619 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
622 spin_lock(&hb1
->lock
);
624 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
625 } else { /* hb1 > hb2 */
626 spin_lock(&hb2
->lock
);
627 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
632 * Wake up all waiters hashed on the physical page that is mapped
633 * to this virtual address:
635 static int futex_wake(u32 __user
*uaddr
, int nr_wake
)
637 struct futex_hash_bucket
*hb
;
638 struct futex_q
*this, *next
;
639 struct list_head
*head
;
643 down_read(¤t
->mm
->mmap_sem
);
645 ret
= get_futex_key(uaddr
, &key
);
646 if (unlikely(ret
!= 0))
649 hb
= hash_futex(&key
);
650 spin_lock(&hb
->lock
);
653 list_for_each_entry_safe(this, next
, head
, list
) {
654 if (match_futex (&this->key
, &key
)) {
655 if (this->pi_state
) {
660 if (++ret
>= nr_wake
)
665 spin_unlock(&hb
->lock
);
667 up_read(¤t
->mm
->mmap_sem
);
672 * Wake up all waiters hashed on the physical page that is mapped
673 * to this virtual address:
676 futex_wake_op(u32 __user
*uaddr1
, u32 __user
*uaddr2
,
677 int nr_wake
, int nr_wake2
, int op
)
679 union futex_key key1
, key2
;
680 struct futex_hash_bucket
*hb1
, *hb2
;
681 struct list_head
*head
;
682 struct futex_q
*this, *next
;
683 int ret
, op_ret
, attempt
= 0;
686 down_read(¤t
->mm
->mmap_sem
);
688 ret
= get_futex_key(uaddr1
, &key1
);
689 if (unlikely(ret
!= 0))
691 ret
= get_futex_key(uaddr2
, &key2
);
692 if (unlikely(ret
!= 0))
695 hb1
= hash_futex(&key1
);
696 hb2
= hash_futex(&key2
);
699 double_lock_hb(hb1
, hb2
);
701 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
702 if (unlikely(op_ret
< 0)) {
705 spin_unlock(&hb1
->lock
);
707 spin_unlock(&hb2
->lock
);
711 * we don't get EFAULT from MMU faults if we don't have an MMU,
712 * but we might get them from range checking
718 if (unlikely(op_ret
!= -EFAULT
)) {
724 * futex_atomic_op_inuser needs to both read and write
725 * *(int __user *)uaddr2, but we can't modify it
726 * non-atomically. Therefore, if get_user below is not
727 * enough, we need to handle the fault ourselves, while
728 * still holding the mmap_sem.
731 if (futex_handle_fault((unsigned long)uaddr2
,
738 * If we would have faulted, release mmap_sem,
739 * fault it in and start all over again.
741 up_read(¤t
->mm
->mmap_sem
);
743 ret
= get_user(dummy
, uaddr2
);
752 list_for_each_entry_safe(this, next
, head
, list
) {
753 if (match_futex (&this->key
, &key1
)) {
755 if (++ret
>= nr_wake
)
764 list_for_each_entry_safe(this, next
, head
, list
) {
765 if (match_futex (&this->key
, &key2
)) {
767 if (++op_ret
>= nr_wake2
)
774 spin_unlock(&hb1
->lock
);
776 spin_unlock(&hb2
->lock
);
778 up_read(¤t
->mm
->mmap_sem
);
783 * Requeue all waiters hashed on one physical page to another
786 static int futex_requeue(u32 __user
*uaddr1
, u32 __user
*uaddr2
,
787 int nr_wake
, int nr_requeue
, u32
*cmpval
)
789 union futex_key key1
, key2
;
790 struct futex_hash_bucket
*hb1
, *hb2
;
791 struct list_head
*head1
;
792 struct futex_q
*this, *next
;
793 int ret
, drop_count
= 0;
796 down_read(¤t
->mm
->mmap_sem
);
798 ret
= get_futex_key(uaddr1
, &key1
);
799 if (unlikely(ret
!= 0))
801 ret
= get_futex_key(uaddr2
, &key2
);
802 if (unlikely(ret
!= 0))
805 hb1
= hash_futex(&key1
);
806 hb2
= hash_futex(&key2
);
808 double_lock_hb(hb1
, hb2
);
810 if (likely(cmpval
!= NULL
)) {
813 ret
= get_futex_value_locked(&curval
, uaddr1
);
816 spin_unlock(&hb1
->lock
);
818 spin_unlock(&hb2
->lock
);
821 * If we would have faulted, release mmap_sem, fault
822 * it in and start all over again.
