mpt2sas: prevent heap overflows and unchecked reads
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blobab88d09c4a817a648488769ed7d4a2b5fb73b9fb
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
312 * The next few lines have given us lots of grief...
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363 unsigned long floor, unsigned long ceiling)
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
373 unlink_anon_vmas(vma);
374 unlink_file_vma(vma);
376 if (is_vm_hugetlb_page(vma)) {
377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378 floor, next? next->vm_start: ceiling);
379 } else {
381 * Optimization: gather nearby vmas into one call down
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384 && !is_vm_hugetlb_page(next)) {
385 vma = next;
386 next = vma->vm_next;
387 unlink_anon_vmas(vma);
388 unlink_file_vma(vma);
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
393 vma = next;
397 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398 pmd_t *pmd, unsigned long address)
400 pgtable_t new = pte_alloc_one(mm, address);
401 int wait_split_huge_page;
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 wait_split_huge_page = 0;
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm->nr_ptes++;
424 pmd_populate(mm, pmd, new);
425 new = NULL;
426 } else if (unlikely(pmd_trans_splitting(*pmd)))
427 wait_split_huge_page = 1;
428 spin_unlock(&mm->page_table_lock);
429 if (new)
430 pte_free(mm, new);
431 if (wait_split_huge_page)
432 wait_split_huge_page(vma->anon_vma, pmd);
433 return 0;
436 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
438 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439 if (!new)
440 return -ENOMEM;
442 smp_wmb(); /* See comment in __pte_alloc */
444 spin_lock(&init_mm.page_table_lock);
445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
446 pmd_populate_kernel(&init_mm, pmd, new);
447 new = NULL;
448 } else
449 VM_BUG_ON(pmd_trans_splitting(*pmd));
450 spin_unlock(&init_mm.page_table_lock);
451 if (new)
452 pte_free_kernel(&init_mm, new);
453 return 0;
456 static inline void init_rss_vec(int *rss)
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 int i;
465 if (current->mm == mm)
466 sync_mm_rss(current, mm);
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 pud_t *pud = pud_offset(pgd, addr);
484 pmd_t *pmd = pmd_offset(pud, addr);
485 struct address_space *mapping;
486 pgoff_t index;
487 static unsigned long resume;
488 static unsigned long nr_shown;
489 static unsigned long nr_unshown;
492 * Allow a burst of 60 reports, then keep quiet for that minute;
493 * or allow a steady drip of one report per second.
495 if (nr_shown == 60) {
496 if (time_before(jiffies, resume)) {
497 nr_unshown++;
498 return;
500 if (nr_unshown) {
501 printk(KERN_ALERT
502 "BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
504 nr_unshown = 0;
506 nr_shown = 0;
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
514 printk(KERN_ALERT
515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518 if (page)
519 dump_page(page);
520 printk(KERN_ALERT
521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
526 if (vma->vm_ops)
527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
528 (unsigned long)vma->vm_ops->fault);
529 if (vma->vm_file && vma->vm_file->f_op)
530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
531 (unsigned long)vma->vm_file->f_op->mmap);
532 dump_stack();
533 add_taint(TAINT_BAD_PAGE);
536 static inline int is_cow_mapping(unsigned int flags)
538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
541 #ifndef is_zero_pfn
542 static inline int is_zero_pfn(unsigned long pfn)
544 return pfn == zero_pfn;
546 #endif
548 #ifndef my_zero_pfn
549 static inline unsigned long my_zero_pfn(unsigned long addr)
551 return zero_pfn;
553 #endif
556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
578 * And for normal mappings this is false.
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
597 #ifdef __HAVE_ARCH_PTE_SPECIAL
598 # define HAVE_PTE_SPECIAL 1
599 #else
600 # define HAVE_PTE_SPECIAL 0
601 #endif
602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
605 unsigned long pfn = pte_pfn(pte);
607 if (HAVE_PTE_SPECIAL) {
608 if (likely(!pte_special(pte)))
609 goto check_pfn;
610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611 return NULL;
612 if (!is_zero_pfn(pfn))
613 print_bad_pte(vma, addr, pte, NULL);
614 return NULL;
617 /* !HAVE_PTE_SPECIAL case follows: */
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
634 if (is_zero_pfn(pfn))
635 return NULL;
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
646 out:
647 return pfn_to_page(pfn);
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
656 static inline unsigned long
657 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
659 unsigned long addr, int *rss)
661 unsigned long vm_flags = vma->vm_flags;
662 pte_t pte = *src_pte;
663 struct page *page;
665 /* pte contains position in swap or file, so copy. */
666 if (unlikely(!pte_present(pte))) {
667 if (!pte_file(pte)) {
668 swp_entry_t entry = pte_to_swp_entry(pte);
670 if (swap_duplicate(entry) < 0)
671 return entry.val;
673 /* make sure dst_mm is on swapoff's mmlist. */
674 if (unlikely(list_empty(&dst_mm->mmlist))) {
675 spin_lock(&mmlist_lock);
676 if (list_empty(&dst_mm->mmlist))
677 list_add(&dst_mm->mmlist,
678 &src_mm->mmlist);
679 spin_unlock(&mmlist_lock);
681 if (likely(!non_swap_entry(entry)))
682 rss[MM_SWAPENTS]++;
683 else if (is_write_migration_entry(entry) &&
684 is_cow_mapping(vm_flags)) {
686 * COW mappings require pages in both parent
687 * and child to be set to read.
689 make_migration_entry_read(&entry);
690 pte = swp_entry_to_pte(entry);
691 set_pte_at(src_mm, addr, src_pte, pte);
694 goto out_set_pte;
698 * If it's a COW mapping, write protect it both
699 * in the parent and the child
701 if (is_cow_mapping(vm_flags)) {
702 ptep_set_wrprotect(src_mm, addr, src_pte);
703 pte = pte_wrprotect(pte);
707 * If it's a shared mapping, mark it clean in
708 * the child
710 if (vm_flags & VM_SHARED)
711 pte = pte_mkclean(pte);
712 pte = pte_mkold(pte);
714 page = vm_normal_page(vma, addr, pte);
715 if (page) {
716 get_page(page);
717 page_dup_rmap(page);
718 if (PageAnon(page))
719 rss[MM_ANONPAGES]++;
720 else
721 rss[MM_FILEPAGES]++;
724 out_set_pte:
725 set_pte_at(dst_mm, addr, dst_pte, pte);
726 return 0;
729 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731 unsigned long addr, unsigned long end)
733 pte_t *orig_src_pte, *orig_dst_pte;
734 pte_t *src_pte, *dst_pte;
735 spinlock_t *src_ptl, *dst_ptl;
736 int progress = 0;
737 int rss[NR_MM_COUNTERS];
738 swp_entry_t entry = (swp_entry_t){0};
740 again:
741 init_rss_vec(rss);
743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
744 if (!dst_pte)
745 return -ENOMEM;
746 src_pte = pte_offset_map(src_pmd, addr);
747 src_ptl = pte_lockptr(src_mm, src_pmd);
748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
749 orig_src_pte = src_pte;
750 orig_dst_pte = dst_pte;
751 arch_enter_lazy_mmu_mode();
753 do {
755 * We are holding two locks at this point - either of them
756 * could generate latencies in another task on another CPU.
758 if (progress >= 32) {
759 progress = 0;
760 if (need_resched() ||
761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
762 break;
764 if (pte_none(*src_pte)) {
765 progress++;
766 continue;
768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769 vma, addr, rss);
770 if (entry.val)
771 break;
772 progress += 8;
773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
775 arch_leave_lazy_mmu_mode();
776 spin_unlock(src_ptl);
777 pte_unmap(orig_src_pte);
778 add_mm_rss_vec(dst_mm, rss);
779 pte_unmap_unlock(orig_dst_pte, dst_ptl);
780 cond_resched();
782 if (entry.val) {
783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784 return -ENOMEM;
785 progress = 0;
787 if (addr != end)
788 goto again;
789 return 0;
792 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end)
796 pmd_t *src_pmd, *dst_pmd;
797 unsigned long next;
799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800 if (!dst_pmd)
801 return -ENOMEM;
802 src_pmd = pmd_offset(src_pud, addr);
803 do {
804 next = pmd_addr_end(addr, end);
805 if (pmd_trans_huge(*src_pmd)) {
806 int err;
807 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
808 err = copy_huge_pmd(dst_mm, src_mm,
809 dst_pmd, src_pmd, addr, vma);
810 if (err == -ENOMEM)
811 return -ENOMEM;
812 if (!err)
813 continue;
814 /* fall through */
816 if (pmd_none_or_clear_bad(src_pmd))
817 continue;
818 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
819 vma, addr, next))
820 return -ENOMEM;
821 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
822 return 0;
825 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
827 unsigned long addr, unsigned long end)
829 pud_t *src_pud, *dst_pud;
830 unsigned long next;
832 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
833 if (!dst_pud)
834 return -ENOMEM;
835 src_pud = pud_offset(src_pgd, addr);
836 do {
837 next = pud_addr_end(addr, end);
838 if (pud_none_or_clear_bad(src_pud))
839 continue;
840 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
841 vma, addr, next))
842 return -ENOMEM;
843 } while (dst_pud++, src_pud++, addr = next, addr != end);
844 return 0;
847 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 struct vm_area_struct *vma)
850 pgd_t *src_pgd, *dst_pgd;
851 unsigned long next;
852 unsigned long addr = vma->vm_start;
853 unsigned long end = vma->vm_end;
854 int ret;
857 * Don't copy ptes where a page fault will fill them correctly.
858 * Fork becomes much lighter when there are big shared or private
859 * readonly mappings. The tradeoff is that copy_page_range is more
860 * efficient than faulting.
862 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
863 if (!vma->anon_vma)
864 return 0;
867 if (is_vm_hugetlb_page(vma))
868 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
870 if (unlikely(is_pfn_mapping(vma))) {
872 * We do not free on error cases below as remove_vma
873 * gets called on error from higher level routine
875 ret = track_pfn_vma_copy(vma);
876 if (ret)
877 return ret;
881 * We need to invalidate the secondary MMU mappings only when
882 * there could be a permission downgrade on the ptes of the
883 * parent mm. And a permission downgrade will only happen if
884 * is_cow_mapping() returns true.
886 if (is_cow_mapping(vma->vm_flags))
887 mmu_notifier_invalidate_range_start(src_mm, addr, end);
889 ret = 0;
890 dst_pgd = pgd_offset(dst_mm, addr);
891 src_pgd = pgd_offset(src_mm, addr);
892 do {
893 next = pgd_addr_end(addr, end);
894 if (pgd_none_or_clear_bad(src_pgd))
895 continue;
896 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
897 vma, addr, next))) {
898 ret = -ENOMEM;
899 break;
901 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
903 if (is_cow_mapping(vma->vm_flags))
904 mmu_notifier_invalidate_range_end(src_mm,
905 vma->vm_start, end);
906 return ret;
909 static unsigned long zap_pte_range(struct mmu_gather *tlb,
910 struct vm_area_struct *vma, pmd_t *pmd,
911 unsigned long addr, unsigned long end,
912 long *zap_work, struct zap_details *details)
914 struct mm_struct *mm = tlb->mm;
915 pte_t *pte;
916 spinlock_t *ptl;
917 int rss[NR_MM_COUNTERS];
919 init_rss_vec(rss);
921 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
922 arch_enter_lazy_mmu_mode();
923 do {
924 pte_t ptent = *pte;
925 if (pte_none(ptent)) {
926 (*zap_work)--;
927 continue;
930 (*zap_work) -= PAGE_SIZE;
932 if (pte_present(ptent)) {
933 struct page *page;
935 page = vm_normal_page(vma, addr, ptent);
936 if (unlikely(details) && page) {
938 * unmap_shared_mapping_pages() wants to
939 * invalidate cache without truncating:
940 * unmap shared but keep private pages.
