[ARM] arch/arm/kernel/bios32.c: no need to set isa_bridge
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blobcf0c8e21d1abaae85c17a816dbd42a8ed3132dd5
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
42 #include <linux/fs.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
65 union futex_key {
66 struct {
67 unsigned long pgoff;
68 struct inode *inode;
69 int offset;
70 } shared;
71 struct {
72 unsigned long address;
73 struct mm_struct *mm;
74 int offset;
75 } private;
76 struct {
77 unsigned long word;
78 void *ptr;
79 int offset;
80 } both;
84 * Priority Inheritance state:
86 struct futex_pi_state {
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list;
94 * The PI object:
96 struct rt_mutex pi_mutex;
98 struct task_struct *owner;
99 atomic_t refcount;
101 union futex_key key;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
113 struct futex_q {
114 struct list_head list;
115 wait_queue_head_t waiters;
117 /* Which hash list lock to use: */
118 spinlock_t *lock_ptr;
120 /* Key which the futex is hashed on: */
121 union futex_key key;
123 /* For fd, sigio sent using these: */
124 int fd;
125 struct file *filp;
127 /* Optional priority inheritance state: */
128 struct futex_pi_state *pi_state;
129 struct task_struct *task;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket {
136 spinlock_t lock;
137 struct list_head chain;
140 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount *futex_mnt;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user *uaddr, union futex_key *key)
180 unsigned long address = (unsigned long)uaddr;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *vma;
183 struct page *page;
184 int err;
187 * The futex address must be "naturally" aligned.
189 key->both.offset = address % PAGE_SIZE;
190 if (unlikely((key->both.offset % sizeof(u32)) != 0))
191 return -EINVAL;
192 address -= key->both.offset;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma = find_extend_vma(mm, address);
199 if (unlikely(!vma))
200 return -EFAULT;
203 * Permissions.
205 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
206 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
218 key->private.mm = mm;
219 key->private.address = address;
220 return 0;
224 * Linear file mappings are also simple.
226 key->shared.inode = vma->vm_file->f_dentry->d_inode;
227 key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
230 + vma->vm_pgoff);
231 return 0;
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
241 if (err >= 0) {
242 key->shared.pgoff =
243 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
244 put_page(page);
245 return 0;
247 return err;
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key *key)
259 if (key->both.ptr != 0) {
260 if (key->both.offset & 1)
261 atomic_inc(&key->shared.inode->i_count);
262 else
263 atomic_inc(&key->private.mm->mm_count);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key *key)
273 if (key->both.ptr != 0) {
274 if (key->both.offset & 1)
275 iput(key->shared.inode);
276 else
277 mmdrop(key->private.mm);
281 static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
283 int ret;
285 inc_preempt_count();
286 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
287 dec_preempt_count();
289 return ret ? -EFAULT : 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address, int attempt)
297 struct vm_area_struct * vma;
298 struct mm_struct *mm = current->mm;
300 if (attempt >= 2 || !(vma = find_vma(mm, address)) ||
301 vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
302 return -EFAULT;
304 switch (handle_mm_fault(mm, vma, address, 1)) {
305 case VM_FAULT_MINOR:
306 current->min_flt++;
307 break;
308 case VM_FAULT_MAJOR:
309 current->maj_flt++;
310 break;
311 default:
312 return -EFAULT;
314 return 0;
318 * PI code:
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state *pi_state;
324 if (likely(current->pi_state_cache))
325 return 0;
327 pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);
329 if (!pi_state)
330 return -ENOMEM;
332 memset(pi_state, 0, sizeof(*pi_state));
333 INIT_LIST_HEAD(&pi_state->list);
334 /* pi_mutex gets initialized later */
335 pi_state->owner = NULL;
336 atomic_set(&pi_state->refcount, 1);
338 current->pi_state_cache = pi_state;
340 return 0;
343 static struct futex_pi_state * alloc_pi_state(void)
345 struct futex_pi_state *pi_state = current->pi_state_cache;
347 WARN_ON(!pi_state);
348 current->pi_state_cache = NULL;
350 return pi_state;
353 static void free_pi_state(struct futex_pi_state *pi_state)
355 if (!atomic_dec_and_test(&pi_state->refcount))
356 return;
359 * If pi_state->owner is NULL, the owner is most probably dying
360 * and has cleaned up the pi_state already
362 if (pi_state->owner) {
363 spin_lock_irq(&pi_state->owner->pi_lock);
364 list_del_init(&pi_state->list);
365 spin_unlock_irq(&pi_state->owner->pi_lock);
367 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
370 if (current->pi_state_cache)
371 kfree(pi_state);
372 else {
374 * pi_state->list is already empty.
375 * clear pi_state->owner.
376 * refcount is at 0 - put it back to 1.
378 pi_state->owner = NULL;
379 atomic_set(&pi_state->refcount, 1);
380 current->pi_state_cache = pi_state;
385 * Look up the task based on what TID userspace gave us.
386 * We dont trust it.
388 static struct task_struct * futex_find_get_task(pid_t pid)
390 struct task_struct *p;
392 read_lock(&tasklist_lock);
393 p = find_task_by_pid(pid);
394 if (!p)
395 goto out_unlock;
396 if ((current->euid != p->euid) && (current->euid != p->uid)) {
397 p = NULL;
398 goto out_unlock;
400 if (p->state == EXIT_ZOMBIE || p->exit_state == EXIT_ZOMBIE) {
401 p = NULL;
402 goto out_unlock;
404 get_task_struct(p);
405 out_unlock:
406 read_unlock(&tasklist_lock);
408 return p;
412 * This task is holding PI mutexes at exit time => bad.