824 up_read(¤t
->mm
->mmap_sem
);
826 ret
= get_user(curval
, uaddr1
);
833 if (curval
!= *cmpval
) {
840 list_for_each_entry_safe(this, next
, head1
, list
) {
841 if (!match_futex (&this->key
, &key1
))
843 if (++ret
<= nr_wake
) {
847 * If key1 and key2 hash to the same bucket, no need to
850 if (likely(head1
!= &hb2
->chain
)) {
851 list_move_tail(&this->list
, &hb2
->chain
);
852 this->lock_ptr
= &hb2
->lock
;
858 if (ret
- nr_wake
>= nr_requeue
)
864 spin_unlock(&hb1
->lock
);
866 spin_unlock(&hb2
->lock
);
868 /* drop_key_refs() must be called outside the spinlocks. */
869 while (--drop_count
>= 0)
870 drop_key_refs(&key1
);
873 up_read(¤t
->mm
->mmap_sem
);
877 /* The key must be already stored in q->key. */
878 static inline struct futex_hash_bucket
*
879 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
881 struct futex_hash_bucket
*hb
;
886 init_waitqueue_head(&q
->waiters
);
888 get_key_refs(&q
->key
);
889 hb
= hash_futex(&q
->key
);
890 q
->lock_ptr
= &hb
->lock
;
892 spin_lock(&hb
->lock
);
896 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
898 list_add_tail(&q
->list
, &hb
->chain
);
900 spin_unlock(&hb
->lock
);
904 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
906 spin_unlock(&hb
->lock
);
907 drop_key_refs(&q
->key
);
911 * queue_me and unqueue_me must be called as a pair, each
912 * exactly once. They are called with the hashed spinlock held.
915 /* The key must be already stored in q->key. */
916 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
918 struct futex_hash_bucket
*hb
;
920 hb
= queue_lock(q
, fd
, filp
);
924 /* Return 1 if we were still queued (ie. 0 means we were woken) */
925 static int unqueue_me(struct futex_q
*q
)
927 spinlock_t
*lock_ptr
;
930 /* In the common case we don't take the spinlock, which is nice. */
932 lock_ptr
= q
->lock_ptr
;
936 * q->lock_ptr can change between reading it and
937 * spin_lock(), causing us to take the wrong lock. This
938 * corrects the race condition.
940 * Reasoning goes like this: if we have the wrong lock,
941 * q->lock_ptr must have changed (maybe several times)
942 * between reading it and the spin_lock(). It can
943 * change again after the spin_lock() but only if it was
944 * already changed before the spin_lock(). It cannot,
945 * however, change back to the original value. Therefore
946 * we can detect whether we acquired the correct lock.
948 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
949 spin_unlock(lock_ptr
);
952 WARN_ON(list_empty(&q
->list
));
957 spin_unlock(lock_ptr
);
961 drop_key_refs(&q
->key
);
966 * PI futexes can not be requeued and must remove themself from the
967 * hash bucket. The hash bucket lock is held on entry and dropped here.
969 static void unqueue_me_pi(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
971 WARN_ON(list_empty(&q
->list
));
974 BUG_ON(!q
->pi_state
);
975 free_pi_state(q
->pi_state
);
978 spin_unlock(&hb
->lock
);
980 drop_key_refs(&q
->key
);
983 static int futex_wait(u32 __user
*uaddr
, u32 val
, unsigned long time
)
985 struct task_struct
*curr
= current
;
986 DECLARE_WAITQUEUE(wait
, curr
);
987 struct futex_hash_bucket
*hb
;
994 down_read(&curr
->mm
->mmap_sem
);
996 ret
= get_futex_key(uaddr
, &q
.key
);
997 if (unlikely(ret
!= 0))
998 goto out_release_sem
;
1000 hb
= queue_lock(&q
, -1, NULL
);
1003 * Access the page AFTER the futex is queued.
1004 * Order is important:
1006 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1007 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1009 * The basic logical guarantee of a futex is that it blocks ONLY
1010 * if cond(var) is known to be true at the time of blocking, for
1011 * any cond. If we queued after testing *uaddr, that would open
1012 * a race condition where we could block indefinitely with
1013 * cond(var) false, which would violate the guarantee.