942 if (details->check_mapping &&
943 details->check_mapping != page->mapping)
944 continue;
946 * Each page->index must be checked when
947 * invalidating or truncating nonlinear.
949 if (details->nonlinear_vma &&
950 (page->index < details->first_index ||
951 page->index > details->last_index))
952 continue;
954 ptent = ptep_get_and_clear_full(mm, addr, pte,
955 tlb->fullmm);
956 tlb_remove_tlb_entry(tlb, pte, addr);
957 if (unlikely(!page))
958 continue;
959 if (unlikely(details) && details->nonlinear_vma
960 && linear_page_index(details->nonlinear_vma,
961 addr) != page->index)
962 set_pte_at(mm, addr, pte,
963 pgoff_to_pte(page->index));
964 if (PageAnon(page))
965 rss[MM_ANONPAGES]--;
966 else {
967 if (pte_dirty(ptent))
968 set_page_dirty(page);
969 if (pte_young(ptent) &&
970 likely(!VM_SequentialReadHint(vma)))
971 mark_page_accessed(page);
972 rss[MM_FILEPAGES]--;
974 page_remove_rmap(page);
975 if (unlikely(page_mapcount(page) < 0))
976 print_bad_pte(vma, addr, ptent, page);
977 tlb_remove_page(tlb, page);
978 continue;
981 * If details->check_mapping, we leave swap entries;
982 * if details->nonlinear_vma, we leave file entries.
984 if (unlikely(details))
985 continue;
986 if (pte_file(ptent)) {
987 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
988 print_bad_pte(vma, addr, ptent, NULL);
989 } else {
990 swp_entry_t entry = pte_to_swp_entry(ptent);
992 if (!non_swap_entry(entry))
993 rss[MM_SWAPENTS]--;
994 if (unlikely(!free_swap_and_cache(entry)))
995 print_bad_pte(vma, addr, ptent, NULL);
997 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
998 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
1000 add_mm_rss_vec(mm, rss);
1001 arch_leave_lazy_mmu_mode();
1002 pte_unmap_unlock(pte - 1, ptl);
1004 return addr;
1007 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1008 struct vm_area_struct *vma, pud_t *pud,
1009 unsigned long addr, unsigned long end,
1010 long *zap_work, struct zap_details *details)
1012 pmd_t *pmd;
1013 unsigned long next;
1015 pmd = pmd_offset(pud, addr);
1016 do {
1017 next = pmd_addr_end(addr, end);
1018 if (pmd_trans_huge(*pmd)) {
1019 if (next-addr != HPAGE_PMD_SIZE) {
1020 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1021 split_huge_page_pmd(vma->vm_mm, pmd);
1022 } else if (zap_huge_pmd(tlb, vma, pmd)) {
1023 (*zap_work)--;
1024 continue;
1026 /* fall through */
1028 if (pmd_none_or_clear_bad(pmd)) {
1029 (*zap_work)--;
1030 continue;
1032 next = zap_pte_range(tlb, vma, pmd, addr, next,
1033 zap_work, details);
1034 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1036 return addr;
1039 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1040 struct vm_area_struct *vma, pgd_t *pgd,
1041 unsigned long addr, unsigned long end,
1042 long *zap_work, struct zap_details *details)
1044 pud_t *pud;
1045 unsigned long next;
1047 pud = pud_offset(pgd, addr);
1048 do {
1049 next = pud_addr_end(addr, end);
1050 if (pud_none_or_clear_bad(pud)) {
1051 (*zap_work)--;
1052 continue;
1054 next = zap_pmd_range(tlb, vma, pud, addr, next,
1055 zap_work, details);
1056 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1058 return addr;
1061 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062 struct vm_area_struct *vma,
1063 unsigned long addr, unsigned long end,
1064 long *zap_work, struct zap_details *details)
1066 pgd_t *pgd;
1067 unsigned long next;
1069 if (details && !details->check_mapping && !details->nonlinear_vma)
1070 details = NULL;
1072 BUG_ON(addr >= end);
1073 mem_cgroup_uncharge_start();
1074 tlb_start_vma(tlb, vma);
1075 pgd = pgd_offset(vma->vm_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(pgd)) {
1079 (*zap_work)--;
1080 continue;
1082 next = zap_pud_range(tlb, vma, pgd, addr, next,
1083 zap_work, details);
1084 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1085 tlb_end_vma(tlb, vma);
1086 mem_cgroup_uncharge_end();
1088 return addr;
1091 #ifdef CONFIG_PREEMPT
1092 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1093 #else
1094 /* No preempt: go for improved straight-line efficiency */
1095 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1096 #endif
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1107 * Returns the end address of the unmapping (restart addr if interrupted).
1109 * Unmap all pages in the vma list.
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1113 * return the ending mmu_gather to the caller.
1115 * Only addresses between `start' and `end' will be unmapped.
1117 * The VMA list must be sorted in ascending virtual address order.
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns. So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1124 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1125 struct vm_area_struct *vma, unsigned long start_addr,
1126 unsigned long end_addr, unsigned long *nr_accounted,
1127 struct zap_details *details)
1129 long zap_work = ZAP_BLOCK_SIZE;
1130 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1131 int tlb_start_valid = 0;
1132 unsigned long start = start_addr;
1133 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1134 int fullmm = (*tlbp)->fullmm;
1135 struct mm_struct *mm = vma->vm_mm;
1137 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1138 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1139 unsigned long end;
1141 start = max(vma->vm_start, start_addr);
1142 if (start >= vma->vm_end)
1143 continue;
1144 end = min(vma->vm_end, end_addr);
1145 if (end <= vma->vm_start)
1146 continue;
1148 if (vma->vm_flags & VM_ACCOUNT)
1149 *nr_accounted += (end - start) >> PAGE_SHIFT;
1151 if (unlikely(is_pfn_mapping(vma)))
1152 untrack_pfn_vma(vma, 0, 0);
1154 while (start != end) {
1155 if (!tlb_start_valid) {
1156 tlb_start = start;
1157 tlb_start_valid = 1;
1160 if (unlikely(is_vm_hugetlb_page(vma))) {
1162 * It is undesirable to test vma->vm_file as it
1163 * should be non-null for valid hugetlb area.
1164 * However, vm_file will be NULL in the error
1165 * cleanup path of do_mmap_pgoff. When
1166 * hugetlbfs ->mmap method fails,
1167 * do_mmap_pgoff() nullifies vma->vm_file
1168 * before calling this function to clean up.
1169 * Since no pte has actually been setup, it is
1170 * safe to do nothing in this case.
1172 if (vma->vm_file) {
1173 unmap_hugepage_range(vma, start, end, NULL);
1174 zap_work -= (end - start) /
1175 pages_per_huge_page(hstate_vma(vma));
1178 start = end;
1179 } else
1180 start = unmap_page_range(*tlbp, vma,
1181 start, end, &zap_work, details);
1183 if (zap_work > 0) {
1184 BUG_ON(start != end);
1185 break;
1188 tlb_finish_mmu(*tlbp, tlb_start, start);
1190 if (need_resched() ||
1191 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1192 if (i_mmap_lock) {
1193 *tlbp = NULL;
1194 goto out;
1196 cond_resched();
1199 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1200 tlb_start_valid = 0;
1201 zap_work = ZAP_BLOCK_SIZE;
1204 out:
1205 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1206 return start; /* which is now the end (or restart) address */
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1216 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1217 unsigned long size, struct zap_details *details)
1219 struct mm_struct *mm = vma->vm_mm;
1220 struct mmu_gather *tlb;
1221 unsigned long end = address + size;
1222 unsigned long nr_accounted = 0;
1224 lru_add_drain();
1225 tlb = tlb_gather_mmu(mm, 0);
1226 update_hiwater_rss(mm);
1227 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228 if (tlb)
1229 tlb_finish_mmu(tlb, address, end);
1230 return end;
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1241 * The entire address range must be fully contained within the vma.
1243 * Returns 0 if successful.
1245 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246 unsigned long size)
1248 if (address < vma->vm_start || address + size > vma->vm_end ||
1249 !(vma->vm_flags & VM_PFNMAP))
1250 return -1;
1251 zap_page_range(vma, address, size, NULL);
1252 return 0;
1254 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1268 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1269 unsigned int flags)
1271 pgd_t *pgd;
1272 pud_t *pud;
1273 pmd_t *pmd;
1274 pte_t *ptep, pte;
1275 spinlock_t *ptl;
1276 struct page *page;
1277 struct mm_struct *mm = vma->vm_mm;
1279 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280 if (!IS_ERR(page)) {
1281 BUG_ON(flags & FOLL_GET);
1282 goto out;
1285 page = NULL;
1286 pgd = pgd_offset(mm, address);
1287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1288 goto no_page_table;
1290 pud = pud_offset(pgd, address);
1291 if (pud_none(*pud))
1292 goto no_page_table;
1293 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1294 BUG_ON(flags & FOLL_GET);
1295 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296 goto out;
1298 if (unlikely(pud_bad(*pud)))
1299 goto no_page_table;
1301 pmd = pmd_offset(pud, address);
1302 if (pmd_none(*pmd))
1303 goto no_page_table;
1304 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1305 BUG_ON(flags & FOLL_GET);
1306 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1307 goto out;
1309 if (pmd_trans_huge(*pmd)) {
1310 if (flags & FOLL_SPLIT) {
1311 split_huge_page_pmd(mm, pmd);
1312 goto split_fallthrough;
1314 spin_lock(&mm->page_table_lock);
1315 if (likely(pmd_trans_huge(*pmd))) {
1316 if (unlikely(pmd_trans_splitting(*pmd))) {
1317 spin_unlock(&mm->page_table_lock);
1318 wait_split_huge_page(vma->anon_vma, pmd);
1319 } else {
1320 page = follow_trans_huge_pmd(mm, address,
1321 pmd, flags);
1322 spin_unlock(&mm->page_table_lock);
1323 goto out;
1325 } else
1326 spin_unlock(&mm->page_table_lock);
1327 /* fall through */
1329 split_fallthrough:
1330 if (unlikely(pmd_bad(*pmd)))
1331 goto no_page_table;
1333 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1335 pte = *ptep;
1336 if (!pte_present(pte))
1337 goto no_page;
1338 if ((flags & FOLL_WRITE) && !pte_write(pte))
1339 goto unlock;
1341 page = vm_normal_page(vma, address, pte);
1342 if (unlikely(!page)) {
1343 if ((flags & FOLL_DUMP) ||
1344 !is_zero_pfn(pte_pfn(pte)))
1345 goto bad_page;
1346 page = pte_page(pte);
1349 if (flags & FOLL_GET)
1350 get_page(page);
1351 if (flags & FOLL_TOUCH) {
1352 if ((flags & FOLL_WRITE) &&
1353 !pte_dirty(pte) && !PageDirty(page))
1354 set_page_dirty(page);
1356 * pte_mkyoung() would be more correct here, but atomic care
1357 * is needed to avoid losing the dirty bit: it is easier to use
1358 * mark_page_accessed().
1360 mark_page_accessed(page);
1362 if (flags & FOLL_MLOCK) {
1364 * The preliminary mapping check is mainly to avoid the
1365 * pointless overhead of lock_page on the ZERO_PAGE
1366 * which might bounce very badly if there is contention.
1368 * If the page is already locked, we don't need to
1369 * handle it now - vmscan will handle it later if and
1370 * when it attempts to reclaim the page.
1372 if (page->mapping && trylock_page(page)) {
1373 lru_add_drain(); /* push cached pages to LRU */
1375 * Because we lock page here and migration is
1376 * blocked by the pte's page reference, we need
1377 * only check for file-cache page truncation.