413 * Kernel cleans up PI-state, but userspace is likely hosed.
414 * (Robust-futex cleanup is separate and might save the day for userspace.)
416 void exit_pi_state_list(struct task_struct *curr)
418 struct futex_hash_bucket *hb;
419 struct list_head *next, *head = &curr->pi_state_list;
420 struct futex_pi_state *pi_state;
421 union futex_key key;
424 * We are a ZOMBIE and nobody can enqueue itself on
425 * pi_state_list anymore, but we have to be careful
426 * versus waiters unqueueing themselfs
428 spin_lock_irq(&curr->pi_lock);
429 while (!list_empty(head)) {
431 next = head->next;
432 pi_state = list_entry(next, struct futex_pi_state, list);
433 key = pi_state->key;
434 spin_unlock_irq(&curr->pi_lock);
436 hb = hash_futex(&key);
437 spin_lock(&hb->lock);
439 spin_lock_irq(&curr->pi_lock);
440 if (head->next != next) {
441 spin_unlock(&hb->lock);
442 continue;
445 list_del_init(&pi_state->list);
447 WARN_ON(pi_state->owner != curr);
449 pi_state->owner = NULL;
450 spin_unlock_irq(&curr->pi_lock);
452 rt_mutex_unlock(&pi_state->pi_mutex);
454 spin_unlock(&hb->lock);
456 spin_lock_irq(&curr->pi_lock);
458 spin_unlock_irq(&curr->pi_lock);
461 static int
462 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
464 struct futex_pi_state *pi_state = NULL;
465 struct futex_q *this, *next;
466 struct list_head *head;
467 struct task_struct *p;
468 pid_t pid;
470 head = &hb->chain;
472 list_for_each_entry_safe(this, next, head, list) {
473 if (match_futex (&this->key, &me->key)) {
475 * Another waiter already exists - bump up
476 * the refcount and return its pi_state:
478 pi_state = this->pi_state;
480 * Userspace might have messed up non PI and PI futexes
482 if (unlikely(!pi_state))
483 return -EINVAL;
485 atomic_inc(&pi_state->refcount);
486 me->pi_state = pi_state;
488 return 0;
493 * We are the first waiter - try to look up the real owner and
494 * attach the new pi_state to it:
496 pid = uval & FUTEX_TID_MASK;
497 p = futex_find_get_task(pid);
498 if (!p)
499 return -ESRCH;
501 pi_state = alloc_pi_state();
504 * Initialize the pi_mutex in locked state and make 'p'
505 * the owner of it:
507 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
509 /* Store the key for possible exit cleanups: */
510 pi_state->key = me->key;
512 spin_lock_irq(&p->pi_lock);
513 list_add(&pi_state->list, &p->pi_state_list);
514 pi_state->owner = p;
515 spin_unlock_irq(&p->pi_lock);
517 put_task_struct(p);
519 me->pi_state = pi_state;
521 return 0;
525 * The hash bucket lock must be held when this is called.
526 * Afterwards, the futex_q must not be accessed.
528 static void wake_futex(struct futex_q *q)
530 list_del_init(&q->list);
531 if (q->filp)
532 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
534 * The lock in wake_up_all() is a crucial memory barrier after the
535 * list_del_init() and also before assigning to q->lock_ptr.
537 wake_up_all(&q->waiters);
539 * The waiting task can free the futex_q as soon as this is written,
540 * without taking any locks. This must come last.
542 * A memory barrier is required here to prevent the following store
543 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
544 * at the end of wake_up_all() does not prevent this store from
545 * moving.
547 wmb();
548 q->lock_ptr = NULL;
551 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
553 struct task_struct *new_owner;
554 struct futex_pi_state *pi_state = this->pi_state;
555 u32 curval, newval;
557 if (!pi_state)
558 return -EINVAL;
560 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
563 * This happens when we have stolen the lock and the original
564 * pending owner did not enqueue itself back on the rt_mutex.
565 * Thats not a tragedy. We know that way, that a lock waiter
566 * is on the fly. We make the futex_q waiter the pending owner.
568 if (!new_owner)
569 new_owner = this->task;
572 * We pass it to the next owner. (The WAITERS bit is always
573 * kept enabled while there is PI state around. We must also
574 * preserve the owner died bit.)