1015 * A consequence is that futex_wait() can return zero and absorb
1016 * a wakeup when *uaddr != val on entry to the syscall. This is
1019 * We hold the mmap semaphore, so the mapping cannot have changed
1020 * since we looked it up in get_futex_key.
1022 ret
= get_futex_value_locked(&uval
, uaddr
);
1024 if (unlikely(ret
)) {
1025 queue_unlock(&q
, hb
);
1028 * If we would have faulted, release mmap_sem, fault it in and
1029 * start all over again.
1031 up_read(&curr
->mm
->mmap_sem
);
1033 ret
= get_user(uval
, uaddr
);
1041 goto out_unlock_release_sem
;
1043 /* Only actually queue if *uaddr contained val. */
1047 * Now the futex is queued and we have checked the data, we
1048 * don't want to hold mmap_sem while we sleep.
1050 up_read(&curr
->mm
->mmap_sem
);
1053 * There might have been scheduling since the queue_me(), as we
1054 * cannot hold a spinlock across the get_user() in case it
1055 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1056 * queueing ourselves into the futex hash. This code thus has to
1057 * rely on the futex_wake() code removing us from hash when it
1061 /* add_wait_queue is the barrier after __set_current_state. */
1062 __set_current_state(TASK_INTERRUPTIBLE
);
1063 add_wait_queue(&q
.waiters
, &wait
);
1065 * !list_empty() is safe here without any lock.
1066 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1068 if (likely(!list_empty(&q
.list
)))
1069 time
= schedule_timeout(time
);
1070 __set_current_state(TASK_RUNNING
);
1073 * NOTE: we don't remove ourselves from the waitqueue because
1074 * we are the only user of it.
1077 /* If we were woken (and unqueued), we succeeded, whatever. */
1078 if (!unqueue_me(&q
))
1083 * We expect signal_pending(current), but another thread may
1084 * have handled it for us already.
1088 out_unlock_release_sem
:
1089 queue_unlock(&q
, hb
);
1092 up_read(&curr
->mm
->mmap_sem
);
1097 * Userspace tried a 0 -> TID atomic transition of the futex value
1098 * and failed. The kernel side here does the whole locking operation:
1099 * if there are waiters then it will block, it does PI, etc. (Due to
1100 * races the kernel might see a 0 value of the futex too.)
1102 static int do_futex_lock_pi(u32 __user
*uaddr
, int detect
, int trylock
,
1103 struct hrtimer_sleeper
*to
)
1105 struct task_struct
*curr
= current
;
1106 struct futex_hash_bucket
*hb
;
1107 u32 uval
, newval
, curval
;
1109 int ret
, attempt
= 0;
1111 if (refill_pi_state_cache())
1116 down_read(&curr
->mm
->mmap_sem
);
1118 ret
= get_futex_key(uaddr
, &q
.key
);
1119 if (unlikely(ret
!= 0))
1120 goto out_release_sem
;
1122 hb
= queue_lock(&q
, -1, NULL
);
1126 * To avoid races, we attempt to take the lock here again
1127 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1128 * the locks. It will most likely not succeed.
1130 newval
= current
->pid
;
1132 inc_preempt_count();
1133 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, 0, newval
);
1134 dec_preempt_count();
1136 if (unlikely(curval
== -EFAULT
))
1139 /* We own the lock already */
1140 if (unlikely((curval
& FUTEX_TID_MASK
) == current
->pid
)) {
1142 force_sig(SIGKILL
, current
);
1144 goto out_unlock_release_sem
;
1148 * Surprise - we got the lock. Just return
1151 if (unlikely(!curval
))
1152 goto out_unlock_release_sem
;
1155 newval
= uval
| FUTEX_WAITERS
;
1157 inc_preempt_count();
1158 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
1159 dec_preempt_count();
1161 if (unlikely(curval
== -EFAULT
))
1163 if (unlikely(curval
!= uval
))
1167 * We dont have the lock. Look up the PI state (or create it if
1168 * we are the first waiter):
1170 ret
= lookup_pi_state(uval
, hb
, &q
);
1172 if (unlikely(ret
)) {
1174 * There were no waiters and the owner task lookup
1175 * failed. When the OWNER_DIED bit is set, then we
1176 * know that this is a robust futex and we actually
1177 * take the lock. This is safe as we are protected by
1178 * the hash bucket lock. We also set the waiters bit
1179 * unconditionally here, to simplify glibc handling of
1180 * multiple tasks racing to acquire the lock and
1181 * cleanup the problems which were left by the dead
1184 if (curval
& FUTEX_OWNER_DIED
) {
1186 newval
= current
->pid
|
1187 FUTEX_OWNER_DIED
| FUTEX_WAITERS
;
1189 inc_preempt_count();
1190 curval
= futex_atomic_cmpxchg_inatomic(uaddr
,
1192 dec_preempt_count();
1194 if (unlikely(curval
== -EFAULT
))
1196 if (unlikely(curval
!= uval
))
1200 goto out_unlock_release_sem
;
1204 * Only actually queue now that the atomic ops are done:
1209 * Now the futex is queued and we have checked the data, we
1210 * don't want to hold mmap_sem while we sleep.