1379 if (page->mapping)
1380 mlock_vma_page(page);
1381 unlock_page(page);
1384 unlock:
1385 pte_unmap_unlock(ptep, ptl);
1386 out:
1387 return page;
1389 bad_page:
1390 pte_unmap_unlock(ptep, ptl);
1391 return ERR_PTR(-EFAULT);
1393 no_page:
1394 pte_unmap_unlock(ptep, ptl);
1395 if (!pte_none(pte))
1396 return page;
1398 no_page_table:
1400 * When core dumping an enormous anonymous area that nobody
1401 * has touched so far, we don't want to allocate unnecessary pages or
1402 * page tables. Return error instead of NULL to skip handle_mm_fault,
1403 * then get_dump_page() will return NULL to leave a hole in the dump.
1404 * But we can only make this optimization where a hole would surely
1405 * be zero-filled if handle_mm_fault() actually did handle it.
1407 if ((flags & FOLL_DUMP) &&
1408 (!vma->vm_ops || !vma->vm_ops->fault))
1409 return ERR_PTR(-EFAULT);
1410 return page;
1413 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1415 return (vma->vm_flags & VM_GROWSDOWN) &&
1416 (vma->vm_start == addr) &&
1417 !vma_stack_continue(vma->vm_prev, addr);
1420 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1421 unsigned long start, int nr_pages, unsigned int gup_flags,
1422 struct page **pages, struct vm_area_struct **vmas,
1423 int *nonblocking)
1425 int i;
1426 unsigned long vm_flags;
1428 if (nr_pages <= 0)
1429 return 0;
1431 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1434 * Require read or write permissions.
1435 * If FOLL_FORCE is set, we only require the "MAY" flags.
1437 vm_flags = (gup_flags & FOLL_WRITE) ?
1438 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1439 vm_flags &= (gup_flags & FOLL_FORCE) ?
1440 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1441 i = 0;
1443 do {
1444 struct vm_area_struct *vma;
1446 vma = find_extend_vma(mm, start);
1447 if (!vma && in_gate_area(tsk, start)) {
1448 unsigned long pg = start & PAGE_MASK;
1449 pgd_t *pgd;
1450 pud_t *pud;
1451 pmd_t *pmd;
1452 pte_t *pte;
1454 /* user gate pages are read-only */
1455 if (gup_flags & FOLL_WRITE)
1456 return i ? : -EFAULT;
1457 if (pg > TASK_SIZE)
1458 pgd = pgd_offset_k(pg);
1459 else
1460 pgd = pgd_offset_gate(mm, pg);
1461 BUG_ON(pgd_none(*pgd));
1462 pud = pud_offset(pgd, pg);
1463 BUG_ON(pud_none(*pud));
1464 pmd = pmd_offset(pud, pg);
1465 if (pmd_none(*pmd))
1466 return i ? : -EFAULT;
1467 VM_BUG_ON(pmd_trans_huge(*pmd));
1468 pte = pte_offset_map(pmd, pg);
1469 if (pte_none(*pte)) {
1470 pte_unmap(pte);
1471 return i ? : -EFAULT;
1473 vma = get_gate_vma(tsk);
1474 if (pages) {
1475 struct page *page;
1477 page = vm_normal_page(vma, start, *pte);
1478 if (!page) {
1479 if (!(gup_flags & FOLL_DUMP) &&
1480 is_zero_pfn(pte_pfn(*pte)))
1481 page = pte_page(*pte);
1482 else {
1483 pte_unmap(pte);
1484 return i ? : -EFAULT;
1487 pages[i] = page;
1488 get_page(page);
1490 pte_unmap(pte);
1491 goto next_page;
1494 if (!vma ||
1495 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1496 !(vm_flags & vma->vm_flags))
1497 return i ? : -EFAULT;
1499 if (is_vm_hugetlb_page(vma)) {
1500 i = follow_hugetlb_page(mm, vma, pages, vmas,
1501 &start, &nr_pages, i, gup_flags);
1502 continue;
1506 * If we don't actually want the page itself,
1507 * and it's the stack guard page, just skip it.
1509 if (!pages && stack_guard_page(vma, start))
1510 goto next_page;
1512 do {
1513 struct page *page;
1514 unsigned int foll_flags = gup_flags;
1517 * If we have a pending SIGKILL, don't keep faulting
1518 * pages and potentially allocating memory.
1520 if (unlikely(fatal_signal_pending(current)))
1521 return i ? i : -ERESTARTSYS;
1523 cond_resched();
1524 while (!(page = follow_page(vma, start, foll_flags))) {
1525 int ret;
1526 unsigned int fault_flags = 0;
1528 if (foll_flags & FOLL_WRITE)
1529 fault_flags |= FAULT_FLAG_WRITE;
1530 if (nonblocking)
1531 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1533 ret = handle_mm_fault(mm, vma, start,
1534 fault_flags);
1536 if (ret & VM_FAULT_ERROR) {
1537 if (ret & VM_FAULT_OOM)
1538 return i ? i : -ENOMEM;
1539 if (ret &
1540 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1541 VM_FAULT_SIGBUS))
1542 return i ? i : -EFAULT;
1543 BUG();
1545 if (ret & VM_FAULT_MAJOR)
1546 tsk->maj_flt++;
1547 else
1548 tsk->min_flt++;
1550 if (ret & VM_FAULT_RETRY) {
1551 *nonblocking = 0;
1552 return i;
1556 * The VM_FAULT_WRITE bit tells us that
1557 * do_wp_page has broken COW when necessary,
1558 * even if maybe_mkwrite decided not to set
1559 * pte_write. We can thus safely do subsequent
1560 * page lookups as if they were reads. But only
1561 * do so when looping for pte_write is futile:
1562 * in some cases userspace may also be wanting
1563 * to write to the gotten user page, which a
1564 * read fault here might prevent (a readonly
1565 * page might get reCOWed by userspace write).
1567 if ((ret & VM_FAULT_WRITE) &&
1568 !(vma->vm_flags & VM_WRITE))
1569 foll_flags &= ~FOLL_WRITE;
1571 cond_resched();
1573 if (IS_ERR(page))
1574 return i ? i : PTR_ERR(page);
1575 if (pages) {
1576 pages[i] = page;
1578 flush_anon_page(vma, page, start);
1579 flush_dcache_page(page);
1581 next_page:
1582 if (vmas)
1583 vmas[i] = vma;
1584 i++;
1585 start += PAGE_SIZE;
1586 nr_pages--;
1587 } while (nr_pages && start < vma->vm_end);
1588 } while (nr_pages);
1589 return i;
1593 * get_user_pages() - pin user pages in memory
1594 * @tsk: task_struct of target task
1595 * @mm: mm_struct of target mm
1596 * @start: starting user address
1597 * @nr_pages: number of pages from start to pin
1598 * @write: whether pages will be written to by the caller
1599 * @force: whether to force write access even if user mapping is
1600 * readonly. This will result in the page being COWed even
1601 * in MAP_SHARED mappings. You do not want this.
1602 * @pages: array that receives pointers to the pages pinned.
1603 * Should be at least nr_pages long. Or NULL, if caller
1604 * only intends to ensure the pages are faulted in.
1605 * @vmas: array of pointers to vmas corresponding to each page.
1606 * Or NULL if the caller does not require them.
1608 * Returns number of pages pinned. This may be fewer than the number
1609 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1610 * were pinned, returns -errno. Each page returned must be released
1611 * with a put_page() call when it is finished with. vmas will only
1612 * remain valid while mmap_sem is held.
1614 * Must be called with mmap_sem held for read or write.
1616 * get_user_pages walks a process's page tables and takes a reference to
1617 * each struct page that each user address corresponds to at a given
1618 * instant. That is, it takes the page that would be accessed if a user
1619 * thread accesses the given user virtual address at that instant.
1621 * This does not guarantee that the page exists in the user mappings when
1622 * get_user_pages returns, and there may even be a completely different
1623 * page there in some cases (eg. if mmapped pagecache has been invalidated
1624 * and subsequently re faulted). However it does guarantee that the page
1625 * won't be freed completely. And mostly callers simply care that the page
1626 * contains data that was valid *at some point in time*. Typically, an IO
1627 * or similar operation cannot guarantee anything stronger anyway because
1628 * locks can't be held over the syscall boundary.
1630 * If write=0, the page must not be written to. If the page is written to,
1631 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1632 * after the page is finished with, and before put_page is called.
1634 * get_user_pages is typically used for fewer-copy IO operations, to get a
1635 * handle on the memory by some means other than accesses via the user virtual
1636 * addresses. The pages may be submitted for DMA to devices or accessed via
1637 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1638 * use the correct cache flushing APIs.
1640 * See also get_user_pages_fast, for performance critical applications.
1642 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1643 unsigned long start, int nr_pages, int write, int force,
1644 struct page **pages, struct vm_area_struct **vmas)
1646 int flags = FOLL_TOUCH;
1648 if (pages)
1649 flags |= FOLL_GET;
1650 if (write)
1651 flags |= FOLL_WRITE;
1652 if (force)
1653 flags |= FOLL_FORCE;
1655 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1656 NULL);
1658 EXPORT_SYMBOL(get_user_pages);
1661 * get_dump_page() - pin user page in memory while writing it to core dump
1662 * @addr: user address
1664 * Returns struct page pointer of user page pinned for dump,
1665 * to be freed afterwards by page_cache_release() or put_page().
1667 * Returns NULL on any kind of failure - a hole must then be inserted into
1668 * the corefile, to preserve alignment with its headers; and also returns
1669 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1670 * allowing a hole to be left in the corefile to save diskspace.
1672 * Called without mmap_sem, but after all other threads have been killed.
1674 #ifdef CONFIG_ELF_CORE
1675 struct page *get_dump_page(unsigned long addr)
1677 struct vm_area_struct *vma;
1678 struct page *page;
1680 if (__get_user_pages(current, current->mm, addr, 1,
1681 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1682 NULL) < 1)
1683 return NULL;
1684 flush_cache_page(vma, addr, page_to_pfn(page));
1685 return page;
1687 #endif /* CONFIG_ELF_CORE */
1689 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1690 spinlock_t **ptl)
1692 pgd_t * pgd = pgd_offset(mm, addr);
1693 pud_t * pud = pud_alloc(mm, pgd, addr);
1694 if (pud) {
1695 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1696 if (pmd) {
1697 VM_BUG_ON(pmd_trans_huge(*pmd));
1698 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1701 return NULL;
1705 * This is the old fallback for page remapping.
1707 * For historical reasons, it only allows reserved pages. Only
1708 * old drivers should use this, and they needed to mark their
1709 * pages reserved for the old functions anyway.
1711 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1712 struct page *page, pgprot_t prot)
1714 struct mm_struct *mm = vma->vm_mm;
1715 int retval;
1716 pte_t *pte;
1717 spinlock_t *ptl;
1719 retval = -EINVAL;
1720 if (PageAnon(page))
1721 goto out;
1722 retval = -ENOMEM;
1723 flush_dcache_page(page);
1724 pte = get_locked_pte(mm, addr, &ptl);
1725 if (!pte)
1726 goto out;
1727 retval = -EBUSY;
1728 if (!pte_none(*pte))
1729 goto out_unlock;
1731 /* Ok, finally just insert the thing.. */
1732 get_page(page);
1733 inc_mm_counter_fast(mm, MM_FILEPAGES);
1734 page_add_file_rmap(page);
1735 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1737 retval = 0;
1738 pte_unmap_unlock(pte, ptl);
1739 return retval;
1740 out_unlock:
1741 pte_unmap_unlock(pte, ptl);
1742 out:
1743 return retval;
1747 * vm_insert_page - insert single page into user vma
1748 * @vma: user vma to map to
1749 * @addr: target user address of this page
1750 * @page: source kernel page
1752 * This allows drivers to insert individual pages they've allocated
1753 * into a user vma.
1755 * The page has to be a nice clean _individual_ kernel allocation.
1756 * If you allocate a compound page, you need to have marked it as
1757 * such (__GFP_COMP), or manually just split the page up yourself
1758 * (see split_page()).
1760 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1761 * took an arbitrary page protection parameter. This doesn't allow
1762 * that. Your vma protection will have to be set up correctly, which
1763 * means that if you want a shared writable mapping, you'd better
1764 * ask for a shared writable mapping!