576 newval = (uval & FUTEX_OWNER_DIED) | FUTEX_WAITERS | new_owner->pid;
578 inc_preempt_count();
579 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
580 dec_preempt_count();
582 if (curval == -EFAULT)
583 return -EFAULT;
584 if (curval != uval)
585 return -EINVAL;
587 list_del_init(&pi_state->owner->pi_state_list);
588 list_add(&pi_state->list, &new_owner->pi_state_list);
589 pi_state->owner = new_owner;
590 rt_mutex_unlock(&pi_state->pi_mutex);
592 return 0;
595 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
597 u32 oldval;
600 * There is no waiter, so we unlock the futex. The owner died
601 * bit has not to be preserved here. We are the owner:
603 inc_preempt_count();
604 oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
605 dec_preempt_count();
607 if (oldval == -EFAULT)
608 return oldval;
609 if (oldval != uval)
610 return -EAGAIN;
612 return 0;
616 * Express the locking dependencies for lockdep:
618 static inline void
619 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
621 if (hb1 <= hb2) {
622 spin_lock(&hb1->lock);
623 if (hb1 < hb2)
624 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
625 } else { /* hb1 > hb2 */
626 spin_lock(&hb2->lock);
627 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
632 * Wake up all waiters hashed on the physical page that is mapped
633 * to this virtual address:
635 static int futex_wake(u32 __user *uaddr, int nr_wake)
637 struct futex_hash_bucket *hb;
638 struct futex_q *this, *next;
639 struct list_head *head;
640 union futex_key key;
641 int ret;
643 down_read(&current->mm->mmap_sem);
645 ret = get_futex_key(uaddr, &key);
646 if (unlikely(ret != 0))
647 goto out;
649 hb = hash_futex(&key);
650 spin_lock(&hb->lock);
651 head = &hb->chain;
653 list_for_each_entry_safe(this, next, head, list) {
654 if (match_futex (&this->key, &key)) {
655 if (this->pi_state) {
656 ret = -EINVAL;
657 break;
659 wake_futex(this);
660 if (++ret >= nr_wake)
661 break;
665 spin_unlock(&hb->lock);
666 out:
667 up_read(&current->mm->mmap_sem);
668 return ret;
672 * Wake up all waiters hashed on the physical page that is mapped
673 * to this virtual address:
675 static int
676 futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
677 int nr_wake, int nr_wake2, int op)
679 union futex_key key1, key2;
680 struct futex_hash_bucket *hb1, *hb2;
681 struct list_head *head;
682 struct futex_q *this, *next;
683 int ret, op_ret, attempt = 0;
685 retryfull:
686 down_read(&current->mm->mmap_sem);
688 ret = get_futex_key(uaddr1, &key1);
689 if (unlikely(ret != 0))
690 goto out;
691 ret = get_futex_key(uaddr2, &key2);
692 if (unlikely(ret != 0))
693 goto out;
695 hb1 = hash_futex(&key1);
696 hb2 = hash_futex(&key2);
698 retry:
699 double_lock_hb(hb1, hb2);
701 op_ret = futex_atomic_op_inuser(op, uaddr2);
702 if (unlikely(op_ret < 0)) {
703 u32 dummy;
705 spin_unlock(&hb1->lock);
706 if (hb1 != hb2)
707 spin_unlock(&hb2->lock);
709 #ifndef CONFIG_MMU
711 * we don't get EFAULT from MMU faults if we don't have an MMU,
712 * but we might get them from range checking
714 ret = op_ret;
715 goto out;
716 #endif
718 if (unlikely(op_ret != -EFAULT)) {
719 ret = op_ret;
720 goto out;
724 * futex_atomic_op_inuser needs to both read and write
725 * *(int __user *)uaddr2, but we can't modify it
726 * non-atomically. Therefore, if get_user below is not
727 * enough, we need to handle the fault ourselves, while
728 * still holding the mmap_sem.
730 if (attempt++) {
731 if (futex_handle_fault((unsigned long)uaddr2,
732 attempt))
733 goto out;
734 goto retry;
738 * If we would have faulted, release mmap_sem,
739 * fault it in and start all over again.
741 up_read(&current->mm->mmap_sem);
743 ret = get_user(dummy, uaddr2);
744 if (ret)
745 return ret;
747 goto retryfull;
750 head = &hb1->chain;
752 list_for_each_entry_safe(this, next, head, list) {
753 if (match_futex (&this->key, &key1)) {
754 wake_futex(this);
755 if (++ret >= nr_wake)
756 break;
760 if (op_ret > 0) {
761 head = &hb2->chain;
763 op_ret = 0;
764 list_for_each_entry_safe(this, next, head, list) {
765 if (match_futex (&this->key, &key2)) {
766 wake_futex(this);
767 if (++op_ret >= nr_wake2)
768 break;
771 ret += op_ret;
774 spin_unlock(&hb1->lock);
775 if (hb1 != hb2)
776 spin_unlock(&hb2->lock);
777 out:
778 up_read(&current->mm->mmap_sem);
779 return ret;
783 * Requeue all waiters hashed on one physical page to another
784 * physical page.
786 static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
787 int nr_wake, int nr_requeue, u32 *cmpval)
789 union futex_key key1, key2;
790 struct futex_hash_bucket *hb1, *hb2;
791 struct list_head *head1;
792 struct futex_q *this, *next;
793 int ret, drop_count = 0;
795 retry:
796 down_read(&current->mm->mmap_sem);
798 ret = get_futex_key(uaddr1, &key1);
799 if (unlikely(ret != 0))
800 goto out;
801 ret = get_futex_key(uaddr2, &key2);
802 if (unlikely(ret != 0))
803 goto out;
805 hb1 = hash_futex(&key1);
806 hb2 = hash_futex(&key2);
808 double_lock_hb(hb1, hb2);
810 if (likely(cmpval != NULL)) {
811 u32 curval;
813 ret = get_futex_value_locked(&curval, uaddr1);
815 if (unlikely(ret)) {
816 spin_unlock(&hb1->lock);
817 if (hb1 != hb2)
818 spin_unlock(&hb2->lock);
821 * If we would have faulted, release mmap_sem, fault
822 * it in and start all over again.
824 up_read(&current->mm->mmap_sem);
826 ret = get_user(curval, uaddr1);
828 if (!ret)
829 goto retry;
831 return ret;
833 if (curval != *cmpval) {
834 ret = -EAGAIN;
835 goto out_unlock;
839 head1 = &hb1->chain;
840 list_for_each_entry_safe(this, next, head1, list) {
841 if (!match_futex (&this->key, &key1))
842 continue;
843 if (++ret <= nr_wake) {
844 wake_futex(this);
845 } else {
847 * If key1 and key2 hash to the same bucket, no need to
848 * requeue.