1212 up_read(&curr
->mm
->mmap_sem
);
1214 WARN_ON(!q
.pi_state
);
1216 * Block on the PI mutex:
1219 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1221 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1222 /* Fixup the trylock return value: */
1223 ret
= ret
? 0 : -EWOULDBLOCK
;
1226 down_read(&curr
->mm
->mmap_sem
);
1227 spin_lock(q
.lock_ptr
);
1230 * Got the lock. We might not be the anticipated owner if we
1231 * did a lock-steal - fix up the PI-state in that case.
1233 if (!ret
&& q
.pi_state
->owner
!= curr
) {
1234 u32 newtid
= current
->pid
| FUTEX_WAITERS
;
1237 if (q
.pi_state
->owner
!= NULL
) {
1238 spin_lock_irq(&q
.pi_state
->owner
->pi_lock
);
1239 list_del_init(&q
.pi_state
->list
);
1240 spin_unlock_irq(&q
.pi_state
->owner
->pi_lock
);
1242 newtid
|= FUTEX_OWNER_DIED
;
1244 q
.pi_state
->owner
= current
;
1246 spin_lock_irq(¤t
->pi_lock
);
1247 list_add(&q
.pi_state
->list
, ¤t
->pi_state_list
);
1248 spin_unlock_irq(¤t
->pi_lock
);
1250 /* Unqueue and drop the lock */
1251 unqueue_me_pi(&q
, hb
);
1252 up_read(&curr
->mm
->mmap_sem
);
1254 * We own it, so we have to replace the pending owner
1255 * TID. This must be atomic as we have preserve the
1256 * owner died bit here.
1258 ret
= get_user(uval
, uaddr
);
1260 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1261 curval
= futex_atomic_cmpxchg_inatomic(uaddr
,
1263 if (curval
== -EFAULT
)
1271 * Catch the rare case, where the lock was released
1272 * when we were on the way back before we locked
1275 if (ret
&& q
.pi_state
->owner
== curr
) {
1276 if (rt_mutex_trylock(&q
.pi_state
->pi_mutex
))
1279 /* Unqueue and drop the lock */
1280 unqueue_me_pi(&q
, hb
);
1281 up_read(&curr
->mm
->mmap_sem
);
1284 if (!detect
&& ret
== -EDEADLK
&& 0)
1285 force_sig(SIGKILL
, current
);
1289 out_unlock_release_sem
:
1290 queue_unlock(&q
, hb
);
1293 up_read(&curr
->mm
->mmap_sem
);
1298 * We have to r/w *(int __user *)uaddr, but we can't modify it
1299 * non-atomically. Therefore, if get_user below is not
1300 * enough, we need to handle the fault ourselves, while
1301 * still holding the mmap_sem.
1304 if (futex_handle_fault((unsigned long)uaddr
, attempt
))
1305 goto out_unlock_release_sem
;
1310 queue_unlock(&q
, hb
);
1311 up_read(&curr
->mm
->mmap_sem
);
1313 ret
= get_user(uval
, uaddr
);
1314 if (!ret
&& (uval
!= -EFAULT
))
1323 static long futex_lock_pi_restart(struct restart_block
*restart
)
1325 struct hrtimer_sleeper timeout
, *to
= NULL
;
1328 restart
->fn
= do_no_restart_syscall
;
1330 if (restart
->arg2
|| restart
->arg3
) {
1332 hrtimer_init(&to
->timer
, CLOCK_REALTIME
, HRTIMER_ABS
);
1333 hrtimer_init_sleeper(to
, current
);
1334 to
->timer
.expires
.tv64
= ((u64
)restart
->arg1
<< 32) |
1335 (u64
) restart
->arg0
;
1338 pr_debug("lock_pi restart: %p, %d (%d)\n",
1339 (u32 __user
*)restart
->arg0
, current
->pid
);
1341 ret
= do_futex_lock_pi((u32 __user
*)restart
->arg0
, restart
->arg1
,
1347 restart
->fn
= futex_lock_pi_restart
;
1349 /* The other values are filled in */
1350 return -ERESTART_RESTARTBLOCK
;
1354 * Called from the syscall entry below.