1766 * The page does not need to be reserved.
1768 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1769 struct page *page)
1771 if (addr < vma->vm_start || addr >= vma->vm_end)
1772 return -EFAULT;
1773 if (!page_count(page))
1774 return -EINVAL;
1775 vma->vm_flags |= VM_INSERTPAGE;
1776 return insert_page(vma, addr, page, vma->vm_page_prot);
1778 EXPORT_SYMBOL(vm_insert_page);
1780 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1781 unsigned long pfn, pgprot_t prot)
1783 struct mm_struct *mm = vma->vm_mm;
1784 int retval;
1785 pte_t *pte, entry;
1786 spinlock_t *ptl;
1788 retval = -ENOMEM;
1789 pte = get_locked_pte(mm, addr, &ptl);
1790 if (!pte)
1791 goto out;
1792 retval = -EBUSY;
1793 if (!pte_none(*pte))
1794 goto out_unlock;
1796 /* Ok, finally just insert the thing.. */
1797 entry = pte_mkspecial(pfn_pte(pfn, prot));
1798 set_pte_at(mm, addr, pte, entry);
1799 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1801 retval = 0;
1802 out_unlock:
1803 pte_unmap_unlock(pte, ptl);
1804 out:
1805 return retval;
1809 * vm_insert_pfn - insert single pfn into user vma
1810 * @vma: user vma to map to
1811 * @addr: target user address of this page
1812 * @pfn: source kernel pfn
1814 * Similar to vm_inert_page, this allows drivers to insert individual pages
1815 * they've allocated into a user vma. Same comments apply.
1817 * This function should only be called from a vm_ops->fault handler, and
1818 * in that case the handler should return NULL.
1820 * vma cannot be a COW mapping.
1822 * As this is called only for pages that do not currently exist, we
1823 * do not need to flush old virtual caches or the TLB.
1825 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1826 unsigned long pfn)
1828 int ret;
1829 pgprot_t pgprot = vma->vm_page_prot;
1831 * Technically, architectures with pte_special can avoid all these
1832 * restrictions (same for remap_pfn_range). However we would like
1833 * consistency in testing and feature parity among all, so we should
1834 * try to keep these invariants in place for everybody.
1836 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1837 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1838 (VM_PFNMAP|VM_MIXEDMAP));
1839 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1840 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1842 if (addr < vma->vm_start || addr >= vma->vm_end)
1843 return -EFAULT;
1844 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1845 return -EINVAL;
1847 ret = insert_pfn(vma, addr, pfn, pgprot);
1849 if (ret)
1850 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1852 return ret;
1854 EXPORT_SYMBOL(vm_insert_pfn);
1856 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1857 unsigned long pfn)
1859 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1861 if (addr < vma->vm_start || addr >= vma->vm_end)
1862 return -EFAULT;
1865 * If we don't have pte special, then we have to use the pfn_valid()
1866 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1867 * refcount the page if pfn_valid is true (hence insert_page rather
1868 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1869 * without pte special, it would there be refcounted as a normal page.
1871 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1872 struct page *page;
1874 page = pfn_to_page(pfn);
1875 return insert_page(vma, addr, page, vma->vm_page_prot);
1877 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1879 EXPORT_SYMBOL(vm_insert_mixed);
1882 * maps a range of physical memory into the requested pages. the old
1883 * mappings are removed. any references to nonexistent pages results
1884 * in null mappings (currently treated as "copy-on-access")
1886 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1887 unsigned long addr, unsigned long end,
1888 unsigned long pfn, pgprot_t prot)
1890 pte_t *pte;
1891 spinlock_t *ptl;
1893 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1894 if (!pte)
1895 return -ENOMEM;
1896 arch_enter_lazy_mmu_mode();
1897 do {
1898 BUG_ON(!pte_none(*pte));
1899 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1900 pfn++;
1901 } while (pte++, addr += PAGE_SIZE, addr != end);
1902 arch_leave_lazy_mmu_mode();
1903 pte_unmap_unlock(pte - 1, ptl);
1904 return 0;
1907 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1908 unsigned long addr, unsigned long end,
1909 unsigned long pfn, pgprot_t prot)
1911 pmd_t *pmd;
1912 unsigned long next;
1914 pfn -= addr >> PAGE_SHIFT;
1915 pmd = pmd_alloc(mm, pud, addr);
1916 if (!pmd)
1917 return -ENOMEM;
1918 VM_BUG_ON(pmd_trans_huge(*pmd));
1919 do {
1920 next = pmd_addr_end(addr, end);
1921 if (remap_pte_range(mm, pmd, addr, next,
1922 pfn + (addr >> PAGE_SHIFT), prot))
1923 return -ENOMEM;
1924 } while (pmd++, addr = next, addr != end);
1925 return 0;
1928 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1929 unsigned long addr, unsigned long end,
1930 unsigned long pfn, pgprot_t prot)
1932 pud_t *pud;
1933 unsigned long next;
1935 pfn -= addr >> PAGE_SHIFT;
1936 pud = pud_alloc(mm, pgd, addr);
1937 if (!pud)
1938 return -ENOMEM;
1939 do {
1940 next = pud_addr_end(addr, end);
1941 if (remap_pmd_range(mm, pud, addr, next,
1942 pfn + (addr >> PAGE_SHIFT), prot))
1943 return -ENOMEM;
1944 } while (pud++, addr = next, addr != end);
1945 return 0;
1949 * remap_pfn_range - remap kernel memory to userspace
1950 * @vma: user vma to map to
1951 * @addr: target user address to start at
1952 * @pfn: physical address of kernel memory
1953 * @size: size of map area
1954 * @prot: page protection flags for this mapping
1956 * Note: this is only safe if the mm semaphore is held when called.
1958 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1959 unsigned long pfn, unsigned long size, pgprot_t prot)
1961 pgd_t *pgd;
1962 unsigned long next;
1963 unsigned long end = addr + PAGE_ALIGN(size);
1964 struct mm_struct *mm = vma->vm_mm;
1965 int err;
1968 * Physically remapped pages are special. Tell the
1969 * rest of the world about it:
1970 * VM_IO tells people not to look at these pages
1971 * (accesses can have side effects).
1972 * VM_RESERVED is specified all over the place, because
1973 * in 2.4 it kept swapout's vma scan off this vma; but
1974 * in 2.6 the LRU scan won't even find its pages, so this
1975 * flag means no more than count its pages in reserved_vm,
1976 * and omit it from core dump, even when VM_IO turned off.
1977 * VM_PFNMAP tells the core MM that the base pages are just
1978 * raw PFN mappings, and do not have a "struct page" associated
1979 * with them.
1981 * There's a horrible special case to handle copy-on-write
1982 * behaviour that some programs depend on. We mark the "original"
1983 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1985 if (addr == vma->vm_start && end == vma->vm_end) {
1986 vma->vm_pgoff = pfn;
1987 vma->vm_flags |= VM_PFN_AT_MMAP;
1988 } else if (is_cow_mapping(vma->vm_flags))
1989 return -EINVAL;
1991 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1993 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1994 if (err) {
1996 * To indicate that track_pfn related cleanup is not
1997 * needed from higher level routine calling unmap_vmas
1999 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2000 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2001 return -EINVAL;
2004 BUG_ON(addr >= end);
2005 pfn -= addr >> PAGE_SHIFT;
2006 pgd = pgd_offset(mm, addr);
2007 flush_cache_range(vma, addr, end);
2008 do {
2009 next = pgd_addr_end(addr, end);
2010 err = remap_pud_range(mm, pgd, addr, next,
2011 pfn + (addr >> PAGE_SHIFT), prot);
2012 if (err)
2013 break;
2014 } while (pgd++, addr = next, addr != end);
2016 if (err)
2017 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2019 return err;
2021 EXPORT_SYMBOL(remap_pfn_range);
2023 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2024 unsigned long addr, unsigned long end,
2025 pte_fn_t fn, void *data)
2027 pte_t *pte;
2028 int err;
2029 pgtable_t token;
2030 spinlock_t *uninitialized_var(ptl);
2032 pte = (mm == &init_mm) ?
2033 pte_alloc_kernel(pmd, addr) :
2034 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2035 if (!pte)
2036 return -ENOMEM;
2038 BUG_ON(pmd_huge(*pmd));
2040 arch_enter_lazy_mmu_mode();
2042 token = pmd_pgtable(*pmd);
2044 do {
2045 err = fn(pte++, token, addr, data);
2046 if (err)
2047 break;
2048 } while (addr += PAGE_SIZE, addr != end);
2050 arch_leave_lazy_mmu_mode();
2052 if (mm != &init_mm)
2053 pte_unmap_unlock(pte-1, ptl);
2054 return err;
2057 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2058 unsigned long addr, unsigned long end,
2059 pte_fn_t fn, void *data)
2061 pmd_t *pmd;
2062 unsigned long next;
2063 int err;
2065 BUG_ON(pud_huge(*pud));
2067 pmd = pmd_alloc(mm, pud, addr);
2068 if (!pmd)
2069 return -ENOMEM;
2070 do {
2071 next = pmd_addr_end(addr, end);
2072 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2073 if (err)
2074 break;
2075 } while (pmd++, addr = next, addr != end);
2076 return err;
2079 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2080 unsigned long addr, unsigned long end,
2081 pte_fn_t fn, void *data)
2083 pud_t *pud;
2084 unsigned long next;
2085 int err;
2087 pud = pud_alloc(mm, pgd, addr);
2088 if (!pud)
2089 return -ENOMEM;
2090 do {
2091 next = pud_addr_end(addr, end);
2092 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2093 if (err)
2094 break;
2095 } while (pud++, addr = next, addr != end);
2096 return err;
2100 * Scan a region of virtual memory, filling in page tables as necessary
2101 * and calling a provided function on each leaf page table.
2103 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2104 unsigned long size, pte_fn_t fn, void *data)
2106 pgd_t *pgd;
2107 unsigned long next;
2108 unsigned long end = addr + size;
2109 int err;
2111 BUG_ON(addr >= end);
2112 pgd = pgd_offset(mm, addr);
2113 do {
2114 next = pgd_addr_end(addr, end);
2115 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2116 if (err)
2117 break;
2118 } while (pgd++, addr = next, addr != end);
2120 return err;
2122 EXPORT_SYMBOL_GPL(apply_to_page_range);
2125 * handle_pte_fault chooses page fault handler according to an entry
2126 * which was read non-atomically. Before making any commitment, on
2127 * those architectures or configurations (e.g. i386 with PAE) which
2128 * might give a mix of unmatched parts, do_swap_page and do_file_page
2129 * must check under lock before unmapping the pte and proceeding
2130 * (but do_wp_page is only called after already making such a check;
2131 * and do_anonymous_page and do_no_page can safely check later on).
2133 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2134 pte_t *page_table, pte_t orig_pte)
2136 int same = 1;
2137 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2138 if (sizeof(pte_t) > sizeof(unsigned long)) {
2139 spinlock_t *ptl = pte_lockptr(mm, pmd);
2140 spin_lock(ptl);
2141 same = pte_same(*page_table, orig_pte);
2142 spin_unlock(ptl);
2144 #endif
2145 pte_unmap(page_table);
2146 return same;
2149 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2152 * If the source page was a PFN mapping, we don't have
2153 * a "struct page" for it. We do a best-effort copy by
2154 * just copying from the original user address. If that
2155 * fails, we just zero-fill it. Live with it.
2157 if (unlikely(!src)) {
2158 void *kaddr = kmap_atomic(dst, KM_USER0);
2159 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2162 * This really shouldn't fail, because the page is there
2163 * in the page tables. But it might just be unreadable,
2164 * in which case we just give up and fill the result with
2165 * zeroes.
2167 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2168 clear_page(kaddr);
2169 kunmap_atomic(kaddr, KM_USER0);
2170 flush_dcache_page(dst);
2171 } else
2172 copy_user_highpage(dst, src, va, vma);
2176 * This routine handles present pages, when users try to write
2177 * to a shared page. It is done by copying the page to a new address
2178 * and decrementing the shared-page counter for the old page.