850 if (likely(head1 != &hb2->chain)) {
851 list_move_tail(&this->list, &hb2->chain);
852 this->lock_ptr = &hb2->lock;
854 this->key = key2;
855 get_key_refs(&key2);
856 drop_count++;
858 if (ret - nr_wake >= nr_requeue)
859 break;
863 out_unlock:
864 spin_unlock(&hb1->lock);
865 if (hb1 != hb2)
866 spin_unlock(&hb2->lock);
868 /* drop_key_refs() must be called outside the spinlocks. */
869 while (--drop_count >= 0)
870 drop_key_refs(&key1);
872 out:
873 up_read(&current->mm->mmap_sem);
874 return ret;
877 /* The key must be already stored in q->key. */
878 static inline struct futex_hash_bucket *
879 queue_lock(struct futex_q *q, int fd, struct file *filp)
881 struct futex_hash_bucket *hb;
883 q->fd = fd;
884 q->filp = filp;
886 init_waitqueue_head(&q->waiters);
888 get_key_refs(&q->key);
889 hb = hash_futex(&q->key);
890 q->lock_ptr = &hb->lock;
892 spin_lock(&hb->lock);
893 return hb;
896 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
898 list_add_tail(&q->list, &hb->chain);
899 q->task = current;
900 spin_unlock(&hb->lock);
903 static inline void
904 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
906 spin_unlock(&hb->lock);
907 drop_key_refs(&q->key);
911 * queue_me and unqueue_me must be called as a pair, each
912 * exactly once. They are called with the hashed spinlock held.
915 /* The key must be already stored in q->key. */
916 static void queue_me(struct futex_q *q, int fd, struct file *filp)
918 struct futex_hash_bucket *hb;
920 hb = queue_lock(q, fd, filp);
921 __queue_me(q, hb);
924 /* Return 1 if we were still queued (ie. 0 means we were woken) */
925 static int unqueue_me(struct futex_q *q)
927 spinlock_t *lock_ptr;
928 int ret = 0;
930 /* In the common case we don't take the spinlock, which is nice. */
931 retry:
932 lock_ptr = q->lock_ptr;
933 if (lock_ptr != 0) {
934 spin_lock(lock_ptr);
936 * q->lock_ptr can change between reading it and
937 * spin_lock(), causing us to take the wrong lock. This
938 * corrects the race condition.
940 * Reasoning goes like this: if we have the wrong lock,
941 * q->lock_ptr must have changed (maybe several times)
942 * between reading it and the spin_lock(). It can
943 * change again after the spin_lock() but only if it was
944 * already changed before the spin_lock(). It cannot,
945 * however, change back to the original value. Therefore
946 * we can detect whether we acquired the correct lock.
948 if (unlikely(lock_ptr != q->lock_ptr)) {
949 spin_unlock(lock_ptr);
950 goto retry;
952 WARN_ON(list_empty(&q->list));
953 list_del(&q->list);
955 BUG_ON(q->pi_state);
957 spin_unlock(lock_ptr);
958 ret = 1;
961 drop_key_refs(&q->key);
962 return ret;
966 * PI futexes can not be requeued and must remove themself from the
967 * hash bucket. The hash bucket lock is held on entry and dropped here.
969 static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
971 WARN_ON(list_empty(&q->list));
972 list_del(&q->list);
974 BUG_ON(!q->pi_state);
975 free_pi_state(q->pi_state);
976 q->pi_state = NULL;
978 spin_unlock(&hb->lock);
980 drop_key_refs(&q->key);
983 static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
985 struct task_struct *curr = current;
986 DECLARE_WAITQUEUE(wait, curr);
987 struct futex_hash_bucket *hb;
988 struct futex_q q;
989 u32 uval;
990 int ret;
992 q.pi_state = NULL;
993 retry:
994 down_read(&curr->mm->mmap_sem);
996 ret = get_futex_key(uaddr, &q.key);
997 if (unlikely(ret != 0))
998 goto out_release_sem;
1000 hb = queue_lock(&q, -1, NULL);
1003 * Access the page AFTER the futex is queued.
1004 * Order is important:
1006 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1007 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1009 * The basic logical guarantee of a futex is that it blocks ONLY
1010 * if cond(var) is known to be true at the time of blocking, for
1011 * any cond. If we queued after testing *uaddr, that would open
1012 * a race condition where we could block indefinitely with
1013 * cond(var) false, which would violate the guarantee.
1015 * A consequence is that futex_wait() can return zero and absorb
1016 * a wakeup when *uaddr != val on entry to the syscall. This is
1017 * rare, but normal.
1019 * We hold the mmap semaphore, so the mapping cannot have changed
1020 * since we looked it up in get_futex_key.
1022 ret = get_futex_value_locked(&uval, uaddr);
1024 if (unlikely(ret)) {
1025 queue_unlock(&q, hb);
1028 * If we would have faulted, release mmap_sem, fault it in and
1029 * start all over again.
1031 up_read(&curr->mm->mmap_sem);
1033 ret = get_user(uval, uaddr);
1035 if (!ret)
1036 goto retry;
1037 return ret;
1039 ret = -EWOULDBLOCK;
1040 if (uval != val)
1041 goto out_unlock_release_sem;
1043 /* Only actually queue if *uaddr contained val. */
1044 __queue_me(&q, hb);
1047 * Now the futex is queued and we have checked the data, we
1048 * don't want to hold mmap_sem while we sleep.
1050 up_read(&curr->mm->mmap_sem);
1053 * There might have been scheduling since the queue_me(), as we
1054 * cannot hold a spinlock across the get_user() in case it
1055 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1056 * queueing ourselves into the futex hash. This code thus has to
1057 * rely on the futex_wake() code removing us from hash when it
1058 * wakes us up.