1356 static int futex_lock_pi(u32 __user
*uaddr
, int detect
, unsigned long sec
,
1357 long nsec
, int trylock
)
1359 struct hrtimer_sleeper timeout
, *to
= NULL
;
1360 struct restart_block
*restart
;
1363 if (sec
!= MAX_SCHEDULE_TIMEOUT
) {
1365 hrtimer_init(&to
->timer
, CLOCK_REALTIME
, HRTIMER_ABS
);
1366 hrtimer_init_sleeper(to
, current
);
1367 to
->timer
.expires
= ktime_set(sec
, nsec
);
1370 ret
= do_futex_lock_pi(uaddr
, detect
, trylock
, to
);
1375 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr
, current
->pid
);
1377 restart
= ¤t_thread_info()->restart_block
;
1378 restart
->fn
= futex_lock_pi_restart
;
1379 restart
->arg0
= (unsigned long) uaddr
;
1380 restart
->arg1
= detect
;
1382 restart
->arg2
= to
->timer
.expires
.tv64
& 0xFFFFFFFF;
1383 restart
->arg3
= to
->timer
.expires
.tv64
>> 32;
1385 restart
->arg2
= restart
->arg3
= 0;
1387 return -ERESTART_RESTARTBLOCK
;
1391 * Userspace attempted a TID -> 0 atomic transition, and failed.
1392 * This is the in-kernel slowpath: we look up the PI state (if any),
1393 * and do the rt-mutex unlock.
1395 static int futex_unlock_pi(u32 __user
*uaddr
)
1397 struct futex_hash_bucket
*hb
;
1398 struct futex_q
*this, *next
;
1400 struct list_head
*head
;
1401 union futex_key key
;
1402 int ret
, attempt
= 0;
1405 if (get_user(uval
, uaddr
))
1408 * We release only a lock we actually own:
1410 if ((uval
& FUTEX_TID_MASK
) != current
->pid
)
1413 * First take all the futex related locks:
1415 down_read(¤t
->mm
->mmap_sem
);
1417 ret
= get_futex_key(uaddr
, &key
);
1418 if (unlikely(ret
!= 0))
1421 hb
= hash_futex(&key
);
1422 spin_lock(&hb
->lock
);
1426 * To avoid races, try to do the TID -> 0 atomic transition
1427 * again. If it succeeds then we can return without waking
1430 inc_preempt_count();
1431 uval
= futex_atomic_cmpxchg_inatomic(uaddr
, current
->pid
, 0);
1432 dec_preempt_count();
1434 if (unlikely(uval
== -EFAULT
))
1437 * Rare case: we managed to release the lock atomically,
1438 * no need to wake anyone else up:
1440 if (unlikely(uval
== current
->pid
))
1444 * Ok, other tasks may need to be woken up - check waiters
1445 * and do the wakeup if necessary:
1449 list_for_each_entry_safe(this, next
, head
, list
) {
1450 if (!match_futex (&this->key
, &key
))
1452 ret
= wake_futex_pi(uaddr
, uval
, this);
1454 * The atomic access to the futex value
1455 * generated a pagefault, so retry the
1456 * user-access and the wakeup:
1463 * No waiters - kernel unlocks the futex:
1465 ret
= unlock_futex_pi(uaddr
, uval
);
1470 spin_unlock(&hb
->lock
);
1472 up_read(¤t
->mm
->mmap_sem
);
1478 * We have to r/w *(int __user *)uaddr, but we can't modify it
1479 * non-atomically. Therefore, if get_user below is not
1480 * enough, we need to handle the fault ourselves, while
1481 * still holding the mmap_sem.