2180 * Note that this routine assumes that the protection checks have been
2181 * done by the caller (the low-level page fault routine in most cases).
2182 * Thus we can safely just mark it writable once we've done any necessary
2183 * COW.
2185 * We also mark the page dirty at this point even though the page will
2186 * change only once the write actually happens. This avoids a few races,
2187 * and potentially makes it more efficient.
2189 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2190 * but allow concurrent faults), with pte both mapped and locked.
2191 * We return with mmap_sem still held, but pte unmapped and unlocked.
2193 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2194 unsigned long address, pte_t *page_table, pmd_t *pmd,
2195 spinlock_t *ptl, pte_t orig_pte)
2196 __releases(ptl)
2198 struct page *old_page, *new_page;
2199 pte_t entry;
2200 int ret = 0;
2201 int page_mkwrite = 0;
2202 struct page *dirty_page = NULL;
2204 old_page = vm_normal_page(vma, address, orig_pte);
2205 if (!old_page) {
2207 * VM_MIXEDMAP !pfn_valid() case
2209 * We should not cow pages in a shared writeable mapping.
2210 * Just mark the pages writable as we can't do any dirty
2211 * accounting on raw pfn maps.
2213 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2214 (VM_WRITE|VM_SHARED))
2215 goto reuse;
2216 goto gotten;
2220 * Take out anonymous pages first, anonymous shared vmas are
2221 * not dirty accountable.
2223 if (PageAnon(old_page) && !PageKsm(old_page)) {
2224 if (!trylock_page(old_page)) {
2225 page_cache_get(old_page);
2226 pte_unmap_unlock(page_table, ptl);
2227 lock_page(old_page);
2228 page_table = pte_offset_map_lock(mm, pmd, address,
2229 &ptl);
2230 if (!pte_same(*page_table, orig_pte)) {
2231 unlock_page(old_page);
2232 goto unlock;
2234 page_cache_release(old_page);
2236 if (reuse_swap_page(old_page)) {
2238 * The page is all ours. Move it to our anon_vma so
2239 * the rmap code will not search our parent or siblings.
2240 * Protected against the rmap code by the page lock.
2242 page_move_anon_rmap(old_page, vma, address);
2243 unlock_page(old_page);
2244 goto reuse;
2246 unlock_page(old_page);
2247 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2248 (VM_WRITE|VM_SHARED))) {
2250 * Only catch write-faults on shared writable pages,
2251 * read-only shared pages can get COWed by
2252 * get_user_pages(.write=1, .force=1).
2254 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2255 struct vm_fault vmf;
2256 int tmp;
2258 vmf.virtual_address = (void __user *)(address &
2259 PAGE_MASK);
2260 vmf.pgoff = old_page->index;
2261 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2262 vmf.page = old_page;
2265 * Notify the address space that the page is about to
2266 * become writable so that it can prohibit this or wait
2267 * for the page to get into an appropriate state.
2269 * We do this without the lock held, so that it can
2270 * sleep if it needs to.
2272 page_cache_get(old_page);
2273 pte_unmap_unlock(page_table, ptl);
2275 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2276 if (unlikely(tmp &
2277 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2278 ret = tmp;
2279 goto unwritable_page;
2281 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2282 lock_page(old_page);
2283 if (!old_page->mapping) {
2284 ret = 0; /* retry the fault */
2285 unlock_page(old_page);
2286 goto unwritable_page;
2288 } else
2289 VM_BUG_ON(!PageLocked(old_page));
2292 * Since we dropped the lock we need to revalidate
2293 * the PTE as someone else may have changed it. If
2294 * they did, we just return, as we can count on the
2295 * MMU to tell us if they didn't also make it writable.
2297 page_table = pte_offset_map_lock(mm, pmd, address,
2298 &ptl);
2299 if (!pte_same(*page_table, orig_pte)) {
2300 unlock_page(old_page);
2301 goto unlock;
2304 page_mkwrite = 1;
2306 dirty_page = old_page;
2307 get_page(dirty_page);
2309 reuse:
2310 flush_cache_page(vma, address, pte_pfn(orig_pte));
2311 entry = pte_mkyoung(orig_pte);
2312 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2314 update_mmu_cache(vma, address, page_table);
2315 pte_unmap_unlock(page_table, ptl);
2316 ret |= VM_FAULT_WRITE;
2318 if (!dirty_page)
2319 return ret;
2322 * Yes, Virginia, this is actually required to prevent a race
2323 * with clear_page_dirty_for_io() from clearing the page dirty
2324 * bit after it clear all dirty ptes, but before a racing
2325 * do_wp_page installs a dirty pte.
2327 * do_no_page is protected similarly.
2329 if (!page_mkwrite) {
2330 wait_on_page_locked(dirty_page);
2331 set_page_dirty_balance(dirty_page, page_mkwrite);
2333 put_page(dirty_page);
2334 if (page_mkwrite) {
2335 struct address_space *mapping = dirty_page->mapping;
2337 set_page_dirty(dirty_page);
2338 unlock_page(dirty_page);
2339 page_cache_release(dirty_page);
2340 if (mapping) {
2342 * Some device drivers do not set page.mapping
2343 * but still dirty their pages
2345 balance_dirty_pages_ratelimited(mapping);
2349 /* file_update_time outside page_lock */
2350 if (vma->vm_file)
2351 file_update_time(vma->vm_file);
2353 return ret;
2357 * Ok, we need to copy. Oh, well..
2359 page_cache_get(old_page);
2360 gotten:
2361 pte_unmap_unlock(page_table, ptl);
2363 if (unlikely(anon_vma_prepare(vma)))
2364 goto oom;
2366 if (is_zero_pfn(pte_pfn(orig_pte))) {
2367 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2368 if (!new_page)
2369 goto oom;
2370 } else {
2371 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2372 if (!new_page)
2373 goto oom;
2374 cow_user_page(new_page, old_page, address, vma);
2376 __SetPageUptodate(new_page);
2378 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2379 goto oom_free_new;
2382 * Re-check the pte - we dropped the lock
2384 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2385 if (likely(pte_same(*page_table, orig_pte))) {
2386 if (old_page) {
2387 if (!PageAnon(old_page)) {
2388 dec_mm_counter_fast(mm, MM_FILEPAGES);
2389 inc_mm_counter_fast(mm, MM_ANONPAGES);
2391 } else
2392 inc_mm_counter_fast(mm, MM_ANONPAGES);
2393 flush_cache_page(vma, address, pte_pfn(orig_pte));
2394 entry = mk_pte(new_page, vma->vm_page_prot);
2395 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2397 * Clear the pte entry and flush it first, before updating the
2398 * pte with the new entry. This will avoid a race condition
2399 * seen in the presence of one thread doing SMC and another
2400 * thread doing COW.
2402 ptep_clear_flush(vma, address, page_table);
2403 page_add_new_anon_rmap(new_page, vma, address);
2405 * We call the notify macro here because, when using secondary
2406 * mmu page tables (such as kvm shadow page tables), we want the
2407 * new page to be mapped directly into the secondary page table.
2409 set_pte_at_notify(mm, address, page_table, entry);
2410 update_mmu_cache(vma, address, page_table);
2411 if (old_page) {
2413 * Only after switching the pte to the new page may
2414 * we remove the mapcount here. Otherwise another
2415 * process may come and find the rmap count decremented
2416 * before the pte is switched to the new page, and
2417 * "reuse" the old page writing into it while our pte
2418 * here still points into it and can be read by other
2419 * threads.
2421 * The critical issue is to order this
2422 * page_remove_rmap with the ptp_clear_flush above.
2423 * Those stores are ordered by (if nothing else,)
2424 * the barrier present in the atomic_add_negative
2425 * in page_remove_rmap.
2427 * Then the TLB flush in ptep_clear_flush ensures that
2428 * no process can access the old page before the
2429 * decremented mapcount is visible. And the old page
2430 * cannot be reused until after the decremented
2431 * mapcount is visible. So transitively, TLBs to
2432 * old page will be flushed before it can be reused.
2434 page_remove_rmap(old_page);
2437 /* Free the old page.. */
2438 new_page = old_page;
2439 ret |= VM_FAULT_WRITE;
2440 } else
2441 mem_cgroup_uncharge_page(new_page);
2443 if (new_page)
2444 page_cache_release(new_page);
2445 unlock:
2446 pte_unmap_unlock(page_table, ptl);
2447 if (old_page) {
2449 * Don't let another task, with possibly unlocked vma,
2450 * keep the mlocked page.
2452 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2453 lock_page(old_page); /* LRU manipulation */
2454 munlock_vma_page(old_page);
2455 unlock_page(old_page);
2457 page_cache_release(old_page);
2459 return ret;
2460 oom_free_new:
2461 page_cache_release(new_page);
2462 oom:
2463 if (old_page) {
2464 if (page_mkwrite) {
2465 unlock_page(old_page);
2466 page_cache_release(old_page);
2468 page_cache_release(old_page);
2470 return VM_FAULT_OOM;
2472 unwritable_page:
2473 page_cache_release(old_page);
2474 return ret;
2478 * Helper functions for unmap_mapping_range().
2480 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2482 * We have to restart searching the prio_tree whenever we drop the lock,
2483 * since the iterator is only valid while the lock is held, and anyway
2484 * a later vma might be split and reinserted earlier while lock dropped.
2486 * The list of nonlinear vmas could be handled more efficiently, using
2487 * a placeholder, but handle it in the same way until a need is shown.
2488 * It is important to search the prio_tree before nonlinear list: a vma
2489 * may become nonlinear and be shifted from prio_tree to nonlinear list
2490 * while the lock is dropped; but never shifted from list to prio_tree.
2492 * In order to make forward progress despite restarting the search,
2493 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2494 * quickly skip it next time around. Since the prio_tree search only
2495 * shows us those vmas affected by unmapping the range in question, we
2496 * can't efficiently keep all vmas in step with mapping->truncate_count:
2497 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2498 * mapping->truncate_count and vma->vm_truncate_count are protected by
2499 * i_mmap_lock.
2501 * In order to make forward progress despite repeatedly restarting some
2502 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2503 * and restart from that address when we reach that vma again. It might
2504 * have been split or merged, shrunk or extended, but never shifted: so
2505 * restart_addr remains valid so long as it remains in the vma's range.
2506 * unmap_mapping_range forces truncate_count to leap over page-aligned
2507 * values so we can save vma's restart_addr in its truncate_count field.
2509 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2511 static void reset_vma_truncate_counts(struct address_space *mapping)
2513 struct vm_area_struct *vma;
2514 struct prio_tree_iter iter;
2516 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2517 vma->vm_truncate_count = 0;
2518 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2519 vma->vm_truncate_count = 0;
2522 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2523 unsigned long start_addr, unsigned long end_addr,
2524 struct zap_details *details)
2526 unsigned long restart_addr;
2527 int need_break;
2530 * files that support invalidating or truncating portions of the
2531 * file from under mmaped areas must have their ->fault function
2532 * return a locked page (and set VM_FAULT_LOCKED in the return).
2533 * This provides synchronisation against concurrent unmapping here.