1061 /* add_wait_queue is the barrier after __set_current_state. */
1062 __set_current_state(TASK_INTERRUPTIBLE);
1063 add_wait_queue(&q.waiters, &wait);
1065 * !list_empty() is safe here without any lock.
1066 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1068 if (likely(!list_empty(&q.list)))
1069 time = schedule_timeout(time);
1070 __set_current_state(TASK_RUNNING);
1073 * NOTE: we don't remove ourselves from the waitqueue because
1074 * we are the only user of it.
1077 /* If we were woken (and unqueued), we succeeded, whatever. */
1078 if (!unqueue_me(&q))
1079 return 0;
1080 if (time == 0)
1081 return -ETIMEDOUT;
1083 * We expect signal_pending(current), but another thread may
1084 * have handled it for us already.
1086 return -EINTR;
1088 out_unlock_release_sem:
1089 queue_unlock(&q, hb);
1091 out_release_sem:
1092 up_read(&curr->mm->mmap_sem);
1093 return ret;
1097 * Userspace tried a 0 -> TID atomic transition of the futex value
1098 * and failed. The kernel side here does the whole locking operation:
1099 * if there are waiters then it will block, it does PI, etc. (Due to
1100 * races the kernel might see a 0 value of the futex too.)
1102 static int do_futex_lock_pi(u32 __user *uaddr, int detect, int trylock,
1103 struct hrtimer_sleeper *to)
1105 struct task_struct *curr = current;
1106 struct futex_hash_bucket *hb;
1107 u32 uval, newval, curval;
1108 struct futex_q q;
1109 int ret, attempt = 0;
1111 if (refill_pi_state_cache())
1112 return -ENOMEM;
1114 q.pi_state = NULL;
1115 retry:
1116 down_read(&curr->mm->mmap_sem);
1118 ret = get_futex_key(uaddr, &q.key);
1119 if (unlikely(ret != 0))
1120 goto out_release_sem;
1122 hb = queue_lock(&q, -1, NULL);
1124 retry_locked:
1126 * To avoid races, we attempt to take the lock here again
1127 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1128 * the locks. It will most likely not succeed.
1130 newval = current->pid;
1132 inc_preempt_count();
1133 curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
1134 dec_preempt_count();
1136 if (unlikely(curval == -EFAULT))
1137 goto uaddr_faulted;
1139 /* We own the lock already */
1140 if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
1141 if (!detect && 0)
1142 force_sig(SIGKILL, current);
1143 ret = -EDEADLK;
1144 goto out_unlock_release_sem;
1148 * Surprise - we got the lock. Just return
1149 * to userspace:
1151 if (unlikely(!curval))
1152 goto out_unlock_release_sem;
1154 uval = curval;
1155 newval = uval | FUTEX_WAITERS;
1157 inc_preempt_count();
1158 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
1159 dec_preempt_count();
1161 if (unlikely(curval == -EFAULT))
1162 goto uaddr_faulted;
1163 if (unlikely(curval != uval))
1164 goto retry_locked;
1167 * We dont have the lock. Look up the PI state (or create it if
1168 * we are the first waiter):
1170 ret = lookup_pi_state(uval, hb, &q);
1172 if (unlikely(ret)) {
1174 * There were no waiters and the owner task lookup
1175 * failed. When the OWNER_DIED bit is set, then we
1176 * know that this is a robust futex and we actually
1177 * take the lock. This is safe as we are protected by
1178 * the hash bucket lock. We also set the waiters bit
1179 * unconditionally here, to simplify glibc handling of
1180 * multiple tasks racing to acquire the lock and
1181 * cleanup the problems which were left by the dead
1182 * owner.
1184 if (curval & FUTEX_OWNER_DIED) {
1185 uval = newval;
1186 newval = current->pid |
1187 FUTEX_OWNER_DIED | FUTEX_WAITERS;
1189 inc_preempt_count();
1190 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1191 uval, newval);
1192 dec_preempt_count();
1194 if (unlikely(curval == -EFAULT))
1195 goto uaddr_faulted;
1196 if (unlikely(curval != uval))
1197 goto retry_locked;
1198 ret = 0;
1200 goto out_unlock_release_sem;
1204 * Only actually queue now that the atomic ops are done:
1206 __queue_me(&q, hb);
1209 * Now the futex is queued and we have checked the data, we
1210 * don't want to hold mmap_sem while we sleep.
1212 up_read(&curr->mm->mmap_sem);
1214 WARN_ON(!q.pi_state);
1216 * Block on the PI mutex:
1218 if (!trylock)
1219 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1220 else {
1221 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1222 /* Fixup the trylock return value: */
1223 ret = ret ? 0 : -EWOULDBLOCK;
1226 down_read(&curr->mm->mmap_sem);
1227 spin_lock(q.lock_ptr);
1230 * Got the lock. We might not be the anticipated owner if we
1231 * did a lock-steal - fix up the PI-state in that case.
1233 if (!ret && q.pi_state->owner != curr) {
1234 u32 newtid = current->pid | FUTEX_WAITERS;
1236 /* Owner died? */
1237 if (q.pi_state->owner != NULL) {
1238 spin_lock_irq(&q.pi_state->owner->pi_lock);
1239 list_del_init(&q.pi_state->list);
1240 spin_unlock_irq(&q.pi_state->owner->pi_lock);
1241 } else
1242 newtid |= FUTEX_OWNER_DIED;
1244 q.pi_state->owner = current;
1246 spin_lock_irq(&current->pi_lock);
1247 list_add(&q.pi_state->list, &current->pi_state_list);
1248 spin_unlock_irq(&current->pi_lock);
1250 /* Unqueue and drop the lock */
1251 unqueue_me_pi(&q, hb);
1252 up_read(&curr->mm->mmap_sem);
1254 * We own it, so we have to replace the pending owner
1255 * TID. This must be atomic as we have preserve the
1256 * owner died bit here.