1484 if (futex_handle_fault((unsigned long)uaddr
, attempt
))
1490 spin_unlock(&hb
->lock
);
1491 up_read(¤t
->mm
->mmap_sem
);
1493 ret
= get_user(uval
, uaddr
);
1494 if (!ret
&& (uval
!= -EFAULT
))
1500 static int futex_close(struct inode
*inode
, struct file
*filp
)
1502 struct futex_q
*q
= filp
->private_data
;
1510 /* This is one-shot: once it's gone off you need a new fd */
1511 static unsigned int futex_poll(struct file
*filp
,
1512 struct poll_table_struct
*wait
)
1514 struct futex_q
*q
= filp
->private_data
;
1517 poll_wait(filp
, &q
->waiters
, wait
);
1520 * list_empty() is safe here without any lock.
1521 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1523 if (list_empty(&q
->list
))
1524 ret
= POLLIN
| POLLRDNORM
;
1529 static struct file_operations futex_fops
= {
1530 .release
= futex_close
,
1535 * Signal allows caller to avoid the race which would occur if they
1536 * set the sigio stuff up afterwards.
1538 static int futex_fd(u32 __user
*uaddr
, int signal
)
1545 if (!valid_signal(signal
))
1548 ret
= get_unused_fd();
1551 filp
= get_empty_filp();
1557 filp
->f_op
= &futex_fops
;
1558 filp
->f_vfsmnt
= mntget(futex_mnt
);
1559 filp
->f_dentry
= dget(futex_mnt
->mnt_root
);
1560 filp
->f_mapping
= filp
->f_dentry
->d_inode
->i_mapping
;
1563 err
= f_setown(filp
, current
->pid
, 1);
1567 filp
->f_owner
.signum
= signal
;
1570 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
1577 down_read(¤t
->mm
->mmap_sem
);
1578 err
= get_futex_key(uaddr
, &q
->key
);
1580 if (unlikely(err
!= 0)) {
1581 up_read(¤t
->mm
->mmap_sem
);
1587 * queue_me() must be called before releasing mmap_sem, because
1588 * key->shared.inode needs to be referenced while holding it.
1590 filp
->private_data
= q
;
1592 queue_me(q
, ret
, filp
);
1593 up_read(¤t
->mm
->mmap_sem
);
1595 /* Now we map fd to filp, so userspace can access it */
1596 fd_install(ret
, filp
);
1607 * Support for robust futexes: the kernel cleans up held futexes at
1610 * Implementation: user-space maintains a per-thread list of locks it
1611 * is holding. Upon do_exit(), the kernel carefully walks this list,
1612 * and marks all locks that are owned by this thread with the
1613 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1614 * always manipulated with the lock held, so the list is private and
1615 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1616 * field, to allow the kernel to clean up if the thread dies after
1617 * acquiring the lock, but just before it could have added itself to
1618 * the list. There can only be one such pending lock.
1622 * sys_set_robust_list - set the robust-futex list head of a task
1623 * @head: pointer to the list-head
1624 * @len: length of the list-head, as userspace expects
1627 sys_set_robust_list(struct robust_list_head __user
*head
,
1631 * The kernel knows only one size for now:
1633 if (unlikely(len
!= sizeof(*head
)))
1636 current
->robust_list
= head
;
1642 * sys_get_robust_list - get the robust-futex list head of a task
1643 * @pid: pid of the process [zero for current task]
1644 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1645 * @len_ptr: pointer to a length field, the kernel fills in the header size
1648 sys_get_robust_list(int pid
, struct robust_list_head __user
**head_ptr
,
1649 size_t __user
*len_ptr
)
1651 struct robust_list_head
*head
;
1655 head
= current
->robust_list
;
1657 struct task_struct
*p
;
1660 read_lock(&tasklist_lock
);
1661 p
= find_task_by_pid(pid
);
1665 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
1666 !capable(CAP_SYS_PTRACE
))
1668 head
= p
->robust_list
;
1669 read_unlock(&tasklist_lock
);
1672 if (put_user(sizeof(*head
), len_ptr
))
1674 return put_user(head
, head_ptr
);
1677 read_unlock(&tasklist_lock
);
1683 * Process a futex-list entry, check whether it's owned by the
1684 * dying task, and do notification if so:
1686 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
)
1691 if (get_user(uval
, uaddr
))
1694 if ((uval
& FUTEX_TID_MASK
) == curr
->pid
) {
1696 * Ok, this dying thread is truly holding a futex
1697 * of interest. Set the OWNER_DIED bit atomically
1698 * via cmpxchg, and if the value had FUTEX_WAITERS
1699 * set, wake up a waiter (if any). (We have to do a
1700 * futex_wake() even if OWNER_DIED is already set -
1701 * to handle the rare but possible case of recursive
1702 * thread-death.) The rest of the cleanup is done in
1705 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
,
1706 uval
| FUTEX_OWNER_DIED
);
1707 if (nval
== -EFAULT
)
1713 if (uval
& FUTEX_WAITERS
)
1714 futex_wake(uaddr
, 1);
1720 * Walk curr->robust_list (very carefully, it's a userspace list!)