2536 again:
2537 restart_addr = vma->vm_truncate_count;
2538 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2539 start_addr = restart_addr;
2540 if (start_addr >= end_addr) {
2541 /* Top of vma has been split off since last time */
2542 vma->vm_truncate_count = details->truncate_count;
2543 return 0;
2547 restart_addr = zap_page_range(vma, start_addr,
2548 end_addr - start_addr, details);
2549 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2551 if (restart_addr >= end_addr) {
2552 /* We have now completed this vma: mark it so */
2553 vma->vm_truncate_count = details->truncate_count;
2554 if (!need_break)
2555 return 0;
2556 } else {
2557 /* Note restart_addr in vma's truncate_count field */
2558 vma->vm_truncate_count = restart_addr;
2559 if (!need_break)
2560 goto again;
2563 spin_unlock(details->i_mmap_lock);
2564 cond_resched();
2565 spin_lock(details->i_mmap_lock);
2566 return -EINTR;
2569 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2570 struct zap_details *details)
2572 struct vm_area_struct *vma;
2573 struct prio_tree_iter iter;
2574 pgoff_t vba, vea, zba, zea;
2576 restart:
2577 vma_prio_tree_foreach(vma, &iter, root,
2578 details->first_index, details->last_index) {
2579 /* Skip quickly over those we have already dealt with */
2580 if (vma->vm_truncate_count == details->truncate_count)
2581 continue;
2583 vba = vma->vm_pgoff;
2584 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2585 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2586 zba = details->first_index;
2587 if (zba < vba)
2588 zba = vba;
2589 zea = details->last_index;
2590 if (zea > vea)
2591 zea = vea;
2593 if (unmap_mapping_range_vma(vma,
2594 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2595 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2596 details) < 0)
2597 goto restart;
2601 static inline void unmap_mapping_range_list(struct list_head *head,
2602 struct zap_details *details)
2604 struct vm_area_struct *vma;
2607 * In nonlinear VMAs there is no correspondence between virtual address
2608 * offset and file offset. So we must perform an exhaustive search
2609 * across *all* the pages in each nonlinear VMA, not just the pages
2610 * whose virtual address lies outside the file truncation point.
2612 restart:
2613 list_for_each_entry(vma, head, shared.vm_set.list) {
2614 /* Skip quickly over those we have already dealt with */
2615 if (vma->vm_truncate_count == details->truncate_count)
2616 continue;
2617 details->nonlinear_vma = vma;
2618 if (unmap_mapping_range_vma(vma, vma->vm_start,
2619 vma->vm_end, details) < 0)
2620 goto restart;
2625 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2626 * @mapping: the address space containing mmaps to be unmapped.
2627 * @holebegin: byte in first page to unmap, relative to the start of
2628 * the underlying file. This will be rounded down to a PAGE_SIZE
2629 * boundary. Note that this is different from truncate_pagecache(), which
2630 * must keep the partial page. In contrast, we must get rid of
2631 * partial pages.
2632 * @holelen: size of prospective hole in bytes. This will be rounded
2633 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2634 * end of the file.
2635 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2636 * but 0 when invalidating pagecache, don't throw away private data.
2638 void unmap_mapping_range(struct address_space *mapping,
2639 loff_t const holebegin, loff_t const holelen, int even_cows)
2641 struct zap_details details;
2642 pgoff_t hba = holebegin >> PAGE_SHIFT;
2643 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2645 /* Check for overflow. */
2646 if (sizeof(holelen) > sizeof(hlen)) {
2647 long long holeend =
2648 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2649 if (holeend & ~(long long)ULONG_MAX)
2650 hlen = ULONG_MAX - hba + 1;
2653 details.check_mapping = even_cows? NULL: mapping;
2654 details.nonlinear_vma = NULL;
2655 details.first_index = hba;
2656 details.last_index = hba + hlen - 1;
2657 if (details.last_index < details.first_index)
2658 details.last_index = ULONG_MAX;
2659 details.i_mmap_lock = &mapping->i_mmap_lock;
2661 mutex_lock(&mapping->unmap_mutex);
2662 spin_lock(&mapping->i_mmap_lock);
2664 /* Protect against endless unmapping loops */
2665 mapping->truncate_count++;
2666 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2667 if (mapping->truncate_count == 0)
2668 reset_vma_truncate_counts(mapping);
2669 mapping->truncate_count++;
2671 details.truncate_count = mapping->truncate_count;
2673 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2674 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2675 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2676 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2677 spin_unlock(&mapping->i_mmap_lock);
2678 mutex_unlock(&mapping->unmap_mutex);
2680 EXPORT_SYMBOL(unmap_mapping_range);
2682 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2684 struct address_space *mapping = inode->i_mapping;
2687 * If the underlying filesystem is not going to provide
2688 * a way to truncate a range of blocks (punch a hole) -
2689 * we should return failure right now.
2691 if (!inode->i_op->truncate_range)
2692 return -ENOSYS;
2694 mutex_lock(&inode->i_mutex);
2695 down_write(&inode->i_alloc_sem);
2696 unmap_mapping_range(mapping, offset, (end - offset), 1);
2697 truncate_inode_pages_range(mapping, offset, end);
2698 unmap_mapping_range(mapping, offset, (end - offset), 1);
2699 inode->i_op->truncate_range(inode, offset, end);
2700 up_write(&inode->i_alloc_sem);
2701 mutex_unlock(&inode->i_mutex);
2703 return 0;
2707 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2708 * but allow concurrent faults), and pte mapped but not yet locked.
2709 * We return with mmap_sem still held, but pte unmapped and unlocked.
2711 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2712 unsigned long address, pte_t *page_table, pmd_t *pmd,
2713 unsigned int flags, pte_t orig_pte)
2715 spinlock_t *ptl;
2716 struct page *page, *swapcache = NULL;
2717 swp_entry_t entry;
2718 pte_t pte;
2719 int locked;
2720 struct mem_cgroup *ptr = NULL;
2721 int exclusive = 0;
2722 int ret = 0;
2724 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2725 goto out;
2727 entry = pte_to_swp_entry(orig_pte);
2728 if (unlikely(non_swap_entry(entry))) {
2729 if (is_migration_entry(entry)) {
2730 migration_entry_wait(mm, pmd, address);
2731 } else if (is_hwpoison_entry(entry)) {
2732 ret = VM_FAULT_HWPOISON;
2733 } else {
2734 print_bad_pte(vma, address, orig_pte, NULL);
2735 ret = VM_FAULT_SIGBUS;
2737 goto out;
2739 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2740 page = lookup_swap_cache(entry);
2741 if (!page) {
2742 grab_swap_token(mm); /* Contend for token _before_ read-in */
2743 page = swapin_readahead(entry,
2744 GFP_HIGHUSER_MOVABLE, vma, address);
2745 if (!page) {
2747 * Back out if somebody else faulted in this pte
2748 * while we released the pte lock.
2750 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2751 if (likely(pte_same(*page_table, orig_pte)))
2752 ret = VM_FAULT_OOM;
2753 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2754 goto unlock;
2757 /* Had to read the page from swap area: Major fault */
2758 ret = VM_FAULT_MAJOR;
2759 count_vm_event(PGMAJFAULT);
2760 } else if (PageHWPoison(page)) {
2762 * hwpoisoned dirty swapcache pages are kept for killing
2763 * owner processes (which may be unknown at hwpoison time)
2765 ret = VM_FAULT_HWPOISON;
2766 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2767 goto out_release;
2770 locked = lock_page_or_retry(page, mm, flags);
2771 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2772 if (!locked) {
2773 ret |= VM_FAULT_RETRY;
2774 goto out_release;
2778 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2779 * release the swapcache from under us. The page pin, and pte_same
2780 * test below, are not enough to exclude that. Even if it is still
2781 * swapcache, we need to check that the page's swap has not changed.
2783 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2784 goto out_page;
2786 if (ksm_might_need_to_copy(page, vma, address)) {
2787 swapcache = page;
2788 page = ksm_does_need_to_copy(page, vma, address);
2790 if (unlikely(!page)) {
2791 ret = VM_FAULT_OOM;
2792 page = swapcache;
2793 swapcache = NULL;
2794 goto out_page;
2798 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2799 ret = VM_FAULT_OOM;
2800 goto out_page;
2804 * Back out if somebody else already faulted in this pte.
2806 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2807 if (unlikely(!pte_same(*page_table, orig_pte)))
2808 goto out_nomap;
2810 if (unlikely(!PageUptodate(page))) {
2811 ret = VM_FAULT_SIGBUS;
2812 goto out_nomap;
2816 * The page isn't present yet, go ahead with the fault.
2818 * Be careful about the sequence of operations here.
2819 * To get its accounting right, reuse_swap_page() must be called
2820 * while the page is counted on swap but not yet in mapcount i.e.
2821 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2822 * must be called after the swap_free(), or it will never succeed.
2823 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2824 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2825 * in page->private. In this case, a record in swap_cgroup is silently
2826 * discarded at swap_free().
2829 inc_mm_counter_fast(mm, MM_ANONPAGES);
2830 dec_mm_counter_fast(mm, MM_SWAPENTS);
2831 pte = mk_pte(page, vma->vm_page_prot);
2832 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2833 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2834 flags &= ~FAULT_FLAG_WRITE;
2835 ret |= VM_FAULT_WRITE;
2836 exclusive = 1;
2838 flush_icache_page(vma, page);
2839 set_pte_at(mm, address, page_table, pte);
2840 do_page_add_anon_rmap(page, vma, address, exclusive);
2841 /* It's better to call commit-charge after rmap is established */
2842 mem_cgroup_commit_charge_swapin(page, ptr);
2844 swap_free(entry);
2845 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2846 try_to_free_swap(page);
2847 unlock_page(page);
2848 if (swapcache) {
2850 * Hold the lock to avoid the swap entry to be reused
2851 * until we take the PT lock for the pte_same() check
2852 * (to avoid false positives from pte_same). For
2853 * further safety release the lock after the swap_free
2854 * so that the swap count won't change under a
2855 * parallel locked swapcache.
2857 unlock_page(swapcache);
2858 page_cache_release(swapcache);
2861 if (flags & FAULT_FLAG_WRITE) {
2862 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2863 if (ret & VM_FAULT_ERROR)
2864 ret &= VM_FAULT_ERROR;
2865 goto out;
2868 /* No need to invalidate - it was non-present before */
2869 update_mmu_cache(vma, address, page_table);
2870 unlock:
2871 pte_unmap_unlock(page_table, ptl);
2872 out:
2873 return ret;
2874 out_nomap:
2875 mem_cgroup_cancel_charge_swapin(ptr);
2876 pte_unmap_unlock(page_table, ptl);
2877 out_page:
2878 unlock_page(page);
2879 out_release:
2880 page_cache_release(page);
2881 if (swapcache) {
2882 unlock_page(swapcache);
2883 page_cache_release(swapcache);
2885 return ret;
2889 * This is like a special single-page "expand_{down|up}wards()",
2890 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2891 * doesn't hit another vma.
2893 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2895 address &= PAGE_MASK;
2896 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2897 struct vm_area_struct *prev = vma->vm_prev;
2900 * Is there a mapping abutting this one below?
2902 * That's only ok if it's the same stack mapping
2903 * that has gotten split..
2905 if (prev && prev->vm_end == address)
2906 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2908 expand_stack(vma, address - PAGE_SIZE);
2910 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2911 struct vm_area_struct *next = vma->vm_next;
2913 /* As VM_GROWSDOWN but s/below/above/ */
2914 if (next && next->vm_start == address + PAGE_SIZE)
2915 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2917 expand_upwards(vma, address + PAGE_SIZE);
2919 return 0;
2923 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2924 * but allow concurrent faults), and pte mapped but not yet locked.
2925 * We return with mmap_sem still held, but pte unmapped and unlocked.