1258 ret = get_user(uval, uaddr);
1259 while (!ret) {
1260 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1261 curval = futex_atomic_cmpxchg_inatomic(uaddr,
1262 uval, newval);
1263 if (curval == -EFAULT)
1264 ret = -EFAULT;
1265 if (curval == uval)
1266 break;
1267 uval = curval;
1269 } else {
1271 * Catch the rare case, where the lock was released
1272 * when we were on the way back before we locked
1273 * the hash bucket.
1275 if (ret && q.pi_state->owner == curr) {
1276 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1277 ret = 0;
1279 /* Unqueue and drop the lock */
1280 unqueue_me_pi(&q, hb);
1281 up_read(&curr->mm->mmap_sem);
1284 if (!detect && ret == -EDEADLK && 0)
1285 force_sig(SIGKILL, current);
1287 return ret;
1289 out_unlock_release_sem:
1290 queue_unlock(&q, hb);
1292 out_release_sem:
1293 up_read(&curr->mm->mmap_sem);
1294 return ret;
1296 uaddr_faulted:
1298 * We have to r/w *(int __user *)uaddr, but we can't modify it
1299 * non-atomically. Therefore, if get_user below is not
1300 * enough, we need to handle the fault ourselves, while
1301 * still holding the mmap_sem.
1303 if (attempt++) {
1304 if (futex_handle_fault((unsigned long)uaddr, attempt))
1305 goto out_unlock_release_sem;
1307 goto retry_locked;
1310 queue_unlock(&q, hb);
1311 up_read(&curr->mm->mmap_sem);
1313 ret = get_user(uval, uaddr);
1314 if (!ret && (uval != -EFAULT))
1315 goto retry;
1317 return ret;
1321 * Restart handler
1323 static long futex_lock_pi_restart(struct restart_block *restart)
1325 struct hrtimer_sleeper timeout, *to = NULL;
1326 int ret;
1328 restart->fn = do_no_restart_syscall;
1330 if (restart->arg2 || restart->arg3) {
1331 to = &timeout;
1332 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1333 hrtimer_init_sleeper(to, current);
1334 to->timer.expires.tv64 = ((u64)restart->arg1 << 32) |
1335 (u64) restart->arg0;
1338 pr_debug("lock_pi restart: %p, %d (%d)\n",
1339 (u32 __user *)restart->arg0, current->pid);
1341 ret = do_futex_lock_pi((u32 __user *)restart->arg0, restart->arg1,
1342 0, to);
1344 if (ret != -EINTR)
1345 return ret;
1347 restart->fn = futex_lock_pi_restart;
1349 /* The other values are filled in */
1350 return -ERESTART_RESTARTBLOCK;
1354 * Called from the syscall entry below.
1356 static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
1357 long nsec, int trylock)
1359 struct hrtimer_sleeper timeout, *to = NULL;
1360 struct restart_block *restart;
1361 int ret;
1363 if (sec != MAX_SCHEDULE_TIMEOUT) {
1364 to = &timeout;
1365 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
1366 hrtimer_init_sleeper(to, current);
1367 to->timer.expires = ktime_set(sec, nsec);
1370 ret = do_futex_lock_pi(uaddr, detect, trylock, to);
1372 if (ret != -EINTR)
1373 return ret;
1375 pr_debug("lock_pi interrupted: %p, %d (%d)\n", uaddr, current->pid);
1377 restart = &current_thread_info()->restart_block;
1378 restart->fn = futex_lock_pi_restart;
1379 restart->arg0 = (unsigned long) uaddr;
1380 restart->arg1 = detect;
1381 if (to) {
1382 restart->arg2 = to->timer.expires.tv64 & 0xFFFFFFFF;
1383 restart->arg3 = to->timer.expires.tv64 >> 32;
1384 } else
1385 restart->arg2 = restart->arg3 = 0;
1387 return -ERESTART_RESTARTBLOCK;
1391 * Userspace attempted a TID -> 0 atomic transition, and failed.
1392 * This is the in-kernel slowpath: we look up the PI state (if any),
1393 * and do the rt-mutex unlock.
1395 static int futex_unlock_pi(u32 __user *uaddr)
1397 struct futex_hash_bucket *hb;
1398 struct futex_q *this, *next;
1399 u32 uval;
1400 struct list_head *head;
1401 union futex_key key;
1402 int ret, attempt = 0;
1404 retry:
1405 if (get_user(uval, uaddr))
1406 return -EFAULT;
1408 * We release only a lock we actually own:
1410 if ((uval & FUTEX_TID_MASK) != current->pid)
1411 return -EPERM;
1413 * First take all the futex related locks:
1415 down_read(&current->mm->mmap_sem);
1417 ret = get_futex_key(uaddr, &key);
1418 if (unlikely(ret != 0))
1419 goto out;
1421 hb = hash_futex(&key);
1422 spin_lock(&hb->lock);
1424 retry_locked:
1426 * To avoid races, try to do the TID -> 0 atomic transition
1427 * again. If it succeeds then we can return without waking
1428 * anyone else up:
1430 inc_preempt_count();
1431 uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
1432 dec_preempt_count();
1434 if (unlikely(uval == -EFAULT))
1435 goto pi_faulted;
1437 * Rare case: we managed to release the lock atomically,
1438 * no need to wake anyone else up:
1440 if (unlikely(uval == current->pid))
1441 goto out_unlock;
1444 * Ok, other tasks may need to be woken up - check waiters
1445 * and do the wakeup if necessary:
1447 head = &hb->chain;
1449 list_for_each_entry_safe(this, next, head, list) {
1450 if (!match_futex (&this->key, &key))
1451 continue;
1452 ret = wake_futex_pi(uaddr, uval, this);
1454 * The atomic access to the futex value
1455 * generated a pagefault, so retry the
1456 * user-access and the wakeup:
1458 if (ret == -EFAULT)
1459 goto pi_faulted;
1460 goto out_unlock;
1463 * No waiters - kernel unlocks the futex:
1465 ret = unlock_futex_pi(uaddr, uval);
1466 if (ret == -EFAULT)
1467 goto pi_faulted;
1469 out_unlock:
1470 spin_unlock(&hb->lock);
1471 out:
1472 up_read(&current->mm->mmap_sem);
1474 return ret;
1476 pi_faulted:
1478 * We have to r/w *(int __user *)uaddr, but we can't modify it
1479 * non-atomically. Therefore, if get_user below is not
1480 * enough, we need to handle the fault ourselves, while
1481 * still holding the mmap_sem.