1721 * and mark any locks found there dead, and notify any waiters.
1723 * We silently return on any sign of list-walking problem.
1725 void exit_robust_list(struct task_struct
*curr
)
1727 struct robust_list_head __user
*head
= curr
->robust_list
;
1728 struct robust_list __user
*entry
, *pending
;
1729 unsigned int limit
= ROBUST_LIST_LIMIT
;
1730 unsigned long futex_offset
;
1733 * Fetch the list head (which was registered earlier, via
1734 * sys_set_robust_list()):
1736 if (get_user(entry
, &head
->list
.next
))
1739 * Fetch the relative futex offset:
1741 if (get_user(futex_offset
, &head
->futex_offset
))
1744 * Fetch any possibly pending lock-add first, and handle it
1747 if (get_user(pending
, &head
->list_op_pending
))
1750 handle_futex_death((void *)pending
+ futex_offset
, curr
);
1752 while (entry
!= &head
->list
) {
1754 * A pending lock might already be on the list, so
1755 * don't process it twice:
1757 if (entry
!= pending
)
1758 if (handle_futex_death((void *)entry
+ futex_offset
,
1762 * Fetch the next entry in the list:
1764 if (get_user(entry
, &entry
->next
))
1767 * Avoid excessively long or circular lists:
1776 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, unsigned long timeout
,
1777 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
1783 ret
= futex_wait(uaddr
, val
, timeout
);
1786 ret
= futex_wake(uaddr
, val
);
1789 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1790 ret
= futex_fd(uaddr
, val
);
1793 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, NULL
);
1795 case FUTEX_CMP_REQUEUE
:
1796 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, &val3
);
1799 ret
= futex_wake_op(uaddr
, uaddr2
, val
, val2
, val3
);
1802 ret
= futex_lock_pi(uaddr
, val
, timeout
, val2
, 0);
1804 case FUTEX_UNLOCK_PI
:
1805 ret
= futex_unlock_pi(uaddr
);
1807 case FUTEX_TRYLOCK_PI
:
1808 ret
= futex_lock_pi(uaddr
, 0, timeout
, val2
, 1);
1817 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, u32 val
,
1818 struct timespec __user
*utime
, u32 __user
*uaddr2
,
1822 unsigned long timeout
= MAX_SCHEDULE_TIMEOUT
;
1825 if (utime
&& (op
== FUTEX_WAIT
|| op
== FUTEX_LOCK_PI
)) {
1826 if (copy_from_user(&t
, utime
, sizeof(t
)) != 0)
1828 if (!timespec_valid(&t
))
1830 if (op
== FUTEX_WAIT
)
1831 timeout
= timespec_to_jiffies(&t
) + 1;
1838 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1840 if (op
== FUTEX_REQUEUE
|| op
== FUTEX_CMP_REQUEUE
)
1841 val2
= (u32
) (unsigned long) utime
;
1843 return do_futex(uaddr
, op
, val
, timeout
, uaddr2
, val2
, val3
);
1846 static int futexfs_get_sb(struct file_system_type
*fs_type
,
1847 int flags
, const char *dev_name
, void *data
,
1848 struct vfsmount
*mnt
)
1850 return get_sb_pseudo(fs_type
, "futex", NULL
, 0xBAD1DEA, mnt
);
1853 static struct file_system_type futex_fs_type
= {
1855 .get_sb
= futexfs_get_sb
,
1856 .kill_sb
= kill_anon_super
,
1859 static int __init
init(void)
1863 register_filesystem(&futex_fs_type
);
1864 futex_mnt
= kern_mount(&futex_fs_type
);
1866 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
1867 INIT_LIST_HEAD(&futex_queues
[i
].chain
);
1868 spin_lock_init(&futex_queues
[i
].lock
);