2927 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2928 unsigned long address, pte_t *page_table, pmd_t *pmd,
2929 unsigned int flags)
2931 struct page *page;
2932 spinlock_t *ptl;
2933 pte_t entry;
2935 pte_unmap(page_table);
2937 /* Check if we need to add a guard page to the stack */
2938 if (check_stack_guard_page(vma, address) < 0)
2939 return VM_FAULT_SIGBUS;
2941 /* Use the zero-page for reads */
2942 if (!(flags & FAULT_FLAG_WRITE)) {
2943 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2944 vma->vm_page_prot));
2945 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2946 if (!pte_none(*page_table))
2947 goto unlock;
2948 goto setpte;
2951 /* Allocate our own private page. */
2952 if (unlikely(anon_vma_prepare(vma)))
2953 goto oom;
2954 page = alloc_zeroed_user_highpage_movable(vma, address);
2955 if (!page)
2956 goto oom;
2957 __SetPageUptodate(page);
2959 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2960 goto oom_free_page;
2962 entry = mk_pte(page, vma->vm_page_prot);
2963 if (vma->vm_flags & VM_WRITE)
2964 entry = pte_mkwrite(pte_mkdirty(entry));
2966 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2967 if (!pte_none(*page_table))
2968 goto release;
2970 inc_mm_counter_fast(mm, MM_ANONPAGES);
2971 page_add_new_anon_rmap(page, vma, address);
2972 setpte:
2973 set_pte_at(mm, address, page_table, entry);
2975 /* No need to invalidate - it was non-present before */
2976 update_mmu_cache(vma, address, page_table);
2977 unlock:
2978 pte_unmap_unlock(page_table, ptl);
2979 return 0;
2980 release:
2981 mem_cgroup_uncharge_page(page);
2982 page_cache_release(page);
2983 goto unlock;
2984 oom_free_page:
2985 page_cache_release(page);
2986 oom:
2987 return VM_FAULT_OOM;
2991 * __do_fault() tries to create a new page mapping. It aggressively
2992 * tries to share with existing pages, but makes a separate copy if
2993 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2994 * the next page fault.
2996 * As this is called only for pages that do not currently exist, we
2997 * do not need to flush old virtual caches or the TLB.
2999 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3000 * but allow concurrent faults), and pte neither mapped nor locked.
3001 * We return with mmap_sem still held, but pte unmapped and unlocked.
3003 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3004 unsigned long address, pmd_t *pmd,
3005 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3007 pte_t *page_table;
3008 spinlock_t *ptl;
3009 struct page *page;
3010 pte_t entry;
3011 int anon = 0;
3012 int charged = 0;
3013 struct page *dirty_page = NULL;
3014 struct vm_fault vmf;
3015 int ret;
3016 int page_mkwrite = 0;
3018 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3019 vmf.pgoff = pgoff;
3020 vmf.flags = flags;
3021 vmf.page = NULL;
3023 ret = vma->vm_ops->fault(vma, &vmf);
3024 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3025 VM_FAULT_RETRY)))
3026 return ret;
3028 if (unlikely(PageHWPoison(vmf.page))) {
3029 if (ret & VM_FAULT_LOCKED)
3030 unlock_page(vmf.page);
3031 return VM_FAULT_HWPOISON;
3035 * For consistency in subsequent calls, make the faulted page always
3036 * locked.
3038 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3039 lock_page(vmf.page);
3040 else
3041 VM_BUG_ON(!PageLocked(vmf.page));
3044 * Should we do an early C-O-W break?
3046 page = vmf.page;
3047 if (flags & FAULT_FLAG_WRITE) {
3048 if (!(vma->vm_flags & VM_SHARED)) {
3049 anon = 1;
3050 if (unlikely(anon_vma_prepare(vma))) {
3051 ret = VM_FAULT_OOM;
3052 goto out;
3054 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3055 vma, address);
3056 if (!page) {
3057 ret = VM_FAULT_OOM;
3058 goto out;
3060 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3061 ret = VM_FAULT_OOM;
3062 page_cache_release(page);
3063 goto out;
3065 charged = 1;
3066 copy_user_highpage(page, vmf.page, address, vma);
3067 __SetPageUptodate(page);
3068 } else {
3070 * If the page will be shareable, see if the backing
3071 * address space wants to know that the page is about
3072 * to become writable
3074 if (vma->vm_ops->page_mkwrite) {
3075 int tmp;
3077 unlock_page(page);
3078 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3079 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3080 if (unlikely(tmp &
3081 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3082 ret = tmp;
3083 goto unwritable_page;
3085 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3086 lock_page(page);
3087 if (!page->mapping) {
3088 ret = 0; /* retry the fault */
3089 unlock_page(page);
3090 goto unwritable_page;
3092 } else
3093 VM_BUG_ON(!PageLocked(page));
3094 page_mkwrite = 1;
3100 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3103 * This silly early PAGE_DIRTY setting removes a race
3104 * due to the bad i386 page protection. But it's valid
3105 * for other architectures too.
3107 * Note that if FAULT_FLAG_WRITE is set, we either now have
3108 * an exclusive copy of the page, or this is a shared mapping,
3109 * so we can make it writable and dirty to avoid having to
3110 * handle that later.
3112 /* Only go through if we didn't race with anybody else... */
3113 if (likely(pte_same(*page_table, orig_pte))) {
3114 flush_icache_page(vma, page);
3115 entry = mk_pte(page, vma->vm_page_prot);
3116 if (flags & FAULT_FLAG_WRITE)
3117 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3118 if (anon) {
3119 inc_mm_counter_fast(mm, MM_ANONPAGES);
3120 page_add_new_anon_rmap(page, vma, address);
3121 } else {
3122 inc_mm_counter_fast(mm, MM_FILEPAGES);
3123 page_add_file_rmap(page);
3124 if (flags & FAULT_FLAG_WRITE) {
3125 dirty_page = page;
3126 get_page(dirty_page);
3129 set_pte_at(mm, address, page_table, entry);
3131 /* no need to invalidate: a not-present page won't be cached */
3132 update_mmu_cache(vma, address, page_table);
3133 } else {
3134 if (charged)
3135 mem_cgroup_uncharge_page(page);
3136 if (anon)
3137 page_cache_release(page);
3138 else
3139 anon = 1; /* no anon but release faulted_page */
3142 pte_unmap_unlock(page_table, ptl);
3144 out:
3145 if (dirty_page) {
3146 struct address_space *mapping = page->mapping;
3148 if (set_page_dirty(dirty_page))
3149 page_mkwrite = 1;
3150 unlock_page(dirty_page);
3151 put_page(dirty_page);
3152 if (page_mkwrite && mapping) {
3154 * Some device drivers do not set page.mapping but still
3155 * dirty their pages
3157 balance_dirty_pages_ratelimited(mapping);
3160 /* file_update_time outside page_lock */
3161 if (vma->vm_file)
3162 file_update_time(vma->vm_file);
3163 } else {
3164 unlock_page(vmf.page);
3165 if (anon)
3166 page_cache_release(vmf.page);
3169 return ret;
3171 unwritable_page:
3172 page_cache_release(page);
3173 return ret;
3176 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3177 unsigned long address, pte_t *page_table, pmd_t *pmd,
3178 unsigned int flags, pte_t orig_pte)
3180 pgoff_t pgoff = (((address & PAGE_MASK)
3181 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3183 pte_unmap(page_table);
3184 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3188 * Fault of a previously existing named mapping. Repopulate the pte
3189 * from the encoded file_pte if possible. This enables swappable
3190 * nonlinear vmas.
3192 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3193 * but allow concurrent faults), and pte mapped but not yet locked.
3194 * We return with mmap_sem still held, but pte unmapped and unlocked.
3196 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3197 unsigned long address, pte_t *page_table, pmd_t *pmd,
3198 unsigned int flags, pte_t orig_pte)
3200 pgoff_t pgoff;
3202 flags |= FAULT_FLAG_NONLINEAR;
3204 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3205 return 0;
3207 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3209 * Page table corrupted: show pte and kill process.
3211 print_bad_pte(vma, address, orig_pte, NULL);
3212 return VM_FAULT_SIGBUS;
3215 pgoff = pte_to_pgoff(orig_pte);
3216 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3220 * These routines also need to handle stuff like marking pages dirty
3221 * and/or accessed for architectures that don't do it in hardware (most
3222 * RISC architectures). The early dirtying is also good on the i386.
3224 * There is also a hook called "update_mmu_cache()" that architectures
3225 * with external mmu caches can use to update those (ie the Sparc or
3226 * PowerPC hashed page tables that act as extended TLBs).
3228 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3229 * but allow concurrent faults), and pte mapped but not yet locked.
3230 * We return with mmap_sem still held, but pte unmapped and unlocked.
3232 int handle_pte_fault(struct mm_struct *mm,
3233 struct vm_area_struct *vma, unsigned long address,
3234 pte_t *pte, pmd_t *pmd, unsigned int flags)
3236 pte_t entry;
3237 spinlock_t *ptl;
3239 entry = *pte;
3240 if (!pte_present(entry)) {
3241 if (pte_none(entry)) {
3242 if (vma->vm_ops) {
3243 if (likely(vma->vm_ops->fault))
3244 return do_linear_fault(mm, vma, address,
3245 pte, pmd, flags, entry);
3247 return do_anonymous_page(mm, vma, address,
3248 pte, pmd, flags);
3250 if (pte_file(entry))
3251 return do_nonlinear_fault(mm, vma, address,
3252 pte, pmd, flags, entry);
3253 return do_swap_page(mm, vma, address,
3254 pte, pmd, flags, entry);
3257 ptl = pte_lockptr(mm, pmd);
3258 spin_lock(ptl);
3259 if (unlikely(!pte_same(*pte, entry)))
3260 goto unlock;
3261 if (flags & FAULT_FLAG_WRITE) {
3262 if (!pte_write(entry))
3263 return do_wp_page(mm, vma, address,
3264 pte, pmd, ptl, entry);
3265 entry = pte_mkdirty(entry);
3267 entry = pte_mkyoung(entry);
3268 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3269 update_mmu_cache(vma, address, pte);
3270 } else {
3272 * This is needed only for protection faults but the arch code
3273 * is not yet telling us if this is a protection fault or not.
3274 * This still avoids useless tlb flushes for .text page faults
3275 * with threads.
3277 if (flags & FAULT_FLAG_WRITE)
3278 flush_tlb_fix_spurious_fault(vma, address);
3280 unlock:
3281 pte_unmap_unlock(pte, ptl);
3282 return 0;
3286 * By the time we get here, we already hold the mm semaphore
3288 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3289 unsigned long address, unsigned int flags)
3291 pgd_t *pgd;
3292 pud_t *pud;
3293 pmd_t *pmd;
3294 pte_t *pte;
3296 __set_current_state(TASK_RUNNING);
3298 count_vm_event(PGFAULT);
3300 /* do counter updates before entering really critical section. */
3301 check_sync_rss_stat(current);
3303 if (unlikely(is_vm_hugetlb_page(vma)))
3304 return hugetlb_fault(mm, vma, address, flags);
3306 pgd = pgd_offset(mm, address);
3307 pud = pud_alloc(mm, pgd, address);
3308 if (!pud)
3309 return VM_FAULT_OOM;
3310 pmd = pmd_alloc(mm, pud, address);
3311 if (!pmd)
3312 return VM_FAULT_OOM;
3313 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3314 if (!vma->vm_ops)
3315 return do_huge_pmd_anonymous_page(mm, vma, address,
3316 pmd, flags);
3317 } else {
3318 pmd_t orig_pmd = *pmd;
3319 barrier();
3320 if (pmd_trans_huge(orig_pmd)) {
3321 if (flags & FAULT_FLAG_WRITE &&
3322 !pmd_write(orig_pmd) &&
3323 !pmd_trans_splitting(orig_pmd))
3324 return do_huge_pmd_wp_page(mm, vma, address,
3325 pmd, orig_pmd);
3326 return 0;
3331 * Use __pte_alloc instead of pte_alloc_map, because we can't
3332 * run pte_offset_map on the pmd, if an huge pmd could
3333 * materialize from under us from a different thread.
3335 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3336 return VM_FAULT_OOM;
3337 /* if an huge pmd materialized from under us just retry later */
3338 if (unlikely(pmd_trans_huge(*pmd)))
3339 return 0;
3341 * A regular pmd is established and it can't morph into a huge pmd
3342 * from under us anymore at this point because we hold the mmap_sem
3343 * read mode and khugepaged takes it in write mode. So now it's
3344 * safe to run pte_offset_map().
3346 pte = pte_offset_map(pmd, address);
3348 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3351 #ifndef __PAGETABLE_PUD_FOLDED
3353 * Allocate page upper directory.