1483 if (attempt++) {
1484 if (futex_handle_fault((unsigned long)uaddr, attempt))
1485 goto out_unlock;
1487 goto retry_locked;
1490 spin_unlock(&hb->lock);
1491 up_read(&current->mm->mmap_sem);
1493 ret = get_user(uval, uaddr);
1494 if (!ret && (uval != -EFAULT))
1495 goto retry;
1497 return ret;
1500 static int futex_close(struct inode *inode, struct file *filp)
1502 struct futex_q *q = filp->private_data;
1504 unqueue_me(q);
1505 kfree(q);
1507 return 0;
1510 /* This is one-shot: once it's gone off you need a new fd */
1511 static unsigned int futex_poll(struct file *filp,
1512 struct poll_table_struct *wait)
1514 struct futex_q *q = filp->private_data;
1515 int ret = 0;
1517 poll_wait(filp, &q->waiters, wait);
1520 * list_empty() is safe here without any lock.
1521 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1523 if (list_empty(&q->list))
1524 ret = POLLIN | POLLRDNORM;
1526 return ret;
1529 static struct file_operations futex_fops = {
1530 .release = futex_close,
1531 .poll = futex_poll,
1535 * Signal allows caller to avoid the race which would occur if they
1536 * set the sigio stuff up afterwards.
1538 static int futex_fd(u32 __user *uaddr, int signal)
1540 struct futex_q *q;
1541 struct file *filp;
1542 int ret, err;
1544 ret = -EINVAL;
1545 if (!valid_signal(signal))
1546 goto out;
1548 ret = get_unused_fd();
1549 if (ret < 0)
1550 goto out;
1551 filp = get_empty_filp();
1552 if (!filp) {
1553 put_unused_fd(ret);
1554 ret = -ENFILE;
1555 goto out;
1557 filp->f_op = &futex_fops;
1558 filp->f_vfsmnt = mntget(futex_mnt);
1559 filp->f_dentry = dget(futex_mnt->mnt_root);
1560 filp->f_mapping = filp->f_dentry->d_inode->i_mapping;
1562 if (signal) {
1563 err = f_setown(filp, current->pid, 1);
1564 if (err < 0) {
1565 goto error;
1567 filp->f_owner.signum = signal;
1570 q = kmalloc(sizeof(*q), GFP_KERNEL);
1571 if (!q) {
1572 err = -ENOMEM;
1573 goto error;
1575 q->pi_state = NULL;
1577 down_read(&current->mm->mmap_sem);
1578 err = get_futex_key(uaddr, &q->key);
1580 if (unlikely(err != 0)) {
1581 up_read(&current->mm->mmap_sem);
1582 kfree(q);
1583 goto error;
1587 * queue_me() must be called before releasing mmap_sem, because
1588 * key->shared.inode needs to be referenced while holding it.
1590 filp->private_data = q;
1592 queue_me(q, ret, filp);
1593 up_read(&current->mm->mmap_sem);
1595 /* Now we map fd to filp, so userspace can access it */
1596 fd_install(ret, filp);
1597 out:
1598 return ret;
1599 error:
1600 put_unused_fd(ret);
1601 put_filp(filp);
1602 ret = err;
1603 goto out;
1607 * Support for robust futexes: the kernel cleans up held futexes at
1608 * thread exit time.
1610 * Implementation: user-space maintains a per-thread list of locks it
1611 * is holding. Upon do_exit(), the kernel carefully walks this list,
1612 * and marks all locks that are owned by this thread with the
1613 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1614 * always manipulated with the lock held, so the list is private and
1615 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1616 * field, to allow the kernel to clean up if the thread dies after
1617 * acquiring the lock, but just before it could have added itself to
1618 * the list. There can only be one such pending lock.
1622 * sys_set_robust_list - set the robust-futex list head of a task
1623 * @head: pointer to the list-head
1624 * @len: length of the list-head, as userspace expects
1626 asmlinkage long
1627 sys_set_robust_list(struct robust_list_head __user *head,
1628 size_t len)
1631 * The kernel knows only one size for now:
1633 if (unlikely(len != sizeof(*head)))
1634 return -EINVAL;
1636 current->robust_list = head;
1638 return 0;
1642 * sys_get_robust_list - get the robust-futex list head of a task
1643 * @pid: pid of the process [zero for current task]
1644 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1645 * @len_ptr: pointer to a length field, the kernel fills in the header size
1647 asmlinkage long
1648 sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
1649 size_t __user *len_ptr)
1651 struct robust_list_head *head;
1652 unsigned long ret;
1654 if (!pid)
1655 head = current->robust_list;
1656 else {
1657 struct task_struct *p;
1659 ret = -ESRCH;
1660 read_lock(&tasklist_lock);
1661 p = find_task_by_pid(pid);
1662 if (!p)
1663 goto err_unlock;
1664 ret = -EPERM;
1665 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1666 !capable(CAP_SYS_PTRACE))
1667 goto err_unlock;
1668 head = p->robust_list;
1669 read_unlock(&tasklist_lock);
1672 if (put_user(sizeof(*head), len_ptr))
1673 return -EFAULT;
1674 return put_user(head, head_ptr);
1676 err_unlock:
1677 read_unlock(&tasklist_lock);
1679 return ret;
1683 * Process a futex-list entry, check whether it's owned by the
1684 * dying task, and do notification if so:
1686 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr)
1688 u32 uval, nval;
1690 retry:
1691 if (get_user(uval, uaddr))
1692 return -1;
1694 if ((uval & FUTEX_TID_MASK) == curr->pid) {
1696 * Ok, this dying thread is truly holding a futex
1697 * of interest. Set the OWNER_DIED bit atomically
1698 * via cmpxchg, and if the value had FUTEX_WAITERS
1699 * set, wake up a waiter (if any). (We have to do a
1700 * futex_wake() even if OWNER_DIED is already set -
1701 * to handle the rare but possible case of recursive
1702 * thread-death.) The rest of the cleanup is done in
1703 * userspace.
1705 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval,
1706 uval | FUTEX_OWNER_DIED);
1707 if (nval == -EFAULT)
1708 return -1;
1710 if (nval != uval)
1711 goto retry;
1713 if (uval & FUTEX_WAITERS)
1714 futex_wake(uaddr, 1);
1716 return 0;
1720 * Walk curr->robust_list (very carefully, it's a userspace list!)
1721 * and mark any locks found there dead, and notify any waiters.
1723 * We silently return on any sign of list-walking problem.
1725 void exit_robust_list(struct task_struct *curr)
1727 struct robust_list_head __user *head = curr->robust_list;
1728 struct robust_list __user *entry, *pending;
1729 unsigned int limit = ROBUST_LIST_LIMIT;
1730 unsigned long futex_offset;
1733 * Fetch the list head (which was registered earlier, via
1734 * sys_set_robust_list()):
1736 if (get_user(entry, &head->list.next))
1737 return;
1739 * Fetch the relative futex offset:
1741 if (get_user(futex_offset, &head->futex_offset))
1742 return;
1744 * Fetch any possibly pending lock-add first, and handle it
1745 * if it exists:
1747 if (get_user(pending, &head->list_op_pending))
1748 return;
1749 if (pending)
1750 handle_futex_death((void *)pending + futex_offset, curr);
1752 while (entry != &head->list) {
1754 * A pending lock might already be on the list, so
1755 * don't process it twice:
1757 if (entry != pending)
1758 if (handle_futex_death((void *)entry + futex_offset,
1759 curr))
1760 return;
1762 * Fetch the next entry in the list:
1764 if (get_user(entry, &entry->next))
1765 return;
1767 * Avoid excessively long or circular lists:
1769 if (!--limit)
1770 break;
1772 cond_resched();
1776 long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
1777 u32 __user *uaddr2, u32 val2, u32 val3)
1779 int ret;
1781 switch (op) {
1782 case FUTEX_WAIT:
1783 ret = futex_wait(uaddr, val, timeout);
1784 break;
1785 case FUTEX_WAKE:
1786 ret = futex_wake(uaddr, val);
1787 break;
1788 case FUTEX_FD:
1789 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1790 ret = futex_fd(uaddr, val);
1791 break;
1792 case FUTEX_REQUEUE:
1793 ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
1794 break;
1795 case FUTEX_CMP_REQUEUE:
1796 ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
1797 break;
1798 case FUTEX_WAKE_OP:
1799 ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
1800 break;
1801 case FUTEX_LOCK_PI:
1802 ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
1803 break;
1804 case FUTEX_UNLOCK_PI:
1805 ret = futex_unlock_pi(uaddr);
1806 break;
1807 case FUTEX_TRYLOCK_PI:
1808 ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
1809 break;
1810 default:
1811 ret = -ENOSYS;
1813 return ret;
1817 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1818 struct timespec __user *utime, u32 __user *uaddr2,
1819 u32 val3)
1821 struct timespec t;
1822 unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1823 u32 val2 = 0;
1825 if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
1826 if (copy_from_user(&t, utime, sizeof(t)) != 0)
1827 return -EFAULT;
1828 if (!timespec_valid(&t))
1829 return -EINVAL;
1830 if (op == FUTEX_WAIT)
1831 timeout = timespec_to_jiffies(&t) + 1;
1832 else {
1833 timeout = t.tv_sec;
1834 val2 = t.tv_nsec;
1838 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1840 if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1841 val2 = (u32) (unsigned long) utime;
1843 return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
1846 static int futexfs_get_sb(struct file_system_type *fs_type,
1847 int flags, const char *dev_name, void *data,
1848 struct vfsmount *mnt)
1850 return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
1853 static struct file_system_type futex_fs_type = {
1854 .name = "futexfs",
1855 .get_sb = futexfs_get_sb,
1856 .kill_sb = kill_anon_super,
1859 static int __init init(void)
1861 unsigned int i;
1863 register_filesystem(&futex_fs_type);
1864 futex_mnt = kern_mount(&futex_fs_type);
1866 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
1867 INIT_LIST_HEAD(&futex_queues[i].chain);
1868 spin_lock_init(&futex_queues[i].lock);
1870 return 0;
1872 __initcall(init);