3354 * We've already handled the fast-path in-line.
3356 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3358 pud_t *new = pud_alloc_one(mm, address);
3359 if (!new)
3360 return -ENOMEM;
3362 smp_wmb(); /* See comment in __pte_alloc */
3364 spin_lock(&mm->page_table_lock);
3365 if (pgd_present(*pgd)) /* Another has populated it */
3366 pud_free(mm, new);
3367 else
3368 pgd_populate(mm, pgd, new);
3369 spin_unlock(&mm->page_table_lock);
3370 return 0;
3372 #endif /* __PAGETABLE_PUD_FOLDED */
3374 #ifndef __PAGETABLE_PMD_FOLDED
3376 * Allocate page middle directory.
3377 * We've already handled the fast-path in-line.
3379 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3381 pmd_t *new = pmd_alloc_one(mm, address);
3382 if (!new)
3383 return -ENOMEM;
3385 smp_wmb(); /* See comment in __pte_alloc */
3387 spin_lock(&mm->page_table_lock);
3388 #ifndef __ARCH_HAS_4LEVEL_HACK
3389 if (pud_present(*pud)) /* Another has populated it */
3390 pmd_free(mm, new);
3391 else
3392 pud_populate(mm, pud, new);
3393 #else
3394 if (pgd_present(*pud)) /* Another has populated it */
3395 pmd_free(mm, new);
3396 else
3397 pgd_populate(mm, pud, new);
3398 #endif /* __ARCH_HAS_4LEVEL_HACK */
3399 spin_unlock(&mm->page_table_lock);
3400 return 0;
3402 #endif /* __PAGETABLE_PMD_FOLDED */
3404 int make_pages_present(unsigned long addr, unsigned long end)
3406 int ret, len, write;
3407 struct vm_area_struct * vma;
3409 vma = find_vma(current->mm, addr);
3410 if (!vma)
3411 return -ENOMEM;
3413 * We want to touch writable mappings with a write fault in order
3414 * to break COW, except for shared mappings because these don't COW
3415 * and we would not want to dirty them for nothing.
3417 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3418 BUG_ON(addr >= end);
3419 BUG_ON(end > vma->vm_end);
3420 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3421 ret = get_user_pages(current, current->mm, addr,
3422 len, write, 0, NULL, NULL);
3423 if (ret < 0)
3424 return ret;
3425 return ret == len ? 0 : -EFAULT;
3428 #if !defined(__HAVE_ARCH_GATE_AREA)
3430 #if defined(AT_SYSINFO_EHDR)
3431 static struct vm_area_struct gate_vma;
3433 static int __init gate_vma_init(void)
3435 gate_vma.vm_mm = NULL;
3436 gate_vma.vm_start = FIXADDR_USER_START;
3437 gate_vma.vm_end = FIXADDR_USER_END;
3438 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3439 gate_vma.vm_page_prot = __P101;
3441 * Make sure the vDSO gets into every core dump.
3442 * Dumping its contents makes post-mortem fully interpretable later
3443 * without matching up the same kernel and hardware config to see
3444 * what PC values meant.
3446 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3447 return 0;
3449 __initcall(gate_vma_init);
3450 #endif
3452 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3454 #ifdef AT_SYSINFO_EHDR
3455 return &gate_vma;
3456 #else
3457 return NULL;
3458 #endif
3461 int in_gate_area_no_task(unsigned long addr)
3463 #ifdef AT_SYSINFO_EHDR
3464 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3465 return 1;
3466 #endif
3467 return 0;
3470 #endif /* __HAVE_ARCH_GATE_AREA */
3472 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3473 pte_t **ptepp, spinlock_t **ptlp)
3475 pgd_t *pgd;
3476 pud_t *pud;
3477 pmd_t *pmd;
3478 pte_t *ptep;
3480 pgd = pgd_offset(mm, address);
3481 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3482 goto out;
3484 pud = pud_offset(pgd, address);
3485 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3486 goto out;
3488 pmd = pmd_offset(pud, address);
3489 VM_BUG_ON(pmd_trans_huge(*pmd));
3490 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3491 goto out;
3493 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3494 if (pmd_huge(*pmd))
3495 goto out;
3497 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3498 if (!ptep)
3499 goto out;
3500 if (!pte_present(*ptep))
3501 goto unlock;
3502 *ptepp = ptep;
3503 return 0;
3504 unlock:
3505 pte_unmap_unlock(ptep, *ptlp);
3506 out:
3507 return -EINVAL;
3510 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3511 pte_t **ptepp, spinlock_t **ptlp)
3513 int res;
3515 /* (void) is needed to make gcc happy */
3516 (void) __cond_lock(*ptlp,
3517 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3518 return res;
3522 * follow_pfn - look up PFN at a user virtual address
3523 * @vma: memory mapping
3524 * @address: user virtual address
3525 * @pfn: location to store found PFN
3527 * Only IO mappings and raw PFN mappings are allowed.
3529 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3531 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3532 unsigned long *pfn)
3534 int ret = -EINVAL;
3535 spinlock_t *ptl;
3536 pte_t *ptep;
3538 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3539 return ret;
3541 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3542 if (ret)
3543 return ret;
3544 *pfn = pte_pfn(*ptep);
3545 pte_unmap_unlock(ptep, ptl);
3546 return 0;
3548 EXPORT_SYMBOL(follow_pfn);
3550 #ifdef CONFIG_HAVE_IOREMAP_PROT
3551 int follow_phys(struct vm_area_struct *vma,
3552 unsigned long address, unsigned int flags,
3553 unsigned long *prot, resource_size_t *phys)
3555 int ret = -EINVAL;
3556 pte_t *ptep, pte;
3557 spinlock_t *ptl;
3559 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3560 goto out;
3562 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3563 goto out;
3564 pte = *ptep;
3566 if ((flags & FOLL_WRITE) && !pte_write(pte))
3567 goto unlock;
3569 *prot = pgprot_val(pte_pgprot(pte));
3570 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3572 ret = 0;
3573 unlock:
3574 pte_unmap_unlock(ptep, ptl);
3575 out:
3576 return ret;
3579 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3580 void *buf, int len, int write)
3582 resource_size_t phys_addr;
3583 unsigned long prot = 0;
3584 void __iomem *maddr;
3585 int offset = addr & (PAGE_SIZE-1);
3587 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3588 return -EINVAL;
3590 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3591 if (write)
3592 memcpy_toio(maddr + offset, buf, len);
3593 else
3594 memcpy_fromio(buf, maddr + offset, len);
3595 iounmap(maddr);
3597 return len;
3599 #endif
3602 * Access another process' address space.
3603 * Source/target buffer must be kernel space,
3604 * Do not walk the page table directly, use get_user_pages
3606 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3608 struct mm_struct *mm;
3609 struct vm_area_struct *vma;
3610 void *old_buf = buf;
3612 mm = get_task_mm(tsk);
3613 if (!mm)
3614 return 0;
3616 down_read(&mm->mmap_sem);
3617 /* ignore errors, just check how much was successfully transferred */
3618 while (len) {
3619 int bytes, ret, offset;
3620 void *maddr;
3621 struct page *page = NULL;
3623 ret = get_user_pages(tsk, mm, addr, 1,
3624 write, 1, &page, &vma);
3625 if (ret <= 0) {
3627 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3628 * we can access using slightly different code.
3630 #ifdef CONFIG_HAVE_IOREMAP_PROT
3631 vma = find_vma(mm, addr);
3632 if (!vma)
3633 break;
3634 if (vma->vm_ops && vma->vm_ops->access)
3635 ret = vma->vm_ops->access(vma, addr, buf,
3636 len, write);
3637 if (ret <= 0)
3638 #endif
3639 break;
3640 bytes = ret;
3641 } else {
3642 bytes = len;
3643 offset = addr & (PAGE_SIZE-1);
3644 if (bytes > PAGE_SIZE-offset)
3645 bytes = PAGE_SIZE-offset;
3647 maddr = kmap(page);
3648 if (write) {
3649 copy_to_user_page(vma, page, addr,
3650 maddr + offset, buf, bytes);
3651 set_page_dirty_lock(page);
3652 } else {
3653 copy_from_user_page(vma, page, addr,
3654 buf, maddr + offset, bytes);
3656 kunmap(page);
3657 page_cache_release(page);
3659 len -= bytes;
3660 buf += bytes;
3661 addr += bytes;
3663 up_read(&mm->mmap_sem);
3664 mmput(mm);
3666 return buf - old_buf;
3670 * Print the name of a VMA.
3672 void print_vma_addr(char *prefix, unsigned long ip)
3674 struct mm_struct *mm = current->mm;
3675 struct vm_area_struct *vma;
3678 * Do not print if we are in atomic
3679 * contexts (in exception stacks, etc.):
3681 if (preempt_count())
3682 return;
3684 down_read(&mm->mmap_sem);
3685 vma = find_vma(mm, ip);
3686 if (vma && vma->vm_file) {
3687 struct file *f = vma->vm_file;
3688 char *buf = (char *)__get_free_page(GFP_KERNEL);
3689 if (buf) {
3690 char *p, *s;
3692 p = d_path(&f->f_path, buf, PAGE_SIZE);
3693 if (IS_ERR(p))
3694 p = "?";
3695 s = strrchr(p, '/');
3696 if (s)
3697 p = s+1;
3698 printk("%s%s[%lx+%lx]", prefix, p,
3699 vma->vm_start,
3700 vma->vm_end - vma->vm_start);
3701 free_page((unsigned long)buf);
3704 up_read(&current->mm->mmap_sem);
3707 #ifdef CONFIG_PROVE_LOCKING
3708 void might_fault(void)
3711 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3712 * holding the mmap_sem, this is safe because kernel memory doesn't
3713 * get paged out, therefore we'll never actually fault, and the
3714 * below annotations will generate false positives.
3716 if (segment_eq(get_fs(), KERNEL_DS))
3717 return;
3719 might_sleep();
3721 * it would be nicer only to annotate paths which are not under
3722 * pagefault_disable, however that requires a larger audit and
3723 * providing helpers like get_user_atomic.
3725 if (!in_atomic() && current->mm)
3726 might_lock_read(&current->mm->mmap_sem);
3728 EXPORT_SYMBOL(might_fault);
3729 #endif
3731 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3732 static void clear_gigantic_page(struct page *page,
3733 unsigned long addr,
3734 unsigned int pages_per_huge_page)
3736 int i;
3737 struct page *p = page;
3739 might_sleep();
3740 for (i = 0; i < pages_per_huge_page;
3741 i++, p = mem_map_next(p, page, i)) {
3742 cond_resched();
3743 clear_user_highpage(p, addr + i * PAGE_SIZE);
3746 void clear_huge_page(struct page *page,
3747 unsigned long addr, unsigned int pages_per_huge_page)
3749 int i;
3751 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3752 clear_gigantic_page(page, addr, pages_per_huge_page);
3753 return;
3756 might_sleep();
3757 for (i = 0; i < pages_per_huge_page; i++) {
3758 cond_resched();
3759 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3763 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3764 unsigned long addr,
3765 struct vm_area_struct *vma,
3766 unsigned int pages_per_huge_page)
3768 int i;
3769 struct page *dst_base = dst;
3770 struct page *src_base = src;
3772 for (i = 0; i < pages_per_huge_page; ) {
3773 cond_resched();
3774 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3776 i++;
3777 dst = mem_map_next(dst, dst_base, i);
3778 src = mem_map_next(src, src_base, i);
3782 void copy_user_huge_page(struct page *dst, struct page *src,
3783 unsigned long addr, struct vm_area_struct *vma,
3784 unsigned int pages_per_huge_page)
3786 int i;
3788 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3789 copy_user_gigantic_page(dst, src, addr, vma,
3790 pages_per_huge_page);
3791 return;
3794 might_sleep();
3795 for (i = 0; i < pages_per_huge_page; i++) {
3796 cond_resched();
3797 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3800 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */